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Deforestation and global climate change are predicted to affect precipitation and agricultural productiv-
ity in the Amazon. Anecdotal evidence suggests that farmers are already being affected by changes in the
timing and amount of precipitation, but there is little quantitative evidence on the mechanism by which
precipitation affects production. This paper uses an innovative application of remote sensing and mete-
orological data to separate rainfall into green water (soil moisture that contributes to plant water use)
and blue water (surface water), to estimate the impact of these water sources on the production and pro-
duction efficiency of dairy in a mature colonization zone of the Brazilian Amazon. This approach allows us
to draw inferences about different pathways through the precipitation-production causal chain and to
link changes in precipitation with impacts on farm profits and welfare. We find that production and pro-
duction efficiency are affected by green and blue water and that reductions in rainfall will have negative
impacts that may disproportionally impact the poor. Our methods and results are informative to econo-
mists interested in this relatively new application of remote sensing data, to geographers interested in
identifying the role of green and blue water in agricultural production, and more generally to researchers
interested in the impacts of rainfall and water availability on small-scale producers in the Brazilian
Amazon.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The conversion of tropical forests to agricultural land con-
tributes to climate change by increasing atmospheric carbon diox-
ide concentrations, increasing surface albedo, and reducing
transpiration (Barkhordarian, Saatchi, Behrangi, Loikith, &
Mechoso, 2019; Coe, Costa, & Soares-Filho, 2009; Espinoza Villar
et al., 2009; Good, Jones, Lowe, Betts, & Gedney, 2013; Panday,
Coe, Macedo, Lefebvre, & de Almeida Castanho, 2015). The net
effects of land cover change on the availability of water in tropical
forest regions are not yet well understood because of complex non-
linear interactions that occur between the atmosphere, hydro-
sphere, and biosphere (Andréassian, 2004; Lacombe et al., 2016;
Lima et al., 2014;Wohl et al., 2012). However, reductions in precip-
itation resulting in a longer dry season have already been observed
in southern and eastern Amazonia (Davidson et al., 2012; Khanna,
Medvigy, Fueglistaler, &Walko, 2017) and droughts have been pre-
dicted to have negative and persistent effects on forests (Saatchi,
Asefi-Najafabady, Malhi, Aragão, Anderson, Myneni, & Nemani,
2013), though forest photosynthesis may be resilient to increased
atmospheric dryness (Green, Berry, Ciais, Zhang, & Gentine,
2020). Future deforestation may exacerbate dry season length
thereby decreasing rainfall (De Sales, Santiago, Biggs, Mullan,
Sills, & Monteverde, 2020) and negatively impact agriculture,
including beef and dairy production systems that are the predom-
inant land uses in the Amazon.

Poor populations, as defined by relative and absolute poverty,
are more likely to be negatively impacted by climate and weather
shocks, including drought and the lengthening of the dry season
(Balasubramanya & Stifel, 2020). This unequal impact occurs
because the poor are positioned to lose a larger fraction of their
wealth when weather and climate shocks occur, and because once
the shocks have occurred, the poor have less savings and access to
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loans; both of which are often needed for recovery. These disad-
vantages make the poor more susceptible to poverty-
environment traps (Barbier & Hochard, 2018a,b; Carter, Little,
Mogues, & Negatu, 2007) and can lead to increases in poverty
and reductions in human development (Rodriguez-Oreggia, De La
Fuente, De La Torre, & Moreno, 2013). Yet because the income of
the poor represents a small portion of national GDP, the impacts
of climate change on this population are often largely invisible to
government and policy makers (Hallegatte, Fay, & Barbier, 2018).

Precipitation is important for agropastoral systems and in par-
ticular, for rain-fed systems that are used by poorer small-scale
farmers who cannot afford irrigation and wells. Water serves sev-
eral important functions in agropastoral systems. ‘‘Green water” is
soil moisture derived from local rainfall that returns to the atmo-
sphere as evapotranspiration by vegetation and bare soil, and ‘‘blue
water” is the water found in ponds, streams, and groundwater
(Falkenmark & Rockström, 2006). Agriculture is the largest con-
sumer of water in the Brazilian Amazon even though there is a lim-
ited use of irrigation (Lathuillière, Coe, Castanho, Graesser, &
Johnson, 2018). It is unclear how changes in rainfall will impact
agricultural productivity via changes in blue and green water,
and whether those changes will disproportionately impact the
poor. Green water, used in the production of fodder, is a valuable
input for farmers who cannot afford who to buy or store cattle
feed. Blue water (as surface water and groundwater) can be used
for irrigation, cattle, and domestic activities. Any changes in pre-
cipitation are therefore of importance to the productivity of agri-
culture in deforested regions of the humid tropics, where rainfall
has not historically been a limiting factor. Blue and green water
consumptive uses are currently estimated to be within sustainable
limits in the Brazilian Amazon, but increases in the intensification
and/or extensification of agriculture have the potential to threaten
the availability of blue water in the dry season (Lathuillière et al.,
2018), while increases in pasture productivity (i.e. green water)
have the potential to reduce the impacts of cattle production on
the water cycle (Lathuillière et al., 2019)

This paper investigates the effects of interannual, and spatial,
variability in green and blue water on production and technical
efficiency of family-owned dairy farms in a mature colonization
zone of the southwestern Brazilian Amazon. This approach allows
us to draw inferences about different pathways through the
precipitation-production causal chain. More specifically, we pro-
vide evidence on the intermediate steps in the causal chain that
begin with changes in precipitation (expected as a result of both
global climate change and regional deforestation) and end with
impacts on farm profits and welfare, thus helping to unpack this
complex coupled human-natural system (Balasubramanya &
Stifel, 2020; Qiu, Game, Tallis, Olander, Glew, Kagan, & Kalies,
2018). To do this, we use an innovative application of remote sens-
ing data to distinguish between green and blue water to compen-
sate for the lack of property-level rainfall data in our study region.
We assume that precipitation alters green and blue water avail-
ability and that higher production and higher production efficiency
increase welfare, allowing us to focus on testing whether changes
in green and blue water availability affect production and produc-
tion efficiency. We hypothesize that this relationship is moderated
by socioeconomic status, such that changes in precipitation could
have larger effects on poor households. More specifically, our
empirical models examine the impacts of changes in annual and
seasonal green and blue water on dairy output by estimating the
production and production efficiency of milk as functions of green
and blue water in two-way fixed effects models.

Economics research has recently seen an increase in the use of
remotely sensed data to analyze a range of behaviors including
those related to land use and climate change (Blackman, 2013;
Donaldson & Storeygard, 2016). Satellite imagery is collected at
2

regular intervals over extensive geographic areas, and can be used
to identify exogenous variation and provide independent verifica-
tion of household land use. In developing nations, where hydrom-
eteorological data are often limited, these benefits are particularly
important (Donaldson & Storeygard, 2016; Henderson, Regan, &
Anthony, 2016). This paper uses three proxies for estimating water
availability over small geographic regions (Bark, Osgood, Colby, &
Halper, 2011) to overcome the low spatial resolution available in
station-based data sets (Mendelsohn, 2008). The first is the
Enhanced Vegetation Index (EVI), which represents vegetation
‘‘greenness”, and correlates with both evapotranspiration (Glenn,
Nagler, & Huete, 2010) and the water content of vegetation
(Payton, Lindsey, Wilson, Ottensmann, & Man, 2008). The second
is streamflow estimated at the property level from existing stream
discharge data and the delineation of the drainage area supplying
each property, which represents ‘‘blue” water availability. The
third is the amount of aboveground water stored in ponds esti-
mated from classified Landsat data, which represents stored ‘‘blue”
water. Our methods and results are informative to economists
interested in this relatively new application of remote sensing
data, to geographers interested in identifying the role of green
and blue water in agricultural production, and more generally to
researchers interested in the impacts of rainfall and water avail-
ability on small-scale producers in the Brazilian Amazon.

Sections 2 and 3 follow and describe the study region and data
generated for our analyses. We then outline our empirical models
and results in Section 4, and link our results to evidence from a
recent pilot program suggesting that supplemental feeding (i.e.
providing soy, grass, or corn feed that adds to the pasture grasses
available on the farm property) can increase milk production in
the face of declining availability of green water in Section 5. The
discussion of the combined results follows in Section 6 and we con-
clude with the main outcomes that we expect can be used to
inform policy in Section 7.
2. Study region

The Ouro Preto do Oeste (OPO) region includes six municipali-
ties in the central portion of the state of Rondônia, Brazil (Figure 1)
and experiences a tropical monsoonal climate. The average annual
temperature is 26 �C with minimal seasonal variation (Beta, 2016).
Precipitation averages 2095 mm per year with a dry season from
June to August. OPO straddles the watershed divide between the
Ji-Parana and Jaru drainage basins with elevations ranging
between 100 and 600 m above sea level. Land is predominately
used for agriculture and is dominated by cattle pasture with lim-
ited annual (e.g. maize, beans, rice and sugarcane) and perennial
crops including coffee and cacao (Numata et al., 2003). Crop and
pasture systems in OPO are predominantly rainfed while surface
water and groundwater are used for cattle and fish production.

OPO was first settled in the late 1960s as a part of a series of leg-
islative acts and decrees collectively known as Operation Amazo-
nia (Moran, 1981). These programs funded infrastructure such as
roads and dams and settlements overseen by INCRA (the National
Institute of Colonization and Agrarian Reform). Settlement plans
included the establishment of urban centers every 30–40 km along
federal highways and the allocation of properties around these
centers to households migrating from other regions of Brazil
(Browder, 1994; Caviglia-Harris & Harris, 2011). Most settlements
were laid out on regular grids with rectangular properties of 50 –
100HA along the roads. Settlers were awarded property rights that
have been largely uncontested and secure. Migration increased in
the 1980s after federal highway BR-364 was paved and financed
by the World Bank via the Northwest Brazil Integrated Develop-
ment Programme (POLONORESTE). Within the Amazon region,



Fig. 1. Ouro Preto do Oeste Study Region The figure outlines the six municipalities in the study region and their urban centers, rivers with steam gauges and federal highway
BR-364, which is referenced in the text. The blue lines represent streams at 1:250,000 with the Ariquemes and Jaru stream gauges identified. Brazilian Federal Highway 364
bisects the study municipalities and passes through the largest urban center, Ouro Preto do Oeste. Municipal urban centers and the largest nearby city, Ji-Parana are also
identified. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Cattle and Dairy Trends in Study Region, Rondônia, and Comparable Amazonian Municipalities; 1991–2010.

Cattle (head) Dairy (head) Milk (thousands of liters/year) Cattle (per hectare4) Dairy Cattle (per hectare4)

1991
Ouro Preto do Oeste1 197,914 39,582 24,937 5.35 1.07
Remaining Municipalities in Rondônia2 2,367,625 358,648 204,685 4.18 0.62
Settled Amazon3 16,670,089 1,369,308 542,165 4.78 0.35
2000
Ouro Preto do Oeste 574,553 74,167 88,900 1.26 0.15
Remaining Municipalities in Rondônia 3,728,392 277,496 238,493 0.80 0.06
Settled Amazon 28,902,595 1,394,073 857,497 2.52 0.13

2010
Ouro Preto do Oeste 879,553 204,310 172,036 1.90 0.44
Remaining Municipalities in Rondônia 8,402,948 649,473 469,568 1.39 0.12
Settled Amazon 48,335,661 1,872,260 1,489,393 2.24 0.10

1Ouro Preto do Oeste refers to greater Ouro Preto do Oeste, including the six municipalities of Mirante da Serra, Nova União, Ouro Preto do Oeste, Teixeropolis, Urupá, and Vale
do Paríso
2Includes all municipalities within the state settled prior to 2000 with the exception of the 6 municipalities in greater Ouro Preto do Oeste.
3Calculated as the total for all municipalities with INCRA settlements established prior to 2000 with the exception of those in Rondônia.
4 Per hectare of deforested land.
Sources: IBGE - Pesquisa Pecuária Municipal ‘‘Tabela 73 - Efetivo dos rebanhos, por tipo de rebanho (série encerrada),” http://www.sidra.ibge.gov.br/bda/acervo/ accessed
January 2016. (Number of head includes cows, calves and bulls. Dairy noted in the last column are a subset of cattle); INPE. 2011. ‘‘Projeto Prodes: Monitoramento Da Floresta
Amazônica Brasileira Por Satélite.” Guamá Belém (PA) Brasil: National Institute for Space Research (INPE). http://www.obt.inpe.br/prodes/sisprodes2000_2010.htm.
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Table 2
Descriptive Statistics for Properties and Households (mean; standard deviation in
parentheses).

2000 2005 2009

Production
Milk harvest, dry season (liters per day) 3.464 2.583 3.488

(1.188) (1.909) (1.723)
Milk harvest, rainy season (liters per day) 4.797 4.141 5.569

(2.042) (2.774) (2.617)

Water
Blue water flow: dry season stream

discharge (meters-cubed per day)
1,044.5 318.8 465.7
(3143.6) (998.9) (1415.0)

Blue water flow: rainy season stream
discharge (meters-cubed per day)

14,338.3 11,398.5 8,714.3
(43152.9) (35710.4) (26481.6)

Blue water stock: ponds (hectares) 0.07 0.07 0.16
(0.24) (0.22) (0.29)

Green water: dry season pasture
greenness (unitless ranges from 0 to
1; higher = more green)

0.40 0.39 0.39
(0.04) (0.034) (0.03)

Green water: rainy season pasture
greenness (unitless ranges from 0 to
1; higher = more green)

0.530 0.516 0.520
(0.05) (0.08) (0.08)

Household and Property Controls
Average age of the household heads,

years
48.67 50.22 51.74
(11.71) (13.29) (13.38)

Average education of the household
heads, years

2.483 2.809 3.462
(1.617) (2.051) (2.850)

Soil conditions on lot (1-good, 2-
moderate, 3-restricted, 4-unsuitable)

2.121 2.293 2.337
(0.756) (0.738) (0.738)

Distance to the city center, kilometers 35.74 37.86 40.65
(17.72) (18.18) (17.04)

Pasture, hectares 49.24 48.32 42.10
(29.91) (37.27) (36.13)

Income, total from all sources, R$2000 16,281.7 15,709.9 18,123.3
(14,660.4) (13,226.8) (17,755.6)

n 119 194 339
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more than 1.2 million migrants were settled as part of these pro-
grams (Pacheco, 2009).

The size of cattle - and specifically dairy - herds size has increased
rapidly since the early 1990s (Table 1). In OPO, the cattle herd
increased by almost 200% between 1991 and 2000, and by another
53% to a herd size of close to 900,000 head by 2010 (Table 1). Milk
production increased by 256% between 1991 and 2000, and by 94%
from 2000 to 2010, establishing OPO as a dairy industry cluster.
Growth was also noted in the number of dairy processing plants in
the region, many with daily farmgate pick up every day of the year.
There were 11 plants prior to 1996, 14 by 2000 and another 4 added
for a total of 18 after 2000. The central municipality in OPO (Ouro
Preto do Oeste) and three adjacent municipalities (Urupá, Nova
União, and Vale do Paraíso) are among Brazil’s top 10 largest dairy
producers (SEBRAE 2015). Although dairy production continues to
be dominated by smallholder producers in Rondônia, there is evi-
dence of movement toward the large-scale industrial production
of milk: professional investment in the dairy industry increased by
20% between 2002 and 2013 while household investments fell by
the same amount in the state (SEBRAE 2015).
Table 3
Income and Revenue by Category over Time.

Income and Revenue from all Sources (percent by
category)

1996 2000 2005 2009

Agriculture Revenue 73.88 68.49 60.38 61.14
Government Payments 12.51 13.76 17.17 24.35
Off-Farm Income 13.60 17.75 22.44 14.51

Total 99.99 100 99.99 100

4

3. Data

Data used in our estimations integrate household production
data (dairy production/head/day), socio-economic characteristics
(age and education of the household heads and household wealth),
daily rainfall summed by month and season, and proxies for green
and blue water (Table 2).
3.1. Household production data

The household survey panel includes data collected in four
waves from a stratified random sample of 171 households in
1996 (2% of the 9518 rural properties), 166 in 2000 (2% of the
9785 rural properties), 285 in 2005 (3% of the 10,903 rural proper-
ties), and 449 in 2009 (4% of the 10,931 rural properties) for a total
of 1071 observations; of these households, 146, 119, 194 and 339
were dairy farmers in 1996, 2000, 2005, and 2009, respectively.
The stratified random sampling methodology and survey design
were consistent for each of the data collection waves. The sample
was expanded in 2005 to include new settlements that had been
established in the study region on previous forest reserves and
large unoccupied ranches to maintain a representative sample
population (Caviglia-Harris, Sills, & Mullan, 2013). The sample
was again increased in 2009 following the same procedures
(Caviglia-Harris et al., 2012). We refer to 1996 as a reference year
but do not include this year in the estimations because the satellite
data used to calculate the EVI are only available for the year 2000
and forward.

The survey data provide full information on farm production
and purchased inputs, hectares reported in different land uses
including forest and pasture, annual crops, perennial crops, mea-
sures of wealth including consumer durables, equipment, live-
stock, and vehicles, reported property values, and a standard set
of socio-economic characteristics. Data indicate that once settled
in this region, small-farm families have typically remained on the
same property throughout the study period (1996–2009), exhibit-
ing a relatively low 5% annual attrition rate (Mullan, Sills,
Pattanayak, & Caviglia-Harris, 2018). More precisely, rural popula-
tions have increased due to in-fill rather than ‘‘hollowing” of the
frontier due to turn-over (Caviglia-Harris, Sills, Bell, Harris,
Mullan, & Roberts, 2016).

Total (inflation adjusted) income fell from approximately R
$16,300 in 2000 to R$15,700 in 2005 and increased to R$18,100
by 2009 (Table 2). We divide total income into agriculture revenue,
off-farm labor, government payments and other sources, and find
evidence that the 2005 drought impacted the division of these
income sources (Table 3). Agricultural revenue declined from an
average of 60–80% of total income in the pre-drought study years
to<30% of total income during the drought, while off-farm labor
increased from 14 to 17% of total income to more 22% likely to
compensate for (or as a result of) these losses (see the first four col-
umns of data in Table 3). Milk production was an important source
of agricultural income, accounting for more than 50% of the total in
Agriculture Revenue (percent by category)

1996 2000 2005 2009

Dairy 55.00 51.06 38.33 52.91
Livestock 0.00 22.68 36.57 32.10
Crops 44.74 25.35 24.69 14.96
Fish and Honey 0.26 0.90 0.40 0.04
Total 100 99.99 99.99 100.01



1 Future work could compare the availability indices with consumptive water uses
to compare the balance of water availability and use.

2 This was calculated using the hydrostats package (Bond 2016) in R statistical
software (R Core Team 2017). The 10th percentile flow identifies flows that are
exceeded 90% of the time are used here to represent the lowest discharge of each year
(Figure 4).

3 Baseflow was calculated using the EcoHydRology package (Fuka et al. 2014).
4 These calculations assume that specific discharge (mm/day) is uniform over the

study area and with watershed size.
5 Some of the changes over time are likely due to changes in property size and may

be attributed to the inclusion of properties with smaller watersheds in 2009. A
balanced panel for 75 properties in both the 2000 and 2019 samples suggest that low
flow discharge fell from an average of 1,084 to 690 m3/day (a 36% decline) in the dry
season and from 14,890 to 12,918 m3/day (13% decline in the rainy season).

J. Caviglia-Harris, T. Biggs, E. Ferreira et al. World Development 146 (2021) 105607
all years, with the exception of 2005, when this income source fell
to<39% of total (Table 3, see last four columns of data).

Mean property size declined between 2000 and 2009 as some
households sold portions of their properties, others split properties
among children, and still others moved to new properties that
were smaller than the original 100 ha distributed during the initial
settlement years of 1970–1990. This translates to a reduction in
the area of pasture managed by each household from an average
of 49 ha in 2000 to 42 ha in 2009 (Table 2). The average household
in the region has become older and more educated as in-migration
has slowed and access to schooling has increased, household mem-
bers have remained on their properties (rather than migrate into
the forest frontier), and there has been generational turn-over in
families. The average age of the household heads increased from
49 to 51 years, while education levels increased from an average
of 2.5 years to 3.5 (Table 2). Wealth increased over the survey time
period as suggested by the 80% increase in the real value of vehi-
cles owned by the household from approximately R$5400 in
2000 to R$9750 in 2009. The average distance to the OPO urban
center for households increased from 36 to 41 km as new proper-
ties were settled further from initial settlements along BR-364 (and
subsequently added to the survey sample).

Milk production varies and is lower in the dry season and in
drought years (Table 4). Production is higher in the rainy season
in terms of total quantities (34–62% higher than dry season pro-
duction depending on year) and per-head production (40–65%
higher than dry season production depending on year) and was
the lowest during the 2005 drought. Data also suggest the seasonal
production efficiency has been improving over time: liters/head/-
day increase from a dry season average of 2.6 in 1996 to 3.5 in
2009 and a rainy season average of 3.8 in 1996 to 5.6 in 2009
(Table 4).

Household income and wealth vary widely in the six-
municipality region enabling for the examination of differences
between income strata. We compare production, water, and house-
hold data for households in the lowest quartile of the income dis-
tribution (who we label as poor) with other households (who we
label as non-poor) and present these data in Table 5. Unsurpris-
ingly, our proxy for wealth (the value of vehicles owned) is signif-
icantly lower for the poor in each year. However, there are no
significant differences in milk production, or blue and green water,
for these different groups of farmers, suggesting that any differ-
ences in the impact of green and blue water on production on
the poor are not due to initial distributional differences. House-
holds in the top three quartiles of the income distribution have
older heads of household, are located closer to the city center,
and have better soils than poor households (Table 5).

3.2. Blue and green water indices overview

We calculated indices of water availability for each of the prop-
erties in the economic survey, including blue water stock (ponds,
reservoirs), blue water flow (streamflow) and green water (transpi-
ration of grass, using a greenness index as a proxy). Previous stud-
ies of blue and green water in the nearby Amazon state of Mato
Grosso (Lathuillière et al. 2018, 2019) calculate a water balance
including ET from agricultural and forest land covers, and validate
the green and blue water values by comparing with observed
stream discharge in a large river basin (170,000 km2). Here, our
unit of analysis is not the river basin, but rather the individual farm
production unit. We calculate indices of blue water flow (stream-
flow) for each property separately. Our objective is not to calculate
the water balance of each property or of a larger region, but rather
to generate indices of blue and green water availability to be con-
sidered as factors of production (or inputs) in the econometric
models. Lathuillière et al. (2018) also calculated blue and green
5

water consumption using per-unit consumption values, also
known as a footprint analysis; here we calculate indices of blue
and green water availability, rather than explicitly quantifying blue
or green water consumption.1

Rainfall data from the National Water Agency (Agencia Nacional

de Aguas, http://www.snirh.gov.br/hidroweb/) were used together
with streamflow data to define the months of the wet and dry sea-
son and to document trends in rainfall for the study years (Figs. 2
and 3). There are only two raingages in our study area, so we did
not use rainfall data to estimate any variable describing green or
blue water at the property level as used in the economic analysis.
Subsequent data on rainfall from a remote sensing product (Cli-
mate Hazards Group InfraRed Precipitation with Station data) cal-
ibrated and validated with local station data (Mu, Biggs, & De Sales,
2021) show a very low coefficient of variation (CV) in wet season
rainfall (mean CV 5%) and somewhat higher variation in the dry
season (mean CV 17%); the low variation suggests that rainfall is
relatively uniform over the study region for the years of the survey,
with more variability in dry seasons and dry years.
3.2.1. Blue water flow: stream discharge
Blue water is the surface or groundwater that is present in

streams, surface water bodies, and aquifers that is important for
meeting the high drinking water requirements of dairy cattle. Blue
water can be present as either a flow or a stock. We proxy blue
water flow with a simple model of dry season low flow and wet
season baseflow calibrated to stream discharge measurements col-
lected from stream gauges in the study and blue water stock with
the total surface area of watering ponds on surveyed properties
estimated from remote sensing data.

A proxy for blue water flow (m3 day�1) was estimated for each
property in both dry and rainy seasons by multiplying the specific
discharge (m3 km�2 day�1) in a given season by the total drainage
area of the three largest streams that drain through the property.
Specific discharge for the dry and rainy seasons was calculated
from discharge data from two stream gages whose watersheds
overlap the study area: the Jamari River at Ariquemes (Station
Code 15430000, area 8140 km2) and Jaru river at Jaru (Station Code
15565000, area 3960 km2). Dry season discharge was calculated for
each year of the survey as the mean of the 10th-percentile flows for
that year.2 Rainy season discharge was calculated as the average
baseflow during the rainy season (Fig. 3).3 According to these esti-
mations, mean dry-season discharge on properties decreased from
1,044 m3/day in 2000 to 466 m3/day in 2009 (a 55% decline), and
rainy-season discharge decreased from approximately
14,338 m3/day in 2000 to 8,714 m3/day in 2009 (a 39% decline)
(Table 2).4,5 Compared to the long-term mean low flow (qm) over
1981–2015, low flow during the survey years was either above qm
(23–80% above in 1996), similar to qm (�5 to + 11% in 2000), slightly
below qm (�16 to �47% in 2009), or well below qm (�57 to �64%,
2005). The 2005 dry year had low flow well below the mean, but
had a 3-year recurrence interval (recurrent probability of 32%), sug-

http://www.snirh.gov.br/hidroweb/


Table 4
Milk Production on Properties with Dairy Cows in the Dry and Rainy Seasons; 1996–2009 (mean values; standard deviations in parentheses).

Dry Season Rainy Season Herd Size

Milk
Harvest
(liters/day)

Milk
Harvest
(liters/head/day)

Milk Price
($2000
reais/ liter)

Milk
Revenue
($2000 reais)

Milk
Harvest
(liters/day)

Milk
Harvest
(liters/head/day)

Milk Price
($2000
reais/ liter)

Milk Revenue
($2000 reais)

Cattle
Herd

Dairy
Cows

1996 (n = 146) 42.07 2.567 0.19 1502.2 63.66 3.778 0.19 2273.8 78.53 17.77
(42.82) (1.045) (0.02) (1568.8) (68.55) (1.606) (0.02) (2552.1) (86.65) (18.57)

2000 (n = 119) 85.39 3.464 0.27 4264.7 113.4 4.797 0.19 3973.5 110.4 25.75
(76.70) (1.188) (0.04) (4058.5) (103.0) (2.042) (0.05) (3719.6) (96.60) (21.61)

2005 (n = 194) 63.85 2.583 0.25 2897.5 103.6 4.141 0.27 5062.7 124.6 32.13
(59.26) (1.909) (0.04) (2793.9) (95.02) (2.774) (0.04) (4723.9) (111.0) (29.33)

2009 (n = 339) 72.58 3.488 0.30 4141.7 109.7 5.569 0.23 4716.5 107.7 22.09
(69.49) (1.723) (0.06) (4301.5) (92.84) (2.617) (0.04) (4275.7) (98.57) (18.55)

Table 5
Descriptive Statistics for Properties and Households Divided by Poverty Category (mean; standard deviation in parentheses).

2000 2005 2009

Non-
Poor1

Poor Non-Poor Poor Non-Poor Poor

Production
Milk harvest, dry season (liters per head per day) 2.567 3.464 2.583 3.488 3.585* 3.226

(1.045) (1.188) (1.909) (1.723) (1.272) (0.974)
Milk harvest, rainy season (liters per head per day) 3.778 4.797 4.141 5.569 4.729 4.931

(1.606) (2.042) (2.774) (2.617) (1.962) (2.210)

Water
Blue water flow: dry season stream discharge (meters-cubed per day) 1328.1 484.5 408.7* 140.6 470.5 455.9

(3750.7) (1131.1) (1203.5) (252.2) (1412.3) (1426.7)
Blue water flow: rainy season stream discharge (meters-cubed per day) 18230.8 6650.5 14609.9* 5024.9 8805.2 8532.6

(51487.3) (15526.5) (43025.0) (9015.9) (26430.8) (26699.9)
Blue water stock: ponds (hectares) 0.0624 0.0827 0.0733 0.0722 0.178** 0.111

(0.208) (0.285) (0.171) (0.291) (0.302) (0.271)
Green water: dry season pasture greenness (unitless ranges from 0 to 1; higher = more green) 0.399 0.410 0.385 0.391 0.390 0.395

(0.0356) (0.0394) (0.0323) (0.0374) (0.0274) (0.0283)
Green water: rainy season pasture greenness (unitless ranges from 0 to 1; higher = more green) 0.529 0.524 0.512 0.524 0.519 0.527

(0.0499) (0.0533) (0.0778) (0.0809) (0.0765) (0.0794)

Household and Property Controls
Average age of the household heads, years 50.18*** 45.67 52.83*** 45.04 54.61*** 45.98

(12.37) (9.747) (12.24) (13.85) (12.85) (12.58)
Average education of the household heads, years 2.418 2.612 2.678 3.069 3.279* 3.827

(1.551) (1.752) (2.143) (1.843) (3.043) (2.387)
Soil conditions on lot (1-good, 2-moderate, 3-restricted, 4-unsuitable) 2.039* 2.284 2.168*** 2.540 2.264*** 2.483

(0.748) (0.754) (0.745) (0.663) (0.768) (0.655)
Distance to the city center, kilometers 32.87*** 41.40 34.07*** 45.37 37.91*** 46.13

(17.44) (17.09) (18.70) (14.54) (17.13) (15.54)
Income, total from all sources, R$2000 21742.1*** 5497.4 21208.9*** 4796.6 24193.5*** 5982.9

(15276.9) (1961.4) (13063.5) (2086.8) (18979.8) (2163.5)
n 79 40 129 65 226 113

*, **, *** indicate t-test significance at the 0.05, 0.01 and 0.001 levels, respectively.
1We define households in the lowest quartile of the income distribution as poor and include all other households in the non-poor category.

6 Future efforts could attempt to measure and account for local variations in
specific discharge due to topography, land cover, or upstream impoundments.
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gesting that 2005 was dry but not unusual. The subsequent years,
2006–2007, had significantly lower values of low flow, with recur-
rence intervals of 12 (2006) and 18 (2007) years, possibly due to
lagged and cumulative effects of years of below-average rainfall or
increases in the number of impoundments. Our survey data there-
fore capture years with typical or above average blue water flow,
with at least one dry year (2005); the survey data may not capture
farmer response to extreme drought conditions like those of 2006–
2007.

Validation of our blue water flow estimates is complicated by
the lack of stream gage data in the study area and by the practical
difficulty of monitoring flow for 400 + properties, including for pre-
vious survey years. Our estimates of blue water flow are based on
the assumption that specific discharge is uniform over space and
watershed size, and that differences in stream flow by property
are controlled to a first order by differences in the drainage area
6

of the watersheds that drain through the properties. The contribut-
ing area of streams draining to the surveyed properties varies over
6 orders of magnitude, while discharge at the two discharge sta-
tions used in the analysis differs from the mean by an average of
9–15% with a maximum of 59% in the year 2000 at the Jaru gauge
(Table S1). In addition, the discharge at the two stations is highly
correlated (r = 0.90), and the econometric analysis depends more
on relative values and correlations than on absolute values. While
there may be spatial variations in specific discharge due to local
variations in geology, topography, watershed size, soil type, land
cover, or rainfall variability, these variations are anticipated to be
small compared with the 6-orders of magnitude variation caused
by variations in drainage size.6



Fig. 2. Rainfall by Peak Season Since 1990. Notes: The peak wet season was defined as the months that had both high rainfall and significant baseflow (January, February and
March). The dry season is defined as the three months with the lowest average rainfall (June, July and August). Source: Agencia Nacional de Aguas, http://www.snirh.gov.br/
hidroweb/. Correlation coefficient = �0.3429 for the peak rainy season; and = �0.1825 for the peak dry season.

Fig. 3. Observed Discharge, Baseflow and Low Flow for Streams in Study Area. Notes: The peak wet season was defined as the months that had both high rainfall and
significant baseflow January, February and March. December often has high rainfall, but stream discharge is typically low in December as much of the rainfall goes to soil
moisture and groundwater storage. April has high discharge due to the slow release from storage in soil and groundwater, but April has low rainfall compared with January to
March, so the wet season here is defined as January 1 to March 31. Sources: ANA. 2001. HidroWeb – Sistema de Informacoes Hidrologicas (available on-line through the
Agencia Nacional de´Aguas, Brasılia, DF, Brasil: http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf). The stream gage is 15430000, Jamari River at Ariquemes.
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3.2.2. Blue water stock: cattle ponds
Cattle ponds in the study region were identified by spectral sig-

nature, feature size, and feature location (within pastures) using
satellite imagery from 2000, 2005, and 2009. Landsat Thematic
Mapper imagery (30 m resolution) was classified by spectral mix-
ture analysis (SMA) where each pixels’ fractional percentage of
shade, photosynthetic vegetation, non-photosynthetic vegetation,
and soil were calculated and aggregated into eight landcover
classes based on maximum likelihood: mature forest, secondary
forest, pasture, green pasture, burned pasture, water, rock/savanna
and urban/bare soil (Roberts et al., 2002). Aquaculture ponds were
differentiated from cattle ponds by feature size and location; cattle
ponds are often isolated from the stream network and are gener-
ally smaller.7 From these data, we estimate that cattle pond surface
area increased from 0.05 ha per property in 2000 to 0.16 ha in 2009
for the households in our sample (Table 2).
7 Visual analysis of high-resolution visible imagery in Google Earth indicated that
pond construction often created soil scars adjacent to water features, for example
earthen dams, that were classified as burned pasture and/or water in the classified
imagery. Burned pasture pixels were subset to represent water features when feature
sizes were<1 km2 to differentiate pasture disturbance for water retention construc-
tion from true large burned pastures.

7

3.2.3. Green water: the enhanced vegetation Index (EVI)
Green water is soil moisture that originates as precipitation,

infiltrates into the soil, and is then either transpired by plants or
evaporates from the soil surface. The productive green water flux
can be measured directly by quantifying evapotranspiration (ET)
through ground measurements or remote sensing data (Biggs,
Marshall, & Messina, 2016).8 In rainfed systems, ET is often highly
correlated with net primary production and above ground biomass.
ET can also be estimated indirectly with either vegetation-based or
temperature-based algorithms (Biggs, Petropoulos, Velpuri,
Marshall, Glenn, Nagler, & Messina, 2015). For example, total green
water is operationally estimated by the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) MOD16 product (Mu, Zhao, &
Running, 2011). MOD16 is available at 1 km resolution, which is
too coarse compared with the size of the properties in the survey,
many of which are 1 km or smaller on a side. EVI data from the
MOD13Q1 product are available at 250 m resolution and are appro-
8 In rainfed systems, ET correlates strongly with vegetation indices including the
normalized difference vegetation index (NDVI) and the Enhanced Vegetation Index
(EVI). Such indices are commonly used to model ET, either alone or in combination
with ground reference data (Glenn et al., 2010).

http://www.snirh.gov.br/hidroweb/
http://www.snirh.gov.br/hidroweb/
http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf
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priate for estimating greenness in the surveyed properties. Here we
use the Enhanced Vegetation Index (EVI) derived from MOD13Q1 as
a proxy for ET and the productive green water flux (Table 3).

The mean MOD13Q1 EVI was calculated for the pasture in each
property from February 2000 to July 2010.9 A land cover map for
2010 created from Landsat TM imagery was used as a mask to calcu-
late mean EVI from pasture alone. While land cover may have chan-
ged over 2000–2009, most of the properties in our study area were
mostly cleared of forest (mean 84% pasture cover), and 95% of all
properties were more than 50% pasture and 70% of properties were
more than 80% pasture in 2009. A majority (73%) of properties
showed <10% increase in pasture and a large majority (86%) showed
<20% increase in pasture between 2000 and 2009. EVI ranges from
negative one to one and correlates positively with vegetation cover,
biomass, and evapotranspiration (ET) (Glenn et al., 2010). EVI can
decline in cleared areas if the amount of woody biomass declines
over time (Rufin, Müller, Pflugmacher, & Hostert, 2015), which com-
plicates its use for quantifying pasture condition and transpiration
from grass; here we assume that our land use classification effec-
tively masks out secondary forest, and that EVI indicates the green-
ness and transpiration of pasture grass only, though recent remote
sensing analysis suggests that pastures often have scattered shrubs
and trees that could impact the EVI value (Mu, Biggs, Stow, &
Numata, 2020). The values of EVI for our study period (three peak
months in each of the dry and rainy seasons) range from a low of
0.35 in the dry season of 2006 to a high of 0.56 in the rainy season
of 2008, with values that are 0.08–0.20 points lower in the dry sea-
son as compared to the rainy season. Similar to rainfall, we note a
downward trend in these values since 2000, but the rate of change
is an order of magnitude lower than for rainfall. More specifically,
these values translate into a mean decline of 0.11% per year since
2000 in the rainy season and a mean decline of 0.08% per year since
2000 in the dry season.

The spatial and temporal distribution of green and blue water
depends on rainfall, property characteristics, and the size and char-
acteristics of the watersheds of the streams that flow through the
properties. For green water, key factors include soil texture,
organic matter content and pasture management; including stock-
ing density and vegetation management. Spatial variations in pas-
ture greenness and transpiration may reflect soil nutrient status or
overgrazing, and not necessarily moisture availability per se. Our
estimates of green water represent consumptive use through tran-
spiration, and not necessarily green water availability alone. How-
ever, in the dry season, the pronounced decline in EVI suggests
strong soil moisture control on pasture production. The distribu-
tion of blue water depends on watershed size, rainfall, soil type,
geology, storage capacity on the property, and upstream land use
or impoundments. Thus, property-level data on green and blue
water allow us to estimate how households respond to spatial
and temporal variability in blue water availability and green water
consumption. To support our interpretation of estimation results
based on panel data from 1996 to 2009, we also draw on data from
a pilot program undertaken in 2017 to test possible moderators of
the relationship between green and blue water and dairy produc-
9 MOD13Q1 is the 16-day EVI with a pixel size of 250 m, which is sufficient to
calculate EVI over the properties in the study area, which range from 0.05 to 6.4 km2.
The property boundary map was used to extract the EVI value for all pixels in each
property. The quality flag information provided in MOD13Q1 was used to exclude
pixels affected by cloud contamination (quality flag = 3) or with ‘‘marginal data”
(flag=2). Only pixels with ‘‘good” quality were included. A land use map created from
Landsat TM (30m) was used to calculate the fractional cover of pasture, secondary
forest, and mature forest in each MODIS pixel. MODIS pixels that had<80% pasture
were excluded from the calculation to determine the EVI of pasture. The weighted
mean EVI values were calculated for each property by year and season and are used as
proxies for green water availability and pasture quality.
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tion. These descriptive data are presented in Section 5 to provide
context for our results.
4. Empirical models and results

We estimate the impacts of green and blue water availability on
milk production and technological efficiency. We include blue and
green water separately because we find that blue and green water
are not strongly correlated (likely because pasture greenness,
stream discharge and pond excavation are influenced by different
geographic and socioeconomic determinants),10 because they
impact production in different ways and through different channels,
and because they vary spatially. In both estimations we used fixed
effects models that difference out the stable biophysical conditions
on the property (i.e. soil type, distance to the urban center and ele-
vation). The sub-sections to follow outline our empirical strategies
and present the results from these estimations.

4.1. Production

We first estimate the impact of changes in green and blue water
availability on milk production. We use property-level and year
fixed effects models to control for unobserved heterogeneity and
estimate:

Mjt ¼ aj þ b1Bjt þ b2Gjt þ b3Sjt þ ejt ð1Þ
where Mjtis the daily seasonal milk production (liters/cow) for the
dry and rainy seasons, B represents blue water, G is green water,
S are the socioeconomic controls for household j and eit is the error
term. The socioeconomic controls include average age and educa-
tion of the household heads. We also include a dummy variable
for poverty status (i.e. those households in the lowest quartile of
income) and interaction terms for poverty and blue and green
water.

We are concerned about a few potential sources of endogeneity.
First, since EVI depends on pasture management as well as rainfall
and initial soil conditions, it is possible that farmers who invest
more in their property and/or use more inputs have both higher
EVI (because they reform pasture, use better grasses, and/or limit
stocking density) and higher milk production. We do not find evi-
dence that green water differs between the poor and nonpoor
households (i.e. those with and without the resources to invest
in pasture management), but do find marginally significant differ-
ences in blue water between these households in 2005 and 2009
(Table 5). At the same time, the bivariate correlations between
income and green and blue water are all below 0.0511. Any remain-
ing endogeneity is partially, but not fully, addressed with the use of
property-level fixed effects. We also include a dummy for poverty
status and interaction terms with blue and green water to further
investigate these differences. Finally, to explore the different impacts
of inter-seasonal property-level differences in green and blue water
and inter-annual differences in water availability we compare esti-
mation results between models with no fixed effects, property-
level fixed effects, year fixed effects, and two-way fixed effects.

We report the panel estimation results separately for the dry
and rainy seasons. One takeaway from a comparison of these
results (Tables 6 and 7) is that green and blue water increase pro-
10 The bivariate correlations between EVI, ponds, and stream discharge are between
0.01 and 0.06 in the rainy season and 0.02–0.05 in the dry season. We also ran our
panel regression with only green water and only blue water and do not find the
significance or size of these coefficients to vary from what is presented in our
estimation results.
11 The bivariate correlations between income EVI, ponds, and stream discharge are
0.0134, 0.0497, 0.0032 respectively in the rainy season and �0.0834, 0.0497, �0.0171
respectively in the dry season.



Table 7
Wet Season Dairy Production (liters/cow/day).

(1) (2) (3) (4) (5) (6) (7) (8)

Green Water (EVI) 0.107 0.102 0.0579 0.0475 0.183 0.188 0.0720 0.0215
(0.135) (0.150) (0.130) (0.142) (0.220) (0.272) (0.217) (0.252)

Blue Water – Captured (ponds) 0.159 0.245** 0.0671 0.132 0.251 0.226 0.205 0.180
(0.0982) (0.104) (0.0909) (0.0987) (0.212) (0.175) (0.197) (0.149)

Blue Water – Available (seasonal low flow) �0.0206* �0.00608 �0.0147 0.00265 �0.572 �0.607 0.229 0.219
(0.0123) (0.0150) (0.0119) (0.0142) (0.486) (0.491) (0.502) (0.515)

Poor; =1 if the household in lower quartile 0.320 0.388 0.351 0.345
(0.302) (0.292) (0.489) (0.487)

Poor*Green Water (EVI) �0.0263 �0.00664 �0.00153 0.156
(0.310) (0.292) (0.479) (0.452)

Poor*Blue Water- Captured (ponds) �0.247 �0.184 0.0577 0.0758
(0.222) (0.207) (0.485) (0.477)

Poor*Blue Water– Available (seasonal low flow) �0.0374 �0.0455* �0.0436 �0.0319
(0.0271) (0.0265) (0.0584) (0.0582)

Property-Level Fixed Effects No No No No Yes Yes Yes Yes
Year Fixed Effects No No Yes Yes No No Yes Yes
Observations 621 621 621 621 621 621 621 621
Number of panels 414 414 414 414
R-squared 0.022 0.028 0.108 0.115 0.025 0.028 0.121 0.123

Notes: Log-log model. Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1; Socioeconomic controls include average age and education of the household
heads.31 observations of the rainy season EVI estimates fell below the reliability criterion and are therefore not include in these estimations.

Table 6
Dry Season Dairy Production (liters/cow/day).

(1) (2) (3) (4) (5) (6) (7) (8)

Green Water (EVI) 0.629** 0.753** 0.312 0.432 1.067* 1.352** 1.084* 1.367**
(0.289) (0.365) (0.270) (0.339) (0.571) (0.624) (0.566) (0.616)

Blue Water Stock (ponds) 0.106 0.293*** 0.0132 0.184** 0.221 0.231 0.153 0.176
(0.106) (0.0993) (0.0964) (0.0894) (0.156) (0.158) (0.164) (0.163)

Blue Water Flow (seasonal low flow) 0.0149 0.00544 �0.00351 �0.0114 0.417*** 0.448*** 0.222 0.309*
(0.0121) (0.0146) (0.0122) (0.0145) (0.0731) (0.0732) (0.157) (0.162)

Poor; =1 if the household in lower quartile �0.296 �0.274 �0.330 �0.319
(0.567) (0.521) (0.962) (0.961)

Poor*Green Water (EVI) �0.168 �0.161 �0.462 �0.473
(0.581) (0.532) (0.952) (0.948)

Poor*Blue Water Stock (ponds) �0.583*** �0.532*** �0.0509 �0.0338
(0.220) (0.200) (0.399) (0.402)

Poor*Blue Water Flow (seasonal low flow) 0.0111 0.00440 �0.0771 �0.0794
(0.0256) (0.0245) (0.0531) (0.0525)

Property-Level Fixed Effects No No No No Yes Yes Yes Yes
Year Fixed Effects No No Yes Yes No No Yes Yes
Observations 652 652 652 652 652 652 652 652
Number of panels 425 425 425 425
R-squared 0.026 0.050 0.130 0.154 0.192 0.229 0.197 0.232

Notes: Log-log model. Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1; Socioeconomic controls include average age and education of the household
heads.

13 For example, in Model 2 the combined coefficient on blue water stock and the
poor* blue water stock interaction (0.293 – 0.583) is not statistically different from
zero (F(1, 642)=2.17; Prob > F= 0.1409), and in Model 2 the combined coefficient on
blue water stock and the poor* blue water stock interaction (0.184 – 0.532) is
negative and statistically different from zero (F(1, 640)=3.78; Prob > F= 0.0522).
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duction (liters/cow/day) when water is limited (during the dry sea-
son), but not otherwise (during the rainy season). We therefore
focus on the results for the dry season and do not report further
on the rainy season results (Table 7). Looking at the dry season
determinants in more detail, we find that green water is positively
related to milk production and that this result holds across most of
our specifications. More specifically, a 1% increase in EVI, increases
milk production anywhere from 0.6 to 1.4% (Table 6). We find evi-
dence that blue water stock and flow (captured and/or the amount
available in streams) positively impact milk production, although
these results depend on the model specification. We also find that
green water is positively related to production in the dry season.

In more detail, Wald tests on the interaction terms for green
water in Models 2, 6, and 8 suggest that EVI increases production
for the non-poor but not the poor.12 Wald tests on the interaction
terms for blue water stock in Models 2 and 4 suggest blue water
12 For example, in Model 2 the combined coefficient on green water and the
poor*green water interaction (0.753 – 0.168) is not statistically different from zero (F
(1, 642)=1.68; Prob > F= 0.1957), and this is also true for models 4,6 and 8.

9

stock positively impacts production for the non-poor and negatively
impacts the poor.13 Lastly, Wald tests on the interaction terms for
blue water flow in Models 6 and 4 suggest blue water flow positively
impacts production for the non-poor and the poor.14

We compare our models with and without property and year
fixed effects because there is little seasonal variation in rainfall
(given the size of our study region), although the division of rainfall
between green and blue water does add property-level variation
(Table 6). If the property-level variation is not great enough, our
identification would be largely driven by the differences between
14 For example, in Model 6 the combined coefficient on blue water flow and the
poor* blue water flow interaction (0.448 – 0.0771) is statistically different from zero F
(1, 424)=20.23; Prob > F=0.0000), and in Model 8 the combined coefficient on blue
water flow and the poor* blue water flow interaction (0.309 – 0.0794) is not
statistically different from zero (F(1,424)=1.98; Prob > F=0.1602).
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just three time periods and largely reflect the impact of the 2005
drought. What we find is that the impact of green water does not
vary across these specifications and is significant when year and
property level fixed effects are included. The impact of blue water
does, however get smaller and/or less significant when year fixed
effects are included suggesting that blue water reduction in dry
years and in the dry season may impact all but the poorest
uniformly.

4.2. Production efficiency

The production approach above assumes technical efficiency.
This is a strong assumption for a developing region with incom-
plete markets and other market failures (Bravo-Ureta & Pinheiro,
1993), especially among migrants to a new biophysical region such
as a tropical forest frontier. In this case, technical inefficiency arises
when given the chosen inputs, output is lower than the maximum
(Greene, 2008). An alternative is the stochastic frontier (SF) model,
which defines the output of the most efficient firms as the produc-
tion frontier, and then uses this frontier to estimate the degree of
inefficiency (Chiona, Kalinda, & Tembo, 2014). From a statistical
point of view, the regression model is characterized by a composite
error term in which the classical idiosyncratic disturbance is
included with a one-sided disturbance representing the ineffi-
ciency (Cross, Färe, Grosskopf, & Weber, 2013). In other words,
the error term of the production frontier model consists of a ran-
dom error and an inefficiency term:

Qij ¼ expðXijbþ eijÞ ¼ expðXijbþ Vij þ UijÞ; eij ¼ Vij þ Uij

where Qij is the observed scalar output of product i for the jth
household, Xij is a vector of inputs, b is a vector of parameters to
be estimated, exp is the exponential function, Vi is the disturbance
term, assumed to be independent and normally distributed, and Uij

is a non-negative random variable associated with the technical
inefficiency in production, assumed to be independently dis-
tributed. Uij can be represented as

Uij ¼ ZijdþWij

where Zij is a vector of variables that impact efficiency, d is a vector
of parameters to be estimated and Wij is the random variable defin-
Table 8
Stochastic Frontier Estimations of Production Efficiency (liters/cow/day).

Dry Season

(1) (2) (3

Green Water (EVI) 0.715** 0.341 0
(0.284) (0.268) (0

Blue Water - Captured (ponds) 0.122 0.0215 0
(0.107) (0.102) (0

Blue Water – Available (seasonal low flow) 0.0223* �0.000712 0
(0.0121) (0.0119) (0

Poor; =1 if the household in lower quartile �
(0

Poor*Green Water (EVI) �
(0

Poor*Blue Water- Captured (ponds) �
(0

Poor*Blue Water– Available(seasonal low flow) 0
(0

Property-Level Fixed Effects Yes Yes Y
Year Fixed Effects No Yes N
Technical Efficiency 0.73 0.76 0
Observations 652 652 6
Number of panels 425 425 4
Wald (full model) 19.11 82.19 3

Notes: Log-log model. Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p
heads and wealth (as measured by the value of vehicles owned).

10
ing the truncation of the normal distribution. Technical efficiency is
defined as the ratio of observed output (Qij) and the frontier output
(Qij*):

Qij= Qij* = exp (Xijb + Vij + Uij); eij = Vij + Uij ð4Þ

Next, we use a stochastic frontier (SF) model to estimate the
efficiency of milk production (liters/cow/day) by household in
the study region, which like other developing regions is likely to
be populated by producers who operate below the production
frontier (i.e. operate inefficiently). Climate variables are not tradi-
tionally included in these models (Bravo-Ureta & Pinheiro, 1993),
but more recently biophysical indicators have been tested
(Ekbom, Alem, & Sterner, 2013). Our hypothesis suggests that
water availability has the potential to explain some of the variabil-
ity in efficiency. We analyze the determinants of efficiency using a
translog functional form and include the same controls as above. If
we assume that the production function takes on the Cobb-Douglas
log-linear form and drop the output subscripts, the estimation can
be written as:

lnlnMjt ¼ aþ b1lnBjt þ b2lnGjt þ b3lnSjt þ v jt � ljt ð5Þ
where Mjt is the seasonal milk production for the dry and rainy sea-
sons, B represents blue water, G is green water, S includes the
socioeconomic controls for household j. vjt is the disturbance term
assumed to be independent and normally distributed, and ujt is a
non-negative random variable associated with the technical
inefficiency.

We again report the panel estimation results separately for the
dry and rainy seasons. One takeaway from a comparison of these
results (Table 8) is that green and blue water increase production
(liters/cow/day) when water is limited (during the dry season),
but not otherwise (and during the rainy season). We therefore
focus on the results for the dry season and do not report further
on the rainy season results. Looking at the dry season determinants
in more detail, we find that green water is positively related to
milk production but that this result does not hold when year fixed
effects are included but rather only when the property-level fixed
effects are included. More specifically, for these models a 1%
increase in EVI, increases milk production efficiency anywhere
Rainy Season

) (4) (5) (6) (7) (8)

.874** 0.524 0.114 0.0617 0.108 0.0549
.340) (0.320) (0.128) (0.124) (0.149) (0.142)
.245** 0.148 0.148 0.0641 0.209** 0.121
.100) (0.0911) (0.104) (0.0952) (0.0979) (0.0938)
.0150 �0.00784 �0.0167 �0.0134 �0.00109 0.00309
.0142) (0.0139) (0.0126) (0.0120) (0.0148) (0.0138)
0.383 �0.441 0.335 0.359
.546) (0.510) (0.298) (0.288)
0.277 �0.340 �0.0195 �0.0133
.559) (0.520) (0.296) (0.278)
0.495* �0.484** �0.191 �0.168
.254) (0.222) (0.250) (0.224)
.00424 0.00265 �0.0393 �0.0419
.0240) (0.0232) (0.0269) (0.0268)
es Yes Yes Yes Yes Yes
o Yes No Yes No Yes
.74 0.77 0.76 0.79 0.77 0.80
52 652 621 621 621 621
25 425 414 414 414 414
5.02 112.1 10.79 53.29 15.59 60.03

< 0.10. Socioeconomic controls include average age and education of the household



Table 9
Daily On-farm Dairy Production (Data from 2017 Pilot Study Rolim de Moura,
Rondônia).

Dry Season
(liters/cow/day)

Rainy Season
(liters/cow/day)

Pilot extension program
mean 12.07 8.71
95% confidence interval 12.01–12.14 8.42–9.00

Average dairy farmer
mean 4.40 6.25
95% confidence interval 3.59–5.22 5.33–7.18

Notes: Pilot extension mean based on four months of daily seasonal milk produc-
tion in 2017. Average dairy farmer mean based on survey data from 54 households.
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from 0.7 to 0.8% (Table 8). We also find evidence that blue water
(captured and/or the amount available in streams) positively
impacts milk production, but again these results do not hold when
year fixed effects are included.

We also include a poverty dummy variable for poor to deter-
mine if there are differences in efficiency between these groups
(Models 3, 4) and do find that poor households are significantly
less efficient in the dry season through the interaction term
between poverty and blue water stock. This suggests that although
the availability of green and blue water (and rainfall) do not differ
for poor and non-poor households, the impact of rainfall shocks
(i.e. dry season and droughts) may translate into relatively greater
negative impacts in production efficiency of poor households.

5. Pilot program: investments in blue and green water

Our regression results suggest that green and blue water have a
direct effect on production and production efficiency. This suggests
that the availability of forage (i.e. productive green pasture) and
the supply of water for drinking may serve as limiting factors for
milk production in the dry season. During the time period of this
study, there was not much investment in reducing or mitigating
green water scarcity, as farmers did not have the ability to provide
supplemental feed to cattle, plant pasture seed or invest in irriga-
tion. However, these results suggest that farmers could benefit
from investments to prevent or mitigate the effects of scarcity in
green water (cattle feed) and blue water (by damming streams
and creating watering ponds). A recent pilot program launched in
2017 in a similar dairy production region, Rolim de Moura, Rondô-
nia (located 260 km southeast of Ouro Preto do Oeste) supports
this conclusion.

Daily data collected from a farmer enrolled in a pilot extension
program designed to test the impact of supplemental feed are com-
pared to survey data from 54 households that produce milk in the
same municipality and in the same year (Table 9). From these com-
parisons, milk production is significantly higher in the dry (174%)
and rainy (39%) seasons for the farmer in the feed extension pro-
gram. As expected, the mean production improvement (from the
use of supplemental feed) per cow per day is greater in the dry sea-
son (7.67 L higher per day) in comparison to the rainy season
(2.46 L higher per day). Taken with our regression results, these
findings suggest that providing feed can be an important way to
counter the impacts of a longer dry season in this part of the Ama-
zon. However, because the provision of feed for cattle has implica-
tions for lower income households who can rarely afford the input,
these conclusions suggest climate adaptation will be more difficult
for this income strata unless programs specifically target the poor.

6. Conclusion

Increased drought occurrence and changes in precipitation have
been observed and widely reported as signs of climate change in
11
the Brazilian Amazon (Davidson et al., 2012; Hayhoe, Neill,
Porder, McHorney, LeFebvre, Coe, Elsenbeer, & Krusche, 2011)
including in Rondônia (Tomasella et al., 2008). Yet, relatively little
is known about the impacts of climate change on agricultural pro-
duction in the region, including how those impacts vary by income
level (Perez-Mendez, Roibas, & Wall, 2019). To address this gap in
the literature, we use innovative proxies for water availability with
panel data from a time period that included a severe drought (in
2005) to estimate how changing climate and water availability
could affect production efficiency. Specifically, we estimate pro-
duction functions and stochastic frontier models that distinguish
between the ‘‘green water” captured by plants from soil moisture
and the ‘‘blue water” present in ponds and streams. We find that
production is affected by both green and blue water. We also find
the availability of water–in both blue and green forms–is impor-
tant to technical efficiency. While it is possible that farmers could
adapt to water scarcity by increasing efficiency, in fact, we find the
opposite: efficiency is positively correlated with both green water
(as proxied by EVI) and blue water (as proxied by low flow in the
streams) in the dry season. While both effects are statistically sig-
nificant, the effect of EVI is much larger: in the dry season, a 1%
decrease in EVI decreases production efficiency by approximately
1%, while a 1% decrease in stream low flow reduces efficiency by
approximately 0.03%. To put these numbers in perspective: the
average rainfall in the peak dry season months in the 2000s was
121 mm. This fell to an average of 89 mm in 2010–2015. This is
a 26% decline in the average rainfall during these peak dry season
months, which could translate to similar reductions in green and
blue water.

Our results confirm that green water, as measured by EVI, has a
consistent positive effect on the productivity and efficiency of
pasture-based dairy systems. This suggests that research and
extension efforts should seek to mitigate the negative effects of
the expected increasing scarcity of green water. Supplemental
feeding is one strategy supported by evidence we provide from a
pilot study. Only 17% of the households in our sample provided
feed in 2009, suggesting potential for improvement, but at an
unknown cost (because we do not have information on the costs
of supplemental feeding).

We also find evidence that future reductions in rainfall may
have a greater negative impact on the poorest households in the
region. In particular, we find this relationship for blue water stock
to be telling. Unlike green water, households invested in the cre-
ation of ponds in the study time period, and these investments
positively impacted the non-poor but had no impact on the poor.
This suggests that investments in blue--and possibly green--
water (expected as the dry season increases in length) may not
be an effective adaptation strategy for the poorest households.
Although the availability of green water (and rainfall) do not differ
for poor and non-poor households (see the descriptive statistics,
Table 5), rainfall shocks (i.e. dry seasons and droughts) translate
into relatively greater negative impacts on the production and pro-
duction efficiency of poor households. Again, these results point to
an unequal impact of climate and weather shocks on the relatively
poor in this region.

Amazonian farmers may find new ways to adapt to water scar-
city that are not represented in our sample or models. These will
not necessarily be in the agricultural sector: our survey data show
that off-farm labor increased in the drought year (2005), at least
partially compensating for the reduction in dairy income. The
share of income earned from agriculture declined from an average
of 60–80% of income in the pre-drought study years to <30% during
the drought, while off-farm labor increased from 10 to 20% of total
income to almost 60% of income in the drought year. Even so, not
all households can easily exit agriculture. Farmers who are rela-
tively poor and/or have less access to urban labor opportunities
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will likely find the transition difficult. For this reason, policy mak-
ers should invest in research and education about effective adap-
tive strategies (such as supplemental feeding) for agriculture to
address expected future water shortages in the seasonally-dry
tropics while simultaneously addressing potential impacts on
poverty.
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