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ABSTRACT
We develop a novel procedure for constructing confidence bands for components of a sparse additive
model. Our procedure is based on a new kernel-sieve hybrid estimator that combines two most popular
nonparametric estimation methods in the literature, the kernel regression and the spline method, and is
of interest in its own right. Existing methods for fitting sparse additive model are primarily based on sieve
estimators, while the literature on confidence bands for nonparametric models are primarily based upon
kernel or local polynomial estimators. Our kernel-sieve hybrid estimator combines the best of both worlds
and allows us to provide a simple procedure for constructing confidence bands in high-dimensional sparse
additive models. We prove that the confidence bands are asymptotically honest by studying approximation
with a Gaussian process. Thorough numerical results on both synthetic data and real-world neuroscience
data are provided to demonstrate the efficacy of the theory. Supplementary materials for this article are
available online.
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1. Introduction

Nonparametric regression investigates the relationship between
a target variable Y and many input variables X = (X1, . . . , Xd)

T

without imposing strong assumptions. Consider a model

Y = f (X) + ε, (1.1)

where X ∈ X d ⊆ R
d is a d-dimensional random vector in

X d, ε is random error satisfying E[ε | X] = 0, and Y is a
target variable. The goal is to estimate the unknown function
f : X d �→ R. When d is small, fitting a fully nonparametric
model (1.1) is feasible (Wasserman 2006). However, the inter-
pretation of such a model is challenging. Furthermore, when d
is large, consistently fitting f (·) is only possible under additional
structural assumptions due to the curse of dimensionality.

A commonly used structural assumption on f (·) is that it
takes an additive form

Y = μ +
d∑

j=1
fj(Xj) + ε, and EXj[f (Xj)] = 0, (1.2)

where μ is a constant and fj(·), j = 1, . . . , d, are smooth
univariate functions (Friedman and Stuetzle 1981; Stone 1985;
Hastie and Tibshirani 1990). Under an additional assumption
that only s components are nonzero (s � d), significant
progress has been made in understanding additive models in
high dimensions (Sardy and Tseng 2004; Lin and Zhang 2006;
Meier, van de Geer, and Bühlmann 2009; Ravikumar et al.
2009; Huang, Horowitz, and Wei 2010; Koltchinskii and Yuan
2010; Kato 2012; Lou et al. 2014; Petersen, Witten, and Simon
2014). These articles establish theoretical results on the esti-
mation rate of sparse additive models, however, it remains
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unclear how to perform statistical inference for the model.
Confidence bands can provide uncertainty assessment for com-
ponents of the model and have been widely studied in the
literature with dimension fixed (Härdle 1989; Sun and Loader
1994; Fan and Zhang 2000; Claeskens and Van Keilegom 2003;
Zhang and Peng 2010). However, it remains an open ques-
tion how to construct confidence bands in high-dimensional
setting, primarily because the direct generalization of those
ideas is challenging. Confidence bands proposed in the classical
literature with fixed dimensionality d are mostly built upon
kernel or local polynomial methods (Opsomer and Ruppert
1997; Fan and Jiang 2005), while existing estimators for sparse
additive model are sieve-type estimators based on basis expan-
sion. To bridge the gap, we propose a novel sparse additive
model estimator called kernel-sieve hybrid estimator, which
combines advantages from both the sieve and kernel methods.
On one side, we can uniformly control the supreme norm rate
of our estimator as typical sieve estimators for sparse additive
models, while on the other, we can utilize the extreme value
theory of kernel-type estimator to construct the confidence
band.

To establish the validity of the proposed confidence bands,
we develop three new technical ingredients: (1) the analysis of
the suprema of a high-dimensional empirical process that arises
from kernel-sieve hybrid regression estimator, (2) a de-biasing
method for the proposed estimator, and (3) the approxima-
tion analysis for the Gaussian multiplier bootstrap procedure.
The supremum norm for our estimator is derived by applying
results on the suprema of empirical processes (van der Vaart
and Wellner 1996; Bousquet 2002; Koltchinskii 2011). The de-
biasing procedure for the kernel-sieve hybrid regression esti-
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mator extends the approach used in the �1 penalized high-
dimensional linear regression (Zhang and Zhang 2013; Javan-
mard and Montanari 2014; van de Geer et al. 2014). Compared
to the existing literature, this is the first work considering the
de-biasing procedure for a high-dimensional nonparametric
model. To prove the validity of the confidence band constructed
by the Gaussian multiplier bootstrap, we generalize the method
proposed in Chernozhukov, Chetverikov, and Kato (2014a,
2014b) to the high-dimensional nonparametric models.

1.1. Related Literature

Our work contributes to two different areas, and make new
methodological and technical contributions in both of them.

First, we contribute to a growing literature on high-
dimensional inference. Initial work on high-dimensional statis-
tics has focused on estimation and prediction (see, e.g.,
Bühlmann and van de Geer 2011, for a recent overview) and
much less work has been done on quantifying uncertainty, for
example, hypothesis testing and confidence intervals. Recently,
the focus has started to shift toward the latter problems. Ini-
tial work on construction of p-values in high-dimensional
models relied on correct inclusion of the relevant variables
(Meinshausen, Meier, and Bühlmann 2009; Wasserman and
Roeder 2009). Meinshausen and Bühlmann (2010) and Shah
and Samworth (2013) studied stability selection procedure,
which provides the family-wise error rate for any selection
procedure. Hypothesis testing and confidence intervals for low-
dimensional parameters in high-dimensional linear and gen-
eralized linear models are studied in Belloni, Chernozhukov,
and Hansen (2013), Belloni, Chernozhukov, and Wei (2013),
van de Geer et al. (2014), Javanmard and Montanari (2014),
Javanmard and Montanari (2013), and Farrell (2013). These
methods construct honest, uniformly valid confidence intervals
and hypothesis test based on the �1 penalized estimator in
the first stage. Similar results are obtained in the context of
�1 penalized least absolute deviation and quantile regression
(Belloni, Chernozhukov, and Kato 2013, 2015). Kozbur (2015)
extended the approach developed in Belloni, Chernozhukov,
and Hansen (2013) to a nonparametric regression setting, where
a pointwise confidence interval is obtained based on the penal-
ized series estimator. Meinshausen (2013) studied construc-
tion of one-sided confidence intervals for groups of variables
under weak assumptions on the design matrix. Lockhart et al.
(2014) studied significance of the input variables that enter the
model along the lasso path. Lee et al. (2013) and Taylor et al.
(2014) performed post-selection inference conditional on the
selected model. Chatterjee and Lahiri (2013), Liu and Yu (2013),
Chernozhukov, Chetverikov, and Kato (2013), and Lopes (2014)
studied properties of the bootstrap in high-dimensions. Our
work is different to the existing literature as it enables statis-
ticians to make global inference under a nonparametric high-
dimensional regression setting for the first time.

Second, we contribute to the literature on high-dimensional
nonparametric estimation, which has recently seen a lot of activ-
ity. Lafferty and Wasserman (2008), Bertin and Lecué (2008),
Comminges and Dalalyan (2012), and Yang and Tokdar (2014)
studied variable selection in a high-dimensional nonparametric

regression setting without assuming structural assumptions on
f (·) beyond that it depends only on a subset of variables. A
large number of articles have studied the sparse additive model
in (1.2) (Sardy and Tseng 2004; Lin and Zhang 2006; Ava-
los, Grandvalet, and Ambroise 2007; Meier, van de Geer, and
Bühlmann 2009; Ravikumar et al. 2009; Huang, Horowitz, and
Wei 2010; Koltchinskii and Yuan 2010; Kato 2012; Raskutti,
Wainwright, and Yu 2012; Rosasco et al. 2013; Lou et al. 2014;
Petersen, Witten, and Simon 2014; Wahl 2014). In addition,
Xu, Chen, and Lafferty (2014) studied a high-dimensional con-
vex nonparametric regression. Dalalyan, Ingster, and Tsybakov
(2014) study the compound model, which includes the additive
model as a special case. Our approach differs from the existing
literature in that we consider the ATLAS model, in which the
additive model is only used as an approximation to the unknown
function f (·) at a fixed point z and allow such approximation to
change with z. Our approach only imposes a local sparsity struc-
ture and thus allows for more flexible modeling. We also develop
a novel method for estimation and inference. Meier, van de
Geer, and Bühlmann (2009), Huang, Horowitz, and Wei (2010),
Koltchinskii and Yuan (2010), Raskutti, Wainwright, and Yu
(2012), and Kato (2012) developed estimation schemes mainly
based on the basis approximation and sparsity-smoothness reg-
ularization. Our estimator approximates the function locally
using a loss function combining both basis expansion and kernel
method with a hybrid �1/�2-penalty. Our theoretical analysis
also provides novel technical tools that were not available before
and are of independent interest.

1.2. Organization of the Article

The rest of the article is organized as follows. In Section 2, we
introduce the penalized kernel-sieve hybrid regression estima-
tor as a solution to an optimization program. We then construct
a confidence band for a component of a sparse additive model
based on the proposed estimator. Section 3 provides the theoret-
ical results on the statistical rate of convergence for the estimator
and show that the proposed confidence band is honest. In Sec-
tion 4, we generalize our method to nonparametric functions
beyond sparse additive model. The numerical experiments for
synthetic and real data are collected in Section 5.

1.3. Notation

Let [n] denote the set {1, . . . , n} and let 1{·} denote the indicator
function. For a vector a ∈ R

d, we let supp(a) = {j | aj �= 0} be
the support set (with an analogous definition for matrices A ∈
R

n1×n2 ), ‖a‖q, for q ∈ [1, ∞), the �q-norm defined as ‖a‖q =
(
∑

i∈[n] |ai|q)1/q with the usual extensions for q ∈ {0, ∞}, that
is, ‖a‖0 = |supp(a)| and ‖a‖∞ = maxi∈[n] |ai|. If the vector a ∈
R

d is decomposed into groups such that a = (aG1 , . . . , aGg )
T ,

where G1, . . . ,Gg ⊂ [d] are disjoint sets, we denote ‖a‖q
p,q =∑g

k=1 ‖aGk‖q
p and ‖a‖p,∞ = maxk∈[g] ‖aGk‖p for any p, q ∈

[1, ∞). We also denote the set {1, . . . , j−1, j+1, . . . , d} as \j and
the vector a\j = (a1, . . . , aj−1, aj+1 . . . , ad)

T . For the function
f ∈ L2(R), we define the L2 norm ‖f ‖2 = [∫ f 2(x)dx]1/2, the
supremum norm ‖f ‖∞ = supx∈R |f (x)| and the L2(P) norm
‖f ‖L2(P) = [∫ f 2(x)dP]1/2. For a matrix A ∈ R

n1×n2 , we use
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the notation vec(A) to denote the vector in R
n1n2 formed by

stacking the columns of A. We denote the Frobenius norm of
A by ||A||2F = ∑

i∈[n1],j∈[n2] A2
ij and denote the operator norm

as ‖A‖2 = sup‖v‖2=1 ‖Av‖2. For two sequences of numbers
{αn}∞n=1 and {βn}∞n=1, we use an = O(βn) to denote that αn ≤
Cβn for some finite positive constant C, and for all n large
enough. If αn = O(βn) and βn = O(αn), we use the notation
αn � βn. The notation αn = o(βn) is used to denote that
anβ−1

n
n→∞−−−→ 0. Throughout the article, we let c, C be two

generic absolute constants, whose values may change from line
to line.

2. Penalized Kernel-Sieve Hybrid Regression

In this section, we describe our new nonparametric estimator
that combines the local kernel regression with the B-spline
based sieve method. The goal is to estimate component func-
tions in the additive model (1.2) and construct a confidence
band for one component of the model. The kernel-sieve hybrid
regression applies the local kernel regression over the compo-
nent of interest and uses basis expansion for the rest of compo-
nents. The group lasso penalty is used to shrink the coefficients
in the expansion and select relevant variables locally.

We first introduce the Hölder class H(γ , L) of functions.

Definition 2.1. The γ th Hölder class H(γ , L) on X is the set of
� = γ � times differentiable functions f : X �→ R, where γ �
represents the largest integer smaller than γ . The derivative f (�)

satisfies

|f (�)(x) − f (�)(y)| ≤ L|x − y|γ−�, for any x, y ∈ X .

Let X = (X1, . . . , Xd)
T be a d-dimensional random vector in

X d ⊆ X d. We will consider both the case where X is compact
and the case where X is unbounded. The sparse additive model
(SpAM) is of the form given in (1.2), with only a small number
of additive components nonzero. Let S ⊆ [d] be of size s =
|S| � d. Then the model in (1.2) can be written as

Y = μ +
∑
j∈S

fj(Xj) + ε (2.1)

with fj ∈ H(2, L) for any j ∈ S . Moreover, we assume the
identifiability condition that

E[fj(Xj)] = 0, for all j = 1, . . . , d. (2.2)

Define the sparse additive functions class

Kd(s) =
{

f =
∑
j∈S

fj(Xj)
∣∣∣ |S| ≤ s, fj ∈ H(2, L) and

E[fj(Xj)] = 0, for j ∈ S
}

. (2.3)

Let {(Xi, Yi)}n
i=1 be n independent random samples of (X, Y)

distributed according to (2.1). Before describing our estimator,
we first introduce the centered basis functions that will be used
in the estimation. Let {φ1, . . . , φm} be the normalized B-spline
basis functions (Schumaker 2007). Given m basis functions, we

denote fjm(x) as the projection of fj onto the space spanned by
the basis, Bm = Span(φ1, . . . , φm). In particular, we define

fjm(·) := arg min
f ∈Bm

‖f − fj‖2 =
m∑

k=1
β∗

jkψ
∗
jk(·), (2.4)

where ψ∗
jk’s are the locally centered bases defined as

ψ∗
jk(x) = φk(x) − E[φk(Xj)], for all j ∈ [d], m ∈ [k]. (2.5)

Notice that basis functions {ψ∗
jk}j∈[d],k∈[m] satisfy E[ψ∗

jk(Xj)] =
0. This property ensures that fjm(·) also satisfies the identifia-
bility condition (2.2). To compute ψ∗

jk we need to estimate the
unknown E[φk(Xj)] by φ̄jk = n−1 ∑n

i=1 φk(Xij). The centered
B-spline basis in (2.5) as then ψjk(x) = φk(x) − φ̄jk.

With this notation, we are ready to introduce the penalized
kernel-sieve hybrid regression estimator. Let the kernel function
K : X �→ R be a symmetric density function with bounded
support and denote Kh(·) = h−1K(·/h) where h > 0 is the
bandwidth. The kernel-sieve hybrid loss function at a fixed point
z ∈ X is given as

Lz(α, β) = 1
n

n∑
i=1

Kh(Xi1 − z)
(

Yi − Ȳ − α

−
d∑

j=2

m∑
k=1

ψjk(Xij)β jk

)2
, (2.6)

where Ȳ = n−1 ∑n
i=1 Yi. Let β = (βT

2 , . . . , βT
d )T ∈ R

(d−1)m

with β j = (β j1, . . . , β jm)T ∈ R
m be the coefficients of B-spline

basis functions. The penalized kernel-sieve hybrid estimator at
z ∈ X is defined as(̂

αz, β̂z
) = arg min

α,β
Lz(α, β) + λR(α, β), (2.7)

where the penalty function is

R(α, β) = √
m · |α| +

∑
j≥2

||β j||2 (2.8)

with λ being a tuning parameter. We estimate the additive
functions {fj}j∈[d] by f̂1(z) = α̂z and f̂j(x) = ∑m

k=1 ψjk(x)β̂ jk;z
for j ≥ 2. Based on α̂z, β̂z, we also estimate the d-dimensional
function f (z, x2, . . . , xd) = f1(z) + ∑d

j=2 fj(xj) by

f̂ (z, x2, . . . , xd) = α̂z +
d∑

j=2

m∑
k=1

ψjk(xj)β̂ jk;z, (2.9)

where β̂ jk;z is the coordinate of β̂z corresponding to the kth B-
spline basis of the jth covariate.

Remark 1. The estimators α̂z and β̂z are estimating different
quantities. Notice that α̂z estimates the scalar f1(z), while β̂z
estimates the coefficients of B-splines. Given a function g(x) =∑m

k=1 βkφk(x), we have ‖g‖2
2 � m−1 ∑m

k=1 β2
k (see, e.g., Corol-

lary 15 in Chapter XI of de Boor (2001)). From this we see
that the scales of α̂z and β̂z are different, which explains the
additional

√
m term multiplying |α| in the penalty function

(2.8).
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2.1. Comparison to the Sieve Estimator

In this section, we explain why we consider the kernel-sieve
estimator as the first step of a confidence band construction
instead of the sieve estimator. In the literature of sparse additive
model estimation, most articles consider the sieve-type estima-
tor. For example, Huang, Horowitz, and Wei (2010) considered
minimizing

β̂
sieve = arg min

β

1
n

n∑
i=1

(
Yi − Ȳ −

d∑
j=1

m∑
k=1

ψjk(Xij)β jk

)2

+ λ

d∑
j=1

||β j||2, (2.10)

while similar variations were considered in Ravikumar et al.
(2009), Meier, van de Geer, and Bühlmann (2009), Koltchinskii
and Yuan (2010), and Kato (2012). These articles show that
estimators like (2.10) are good enough to achieve the estimation
consistency under the sparse additive model.

Kozbur (2015) proposed a post-nonparametric double selec-
tion procedure to conduct the inference for a differentiable
functional of the function of interest, f1, where estimation
is performed by a sieve-type estimator. This method selects
variables in three steps: (i) run Lasso regression ψ1k(X1) on
{ψst(Xs)}s≥2,t≥1 and select the support Ik for all 1 ≤ k ≤ m;
(ii) run Lasso regression Y on {ψst(Xs)}s≥2,t≥1 and select the
support I0; and (iii) run least square regression Y on {ψst(Xs)}
for s, t belong to the support ∪m

k=0Ik. The confidence interval
of a functional a(f1) could then be derived through the least
square estimator in the last step. However, this approach cannot
be directly used to construct a confidence band. First, Assump-
tion 14 in Kozbur (2015) assumes that the functional a(f1) is
differentiable, which does not hold for the supremum operator.
Second, the validity of the method is based on two high level
assumptions on the variable selection (see Assumptions 9 and
10 in Kozbur (2015)) that are hard to verify in practice. In
particular, they are not satisfied for the data generating process
used in the simulation study in Section 5.

To sum up, it is challenging to study the uniform confidence
band through pure sieve-type approaches. Technically, if we
compare the loss functions of two estimators in (2.10) and
(2.6), the sieve estimator approximates the function of interest f1
through its global basis expansion, while the kernel-sieve hybrid
estimator only approximates f1 at the local point z by a scalar
α. Therefore, to study the asymptotic properties of the extreme
value

sup
z∈X

|̂f sieve
1 (z) − f1(z)| = sup

z∈X

∣∣∣ m∑
k=1

ψ1k(z)β̂sieve
1k − f1(z)

∣∣∣,
(2.11)

we need to analyze the m-dimensional estimator β̂
sieve
1 whose

dimension m is increasing with the sample size n at the rate m �
n1/6. This makes it challenging to estimate the asymptotic dis-
tribution of the extreme value statistic in (2.11). Kozbur (2015)
studies the limiting distribution of a differential functional of
β̂

sieve
1 , while the extreme value is more challenging as it is non-

differentiable. We further note that most existing articles on

Algorithm 1 Randomized coordinate descent for group Lasso
for t = 1, 2, . . . do

Let β
(t)
+ = (β

(t)
1 , β(t)T

2 , . . . , β(t)T
j )T .

Choose jt = j ∈ [d] with probability 1/d.
Compute T(β

(t)
j ) for the jth block as

T(β
(t)
j ) = argmin

θ∈Rdim(βj)

{
μ

2
‖θ‖2

2 + 〈∇jLz(β
(t)
+ ), θ〉

+ λj‖θ + β
(t)
j ‖2

}
. (2.14)

Update β
(t+1)
j = β

(t)
j + T(β

(t)
j ).

end for

confidence bands are based on kernel or local polynomial meth-
ods (Härdle 1989; Sun and Loader 1994; Fan and Zhang 2000;
Claeskens and Van Keilegom 2003; Zhang and Peng 2010). In
comparison, the advantage of the kernel-sieve hybrid estimator
is that it directly outputs a scalar estimator α̂z of f1(z). This one-
dimensional estimator α̂z allows us to construct a confidence
band as we explain below. Furthermore, as we discuss in Section
4, the idea behind the kernel-sieve hybrid estimator can be
extended to a number of different classes of nonparametric
models for which the estimator in (2.10) does not generalize.

2.2. Computational Algorithm

In this section, we describe an algorithm to minimize
(2.7). We start by introducing some extra notation. Denote

 = (
1•, . . . , 
n•)T ∈ R

n×(1+(d−1)m), where 
ij =
(ψj1(Xij), . . . , ψjm(Xij))T and 
i• = (1, 
T

i2, . . . , 
T
id)

T ∈
R

1+(d−1)m for i ∈ [n] and j ≥ 2. We also write 
 =
(
•1, . . . , 
•d), where 
•1 = (1, . . . , 1)T ∈ R

n and 
•j =
(
1j, . . . , 
nj)T ∈ R

n×m for j ≥ 2. We further denote

Y =(Y1 − Ȳ , . . . , Yn − Ȳ)T ∈ R
n,

β+ =(α, βT)T ∈ R
1+(d−1)m,

β∗+ =(
f ∗
1 (z), β∗T)T ∈ R

1+(d−1)m and
Wz =diag

(
Kh(X11 − z), . . . , Kh(Xn1 − z)

) ∈ R
n×n. (2.12)

To unify the notation in our algorithm, we also write β+ =
(β1, βT

2 , . . . , βT
d )T , where β1 = α and β = (βT

2 , . . . , βT
d )T . The

tuning parameters are set as λj = λ
√

m for j = 1 and λj = λ for
j ≥ 2. Using the above notation, the objective function in (2.7)
can be written as

Lz(β+) + λR(β+) = 1
n
(Y − 
β+)TWz(Y − 
β+)

+ λR(β+). (2.13)

We minimize the objective function in (2.13) using the ran-
domized coordinate descent for composite functions (RCDC)
proposed in Richtárik and Takáč (2014). Details of the pro-
cedure are given in Algorithm 1, where ∇jLz(β+) :=
∂Lz(β+)/∂β j denotes the gradient. Suppose the result of the tth
iteration is β

(t)
+ . In the next iteration, we randomly choose one
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coordinate jt+1 from {1, . . . , d} and update the β
(t)
jt . Each update

in (2.14) can be obtained in a closed form as

T(β
(t)
j ) = Tλj/μ

(
β

(t)
j − 1

L
∇jLz

(
β

(t)
+

)) − β
(t)
j , (2.15)

where μ is certain regularized constant and Tλ is the soft-
thresholding operator, which is defined as Tλ(v) = (v/‖v‖2) ·
max{0, ‖v‖2 −λ}. If we evaluate the estimator α̂z for M different
z’s, a naïve approach is to run Algorithm 1 for M times. The
computational complexity is O(dm2nM). However, we propose
a method to accelerate Algorithm 1 by exploiting the special
structure of kernel functions. The accelerated method improves
the computational complexity to O(dm2(n + M)). Therefore,
the computational complexity of our method is comparable to
applying RCDC to minimize the objective function in (2.10) for
SpAM estimation. More details can be found in Appendix B in
the supplementary materials.

2.3. Confidence Band

In this section, we present a procedure for constructing a confi-
dence band for the additive component f1 based on a de-biased
estimator. A confidence band Cn is a set of confidence intervals
Cn = {Cn(z) = [cL(z), cU(z)] | z ∈ X }. For simplicity, we define
the interval c0(z) ± r0(z) := [c0(z) − r0(z), c0(z) + r0(z)].
We use f ∈ Cn to denote that f lies in the confidence band,
that is, f (z) ∈ Cn(z) for all z ∈ X . Our idea for constructing
the confidence band extends the results developed for de-biased
estimators for high-dimensional linear regression in Zhang and
Zhang (2013), van de Geer et al. (2014), and Javanmard and
Montanari (2014). Our setting is much more challenging as it
involves constructing a band for an infinite dimensional object
and we need a novel correction for α̂z that reduces the bias
introduced by (2.7).

We define for any v = (v1, vT
2 , . . . , vT

m)T ∈ R
(d−1)m+1

with v1 ∈ R and vj ∈ R
m for j ≥ 2, the norm

‖v‖2,∞ = max(|v1|, ‖v2‖2, . . . , ‖vd‖2). Consider the following
convex program

θ̂ z = arg min
θ∈R(d−1)m+1

θT�̂zθ , subject to
∥∥�̂zθ − e1

∥∥
2,∞ ≤ γ , (2.16)

where �̂z = n−1
Wz
T and e1 is the first canonical basis in
R

(d−1)m+1. The de-biased estimator is given as

f̂ u
1 (z) = α̂z + 1

n
θ̂

T
z 
TWz(Y − 
β̂+). (2.17)

We proceed to construct a confidence band based on this de-
biased estimator by considering the distribution of the process
supz∈X

√
nh(̂f u

1 (z) − f1(z)). We can approximate the distribu-
tion of the empirical process by the Gaussian multiplier process

Ĥn(z) = 1√
nh−1

n∑
i=1

ξi · σ̂Kh(Xi1 − z)
T
i θ̂ z

σ̂n(z)
, (2.18)

where ξ1, . . . , ξn are independent N(0, 1) random variables, and
the variance estimators are given as σ̂ 2 = n−1 ∑n

i=1(Yi −
α̂Xi − ∑d

j=2
∑m

k=1 
T
ij β̂ jk;Xi)

2 and σ̂ 2
n (z) = n−1θ̂

T
z 
W2

z

T θ̂ z.

Let ĉn(α) be the (1 − α)th quantile of supz∈X Ĥn(z). We con-
struct the confidence band at level 100 × (1 − α)%: Cb

n,α =
{Cb

n,α(z) | z ∈ X }, where

Cb
n,α(z) :=[̂f u

1 (z) − ĉn(α)(nh)−1/2σ̂n(z), f̂ u
1 (z)

+ ĉn(α)(nh)−1/2σ̂n(z)]. (2.19)

We will show that the confidence band is asymptotically hon-
est in Section 3.2 by building on the framework developed
in Chernozhukov, Chetverikov, and Kato (2014a, 2014b), who
studied Gaussian multiplier bootstrap for approximating the
distribution of the suprema of an empirical process.

3. Theoretical Properties

We establish the rate of convergence for the proposed estimator
in Section 3.1, while the confidence band for f1 is analyzed in
Section 3.2.

3.1. Estimation Consistency

We start with stating the required assumptions. Let p(x1, . . . , xd)
denote the joint density of X = (X1, . . . , Xd) and let pj(xj)
denote the marginal density of Xj, for j ∈ [d]. Further-
more, let pjk�(xj, xk, x�) be the joint density of (Xj, Xk, X�),
pjk(xj, xk) be bivariate density and p(xj|x�) := p�j(x�, xj)/p�(x�),
p(xj, xk|x�) := p�jk(x�, xj, xk)/p�(x�) be condition densities for
any j, k, � ∈ [d] .

(A1) (Density function). The density function p(x1, . . . , xd)
is continuous on X d. For all j, k ≥ 2 and xj, xk ∈ X ,
p1,j,k(·, xj, xk) ∈ H(2, L). There exist a fixed constant B <

∞ such that p1(x1) ∨ p(xj|x1) ∨ p(xj, xk|x1) ≤ B for all
(x1, xj, xk) ∈ X 3 and j, k ∈ {2, . . . , d}.

(A2) (Kernel function). The kernel K(u) is a continuous func-
tion with a bounded support satisfying∫

X
K(u)du = 1 and

∫
X

uK(u)du = 0.

(A3) (Design matrix). Let �z = E[Kh(X1 − z)
1•
T
1•], recall-

ing that 
1• = (1, 
T
12, . . . , 
T

1d)
T . For any J ⊂ [d], we define

a cone

C
(κ)
β (J) =

{
β+ = (α, βT)T ∣∣ ∑

j/∈J,j �=1
‖β j‖2

≤ κ
∑

j∈J,j �=1
‖β j‖2 + κ

√
m|α|

}
. (3.1)

There exists a universal constant ρmin > 0 independent
to n, d, z such that the restricted minimum eigenvalue on
C

(κ)
β (J) satisfies

inf
z∈X inf|J|≤s

inf
β+∈C(κ)

β (J)

βT+�zβ+
‖β‖2

2 + mα2 ≥ ρmin
m

. (3.2)

(A4) (Noise term). The error term ε satisfies E[ε] = 0, is
independent to X, and is a subgaussian random variable such
that E[exp(λε)] ≤ exp(λ2σ 2

ε /2) for any λ.
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(A5) The nonparametric function f (x1, . . . , xd) ∈ Kd(s)
defined in Definition 2.3.

When the support X is compact, Assumption (A1) is satis-
fied if there exist fixed constants 0 < c < C < ∞ such that
p1(x1) ≥ c and p1jk(x1, xj, xk) ≤ C for all (x1, xj, xk) ∈ X 3

and j, k ∈ {2, . . . , d}. The assumption that density functions are
bounded away from infinity and zero is used in many articles on
additive model. For example, Huang, Horowitz, and Wei (2010)
studied estimation of sparse additive models under assumption
that the univariate densities {pj(xj)}j∈[d] are bounded away from
infinity and zero. Opsomer and Ruppert (1997) and Fan and
Jiang (2005) study the additive model with two covariates: Y =
μ + f1(X1) + f2(X2) + ε and impose

sup
x1,x2∈X

∣∣∣∣ p12(x1, x2)

p1(x1)p2(x2)
− 1

∣∣∣∣ < 1, (3.3)

which implies that p12(x1, x2) is bounded from infinity and zero.
Since the loss function in (2.6) involves interaction terms of
multiple variables, Assumption (A1) imposes boundedness on
the density related to three covariates. Moreover, Assumption
(A1) can be satisfied even if the support X is non-compact. In
comparison, whenever a density function is bounded away from
zero, it has to have bounded support. Therefore, our assump-
tion is more general than those used in Opsomer and Ruppert
(1997), Fan and Jiang (2005), and Huang, Horowitz, and Wei
(2010). As another example, consider X ∼ N(0, �) where �jj =
1 and �jk = ρ for all 2 ≤ j < k ≤ d, we can bound the densities
as p1(x1) ≤ 1, p(xj|x1) ≤ (1 − ρ2)−1/2 and p(xj, xk|x1) ≤
(1 − ρ)−1(1 + 2ρ)−1/2 for all 2 ≤ j < k ≤ d. Therefore,
Assumption (A1) is satisfied in this example as long as � is
positive definite.

Assumption (A2) is standard in the literature on local linear
regression (Fan 1993), while Assumption (A4) is standard in the
literature on sparse additive modeling (Meier, van de Geer, and
Bühlmann 2009; Huang, Horowitz, and Wei 2010; Koltchinskii
and Yuan 2010; Kato 2012; Raskutti, Wainwright, and Yu 2012).

Assumption (A3) is similar to the restricted strong convexity
condition in Negahban et al. (2012). Note that �z is the expec-
tation of the Hessian matrix of the loss function L(β+). We
require �z to be positive definite when restricted to vectors in
the cone C

(κ)
β (J). Again, the additional factor

√
m in front of

|α| makes sure that α and βz are calibrated on the same scale
(see Remark 2.1). Assumption (A3) can be derived from the
assumption on the design in Koltchinskii and Yuan (2010). They
considered the quantity

β2,κ(J) = inf
{
β > 0

∣∣∣ ∑
j∈J

‖hj‖2
L2(P)

≤ β2 ∥∥ d∑
j=1

hj
∥∥2

L2(P)
,

(h1, . . . , hd) ∈ C
(κ)

h (J,P)
}

, (3.4)

where C
(κ)

h (J,P) = {
(h1, . . . , hd)

∣∣ ∑
j/∈J ‖hj‖L2(P) ≤

κ
∑

j∈J ‖hj‖L2(P)

}
for J ⊂ [d].

Let μz be the measure defined as
∫

gdμz = E[g(X)|X1 = z]
for any g. The following proposition describes the connection
between β2,κ(J) and Assumption (A3).

Proposition 1. We define a uniform quantity based on the con-
stant (3.4) as

β̄2,κ = sup
|J|≤s

inf
{
β >0

∣∣∣ ∑
j∈J

‖hj‖2
L2(μz)

≤β2
∥∥∥ d∑

j=2
hj

∥∥∥2

L2(μz)
,

(h1, . . . , hd) ∈ C
(κ)

h (J, μz), z ∈ X
}

. (3.5)

Under Assumption (A1), there exist constants c, C > 0 such that
for any subset X ′ ⊆ X ,

inf
z∈X ′ inf|J|≤s

inf
β+∈C(κ)

β (J)

βT+�zβ+
‖β‖2

2 + mα2 ≥ inf
z∈X ′ p1(z) · Cβ̄−2

2,cκ
s(cκ + 1)2

1
m

.

(3.6)

The proof of Proposition 3.1 is stated in Appendix D in the
supplementary materials.

When the support X is compact and we assume there exists
a fixed constant b > 0 such that p1(x1) ≥ b for all x1 ∈ X ,
Proposition 3.1 implies that if the number of active components
s is finite, we can choose ρmin = Cbβ̄−2

2,cκ/(s(cκ + 1)2) and
Assumption (A3) is satisfied if β̄2,cκ < ∞. The assumption
that s is finite is required in the previous works (Meier, van de
Geer, and Bühlmann 2009; Huang, Horowitz, and Wei 2010;
Koltchinskii and Yuan 2010; Kato 2012). However, when the
support X is unbounded, p1(z) → 0 as |z| → ∞. In this case,
(3.6) does not provide a valid ρmin satisfying Assumption (A2).
We will discuss such a case in Section 3.3.

In the following, we present the rate of convergence of the
kernel-sieve hybrid regression estimator.

Theorem 3.1. Suppose that Assumptions (A1)–(A5) are satis-
fied. If h = o(1), m → ∞ as n → ∞, and we set

λ = C
(√

log(dmh−1)

nh
+

√
s

m5/2 + m3/2log(dh−1)

n
+ h2

√
m

)
,

(3.7)

for a sufficiently large constant C, the estimator (̂αz, β̂T
z )T

defined in (2.7) satisfies

sup
z∈X

d∑
j=2

||̂β j;z − β∗
j ||2 ≤ sm

ρmin
λ and

sup
z∈X

|̂az − f1(z)| ≤ s
√

m
ρmin

λ (3.8)

with probability 1 − c/n for some constant c > 0, where β̂ j;z is
a subvector of β̂z corresponding to the coefficients of B-spline
basis of the jth covariate and same for β∗

j to β∗ defined in (2.4).
Furthermore, the estimator f̂ in (2.9) satisfies

‖̂f − f ‖2 ≤ ρ−1
mins

√
mλ (3.9)

with probability 1 − c/n.

The estimation error comes from four sources. The noise
ε contributes O

(√
log(dmh−1)/nh

)
in (3.7). The second-term

in (3.7), O
(√

sm−5/2), comes from the approximation error
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introduced by using m B-spline basis functions to estimate
the true functions {fj}d

j=2. The third source of error comes
from the kernel method, which uses a constant to estimate
f1z locally. The fourth source of error comes from search-
ing for correct local approximation by s additive functions
due to (4.1). Both the third and fourth sources contribute
O

(
n−1m3/2 log(dh−1) + h2/

√
m

)
to the estimation error. The

detailed proof of Theorem 3.1 is shown in Appendix A in the
supplementary materials.

When ρ−1
min = O(1) and s = O(1), the statistical rate

in (3.9) is minimized when we choose h � n−1/6, m �
n1/6 and λ � n−5/12√log(dn). With these choices, we obtain
‖̂f − f ‖2

2 = OP
(
n−2/3 log(dn)

)
. This convergence rate is

slower than the optimal rate OP
(
n−4/5 + log d/n

)
for esti-

mating the sparse additive model (Raskutti, Wainwright, and
Yu 2012). However, we will show that this rate is enough to
construct an honest confidence band for f1 in Section 3.2.
Besides, our kernel-sieve hybrid estimator can be applied to
functions beyond the sparse additive model. It can actually
estimate the functions in the form f1(x1) + ∑d

j=2 fj(xj, x1),
which has two-dimensional additive functions. We refer Sec-
tion 4 for the details of the generalization. In fact, the rate
‖̂f − f ‖2

2 = OP
(
n−2/3 log(dn)

)
we achieve is nearly opti-

mal up to logarithmic factors for the two-dimensional Hölder
class (Stone 1980). Technically, the slower rate comes from
the error term Tn = supz∈X maxj∈[d] 1

n‖
T•jWzε‖2 =
OP

(√
log(dn)/(nh)

)
, where Wz is defined in (2.2). In com-

parison, Huang, Horowitz, and Wei (2010) only need to bound
T′

n = supz∈X maxj∈[d] 1
n‖
T•jε‖2 = OP

(√
log(dn)/n

)
(see

their Lemma 2). Note that Tn = OP
(
h−1/2T′

n
)

because the
kernel matrix Wz increases its variance by OP(h−1/2). Detailed
technical analysis of Tn is given in Lemma A.4 in the supple-
mentary materials.

3.2. Theoretical Results for Confidence Band

To establish valid theoretical results on the confidence band
Cb

n,α , we need to strengthen the weak dependency assumption
in Assumption (A3) as follows.

Assumption (A6) (Nonparametric weak dependency). Recall
that the constant B is defined in Assumption (A1) and ρmin
is defined in (3.2). We assume that the density functions of X
satisfies

d∑
j=2

‖p1,j − p1pj‖2 ≤ ρmin
2B

and

sup
k≥2

∑
j<k

‖p1,j,k − p1pjpk‖2 ≤ ρmin
2B

. (3.10)

The nonparametric weak dependency assumption quantifies
how strong the dependency between the covariates can be, while
still allowing us to construct an honest confidence band. In
particular, Assumption (A6) allows us to ensure validity of the
orthogonality property proposed by Chernozhukov, Hansen,
and Spindler (2015) and its equivalent characterization in Zhang
and Zhang (2013) and van de Geer et al. (2014). Heuristically, for
M-estimators, the orthogonality property essentially requires

the inverse of the Hessian matrix of the population loss
function to have sparse columns (Ning and Liu 2017). For linear
models, Javanmard and Montanari (2014) relaxed the sparsity
assumption by requiring the inverse of the Hessian matrix to
have columns with bounded �1-norms. We extend the approach
of Javanmard and Montanari (2014) to our nonparametric
setting here. For our loss function in (2.6), the population
Hessian matrix is �z defined in Assumption (A3). Due to
the complicated definition of �z, there is no straightforward
interpretation of �−1

z and any assumption imposed on �−1
z

would imply restrictions on the data generating process that
are hard to verify. In comparison, the nonparametric weak
dependency assumption in (3.10) is straightforward and easy
to check in practice. Furthermore, Assumption (A6) is a high-
dimensional analogue of the assumption in (3.3), which was
considered by Opsomer and Ruppert (1997) and Fan and
Jiang (2005) for fixed dimensional additive models. Since
‖p1,j,k − p1pjpk‖2 measures the dependency among X1, Xj and
Xk, (3.10) requires the �1-norms of both {‖p1,j,k − p1pjpk‖2}j≥2
and {‖p1,j − p1pj‖2}j≥2 to be bounded.

The following proposition shows Assumption (A6) can be
satisfied even if X is unbounded and Xj’s are dependent. We
refer the detailed construction of such an example to Appendix
G in the supplementary materials.

Proposition 2. Given any ρ ∈ (0, 1/2) satisfying ρ ≤
ρmin/(18B), there exists a d-dimensional density function p(x)

with unbounded support such that

d∑
j=2

cov(X1, Xj) ≥ ρ/9 and cov(Xj, Xk) ≥ ρ/9

for all j, k > 2 and |j − k| ≤ 1,

and Assumption (A6) is satisfied.

The next lemma provides guidance to the selection of the
tuning parameter γ in (2.16).

Lemma 3.1. Suppose that Assumptions (A1), (A3), and (A6)
hold. Let

γ = C log(|X |/ρmin) · log d
√

m/nh, (3.11)

for sufficiently large constant C. Then the vector θ z = �−1
z e1

is a feasible solution to the optimization program in (2.16) with
high probability. In particular, we have

P

(
sup
x∈X

‖�̂zθ z − e1‖2,∞ ≤ γ

)
≥ 1 − c/d

for some constant c.

We defer the proof of this lemma to Appendix F.2 in the
supplementary materials. We are now ready to present the main
theorem of this section which establishes a valid confidence
band for a component in the sparse additive model under the
identifiability condition (2.2).

Theorem 3.2. We consider the SpAM model in (2.1) with iden-
tifiability condition (2.2). Suppose ε ∼ N(0, σ 2) and Assump-
tions (A1)–(A6) hold. Suppose the support X is bounded and
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infz p1(z) > 0. If s = O(1), m � np for p ∈ (1/5, 3/13),
h � n−δ for δ ∈ (5p − 1, (1 − 3p)/2), λ satisfies (3.7) and γ =
C log(dn)

√
m/nh for sufficiently large C, there exist constants

c, C1 > 0 such that for any α ∈ (0, 1), the covering probability
of Cb

n,α in (2.19) is

P
(
f1(z) ∈ Cb

n,α(z), for all z ∈ X
) ≥ 1 − α − C1n−c. (3.12)

In particular, the confidence band Cb
n,α is asymptotically honest,

that is,

lim inf
n→∞ P

(
f1(z) ∈ Cb

n,α(z), for all z ∈ X
) ≥ 1 − α.

Theorem 3.7 provides a more general result for the setting
whereX is unbounded. Notice that we can no longer choose h �
n−1/6 and m � n1/6 as in Theorem 3.1, since we need to under-
regularize our estimator to make the bias terms ignorable.

3.3. Results for Unbounded Support

Here we discuss the theoretical results of our method when
the support X is unbounded. Before discussing the technical
details, we first provide some heuristic intuition why the case of
unbounded support is challenging and many articles on additive
model (Opsomer and Ruppert 1997; Fan and Jiang 2005; Huang,
Horowitz, and Wei 2010) impose bounded support condition, as
well as many article that study uniform convergence of kernel-
type estimators (Peligrad 1992; Masry 1996; Nze and Doukhan
2004; Fan and Yao 2008). For example, consider the univariate
nonparametric model that n iid samples {Xi, Yi}n

i=1 are gener-
ated from Yi = m(Xi) + εi where m ∈ H(2, L) and E[εi] = 0.
The Nadaraya–Watson estimator for m(z) is

m̂(z) = arg min
a

n∑
i=1

Kh(Xi − z)(Yi − a)2

=
∑n

i=1 YiKh(Xi − z)∑n
i=1 Kh(Xi − z)

. (3.13)

The pointwise mean square error of m̂(z) is given by Fan and
Gijbels (1996) as

MSE(m̂(z)) := E(m̂(z) − m(z))2 (3.14)

≈ h4σ 4
K

4

(
m′′(z) + 2m′(z)

p′(z)
p(z)

)2 + RKσ 2
ε

nhp(z)
,

where σ 2
K = ∫

u2K(u)du, RK = ∫
K2(u)du, σ 2

ε = E[ε2
i ], p(z)

is the density of Xi, and “≈” means we neglect higher order
terms. From (3.14), we could see that MSE(m̂(z)) will diverge if
p(z) → 0. The intuition is we have a kernel density estimator of
p(z) in the denominator of m̂(z) in (3.13). Therefore, to control
the uniform rate supz∈X |m̂(z) − m(z)|, many analyses assume
infz∈X p(z) > 0, which is impossible if X is unbounded.

When X is unbounded, because of the argument above,
the uniform rate of m̂ are typically established on the compact
subset ofX . For example, forX = R, Hansen (2008) proved that
under certain regularity conditions, if bn = inf |z|≤Dn p1(z) > 0,
then sup|z|≤Dn |m̂(z) − m(z)| = OP(b−1

n (h2 + √
log n/nh)). We

also show the uniform rate of our estimator on compact subsets
of X = R in the following corollary.

Corollary 3.1. Suppose Assumptions (A1), (A2), (A4), (A5)
hold and β̄2,κ in (3.5) is finite. We consider s = O(1), h � n−1/6,
m � n1/6 and λ = Cn−5/12√log(dn) for sufficiently large
constant C. Given any compact interval [−Dn, Dn], if bn =
inf |z|≤Dn p1(z) > 0, we have

sup
|z|≤Dn

|̂az − f1(z)| = OP
(
b−1

n log(dn)/n2/3). (3.15)

The corollary can be proved by applying Proposition 3.1 to
Theorem 3.1. Assumption (A3) is not required here because
ρmin could be zero when X = R. Proposition 3.1 characterizes
how ρmin depends on p1(z) when we choose X ′ = [−Dn, Dn]
in (3.6) and helps us obtain an explicit rate in (3.15).

When the support is bounded but p1(z) goes to zero, Corol-
lary 3.1 can also give us the uniform rate. Without loss of
generality, let X = [−a, a] for a > 0. If there exist C, β > 0
such that p1(z) ≥ C||z| − a|β for all z ∈ [−a, a], under the
assumptions of Corollary 3.1, we have

sup
z∈[−a+δn,a−δn]

|̂az − f1(z)| = OP
(
δ
−β
n log(dn)/n2/3).

We can also show the coverage probability of the confidence
band Cb

n,α in (2.19) on a compact subset of R in the following
theorem.

Theorem 3.3. We consider the SpAM model in (2.1) with
identifiability condition (2.2). Suppose ε ∼ N(0, σ 2) and
Assumptions (A1), (A2), (A4)–(A6) hold and β̄2,κ in (3.5)
is finite. We assume there exists some α > 1 such that
n−α(inf |z|≤n p1(z))−1 = O(1). Given any Dn = O(nβ) for
β < 1/(10α∨5), if s = O(1), m � np for p ∈ (1/5, (3−2β)/13),
h � n−δ for δ ∈ (5p − 1, (1 − 3p)/2 − β), λ satisfies (3.7)
and γ = C log(dn)

√
m/nh for sufficiently large C, there exist

constants c, C > 0 such that for any α ∈ (0, 1), the covering
probability of Cb

n,α has

P
(
f1(z) ∈ Cb

n,α(z), for all |z| ≤ Dn
) ≥ 1 − α − Cn−c. (3.16)

In particular, the confidence band Cb
n,α is asymptotically honest

on any interval [−Dn, Dn] with Dn = O(nβ) for β < 1/(10α ∨
5), that is,

lim inf
n→∞ P

(
f1(z) ∈ Cb

n,α(z), for all |z| ≤ Dn
) ≥ 1 − α.

For the detailed proof of this theorem, see Appendix C.1 in
the supplementary materials.

4. Generalization to Larger Nonparametric Family

In this section, we will show that our kernel-sieve estimator
defined in (2.7) can be applied to a family of functions larger
than the sparse additive model. We call this new function
family as the additive local approximation model with sparsity
(ATLAS). Notice that under the SpAM model, there are no
interaction terms between different covariates. In addition, the
set of covariates in S affect the response Y globally. The ATLAS
model relaxes these two structural constraints.
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Definition 4.1. A d-dimensional function f (x1, . . . , xd) has a
local sparse additive approximation for x1 if for any z ∈ X ,
there exist functions f1z(·), . . . , fdz(·) ∈ H(2, L), two bounded
functions L(·) : X d �→ R, Q(·) : X �→ R and a constant
δ0 > 0 such that for any x−1 = (x2, . . . , xd)

T ∈ X d−1, if
x1 ∈ (z − δ0, z + δ0), we have the approximation

∣∣∣∣f (x1, . . . , xd) − f1(z) −
d∑

j=1
fjz(xj) − L(z, x−1)(x1 − z)

∣∣∣∣
≤ Q(z)(x1 − z)2. (4.1)

Furthermore, we assume that the locally additive approximation
functions are sparse in that at most s of the functions {fjz(·)}d

j=1
are not identical to zero. The sparsity pattern at each z ∈ X is
denoted as Sz = {j ∈ [d] : fjz(·) �≡ 0}. We call the function
class containing functions satisfying Definition 4.1 the ATLAS
model and denote it as Ad(s).

By letting z → x1 in (4.1), we observe that a function in the
ATLAS model can be written as

f (x1, . . . , xd) = f1(x1) +
d∑

j=2
fj(xj, x1), (4.2)

where {fj(xj, x1)}d
j=2 are d bivariate functions belonging to

H(2, L). Similar to (2.2), we impose the identifiability condition

E
[
f1(X1)

] = 0 and E
[
fj(Xj, x1)

] = 0 for any
x1 ∈ X and j = 2, . . . , d. (4.3)

We call X1 the longitude variable and the functions
f2(·, z), . . . , fd(·, z) for each z ∈ X as charts at longitude z.
Notice that the sparsity patterns of charts may change with
z ∈ X , allowing for more flexible modeling compared to SpAM
which assumes a fixed sparsity pattern. Therefore, ATLAS
allows complex nonlinear interaction between X1 and other
covariates. A visualization of a d-dimensional function in
ATLAS is illustrated in Figure 1.

It is obvious that the sparse additive model is a subset of
ATLAS with the fixed charts {fj}d

j=1 which are invariant to
any longitude variable. In fact, ATLAS model generalizes many
existing nonparametric models in the literature. Functions like
(4.2) are studied under the framework of time-varying additive
models for longitudinal data (Zhang and Wang 2015) when the

Figure 1. The illustration of ATLAS. As the longitude variable X1 changes as X1 ∈
{z1, z2, z3, z4}, the sparsity patterns of the charts are different. By fixing the lattitude
variable Xj for j = 2, . . . , 5, the values of charts fj(·, z) change with z. Under the
sparsity assumption, fj(·, z) is zero for most of the range of z.

dimension is fixed. It has also been considered as compound
functional model proposed in Dalalyan, Ingster, and Tsybakov
(2014) under the high-dimensional setting. However, ATLAS
allows the sparsity pattern to vary with the longitude covariate
x1 while the compound functional model in Dalalyan, Ingster,
and Tsybakov (2014) must have fixed support. The following
example gives another subset of ATLAS model.

Example 4.1. Consider a d-dimensional function with the struc-
ture

f (x1, . . . , xd) = f1(x1) +
d∑

j=2
aj(x1)fj(xj), (4.4)

where aj(·), fk(·) ∈ H(2, L) for all k ∈ [d] and j ≥ 2. Moreover,
for any fixed z ∈ X , at most s of {aj(z)}j≥2 are nonzero. The
function in (4.4) satisfies Definition 4.1. We define fj(xj, x1) =
aj(x1)fj(xj) for j = 2, . . . , d and let L(z, x−1) = ∑

j≥2 a′
j(z)fj(xj).

Then for any x1 ∈ (z − δ0, z + δ0) and x−1 ∈ X d−1, we have∣∣∣∣f (x1, . . . , xd) −
d∑

j=1
fj(xj, z) − L(z, x−1)(x1 − z)

∣∣∣∣
≤ s max

j∈[d]
‖fj‖∞‖a′′

j ‖∞(x1 − z)2 := Q(z)(x1 − z)2,

which satisfies Definition 4.1 if s is finite. The nonparametric
function in (4.4) allows nontrivial interactions between X1 and
Xj for j ≥ 2, which cannot be modeled with SpAM. The sparsity
of the function in (4.4) originates from aj(x1) and there is no
sparsity assumption on fj(xj).

Example 4.1 shows that the ATLAS model is a generalization
of the varying coefficient additive model for functional data
(Zhang and Wang 2015). If fj(xj)’s are linear functions for all
j ≥ 2, we can write (4.4) as

f (x1, . . . , xd) = f1(x1) +
d∑

j=2
aj(x1)xj, (4.5)

which is a high-dimensional varying coefficient linear model,
where the support of the linear coefficients may vary with
x1. Varying coefficient linear models in fixed dimension have
been extensively studied Hastie and Tibshirani (1993), Fan and
Zhang (1999), Berhane and Tibshirani (1998), and Zhu, Li,
and Kong (2012), while Wei, Huang, and Li (2011) study high-
dimensional varying coefficient linear models with fixed spar-
sity.

The locally additive assumption in (4.1) for the ATLAS
model makes it possible for us to use the kernel-sieve hybrid
estimator to estimate functions in Ad(s). The loss function for
the kernel-sieve hybrid estimator in (2.6) has two parts: the
kernel function makes the loss function only involve data points
within the area (z−h, z+h)×X d−1 and the sieve approximation
part is therefore good enough to approximate the true function
according to (4.1). In particular, let (̂αz, β̂z) be the output of
(2.7), we estimate the true functions f1(z) and fj(xj, z) by

f̂1(z) = α̂z and f̂j(xj, z) =
m∑

k=1
ψjk(xj)β̂ jk;z, for j = 2, . . . , d.
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We can thus estimate the bivariate charts {fj(xj, x1)}d
j=2 by “glu-

ing” the local charts {fj(xj, z)}d
j=1 over different longitudes z ∈

X through a fast algorithm proposed in Appendix B in the
supplementary materials. Moreover, we can also construct a
confidence band for f1 following the procedure in Section 3.2.

If we weaken Assumption (A5) and generalize it to the
assumption that f (x1, . . . , xd) ∈ Ad(s), the estimation rates
in Theorem 3.1 and the property of confidence band in Theo-
rem 3.3 remain true. In fact, we will prove these theorems under
the ATLAS model and apply them to SpAM.

5. Numerical Experiments

In this section, we study the finite sample properties of confi-
dence bands for the ATLAS model and sparse additive model.
We apply the SpAM to a genomic dataset and the ATLAS model
to a fMRI dataset.

5.1. Synthetic Data

We consider two kinds of synthetic models. In the first example,
we evaluate the empirical properties of the bootstrap confidence
band for sparse additive model. In the second example, we apply
it to the ATLAS model.

In both examples, we use the quadratic kernel Kquad(u) =
(15/16) · (1 − u2)2 1(|u| < 1) as the kernel function in (2.7).

Example 5.1. We consider the sparse additive model Yi =∑4
j=1 fj(Xij) + εi, where

f1(t) = 6
(
0.1 sin(2π t) + 0.2 cos(2π t) + 0.3(sin(2π t))2

+ 0.4(cos(2π t))3 + 0.5(sin(2π t))3),

f2(t) = 3(2t − 1)2, f3(t) = 5t,

f4(t) = 4 sin(2π t)/(2 − sin(2π t)).

The model is considered by Zhang and Lin (2006), Meier, van
de Geer, and Bühlmann (2009), and Huang, Horowitz, and Wei
(2010). Let W1, . . . , Wd and U follow iid Uniform[0, 1] and

Xj = Wj + tU
1 + t

for j = 1, . . . , d.

The data sample X1j, . . . , Xnj are iid copies of Xj. The correlation
between Xj, Xj′ is therefore t2/(1 + t2) for j �= j′. We set t = 0.3.
The noise {εi}n

i=1 are iid N(0, 1.52). Let the dimension d = 600
and the sample sizes n ∈ {400, 500, 600}. In the kernel-sieve
hybrid estimator (2.7), we use the cubic B-splines with nine
evenly distributed knots and m = 5. The parameter γ in (2.16)
is set to be γ = 0.05 log d

√
m/nh. The tuning parameter λ and

bandwidth h are chosen by cross-validation according to the BIC
criterion defined as

BIC = log
(

RSS
nh

)
+ df · log nh

nh
,

where RSS is the residual sums of squares and the degrees of
freedom is defined as df = ŝ · m with ŝ being the number
of variables selected by the estimator. We aim to construct the

confidence band for f ∗
1 (t) = f1(t)−E[f1(X1)]. In the simulation,

we use the sample mean En[f1(X1)] := n−1 ∑n
i=1 f (Xi1) to

center f1(t).
To test the coverage probability of confidence bands for

inactive covariates, we also construct the confidence band for
f5(t) = 0. We set the significance level at 95%. We compute
the empirical coverage probability via the percentage that the
confidence band covers the truth on all the 500 grid points
on [0, 1] in 500 repetitions. We compare the performance of
our method on Example 5.1 with the oracle method in Kozbur
(2015), which assumes that the nonzero functions are known
beforehand. Since Kozbur (2015) did not provide a straight-
forward construction of the confidence band, we construct the
confidence intervals for f1(x) with all x’s on the 500 grid points
on [0, 1]. The significance levels of these confidence intervals
are adjusted via Bonferroni correction (Efron 2012) to be fairly
compared with our method.

The results are summarized in Figure 2 and Table 1. In
Table 1, the “area” of the confidence band Cb

n,α is defined as∫
z∈X 2̂cn(α)(nh)−1/2σ̂n(z)dz. In the simulation, we calculate

the integration via discretizing the interval into grids and aver-
aging the results across 500 repetitions. We can see in Table 1
that the coverage probability of the oracle method in Kozbur
(2015) is close to 1, however, the area of the confidence band
is much larger comparing to our method. This is because Bon-
ferroni correction is used for the confidence band of Kozbur
(2015). This makes the confidence band too conservative and
not nominal in coverage probability.

Example 5.2. We generate data from the following ATLAS
model

Yi = a1f1(Xi1) +
4∑

j=2
aj(Xi1)fj(Xij) + εi,

where the additive functions are designed as follows

f1(t) = −2 sin(2π t), f2(t) = t2 − 1/3,

f3(t) = t − 1/2, f4(t) = et + e−1 − 1;

a1 ∈ {0, 1}, a2(t) = 2Kquad(4t − 1),

a2(t) = 3 cos(2π t), a3(t) = 4.

Here, two values of a1 ∈ {0, 1} correspond to two scenarios
that the true function is zero and nonzero. The noise εi ∼
N(0, σ 2) for i = 1, . . . , n with σ = 1.5. This ATLAS model
is constructed based on the synthetic example in Ravikumar
et al. (2009) by adding aj(t)’s according to Example 4.1. The
covariates Xij are independently and identically generated from
Uniform[0, 1] distributions for i = 1, . . . , n and j = 1, . . . , d.
It can be checked that this model follows the identifiability
condition in (4.3). According to the argument in Example 4.1,
the true function f ∗

1 (t) = a1f1(t) . We set the dimension of
covariates to be d = 600 and consider three sample sizes n ∈
{400, 500, 600}. We again use the cubic B-spline basis with nine
evenly distributed knots and m = 5. We again tune λ and h
through cross-validation by minimizing the BIC criterion. The
confidence bands are constructed at the significance level 95%
and the quantile estimator ĉn(α) is computed by bootstrap with
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Figure 2. Kernel-sieve hybrid estimators for the d = 600 dimensional SpAM model Y = ∑4
j=1 fj(Xj) + ε, for n = 400, 500, 600 and the noise ε ∼ N(0, 1.52). The

confidence bands at significant level 95 cover f1(t) on the first row and f5(t) = 0 on the second row.

Figure 3. Kernel-sieve hybrid estimators for the d = 600 dimensional ATLAS model Y = a1f1(X1) + ∑4
j=2 aj(X1)fj(Xj) + ε, for n = 400, 500, 600 and the noise

ε ∼ N(0, 1.52). The confidence bands at significant level 95 cover f∗1 = a1f1 for a1 ∈ {0, 1}, respectively.

500 repetitions. The coverage probability is computed via the
same method as in the previous example. The numerical results
are reported in Figure 3, Figure 4, and Table 1.

5.2. Real Data

We apply the kernel-sieve estimator to two types of real datasets:
a genomic dataset and a neural imaging dataset. We aim to test

our model’s performance in variable selection and inferential
analysis under real applications.

5.2.1. Genomic Data
We first consider the genomic dataset on the relation between
gene and riboflavin (vitamin B2) production with bacillus sub-
tilis. Instead of evaluating the performance of variable selec-
tion in the previous neural imaging application, we aim to
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Figure 4. Kernel-sieve hybrid estimators for the two-dimensional surface a2(x1)f2(x2).

Table 1. Comparison of coverage probability for confidence bands at significant level 95 for the zero function f5 and nonzero function f1 in SpAM model Y = ∑4
j=1 fj(Xj)+ε

as long as the zero function a1f1 for a1 = 1 and nonzero function a1f1 for a1 = 0 in the ATLAS model Y = a1f1(X1) + ∑4
j=2 aj(X1)fj(Xj) + ε.

Zero function Nonzero function

n Method Coverage probability Area Coverage probability Area

SpAM 0.824 0.398 0.932 0.145
400 ATLAS 0.924 0.402 0.912 0.210

Kozbur (2015) 0.984 3.583 0.992 3.543
SpAM 0.836 0.377 0.928 0.137

500 ATLAS 0.922 0.346 0.924 0.158
Kozbur (2015) 0.984 1.089 0.994 0.827

SpAM 0.874 0.390 0.932 0.102
600 ATLAS 0.948 0.441 0.944 0.127

Kozbur (2015) 0.988 1.791 0.984 1.550

NOTE: We also compare the numerical performance of the oracle method in Kozbur (2015) on the SpAM model. Here we set dimension d = 600, sample size n =
400, 500, 600 and ε ∼ N(0, 1.52). The covering probability and area are averaged based on the 500 repetitions.

demonstrate the inference analysis of our method. The dataset
is provided by DSM (Kaiseraugst, Switzerland) and it is publicly
available in Supplementary Section A.1 of Bühlmann, Kalisch,
and Meier (2014). The response variable Y represents the log-
arithm of the riboflavin production rate. The covariates are
the logarithm of gene expression levels with dimension d =
4088 and sample size n = 71. van de Geer et al. (2014),
Bühlmann, Kalisch, and Meier (2014), and Javanmard and Mon-
tanari (2014) use the linear model to find potentially significant
genes. van de Geer et al. (2014) finds no significant genes,
Bühlmann, Kalisch, and Meier (2014) finds the gene YXLD-at,
and Javanmard and Montanari (2014) finds two genes YXLD-
at and YXLE-at to be significant. In this article, we use the
sparse additive model to find whether the two genes YXLD-at
and YXLE-at are significant. We first normalize the covariates

onto [0, 1] and use (2.19) to construct confidence bands for the
two genes YXLD-at and YXLE-at at significance level 95%. The
results are illustrated in Figure 5. We can see that both genes
have significantly nonzero effects. However, the gene YXLE-at
has a larger part of the domain where zero is located within the
confidence band compared to YXLD-at. Moreover, the magni-
tude of regression function on YXLE-at is smaller than YXLD-
at. These explain the reason why YXLE-at is less significant than
YXLD-at in the previous analysis.

5.2.2. Neural Imaging Data
The second application we consider is the ADHD-200 dataset
(Biswal et al. 2010) on the resting-state fMRI of 195 children
and adolescents diagnosed with attention deficit hyperactive

Figure 5. Kernel-sieve hybrid estimators for the riboflavin dataset using ATLAS model.
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disorder (ADHD) along with 491 typically developing controls.
Among them, 246 individuals are measured by the ADHD index
(Conners 2008) which assesses the level of disorder. To explore
the connection between ADHD and the brain activities, we aim
to regress the ADHD index by the fMRI data of 264 voxels
selected by Power et al. (2011) as the representative functional
cerebral areas. Phenotypic information including age, gender,
and intelligence quotient (IQ) is also provided.

Several studies have revealed that the maturation of the
brains for the youth with ADHD is delayed in some cortical
regions, compared to the ones without disorder (Mann et al.
1992; El-Sayed et al. 2003; Shaw et al. 2007). For example,
Shaw et al. (2007) find that the cortical development for the
individuals with ADHD is significantly slower in the frontal lobe
and temporal lobe. Therefore, the functioning voxels related to
ADHD vary with age and the ATLAS model can characterize
such variation, while the sparse additive model cannot. We set
the age as the longitude variable and the fMRI of 264 voxels as
the other covariates. All the covariates are normalized to [0, 1].
Each of the 246 subjects with ADHD indices has 76–276 scans
and all the scans are treated as independent observations.

The results of the regression are illustrated in Figures 6
and 7. We show the first eight estimated surfaces with largest
maximum norms among {̂fj(xj, x1)}d

j=1 in Figure 6. In the center
of Figure 6, we demonstrate all voxels being activated (nonzero)

at certain times by small balls. The radius of a ball represents
the length of time the corresponding voxel is activated and
the maximum norm is represented by the ball’s color where
red means the largest values and yellow means the smallest
(see the colorbar on the right bottom of Figure 6). We can
see that most of the voxels with strongest signal strength are
in the frontal and temporal lobes, which matches the results
in Shaw et al. (2007). Moreover, the different flat zero areas
of different surfaces in Figure 6 imply that the voxels are not
activated simultaneously, which supports the necessity of the
ATLAS model. In Figure 7, we show the activated voxels at
different ages. The radii and colors of the balls are the same as
Figure 6. We observe that, with the increasing age, the number
of activated voxels first ascends and then reduces. This is similar
to the results in Shaw et al. (2007) showing that 50 cortical
points of ADHD groups attain peak thickness around the age
of 10.5 years. The decreasing number of activated voxels after
age 15 is also congruent with the discovery in Shaw et al.
(2007).

6. Discussion

In this article, we consider a novel nonparametric model,
ATLAS, which is a generalization of the sparse additive

Figure 6. The estimated surfaces of first eight voxels with largest maximum norms. The radii of the balls in the brain represent the duration the voxels being active and
the colors represent the maximum norms of the surfaces, whose corresponding values are indicated by the colorbar on the right bottom of the figure.
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Figure 7. Active voxels varying with age. Each column shows the active voxels at each age. The radii and colors of the balls in a brain represent the duration and maximum
norms of the active voxels as in Figure 6.

model. ATLAS naturally models high-dimensional nonpara-
metric functions having different sparsity in different local
regions of the domain. We consider the kernel-sieve hybrid
regression to estimate the unknown function. Since we con-
sider functions in the 2nd order Hölder class, only Nadaraya–
Watson-type kernel estimator is considered. However, it is not
hard to generalize the loss function in (2.6) to local polynomial
regression

Lz(α, β) = 1
n

n∑
i=1

Kh(Xi1 − z)
(

Yi − Ȳ − α −
p∑

�=1

(Xi1 − z)�

�!

−
d∑

j=2

m∑
k=1

ψjk(Xij)β jk

)2
.

We can apply a similar proof technique to show the statistical
rate of the estimator based on the generalized loss in higher
order Hölder classes. Corresponding methods to construct con-
fidence bands can also be applied.

Supplementary Materials

In the supplementary materials, we provide proofs of the theoretical results
in the paper and the technical lemmas supporting them. We also introduce
an accelerated method to obtain our kernel-sieve estimator.
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