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A B S T R A C T   

Accurate long-term estimates of rainfall at fine spatial and temporal resolution are vital for hydrometeorology 
and climatology studies, but such data are often unavailable in remote regions. We assessed the accuracy of three 
satellite-based precipitation products that have data from 1981 to 2019 over the state of Rondônia in the Bra
zilian Amazon: (a) satellite-only, using the Climate Hazards Group Infrared Precipitation (CHIRP) product, (b) 
CHIRP with sparse gauge data (CHIRPS), and (c) CHIRPS calibrated with data from a dense rain gauge network 
(N = 73) (dnCHIRPS). We evaluated the rainfall products using additional validation gauges (N = 55) at the 
monthly and seasonal time scales and compared their drought events and temporal trends. Both CHIRP (10.0 
mm/month mean error (ME), 23.6% percent bias (PB)) and CHIRPS (−0.08ME, 7.4% PB) underestimate high 
monthly rainfall in the wet season and overestimate low monthly rainfall during the dry season. dnCHIRPS had a 
lower error in monthly rainfall (−0.01ME, 1.1%PB) compared with CHIRP and CHIRPS, with the largest per
centage difference between dnCHIRPS and the other two datasets in the dry season. dnCHIRPS captured 
decreasing trends in dry season rainfall over agricultural parts of the state, trends that were missed by the other 
two products. We conclude that a high density of rain gauges is essential for documenting the spatial pattern and 
trends in rainfall during the dry season and droughts in this important agricultural region of the Amazon basin.   

1. Introduction 

Rainfall in the Amazon Basin exhibits high spatial and temporal 
variability. Rainfall patterns over the Amazon have changed over 
1981–2017 (Paca et al., 2020); some of these changes in rainfall may be 
due to deforestation, which reduces evapotranspiration (Rizzo et al., 
2020; Stickler et al., 2013), and others may be due to ocean forcing and/ 
or global climate change (Staal et al., 2020). Reliable datasets on rainfall 
variability and change in the Amazon, especially associated with flood 
and drought events, are critically important for agriculture, water 
management, and understanding the consequences of land cover and 
climate change. Consistent long-term rainfall time series are required for 
analyses of spatial and temporal climate variability (Dinku et al., 2018), 
and for understanding how drought magnitude and severity have 
changed during periods of the combined forcing from land-use change 
and greenhouse gases. 

Improvements in the spatial resolution of rainfall datasets are 

essential for documenting trends, validating high-resolution climate 
models, and attributing changes in precipitation to forcing factors, such 
as land use. Deforestation can impact rainfall on several spatial scales. 
On local scales, deforestation induces convection over newly cleared 
areas (Davidson et al., 2012; De Sales et al., 2020; Mu et al., 2021). Land- 
use changes in the Amazon occur on private properties in large agri
cultural zones but clearing within those zones can be heterogeneous in 
ways that could impact rainfall with high spatial variability. Clearings 
are spatially autocorrelated with a range of ~150 km (Biggs et al., 
2008). Therefore, rainfall datasets with a high spatial resolution are 
required to quantify the impacts of land-use changes, ocean forcing, and 
global climate change. 

Conventional rain gauge networks are the primary sources for ac
curate point measurements of rainfall (Katsanos et al., 2016). However, 
ground-based rain gauges are inadequate for regions with sparse gauge 
networks and complex topography, and frequent gaps in rain gauge data 
complicate the mapping of spatial patterns and trends. In recent 
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decades, several satellite-based rainfall products have been developed to 
estimate rainfall, each with different spatial coverage, data sources, 
spatial resolutions, and temporal spans and latencies (Sun et al., 2018). 
A few commonly used satellite-based rainfall products include the 
Climate Prediction Centre Merged Analysis (CMAP) (Xie and Arkin, 
1997), the Global Precipitation Climatology Project (GPCP) (Adler et al., 
2003), African Rainfall Climatology version 2 (Novella and Thiaw, 
2013), and the Tropical Applications of Meteorology using SATellite 
data and ground-based observations (TAMSAT) (Tarnavsky et al., 2014; 
Maidment et al., 2017). CMAP and GPCP have global coverage, but they 
are available in very coarse spatial (2.5◦) and temporal resolutions. 

The Climate Hazards Group Infrared Precipitation (CHIRP) and 
CHIRP combined with gauge data (CHIRPS) are satellite-based rainfall 
products with a fine spatial (0.05◦) and temporal (daily) resolution, 
spanning 50◦S - 50◦N from 1981 to present (Funk et al., 2015a). Vali
dations of CHIRPS have been conducted in several regions, including 
Nepal (Shrestha et al., 2017) and the Central Andes of Argentina (Rivera 
et al., 2018). Hessels (2015) compared several satellite rainfall products 
in the Nile basin and concluded that CHIRPS was one of the best prod
ucts for hydro-meteorological studies. In the Brazilian Amazon, Cav
alcante et al. (2020) concluded that monthly CHIRPS rainfall was similar 
to that from rain gauges, but CHIRPS underestimated extreme rainfall. 
Paca et al. (2020) used CHIRPS to document trends in annual precipi
tation over the Amazon basin and cross-validated their results with 
ground gauge data. They found that the spatial average precipitation of 
the Amazon basin had increased only slightly over 1981–2017, but the 
trend had a large spatial variation, with some areas showing increases 
and others decreases. Trends in intra-annual values like monthly or 

seasonal precipitation, which are critical for soil moisture stress in both 
natural and agricultural ecosystems, are less well documented. 

Previous analyses of CHIRPS and other rainfall products over the 
Amazon (e.g. Cavalcante et al. (2020); Paca et al. (2020)) used readily 
available rain gauge networks over the entire Amazon basin, which have 
significant spatial and temporal gaps. Cavalcante et al. (2020) used 
relatively few gauges (N = 45) for the whole Amazon, and no gauges 
were located in some important agricultural regions, such as the state of 
Rondônia. Paca et al. (2020) had a more complete dataset, but mostly 
limited their comparison to the gauges with 20 or more years of data, in 
order to ensure accurate trend tests. This method may miss spatial 
patterns of extreme events like droughts. Paca et al. (2020) considered 
monthly trends and had a thorough analysis of the annual trends over 
the entire Amazon. The Brazilian National Water Agency (ANA) 
extended its rain gauge network to include more gauges, some equipped 
with telemetry (Fig. S1). We will use this relatively dense network of 128 
gauges to document errors and trends in satellite-based rainfall by sea
son for agriculturally significant regions in the Brazilian Amazon. 

The aim of this study is to assess the accuracy of the CHIRPS product 
for monthly precipitation estimates and to develop and evaluate a new 
dataset (dnCHIRPS) by combining CHIRPS with a dense network of rain 
gauges in the state of Rondônia of the Brazilian Amazon. We carried out 
point-to-pixel comparisons for CHIRP, CHIRPS, and dnCHIRPS on the 
monthly and seasonal scales. We aimed to answer the following ques
tions: (i) What is the spatiotemporal structure of differences between 
satellite rainfall estimates and rain gauges? (ii) What is the impact of 
calibrating the satellite rainfall estimates with rain gauge data on 
observed spatial patterns and trends in monthly and seasonal rainfall? 

Fig. 1. The study region, locations of rain gauges, and the number of years of data for each gauge. The land cover data are from Mapbiomas Project (2019).  

Y. Mu et al.                                                                                                                                                                                                                                      



Atmospheric Research 261 (2021) 105741

3

The distinguishing features of the study, compared to previous studies of 
the region (Cavalcante et al., 2020; Paca et al., 2020), are that (i) we use 
a large number of gauge observations over a long period (1981 to 2019), 
and (ii) we focus on intra-annual (monthly and seasonal) precipitation. 
The study is significant for examining the number of rain gauges needed 
to calibrate satellite estimates for the purpose of detecting monthly 
patterns and trends in rainfall, and for documenting monthly and sea
sonal changes and trends in rainfall over the period of deforestation in 
the Brazilian Amazon, which can only be achieved with a comparison of 
satellite rainfall estimates with rain gauges at high spatial resolution. 

Section 2 introduces the study region and climatic setting. Section 3 
describes the datasets, their quality control and blending methods, and 
statistical metrics. Section 4 evaluates the results and discusses the main 
findings, while Section 5 has conclusions and recommendations. 

2. The study region 

The study region is the state of Rondônia in Brazil (10.60◦ S, 62.31◦

W) (Fig. 1), which covers 243,000 km2 of the Brazilian Legal Amazon's 
5,000,000 km2 (Guild et al., 2004) and has experienced high defores
tation rates starting in the 1980s (INPE 2020). The region has gently 
undulating topography with elevations between about 14 and 1100 m 
above sea level. The climate is humid tropical, with a dry season from 
June to August, a dry-to-wet season transition from September to 
October, and a peak wet season from December to March (Butt et al., 
2011). 

3. Methodology and data 

3.1. Satellite-based rainfall data 

Each of the methods and processing steps is described below (Fig. 2). 
Two satellite-based rainfall products (CHIRP and CHIRPS v2.0) from the 
Climate Hazard Group were used in this study (available online at http 
s://data.chc.ucsb.edu/products/CHIRPS-2.0/). CHIRP includes only 
satellite data and mean climatology grids, while CHIRPS incorporates 
gauge data to calibrate the satellite-based data. CHIRP integrates several 
sources: (a) pentadal (six pentads per month) precipitation from long- 
term climatology; (b) Climate Prediction Centre (CPC) Infrared (IR) 

imagery (0.5 h temporal resolution; 4 km spatial resolution; 2000 to 
present); (c) the National Climatic Data (NCDC) B1 IR imagery (3 h 
temporal resolution; 8 km spatial resolution; 1981 to 2008); (d) the 
Tropical Rainfall Measuring Mission (TRMM) 3B42 product (0.25◦

spatial resolution; 3 h temporal resolution); and (e) the NOAA Climate 
Forecast System v2 (CSFv2). Estimates of the pentadal rainfall from cold 
cloud duration (CCD)-based satellite data are calibrated with the TRMM 
3B42 product using linear regression. The predictions of the regression 
models are expressed as a percentage of normal rainfall and multiplied 
by the corresponding precipitation climatology to produce CHIRP (Toté 
et al., 2015). CHIRPS then incorporates in situ precipitation observa
tions obtained from the Global Historical Climate Network (GHCN) and 
the Global Summary of the Day dataset (GSOD) (Funk et al., 2014). 
CHIRP and CHIRPS have a spatial resolution of 0.05◦ (about 5.3 km over 
the Amazon region), quasi-global coverage (50◦S-50◦N, 180◦E-180◦W) 
from 1981 to present (Funk et al., 2014). Monthly CHIRP and CHIRPS 
used here were from January 1981 to December 2019, which overlaps 
with the gauge data period (1975–2019). The number of gauges used in 
the CHIRPS dataset decreased in Brazil starting in 1985 and fell to a few 
dozen by 2013 (Fig. S1). In Rondônia, CHIRPS used a total of 58 gauges 
in 1981 and 5 in 2019 (Fig. S2). One main goal of this study is to 
augment the number of gauges used to calibrate CHIRPS by identifying 
and incorporating additional rain gauge data. 

3.2. Rain gauge data and processing 

The Brazilian National Water Agency (ANA)collects rainfall data for 
Brazil. Rain gauge data for the state of Rondônia are available at daily 
(81 gauges) and hourly (47 gauges) resolution from ANA's Hidroweb 
portal (available online at www.snirh.gov.br/hidroweb/). A total of 128 
gauges were used for calibration and validation in this study. The 
average density is 0.53 gauges per 1000 km2, which is significantly 
higher than that used in other studies (0.01 gauges per 1000 km2 in 
Cavalcante et al. (2020), and 0.11 for the whole Amazon in Paca et al. 
(2020). 

The gauges are distributed unevenly, with more gauges in areas 
cleared earliest during colonization. Although the date ranges of the 
data are different for each gauge (Table S1, S2), the collective rainfall 
gauge datasets cover the period from 1975 to 2019. 

Fig. 2. Rainfall data processing and methodology flowchart.  
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Inventory and quality control of the rainfall gauge data was per
formed in three steps:  

a) Calculate monthly rainfall from daily and hourly values to visualize 
gauge data availability as a percentage of days with data for each 
month and year (Fig. S3 and S4). Examine the monthly data quality 
for the 81 gauges with daily data and quality flags. Remove months 
with blank, uncertain, or estimated flags for any day in that month.  

b) Gauges with telemetry and hourly data (N = 47) do not report data 
quality flags. Data for these stations were reviewed, and months with 
missing or incomplete data were removed. This procedure found and 
removed 432 zeros from 36 gauges.  

c) Compare rainfall values from the gauge data with the interpolated 
gauge data. Identify and remove gauge data with clear quality issues 
(RMSE >100 mm/month, and annual rainfall <1000 mm). This step 
removed 31 annual values and 372 monthly values from 12 gauges. 

For the final gauge dataset, the mean RMSE between gauge rainfall 
and the interpolated gauge rainfall was 33.5 mm/yr, with a small in
crease to 50 mm/yr in 2013 corresponding with the introduction of 
additional telemetry gauges (Fig. S5). The maximum RMSE at individual 
gauges for the station versus interpolated gauge comparison is 88 mm/ 
yr. Out of 149 gauges, 21 gauges were completely removed due to 
missing data or data quality issues, leaving 128 gauges for analysis (N =
81 daily and 47 hourly with telemetry). Of those 128 gauges in 
1975–2019, 34 gauges had data for more than 20 years, 9 for 10–20, 40 
for 5–10, and 45 less than 5 years. 

3.3. dnCHIRPS data 

The 128 rain gauges were randomly assigned for calibration (N = 73) 
and validation (N = 55). The dnCHIRPS rainfall dataset (0.05◦ × 0.05◦

resolution, 1981–2019) was developed by blending the 73 calibration 
gauges network into the CHIRPS product using the Geospatial Climate 
Data Management and Analysis (GeoCLIM) software (Bamweyana and 
Kayondo, 2018; Mwesigwa et al., 2017; Funk et al., 2015a), which is 
developed and maintained by the United States Geological Survey 
(USGS) and Family Early Warning Systems Network (FEWS NET) 
(Pedreros and Tamuka, 2017). 

GeoCLIM uses the Background-Assisted Station Interpolation for 
Improved Climate Surfaces (BASIICS) algorithm, which blends CHIRPS 
with additional gauge data using a modified IDW that borrows some 
concepts from simple and ordinary kriging (Pedreros and Tamuka, 
2017). We used modified IDW interpolation with the following param
eters: 1.0 weight power, 100 km maximum effective distance, 0 (min) to 
10 (max) gauges, 3.0 maximum ratio of the gauge to CHIRP value, and a 
1.0 fuzz factor, which hides the location of the gauge by one pixel to 
avoid reverse-engineering the gauge-based pixel value (Pedreros and 
Tamuka, 2017). The search radius was set to 500 km, but since the study 
area is relatively small with sufficient gauge density, this parameter does 
not impact the calibration result. The blending process involved the 
following steps, following Funk et al. (2015b): a) Extract raster values 
for each gauge point; b) calculate the ratio of the gauge value to the 
value at the raster (CHIRP); c) if the ratio is greater than Max ratio, set 
the ratio to Max ratio. The ratio was greater than the Max ratio only 99 
out of 9722 gauge-month values, suggesting it had limited impact on the 
results; and d) interpolate ratios and multiply the interpolated ratios by 
the original CHIRP values. The resultant monthly product is available 
from 1981 to 2019 and has the same spatial resolution as CHIRP and 
CHIRPS (0.05◦). Changes in the number and distribution of gauges of 
time, especially introduction of new gauges, can introduce artifactual 
trends if the mean CHIRP climatology is biased so we tested the sensi
tivity of dnCHIRPS and resulting trends in precipitation to using only 
those gauges in the calibration set with data over the whole period of 
interest (N = 8). 

3.4. Evaluation of the calibrated product 

The remaining gauges (N = 55) of the gauge network were used for 
validation. Extracted values from the satellite data (CHIRP, CHIRPS, 
dnCHIRPS) at all valid gauge values (14,998 pairs) were cross validated 
using the BASIICS blending process. The BASIICS algorithm carries out a 
least-square regression between rainfall from rain gauges and satellite 
values at the rain gauge locations (Pedreros and Tamuka, 2017). We 
carried out point-to-pixel comparisons that use the rainfall estimates at 
the pixel in which the rain gauge is located. This method has been 
widely used in evaluating satellite rainfall estimates (Katsanos et al., 
2016; Shrestha et al., 2017; Cavalcante et al., 2020), though it often 
overestimates error due to problems with comparing measurements at a 
point with a much larger pixel area. This scaling issue is particularly 
problematic in areas with isolated convective activity, including the 
Amazon. The relatively fine resolution (0.05◦ × 0.05◦) of the CHIRP(S) 
rainfall datasets reduces but does not eliminate the problems associated 
with point-to-pixel comparison compared with coarse-resolution rainfall 
grids (Shrestha et al., 2017). The performance of the three satellite 
rainfall products was assessed using several metrics, including the 
Pearson correlation coefficient (r), mean error (ME), normalized root- 
mean-square error (nRMSE), and percent bias (PB) (Table 1). Trend 
magnitude (mm/yr) was determined using linear regression. 

4. Results and discussion 

4.1. Monthly and seasonal evaluation 

The gauge-blended satellite rainfall products (dnCHIRPS and 
CHIRPS) performed consistently better than the satellite-only dataset 
(CHIRP, R2 = 0.67, r = 0.82) (Fig. 3a) in predicting monthly rainfall 
across all months. dnCHIRPS (R2 = 0.80, r = 0.89), which included 
between 15 and 68 more gauges than CHIRPS from 1981 to 2019, per
formed slightly better than CHIRPS (R2 = 0.76, r = 0.87) when including 
all months. CHIRPS overestimated rainfall in months with low rainfall 
totals (< 250 mm), and all three datasets underestimated rainfall in 
months when the monthly total was more than 300 mm (Figs. 4 and 5). 
This implies that all the three datasets over-smoothened the rainfall 
field, and that dnCHIRPS can better represent the extremes of rainfall. 

Other validation studies have had similar results (Cavalcante et al., 
2020; Qin et al., 2014). Paredes-Trejo et al. (2017) used 21 rain gauges 
to validate CHIRPS in north-eastern Brazil and found underestimation of 
high values. Underestimation of high rainfall values was also observed 
in Venezuela, which was explained by the low rain detection capability 
during the wet season due to the tendency of CHIRP to misclassify 
rainfall events (Paredes Trejo et al., 2016). 

CHIRP, CHIRPS, and dnCHIRPS all have similar annual cycles in 
mean monthly precipitation, but dnCHIRPS was more similar to rain 
gauges in August and during the wet season (Jan-Mar) (Fig. 5). During 
wet seasons, the correlations (r) between satellite and rain gauge data (r) 

Table 1 
Equations of statistical metrics.  

Name Formula 

Pearson correlation coefficient 
r =

N(
∑

CG) − (
∑

C)(
∑

G)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
N

∑
C2 − (

∑
C)

2
][

N
∑

G2 − (
∑

G)
2

]√

(1)  
Mean error ME =

1
N

∑
(C −G) (2)  

Normalized root mean square 
error 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(C − G)
2

N

√

G 
(3)  

Percent bias 
PB = 100 

∑
(C − G)
∑

G 
(4)  

G: Gauge data; C: Satellite estimate; N: Number of data pairs. 
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Fig. 3. Scatter plot of monthly rainfall from satellite rainfall products and ground-based rain gauge data (N = 55) from 1981 to 2019. The blue line indicates 1:1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Y. Mu et al.                                                                                                                                                                                                                                      



Atmospheric Research 261 (2021) 105741

6

are typically lower for CHIRP and CHIRPS, while the dnCHIRPS is highly 
correlated with gauge data in almost all months (Fig. S6). dnCHIRPS 
(0.21) has a lower mean nRMSE than CHIRP (0.48) and CHIRPS (0.39) 
every month (Fig. 6). For the JJAS (June to September) dry season, 
dnCHIRPS has much lower nRMSE, while CHIRP and CHIRPS have 
many high outliner points for JJAS. For August, dnCHIRPS has a 
significantly lower (nRMSE <0.1) and fewer outliners compared with 
CHIRP (nRMSE >0.25) and CHIRPS (nRMSE >0.1). dnCHIRPS per
formed better during the dry season compared with CHIRP and CHIRPS, 
which tend to overestimate low rainfall amounts (Saeidizand et al., 
2018). 

CHIRP (10.0 mm/month ME, 23.6% PB) and CHIRPS (−0.08ME, 
7.4% PB) have higher and more variable mean ME and PB compared 
with dnCHIRPS (−0.01ME, 1.1%PB) (Fig. 7). Large ME values also occur 
during the wet seasons (December to February) in CHIRPS and CHIRP 
(Fig. 7). The highest errors in wet seasons could be caused by larger 
chances of non-raining clouds that could produce brief localized 
showers (Saeidizand et al., 2018). Overall, dnCHIRPS performed better 
in capturing extreme rainfall events during the dry seasons compared 
with CHIRP and CHIRPS at the monthly scale. 

Fig. 5. The Monthly State-wide mean rainfall estimated from satellite products and validation gauge data from 1981 to 2019.  

Fig. 4. Empirical cumulative distribution of monthly rainfall from satellite 
products and from validation rain gauge observations from 1981 to 2019. 

Fig. 6. Boxplots of nRMSE of the satellite products compared with validation 
gauges (N = 55) for each month: (top) Dry season (May-Oct). (bottom) Wet 
season (Nov-Apr). The black line on the box indicates the median. 
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4.2. Drought events and Trend analysis 

Large areas of the Amazon basin, including Rondônia, experienced 
severe droughts in 2005, 2010 and 2015. Panisset et al. (2018) found 
that a precipitation deficit was evident in JJAS for 2005 and 2010 
drought events. This is supported by the low JJAS rainfall values in 2005 
and 2010 from CHIRPS and dnCHIRPS (Fig. 8), though 2008 also had 
very low JJAS precipitation. dnCHIRPS had lower JJAS rainfall than 
CHIRPS during drought years, suggesting that CHIRPS may underesti
mate drought severity. In the dry season in some years, years without 
basin-wide drought as identified by Marengo et al. (2016) showed low 
rainfall in Rondônia (e.g. 1988, 2006–2008), suggesting the local 
droughts have occurred despite non-drought at the basin scale. 

Maps of the temporal trends (Pearson correlation coefficients and 
regression slopes) provided by CHIRP, CHIRPS, and dnCHIRPS identify 
areas where the changes were statistically significant (Figs. 9 and 10). 
CHIRP identifies only increases in rainfall in the western part of the 
state. CHIRPS maps a small area of decreasing dry season rainfall in the 
northern part of the state and large areas of decreasing (north) and 
increasing (west) annual rainfall. dnCHIRPS shows a similar pattern in 
trends in annual rainfall as CHIRPS, but dnCHIRPS shows a more severe 

and widespread decreasing trend in dry season rainfall over the agri
cultural area of the state (Figs. 1 and 9). The decreasing trend is robust 
but slightly weaker when excluding gauges with records shorter than the 
whole study period (Fig. S7), suggesting that the gauges with short re
cords enhanced the magnitude of the trend. The decreasing trends in the 
dry season and annual rainfall are consistent with other Amazon-basin 
wide studies (Arvor et al., 2017; Silva Junior et al., 2018; Paca et al., 
2020), though our findings in Rondônia show larger decreases than 
others (e.g., Paca et al., 2020), who used CHIRPS. De Sales et al. (2020) 
found that deforestation of protected areas in the north and west of the 
state would increase rainfall over the west and north-western parts of 
the state but decrease dry season rainfall in the existing agricultural 
region, which is consistent with Khanna et al. (2017) and with our 
dnCHIRPS results. Deforestation increases sensible heat fluxes and at
mospheric instability for enhanced convection and moisture flux 
convergence over the deforested areas but induces a regional dipole that 
reduces rainfall outside of the region of enhanced convection (Khanna 
et al., 2017; De Sales et al., 2020). Our high-resolution satellite-based 
precipitation estimates using a dense rain gauge network (dnCHIRPS) 
improve the identification of trends in dry season rainfall. 

Fig. 7. Mean monthly error (mm) and percent bias of the satellite products compared with rain gauges from 1981 to 2019.  
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Fig. 8. JJAS dry Season and annual state-wide mean rainfall for the satellite products from 1981 to 2019. Red arrows indicate droughts and blue arrows indicate wet 
years (Marengo et al., 2016). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Trends in JJAS total rainfall in CHIRP (left), CHIRPS (middle) and dnCHIRPS (right) over 1981 to 2019, including the p-value and trend sign (top) and trend 
magnitude (bottom). 
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5. Summary and conclusion 

We have documented spatial patterns and trends in monthly rainfall 
estimates using satellite-based rainfall estimates calibrated and vali
dated with a dense network of rain gauge observations over the state of 
Rondônia in the Brazilian Amazon for 1981–2019. Satellite-based 
datasets with no (CHIRP) or little gauge data (CHIRPS) overestimated 
low rainfall amounts during dry seasons and drought events. dnCHIRPS, 
calibrated with a dense rain gauge network, had improved accuracy 
during months with extreme high and low rainfall. We conclude that a 
dense rain gauge network is necessary to accurately document the 
spatial pattern and magnitude of rainfall during dry seasons and 
droughts and that a large fraction of this agriculturally important region 
has experienced reduced dry season rainfall, which was not documented 
by existing datasets. Future research should incorporate additional rain 
gauge data into CHIRPS for other agriculturally important regions of the 
Amazon basin. 
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