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User authentication is a critical process in both corporate and home environments due to the ever-growing
security and privacy concerns. With the advancement of smart cities and home environments, the concept of
user authentication is evolved with a broader implication by not only preventing unauthorized users from
accessing confidential information but also providing the opportunities for customized services corresponding
to a specific user. Traditional approaches of user authentication either require specialized device installation
or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication
with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as
smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture
unique human physiological and behavioral characteristics inherited from their daily activities, including both
walking and stationary ones. Particularly, we extract representative features from channel state information
(CSI) measurements ofWiFi signals, and develop a deep learning based user authentication scheme to accurately
identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our
deep learning model exploits a CNN-based architecture that constructively combines features from multiple
receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer learning-based
mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in
various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication
system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through
different activities.
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1 INTRODUCTION
User authentication aims to verify the legitimacy of a user who is trying to access private resources
(e.g., proprietary information and home appliances) and has drawn considerable attention due
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to the growing concerns of security and privacy leakage. For example, unauthorized users may
operate on personal devices that always contain private information. They may also access con-
fidential documents or get in the restricted areas that only allow designated personnel to enter.
Furthermore, electronic appliances in smart environments (e.g., homes, offices) have a growing
need to provide customized/personalized services such as prohibiting children and elderly people to
operate risky appliances (e.g., stove and dryer), adjusting room temperature/lighting conditions and
recommending TV content. These advancements in smart environments accelerate the adoption of
user authentication in numerous daily activities beyond traditional applications.
Traditional solutions are mainly relying on passwords [18] to authenticate users. These ap-

proaches are based on the complexity of the secret and thus require the user to memorize long
and tedious passwords to ensure high security. Some other authentication techniques rely on
physiological biometrics such as fingerprints, iris patterns and face [14, 17]. However, they usually
require the installation of dedicated devices (e.g., fingerprint scanner, camera) before deployment
and might disclose users’ privacy. Other research studies reveal the behavioral features of users,
such as key-press durations [23] during typing and mouse dynamics [37], could be applied to
perform continuous user authentication. However, these approaches only work when the user
operates the keyboard or mouse. Additionally, gait patterns [22] derived through mobile devices
require users to carry additional devices when user authentication is performed. In this paper, we
introduce a device-free user authentication approach that eliminates the need of remembering
tedious passwords, installing specialized equipment, or carrying any additional devices. The basic
idea is to exploit unique physical properties embedded in people’s daily activities (e.g., entering an
office with proprietary information, opening a refrigerator, or cooking on a stove) to capture each
person’s physiological and behavioral characteristics to facilitate user authentication.
In recent years, Internet of Things (IoT) devices, such as smart refrigerator, smart TV, smart

thermostat, home security system, andwearable devices are interconnectedwirelessly because of the
prevalence of WiFi technology. The increasing complexity of WiFi links among such devices could
provide a richweb of reflected rays that cover almost every corner of indoor environments. Although
the wireless signal generated by IoT devices that are designed for many special applications, it
has the potential to capture human’s unique physiological/behavioral characteristics inherited
from people’s daily activities when operating such devices (e.g., opening the refrigerator), which
provides an appealing direction to differentiate each individual.
Recent years have witnessed the emergence of technologies [30, 35, 36] that explore WiFi

signals for user identification. For example, WiFiU [30] presents a user identification system that
captures the unique gait patterns of different people with commodity WiFi devices. However, these
approaches only apply to a small group of people (i.e., 2 to 7) and are limited to walking people.
They either require the users to walk through well-designed paths (e.g., clear Line of Sight (LoS)
path between the WiFi devices) or have the WiFi transceivers placed close to each other, which
is not practical in many real-world scenarios. Different from existing approaches, our device-free
system could capture distinctive WiFi characteristics exhibited in both walking and stationary daily
activities (e.g., using a dryer, watching TV, or fetching a document) by using IoT devices.

In order to exploit human daily activities for user authentication, our device-free system should
be able to recognize different types of daily activities and also differentiate each individual user
if the same type of activity is performed. Thus, it is essential to derive representative wireless
measurements to well capture the physiological (e.g., body shape, height, and weight) and behavioral
characteristics (e.g., walking patterns, preferences when operating appliances) of each individual.
In addition, recognizing activities and identifying users require different granularity of abstractions
from physiological and behavioral features. In general, activity recognition requires less feature
granularity than human identification because coarse data representations are sufficient to recognize
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different types of activities with reasonable accuracy. Therefore, the designed system needs to have
the capability to extract different levels of feature representations to perform activity recognition
and further conduct human identification. Moreover, in many shared spaces (e.g., corporate offices,
apartment living rooms), the wireless measurements to capture unique human characteristics may
be distorted by the movements of surrounding people. Thus, the system should be able to suppress
the impacts of such interferences and robustly authenticate the user.

Toward this end, we propose to extract the representative features based on both amplitude and
relative phase of Channel State Information (CSI) measurements in WiFi signals, which have the
potential to reveal unique characteristics of different users. In addition, a three-layer deep neural
network (DNN) model is developed to learn high-level abstractions of human physiological and
behavioral characteristics for both activity recognition and human identification, which meets
the hierarchical nature of our user authentication system involving different granularity levels
of activity/human identification. In particular, the DNN scheme detects the activity type (i.e.,
stationary or walking) in the first layer and obtains the activity details (e.g., walking paths, opening
a refrigerator) in the second layer. In the third layer, the model can learn the highest level non-linear
abstractions from the representative features obtained from human activities and authenticate
the user accordingly. In our prior work [25], we introduce an AutoEncoder-based DNN model
that could authenticate users with high accuracy under stable environments. Considering the
interferences of surrounding people in many realistic scenarios (e.g., corporate office), this paper
also explores the spatial diversity brought by multiple WiFi antennas to capture wireless signals
transmitted via different propagation paths. Based on the high-dimensional features extracted from
multiple antennas, we develop an architecture relying on convolutional neural networks (CNNs)
to derive more reliable feature abstractions. Furthermore, to enhance the system extensibility, we
develop a transfer learning-based mechanism to adapt the DNNmodel to new enrollments (e.g., new
staff members of a company) or new environments (e.g., new apartments or offices). Additionally,
we also build one spoofing detection scheme based on support vector machine (SVM) and study
its effectiveness under various spoofing attacks that could be harmful to the proposed system.
Extensive experiments involving 11 subjects are conducted in both lab and apartment environments
for testing accessing restricted areas and operating risky appliances. The results demonstrate that
our device-free system can perform accurate user authentication through human daily activities,
and is thus capable to facilitate many emerging applications (e.g., smart homes/offices and smart
healthcare) in both corporation offices and residence areas. The main contributions of our work
are summarized as follows:

• Our study shows that the existing WiFi signals generated by indoor IoT devices can be
utilized to capture unique human physiological and behavioral characteristics and thereby
authenticate users from their daily activities (i.e., both walking and stationary activities).

• Our proposed device-free system leverages a single pair of WiFi-enabled devices to extract
both amplitude and relative phase from fine-grained channel state information (CSI) to
facilitate accurate user authentication without the active participation of the users.

• We develop a deep learning based model to capture distinct WiFi fingerprints of different
users and identify each individual user. Our system is resilient to various spoofing attacks by
integrating with the SVM technique.

• To mitigate the interferences from surrounding people, we propose to extract features from
multiple antennas and design a CNN-based architecture to derive more reliable feature
abstractions for user authentication.

• We design a transfer learning based mechanism to reduce training efforts when updating an
existing DNN model for new user enrollments or new environments.
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• Extensive experiments are conducted in two environments over a eight-month period, and
our system can achieve over 94% and 91% authentication accuracy through walking and
stationary activities, respectively.

2 RELATEDWORK
Traditional approaches mainly rely on the secure texts or graphical patterns [4, 18, 29] to authenti-
cate users. These approaches require the user to remember long and tedious password, and thus
they incur inconvenience for users, elder people with age-related memory loss. Furthermore, simply
replying on the knowledge of text secrets makes these approaches vulnerable to various attacks
such as password theft, shoulder surfing and smudge attacks [1]. Other research studies resort to
physiological biometrics such as fingerprints, iris, and facial information [5, 14, 17] to perform user
authentication. These approaches, however, require the installation of dedicated equipment (e.g.,
fingerprint scanner or iris camera) before deployment.

To overcome the aforementioned weaknesses, some studies explore human behavioral biometrics
to perform continuous user authentication. For example, Revett [23] demonstrates the effectiveness
of using keystroke dynamics (i.e., key-press duration) as biometrics for user identification. In
another instance, Zheng et al. [37] present an mouse movement-based authentication system by
exploring angle preferences when a user operates a mouse. However, these approaches require
user’s active participation and can only work when the user operates the keyboard or mouse.
Furthermore, Ren et al. [22] utilize the accelerometer embedded in mobile devices to capture unique
gait patterns for user identification. Ranja et al. propose to recognize the unique hallmarks [21]
through wearable sensors readings when the users are operating home appliances. These schemes
require users to carry additional devices which may cause inconvenience for users.

Recent years havewitnessed great efforts on exploringWiFi signals for various sensing tasks, such
as activity recognition [32], walking direction estimation [33] and even vital sign monitoring [16].
Furthermore, researchers demonstrate the possibility of utilizing wireless signals to perform user
authentication. Existing studies [11, 15, 30, 35, 36] propose to capture human walking gait pattern
and identify users in a small group by examining the CSI measurements. Specifically, Zhang et
al. [36] extract a set of 10 features from CSI variations caused by human walking and uniquely
identify each individual. Wang et al. [30] correlate movement speed of different body parts with
WiFi spectrogram and perform gait pattern based user authentication. WiAU [15] proposes an
ResNet-based user authentication scheme that could derive unique and robust representations for
the walking gaits of legitimate users. These approaches are limited to walking people and they
require either the users to walk through well-designed paths (e.g., clear Line of Sight (LoS) path
between the WiFi devices) or have the WiFi transceivers placed close to each other, which are not
impractical in many scenarios. Moreover, FingerPass [11] proposes a continuous user authentication
scheme which leverages CSI in WiFi signals to capture unique behavioral biometrics from finger
gestures. Different from previous work, our system examines the WiFi signals and extracts unique
physiological and behavioral characteristics inherited from people’s daily activities including
both walking activities (e.g., waking between rooms) and stationary activities (e.g., operating
appliances) to differentiate each individual person. We exploit the unique individual characteristics
from both amplitude and relative phase of CSI during people’s daily activities. A deep learning
based model is developed to learn deep representations and perform both activity recognition and
user authentication, which is capable to facilitate many applications in both corporation offices
and residential areas. With the proposed CNN-based architecture and the transfer learning-based
mechanism, our system could be extended to new users/environments with reduced training efforts.

, Vol. 1, No. 1, Article . Publication date: April 2021.



Wifi-enabled User Authentication through Deep Learning in Daily Activities 5

One Transmitting 
AntennaTwo Receiving Antennas

Fig. 1. Relative phase produced by one transmitting antenna and two receiving antennas.

3 PRELIMINARIES
The prevalence of WiFi signals emitted from a multitude of smart devices and appliances (laptop,
smart refrigerator, and smart microwave oven), can be exploited to capture wireless channel
distortions introduced by users’ daily activities. Such distortions can reflect unique physiological
(e.g., body shape, height) and behavioral characteristics (e.g., body moving) of different users, even
when people are performing the same type of activity. We are thus motivated to utilize channel
state information (CSI), which is readily available in WiFi-enabled IoT devices, to capture such
channel distortions and perform device-free user authentication.

Channel state information. The fine-grained CSI describes how an OFDM signal propagates
over multiple subcarriers between a pair of transmitter and receiver. It presents the combined
effect of scattering, fading, and multi-path, which result in distortions on the amplitude, phase
and angle of arrival of the signal. Comparing to the distortions caused by nearby wireless devices
(e.g., access points, smartphones), human body movements have more significant impacts on the
CSI measurements, and thus they could be effectively captured even under the presence of the
WiFi interferences. Without loss of generality, the CSI of the i-th subcarrier between antenna𝑚
and antenna 𝑛 can be defined as: 𝐻𝑚↔𝑛

𝑖 = |𝐻𝑚↔𝑛
𝑖 |𝑒 𝑗∠𝐻𝑚↔𝑛

𝑖 , where |𝐻𝑚↔𝑛
𝑖 | and ∠𝐻𝑚↔𝑛

𝑖 denote the
amplitude and phase of CSI, respectively. Previous studies have shown their success in utilizing
CSI amplitude to identify users based on large scale body movements such as walking [30–32, 35].
In this work, besides CSI amplitude, we propose to utilize relative phase to capture more subtle
channel variations caused by small scale body movements along with users’ unique physiological
and behavioral characteristics. As the example depicted in Figure 1, the difference on signal path
lengths, Δ𝑑 , between two antennas (i.e., 𝑛1 and 𝑛2) varies as body moving and thereby results in
relative phase shift (e.g.,𝑚 ↔ 𝑛1 and𝑚 ↔ 𝑛2). The relative channel response at the 𝑖𝑡ℎ subcarrier
can be formulated as:

𝐻𝑖 = 𝐻
𝑚↔𝑛1
𝑖

(𝐻𝑚↔𝑛2
𝑖

)∗ = |𝐻𝑖 |𝑒 𝑗∠𝐻𝑖 , (1)
where ∗ denotes the complex conjugate, ∠𝐻𝑖 = − 2𝜋

𝜆
Δ𝑑 [12] is the relative phase value and 𝜆 is the

signal wavelength. Given that 𝑐𝑚-scale 𝜆, relative phase is capable of capturing subtle movements.
Relative phase can also eliminate the impact of unpredictable offset on the absolute phase that is
always hidden in the hardware control mechanism.

Physiological and behavioral biometrics. Next, we present theoretical analysis on exploiting
CSI to capture human physiological and behavioral characteristics embedded in daily activities.
CSI describes radio channel characteristics of WiFi signals traveling through both the LOS and
NLOS paths between a pair of transmitting and receiving antennas. Assuming there are 𝑁 signal
propagation paths, the complex representation of CSI can be formulated as [27, 34]:

𝐻𝑚↔𝑛 =

𝑁∑︁
𝑘=1

𝑎(𝑘)𝑒−𝑗2𝜋 𝑓 𝜏𝑘 , (2)

where 𝑎(𝑘) denotes the real-value attenuation, and 𝜏𝑘 is the phase shift introduced by the propaga-
tion delay of the 𝑘𝑡ℎ path. When a user presents or conducts activities in the area of interest, the
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Fig. 2. Unique radio signal attenuation alterations and path length changes caused by human activities.

WiFi signal propagation will be affected accordingly, leading to the variations in both amplitude
and relative phase of CSI measurements. Please note that the movements of surrounding people
may disturb the CSI measurements from an individual user. To mitigate such interferences, we
propose a multiple WiFi antenna-based technique in section 6. We assume that the surrounding
people usually keep a proper distance with the target user, so the WiFi signals propagating along
some of the paths could capture the user’s activity while remaining unaffected by the surrounding
people.

People’s physiological characteristics, such as body shape, height, and weight, would have unique
impacts on signal propagation in terms of absorption and diffraction. Each propagation path would
be uniquely affected by user physiological characteristics (e.g., weight, tissues, fat, and muscle),
and the summation of the attenuations (i.e.,

∑𝑁
𝑘=1 𝑎(𝑘)𝑒−𝑗2𝜋 𝑓 𝜏𝑘 ) will create unique patterns, such as

decreased amplitude due to a high signal absorption rate. In addition, the distortions in relative
phase could be affected by the unique density of human body. For example, human body with high
density could result in low penetration rate, which leads to long propagation path and large relative
phase shifts. Due to the cm-scale wavelength for WiFi signals (e.g., in 2.4𝐺𝐻𝑧), the relative phase
could measure subtle propagation path changes of the signals diffracted by human body, making it
capable to capture unique physiological characteristics.

Human behaviors, such as walking gait, gesture preferences, consist of a series of unique move-
ments that would produce time-series of CSI amplitude/relative phase changes. According to
Equation 2, time-series changes of CSI amplitude between 𝑡 and 𝑡 + Δ𝑡 can be represented as:

|Δ𝐻𝑚↔𝑛 | = |𝐻𝑚↔𝑛 (𝑡) | − |𝐻𝑚↔𝑛 (𝑡 + Δ𝑡) |. (3)
The variation in the signal attenuation, |Δ𝐻𝑚↔𝑛 |, could quantize the changes of WiFi signals
reflected from human body, capturing behavioral characteristics such as walking dynamics (e.g.,
speed, acceleration) and gesture preferences (e.g., using left or right hand) of a user. Furthermore, as
shown in Figure 2, the paths to the two receiving antennas could also be altered by the movements
of different body parts (e.g., leg, chunk). Such path length changes between 𝑡 and 𝑡 + Δ𝑡 could be
formulated as:

Δ∠𝐻𝑚↔𝑛1,𝑛2 = ∠𝐻𝑚↔𝑛1,𝑛2 (𝑡) − ∠𝐻𝑚↔𝑛1,𝑛2 (𝑡 + Δ𝑡). (4)
The relative phase variation, Δ∠𝐻𝑚↔𝑛1,𝑛2 , could also capture unique movement patterns in terms
of time-series changes in signal propagation path.

Figure 3 shows the extracted CSI amplitude and relative phase of a subcarrier over a 802.11𝑛WiFi
link over time when two users are walking along the same trajectory (3 rounds each) and opening
a cabinet (3 rounds each), respectively in an office. We observe that both CSI amplitude and relative
phase exhibit different variation trends between these two users, which confirms CSI is able to
capture the unique physiological and behavioral characteristics of users. Additionally, for stationary
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Fig. 3. CSI amplitude and relative phase of two users when walking or opening a cabinet.

activities (e.g., opening a cabinet), the difference on relative phase is more significant than that on
amplitude, so it indicates the high sensitivity of the relative phase on capturing small-scale body
movements.

4 SYSTEM DESIGN
4.1 Challenges
Uniqueness of Individual Characteristics. The distortions of WiFi CSI could reflect people’s
minute body movements. Additionally, as demonstrated in Section 3, the amplitude and relative
phase in WiFi CSI could be affected by users’ physiological (e.g., shape and height) and behavioral
characteristics (e.g., walking gait, gesture preferences). The system needs to extract effective features
from WiFi CSI of daily activities to quantize such unique characteristics of each individual user.
System Robustness & Generality. The collected CSI measurements from real-world envi-

ronments are usually noisy due to the continuous environmental changes, radio interference, etc.
Besides, the movements of surrounding people could also distort WiFi CSI, introducing variations in
the derived users’ characteristics. Therefore, the system should be robust to capture distinguishable
characteristics among users from noisy channel measurements while mitigating the impacts of
surrounding people.
Recognizing Activity & Identity Simultaneously. Recognizing activity and user identity

simultaneously is very important in many smart home/office enabled applications. For instance,
the system can prohibit a specific user (e.g., child) to watch TV at a specific time period. However,
recognizing activities and identifying users require different granularity of features extracted from
their activities.
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Fig. 4. System Overview.

4.2 Attack Model
We study the following possible attacks that might be harmful to the proposed authentication
system.
• Naive Attack: The attacker does not have prior knowledge about the activities the legitimate
users performed. In order to pass authentication, the adversary attempts to conduct random
activities to create similar impacts on the WiFi signals as the legitimate user.

• Content-aware Attack: The attacker knows about which types of the activities used for user
authentication, but has not observed how the legitimate user performs them. The adversary tries
to pass the authentication through performing the same activities as the legitimate user.

• Knowledgeable Observer Attack: The attacker is capable of observing the activities performed
by the legitimate user whom the proposed system is authenticating via shoulder surfing or
videotaping. The adversary tries to perform the same activity and imitate the legitimate user’s
behaviors to pass the authentication.

4.3 System Overview
The basic idea of our system is to capture the unique physiological and behavioral characteristics
inherited from human daily activities for user authentication leveraging WiFi signals. The users
have habitual patterns on their behaviors, so the daily activities usually present high consistency
for each individual [26]. As illustrated in Figure 4, our system takes as input CSI measurements
from WiFi links between WiFi-enabled IoT devices (e.g., smart appliances), and then extracts both
CSI amplitude and relative phase for each OFDM subcarrier for signal pre-processing. Unlike
previous studies [30, 35, 36] which only utilize CSI amplitude, we explore relative phase along
with CSI amplitude to capture representative characteristics through both large-scale walking
activities and small-scale stationary activities. Given the amplitude and relative phase information, a
band-pass filter is first deployed to eliminate the environmental interferences (e.g., reflected signals
from furniture and walls) and ambient noises. We also propose a subcarrier selection algorithm
to pick out the subcarriers with stable CSI measurements, which could represent reliable activity
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characteristics. Before performing features extraction, we examine the moving variance and related
short time energy (STE) of the pre-processed data to determine the CSI segments, which capture
the location changes for walking activities and body movement for stationary activities.
Next we will present the core components of our system, Physiological and Behavioral Feature

Extraction and Deep Learning Based User Authentication. We perform activity recognition and user
authentication based on the physiological and behavioral features extracted from CSI measurements,
which characterize both human activity/identity uniqueness. The system extracts 6 time domain and
3 frequency domain features to capture both the physiological and behavioral characteristics of users
such as height, shape and behavioral preference. Specifically, the time domain features, including
maximum, minimum, mean, skewness, kurtosis and standard deviation, aiming to represent the
extent of human movements and contour of human body, while the frequency domain features,
including spectrogram energy, percentile frequency component, and spectrogram energy difference,
are used to depict the fine-grained behavioral characteristics such as moving speed of torso and leg.
All the above CSI-based features together provide a comprehensive and detailed representation for
walking/stationary activities.

Finally, our system performs activity recognition and human authentication by building a three-
layer deep neural network (DNN) model based on both AutoEncoder [6] and convolutional neural
network (CNN) architectures. To mitigate the interferences from surrounding people, we propose
to explore the spatial diversity benefit from MIMO technology and design a CNN-based model
to achieve more reliable authentication. Unlike previous authentication schemes based on high
dimension feature sets and linear classification models (e.g., SVM), our DNNmodel learns non-linear
biometric abstractions which are computation efficient and are robust to small-scale input variations
(e.g., the variations of features caused by the wearing changes of users). Particularly, we obtain
the biometric abstractions with respect to single activity and authenticate the user based on the
corresponding CSI activity segment. Figure 4 illustrates the functionality of each layer in our deep
learning architecture for people authentication. In particular, the first level coarsely distinguishes
the activity types (i.e., walking or stationary activity); the second layer exploits deep representations
of the first layer and obtains the activity details such as walking trajectories and detailed stationary
activity types (e.g., turning on a light); and the third level obtains even deeper representation of the
features and finally completes user authentication process. To reduce the profiling efforts, we design
a transfer learning-based mechanism to adapt the DNN model to new users and environments
by retraining the model with a reduced profile size. Additionally, our system is resilient to user
spoofing, who either does not exist in legitimate user profiles or tries to mimic a legitimate user’s
activity, by using a SVM-based model with the generated DNN abstractions.

5 ACTIVITY SEGMENTATION AND FEATURE EXTRACTION
In this section, we first present how to perform data segmentation on the CSI measurements that
reflect people’s daily activities, and then we proceed to extract effective features that capture unique
physiological and behavioral characteristics of people from WiFi signals.

5.1 Activity Detection and Segmentation
To ensure the reliability of the features extracted from the CSI measurements, data calibration
and subcarrier selection techniques are developed to mitigate the ambient noises and select the
subcarriers with stable CSI measurements, respectively. The details are presented in Section 7.
Both walking and stationary activities lead to the variations in wireless channel, resulting in

changing CSI measurements. So we apply the short time energy (STE) upon CSI amplitude’s moving
variance to detect human activities, and then perform corresponding data segmentation. Moreover,
stationary activities (e.g., opening a cabinet) usually involve relative smaller scale body movements
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Fig. 5. Illustration of activity detection and segmentation using CSI moving variance and short time energy.

than walking activities, which makes them even harder to be detected. We thus propose to examine
STE which is more sensitive to subtle body movements because it is a summation of squared signals
within a sliding window. We calculate STE within a sliding window as follows:

𝑆𝑇𝐸 (𝑡) =
𝑁∑︁
𝑛=1

(
𝐾∑︁
𝑘=1

𝑣𝑘 (𝑡 + 𝑛))2, (5)

where 𝑁 is the length of the sliding window, 𝑣𝑘 (𝑡) is the moving variance of CSI amplitude at the
𝑘𝑡ℎ subcarrier.

Figure 5 (a) shows both CSI’s moving variance and STE for two rounds of the same stationary
activity (i.e., opening a cabinet). When the activity occurs, we can observe that STE exhibits a
greater magnitude, showing its potential at activity detection. Furthermore, we also found the
peaks of the fluctuating part in STE always locate around the center of the activity duration. We
are thus inspired to utilize a dynamic threshold, which can be applied to all types of activities, to
perform activity detection and corresponding data segmentation. Specifically, a weight 𝑤 = 0.1
derived from our empirical study is deployed for the dynamic threshold calculation: 𝜏 = 𝑤 ∗ 𝐸,
where 𝐸 is the maximum value of STE for an individual activity. We then search for the starting
and ending points, 𝑡𝑠 and 𝑡𝑒 , of this activity by solving the following objective problem:

argmin
𝑡𝑠 ,𝑡𝑒

𝑡𝑠 + 𝑡𝑒 − 2𝑡𝑚

𝑠 .𝑡 ., 𝑆𝑇𝐸 (𝑡𝑠 ), 𝑆𝑇𝐸 (𝑡𝑒 ) < 𝜏, 𝑆𝑇𝐸 (𝑡𝑚) > 𝜏,
𝑡𝑠 < 𝑡𝑚 < 𝑡𝑒

(6)

where 𝑡𝑚 is an arbitrary time index in the middle of activity duration. Figure 5 (b) (c) show the
segmented time series of CSI amplitude and relative phase of the 1𝑠𝑡 subcarrier during two rounds of
the stationary activity. The results demonstrate the efficiency of our activity detection/segmentation
algorithm.

5.2 Physiological and Behavioral Feature Extraction
To capture the unique physiological and behavioral characteristics inherited from users’ daily
activities, it is essential to extract effective and reliable features from the CSI measurements. In
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Fig. 6. Time domain features of CSI amplitude over 20 chunks of one activity at the 1𝑠𝑡 subcarrier.

particular, both time and frequency domain features based on CSI amplitude and relative phase
information are examined to discriminate different users.

Time Domain Feature Extraction. In our system, 6 time domain features with respect to CSI
amplitude and relative phase, includingmaximum, minimum, mean, skewness, kurtosis and standard
deviation, will be extracted to characterize both human activity and identity uniqueness. In order
to preserve temporal patterns of the user activity and provide finer feature granularity, we first
partition the CSI segment into 𝑙 chunks of equal length, and then extract the 6 time domain features
from each chunk. We empirically set 𝑙 as 20, which provides 120 feature points from each subcarrier.
Figure 6 and 7 present the extracted time domain features for the same stationary activity (i.e.,
opening a cabinet) performed by two users based on amplitude and relative phase, respectively.
We can find that these features are significantly different between two users. It encourages us to
leverage these time domain features to capture human unique characteristics inherited from their
daily activities.

FrequencyDomain Feature Extraction.As indicated in previous work [31], CSI measurements
in the frequency domain are able to reveal the speeds of WiFi path length changes caused by human
movements. Therefore, besides the time domain features, we also extract the representative features
in frequency domain to capture the users’ behavioral characteristics (e.g., walking gait, gesture
preference). Given a CSI segment, we first adopt short-time Fourier transform (STFT) to obtain
the two-dimensional spectrogram for the CSI amplitude and relative phase of each subcarrier.
More specifically, we calculate 1000 points FFT within a 100𝑚𝑠 sliding window, shifting 50𝑚𝑠
each time. We then use bicubic interpolation [10] to resize the spectrogram into a matrix 𝑀(𝑖, 𝑗)
(i.e., 10-by-10 matrix) of fixed size, which maintains spectrogram in a consistent feature space
for different activities. Next, three frequency domain features on the top of 𝑀(𝑖, 𝑗) are extracted:
1) Spectrogram magnitude: each element in the matrix 𝑀(𝑖, 𝑗) . 2) Percentile frequency components

(PFC): 𝑃𝐹𝐶 (𝑖, 𝑛) =
∑𝑛

𝑗=1𝑀(𝑖,𝑗 )∑10
𝑗=1𝑀(𝑖,𝑗 )

, where 𝑛 = 1 . . . 10, subjected to 𝑃𝐹𝐶 (𝑖, 𝑛) ≧ 0.5 and 𝑃𝐹𝐶 (𝑖, 𝑛) ≧ 0.95,
indicating the moving speed of torso and leg [30]. 3) Spectrogram difference between time windows:
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Fig. 7. Time domain features of CSI relative phase over 20 chunks of one activity at the 1𝑠𝑡 subcarrier.

the element-wise differences between two consecutive rows in𝑀(𝑖, 𝑗) , which capture the acceleration
or deceleration process of body movement. In total, we extract 210 frequency domain features from
the CSI segment with respect to one specific activity.

6 DEEP LEARNING BASED HUMAN AUTHENTICATION
In this section, we present the proposed deep learning based approach for both activity recognition
and user authentication. To perform activity recognition and further user authentication, we propose
to develop a deep neural network (DNN) to extract high-level abstractions from the extracted CSI
features. As illustrated in Figure 8, a three-layer deep neural network [28] model is proposed. Given
a set of CSI features 𝐶𝑚 from a link𝑚, we define ℎ𝑖 (𝑖=1, 2, 3) as the activation functions to encode
the input, which can be either CSI features or modeled abstractions (i.e., 𝑍1 or 𝑍2) of the previous
layer, into a set of compressed representations, which is then fed into classification functions (e.g.,
SVM [3] or softmax function [2]) in each layer. Specifically, the proposed DNN network extracts
abstractions for activity type recognition (i.e., stationary or walking) in the first layer and obtains
the detailed abstractions for a specific activity (i.e., the specific type of activity) in the second layer.
We denote 𝑍1 and 𝑍2 as the outputs (i.e., high-level, complex abstractions as data representations)
from the first two layers, respectively. The third layer learns the highest level abstractions to
facilitate user authentication process. Particularly, we consider the scenarios where either single or
multi-antenna pairs are presented and propose two deep learning architectures based on stacked
autoencoders and convolutional neural networks. The details of abstraction extraction grounded
on stacked autoencoders are presented inour previous work [25].

6.1 Multi-antenna Abstraction Extraction grounded on Convolutional Neural Network
In many shared spaces (e.g., corporate offices, apartment living rooms), the CSI measurements to

capture a user’s physiological/behavioral characteristics are easily distorted by the movements of
surrounding people. We assume that the surrounding people keep a proper distance with the target
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Fig. 8. Deep learning architecture for user authentication.

user, so that propagation paths could capture the user’s activity while remaining unaffected by the
surrounding people. To effectively capture such propagation paths, we explore the spatial diversity
benefit from MIMO technology and propose a convolutional neural network (CNN)-based model
to achieve more reliable user authentication.

Given the high-dimensional features extracted from multiple wireless antennas, the autoencoder
architecture proposed in our previous work is not effective. This is because its fully connected
network structure requires a huge number of neurons for processing a large set of features. Addi-
tionally, such architecture does not take into account the spatial diversity of the feature set from
multiple antennas, treating the input features of different antenna pairs as those of single antenna
pair. Therefore, we exploit CNN [13], a more effective deep learning framework, for multi-antenna
abstraction extraction.
The proposed CNN model could constructively integrate features from multiple antennas and

extract feature abstractions that are more robust under the impacts of surrounding people. It first
packs the feature vectors from all𝑀 available antenna pairs into a matrix𝐶 = {𝐶1; ...;𝐶𝑀 }. Then, the
CNN model processes the data matrix leveraging three stacked hidden layers and extract different
levels of abstractions for activity type recognition, activity recognition, and user authentication,
respectively. Each neuron applies convolution operation (i.e., cross-correlation) to a subset of
features/abstractions, instead of the whole feature/abstraction set. In this way, the CNN model is
capable to process a large feature set with fewer neurons while extracting effective multi-antenna
feature abstractions.

Each hidden layer of the CNN consists of three components, a 2D convolutional layer, a rectified
linear unit (ReLU), and a pooling layer. The 2D convolution layer contains a group of 𝐾 neurons,
where each neuron acts as a filter that iteratively computes dot products between a learnable
coefficient matrix𝑊 𝑘 with height ℎ and width 𝑤 , and subsets of inputs. Specifically, the input
subsets are obtained by applying a 2D sliding window on the layer input. The sliding window has
a step size of 2 and same height and width as𝑊 𝑘 . By setting ℎ as the input height (e.g., number
of antennas, 𝑀), the sliding window could include a subset of features/abstractions covering all
available antenna pairs. Thus, the derived abstractions are capable to represent all the physiological
and behavioral characteristics of users captured by different antenna pairs. We empirically set the
width of𝑤 as 3. Then a ReLu layer is attached to the convolutional layer to introduce nonlinearity
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Fig. 9. Correcting relative phase to eliminate phase offset via unwrapping.

by replacing negative neuron outputs with 0. A max-pooling layer is added to reduce the size of
abstraction vector in each hidden layer. The hidden layers are trained with stochastic gradient
descent with momentum (SGDM) optimizer [24] with a learning rate of 0.01. The structure of CNN
could facilitate abstraction extraction given high-dimensional inputs.
6.2 Activity Recognition and User Identification
Given three hidden layers with either autoencoder or CNN architecture, we stack the hidden layers
and a softmax layer to construct a hierarchical model for activity recognition and user authentication.
Previous work [28] found that higher level feature abstractions are more robust to small-scale
input variations, which meets the hierarchical requirements of our system. Additionally, the three
layer DNN itself can only derive compressed representations of physiological and behavioral
characteristics, so we still need a softmax function [2] in each layer to complete the activity
recognition and user authentication process in a hierarchical order. Specifically, we define the
softmax function as follows:

𝑃 (𝐿𝑘 |𝑍 ) =
𝑃 (𝑍 |𝐿𝑘 )𝑃 (𝐿𝑘 )∑𝐾
𝑗=1 𝑃 (𝑍 |𝐿 𝑗 )𝑃 (𝐿 𝑗 )

, (7)

where 𝑃 (𝐿𝑘 |𝑍 ) denotes the posterior probability of class label 𝐿𝑘 given an abstraction 𝑍 . And 𝑃 (𝐿𝑘 )
represents the prior of the same class. We use 𝑃 (𝑍 |𝐿𝑘 ) to denote likelihood of the abstraction 𝑍
given label 𝐿𝑘 . In addition, the equation is constrained by 0 < 𝑃 (𝐿𝑘 |𝑍 ) ≤ 1 and

∑𝐾
𝑘=1 𝑃 (𝐿𝑘 |𝑍 ) = 1.

The outputs of each softmax function characterize the probability distribution over 𝐾 profiled
classes (e.g., activity/identity), and the abstraction 𝑍 will be classified as class 𝑘 , which satisfies
𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈𝐾𝑃 (𝐿𝑘 |𝑍 ).

Our system constructs a CNN model consisting of three softmax layers for activity separation,
activity recognition, and user authentication, respectively. During the user enrollment phase, we
collect activity data from each legitimate user as the training data (i.e., user profile) for model
construction. The training data are segmented and processed as discussed in Section 5. To reduce
the profiling efforts, we find a minimal profile size (i.e., the number of activity segments) for each
individual user each activity. Our strategy is to examine the user identification accuracy during
data collection. In particular, our system retrains the CNN model after collecting every activity
segment from the user and classifies the identity. The data collection process would stop when the
user identification accuracy meets a predefined threshold (e.g., 90%). The system will profile other
activities of the user in the same manner. By using this strategy, our system can find a minimal
profile size for each user. We will discuss the activity recognition/user authentication accuracies
against the data size for determining the threshold in Section 8.5.
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6.3 Transfer Learning
After model construction, the CNN model may still need to update due to many practical factors,
such as new enrollments and environment changes. To reduce the training efforts when updating
the CNN model, we introduce a supervised transfer learning-based approach, which could adapt
the previously trained CNN model based on existing data for new users or new environments.
Please note that we only apply transfer learning to the proposed CNN architecture. We exploit
inductive transfer learning [19], where the settings of the CNN model (i.e., the number of layers
and neurons) are the same as the original one, while the number of categories (i.e., users/activities)
is increased with new enrollments. The parameters of the new CNN model is initialized with the
CNN trained with existing data. Next, we attach a softmax layer with extended categories to the
new CNN model for classifying a larger group of users, including new users. To accommodate new
users/activities in our system, the model and the softmax layer parameters, 𝜃𝑛 , will be fine-tuned
as following:

𝑌𝑛 ≡ 𝐶𝑁𝑁 (𝑋𝑛, 𝜃𝑠 , 𝜃𝑛), (8)

where 𝑋𝑛 and 𝑌𝑛 denote the training data and ground truth of new enrollments. The CNN model
is trained with SGDM optimizer at a learning rate of 0.001, which is 10 times smaller than the
learning rate of original CNN model [7]. In this manner, the new CNN model would require less
training samples from new users. Our evaluation in Section 8.6 show that the transfer learning
technique could reduce around 6 training samples from each new individual user.

Besides adapting the deep learning model to new users and environments, our transfer learning
technique can also accommodate the users’ biometric variations associated with age changes, which
result in different weight, height, and behaviors. Our system can retrain the CNN model with
only a few new activity segments of an enrolled user, which adapts the model to identify the user
with changed biometrics. For adolescents with rapid growth in height and varying behaviors, we
will keep updating their profiles by storing activity segments during authentication and retrain
the model. Compared to new user enrollment and environment changes, updating the biometric
profile of an enrolled user would be less challenging since the user’s physiological and behavioral
characteristics are partially shared in the trained model.

6.4 SVM based Spoofer Detection
Besides three-layer DNN, we also adopt a SVMmodel [3] to determine whether the activity the user
performed matches one of the legitimate user profiles. Particularly, we propose to utilize one-class
support vector machine with Gaussian kernel for detecting the user spoofing, who either does not
exist in legitimate user profiles or tries to mimic a legitimate user’s activity. We first construct an
one-class SVM model for each of the legitimate users based on the high-level abstractions from the
DNN model. We then derive a class score 𝑆𝑢 , which compares the similarity between the feature
abstractions of each testing sample and that of the user 𝑢:

𝑆𝑢 (𝑍 ) =
𝑁𝑢∑︁
𝑖

𝑘 (𝑍𝑢,𝑖 , 𝑍 ) + 𝑏𝑢, (9)

where 𝑍 is a sample abstraction, 𝑍𝑢,𝑖 is the 𝑖th support vector of the user 𝑢, 𝑘 () represents the
Gaussian kernel function, and 𝑏𝑢 is the function bias. Greater value of the class score 𝑆𝑢 represents
that the testing sample has the less distance to the support vectors of user 𝑢. An empirically set
threshold 𝜂 thus is used to detect possible spoofers. The testing sample would be determined as
spoofer/attacker if the derived class scores (i.e., 𝑆𝑢 ) are less than 𝜂 from all the legitimate user
profiles. The steps to construct an SVM model for spoofer detection is similar to the process for
training activity recognition and user identification models as discussed in Section 6.2.
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(a) Before data calibration (b) After data calibration

Fig. 10. CSI amplitude spectrogram of at the 1𝑠𝑡 subcarrier before and after data calibration.

7 DATA CALIBRATION & SUBCARRIER SELECTION
In this section, we introduce how to ensure the reliability of the extracted CSI amplitude and
relative phase from the noisy wireless measurements.

7.1 Data Calibration
To ensure reliable feature extraction, we preprocess the raw CSI measurements with phase unwrap-
ping and a band-pass filtering techniques, which are effective on eliminating the environmental
interferences and ambient noises. Specifically, we first eliminate the relative phase error caused
by the phase offset on each subcarrier. As shown in Figure 9 (a), the raw relative phase at three
subcarriers (i.e., subcarrier 4, 5 and 6) have obvious discontinuities between consecutive packets
when the relative phase value is close to ±𝜋 . To eliminate such discontinuities, a ±2𝜋 is added to
the relative phase of the later packet if the absolute phase difference of two consecutive packets is
greater than or equal to 𝜋 . Figure 9 (b) shows the corresponding relative phase streams after phase
calibration.
Besides the phase offset, the amplitude and relative phase in CSI measurements are also easily

affected by the low frequency interference (i.e., caused by signals reflected from static objects) and
high frequency noise. In order to eliminate the above impacts while preserving the user physiological
and behavioral characteristics in CSI measurements, a bandpass Butterworth filter [20] is adopted.
Previous work [31] found that the frequency range of most human activities including running
in a fast speed exhibit CSI frequency components less than 300𝐻𝑧. We thus adopt a relative
low frequency band-pass Butterworth filter (i.e., with passing band 5𝐻𝑧-100𝐻𝑧) to effectively
remove both low and high frequency components from the spectrum. Given the example scenario
where a person walks in a room between 2 and 7 sec, Figure 10 (a) shows the spectrogram of the
corresponding time series of CSI amplitude at a subcarrier (i.e., subcarrier 1). We can observe that
the spectrogram exhibits extremely high energy level in the low frequency band (i.e., < 10𝐻𝑧)
even the person remains static. As the spectrogram after band pass filtering shown in Figure 10 (b),
we can observe that the CSI amplitude pattern caused by human walking is still preserved while
irrelevant frequency components are removed.

7.2 Subcarrier Selection
Our preliminary study finds that the CSI measurements of several subcarriers are more sensitive to
ambient noise. To ensure the reliability of CSI measurements for later processing, we propose a new
subcarrier selection method to determine the noise-resilient subcarriers from the CSI measurements.
The CSI measurements at neighboring subcarriers are usually highly correlated, however such
correlation could be destroyed by heavy noises on some of the subcarriers. To eliminate the negative
effects caused by the unstable subcarriers, a covariance based scoring function is defined to assess
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Fig. 11. Detecting noisy subcarriers by using a covariance based scoring function: Subcarrier 7, which has the
lowest score, is not a stable subcarrier that can be used in the system.

each subcarrier’s correlation level with its neighboring subcarriers as follows:

𝑠𝑐𝑜𝑟𝑒 (𝑖) =
𝑁∑︁
𝑛=1

𝑖+ 𝑘
2∑︁

𝑗=𝑖− 𝑘
2

𝑐𝑜𝑣𝑖, 𝑗 (𝑡) − |𝑐𝑜𝑣𝑖, 𝑗 (𝑡) |
2 , (10)

where 𝑁 is the number of non-overlapped 1𝑠 length time windows being divided in the short
phase, 𝑘 is the number of its close-by subcarriers being compared, and 𝑐𝑜𝑣𝑖, 𝑗 denotes the covariance
value between the CSI relative phase at the 𝑖𝑡ℎ and 𝑗𝑡ℎ subcarriers. Figure 11 presents an example
showing the scores of 4 subcarriers (i.e., subcarrier 4, 5, 6 and 7) based on the CSI measurements
collected in 30𝑠 . We can observe that the CSI measurements of subcarrier 7 keep fluctuating in
both empty room and human walking cases, so it implies the instability of the subcarrier 7 is not
caused by human movements. As a result, the subcarrier 7 has the lowest score, indicating it has
the lowest correlation with its adjacent subcarriers. Through our empirical study on choosing
different numbers of subcarriers, we find that selecting top 20 subcarriers could enable accurate
user authentication through excluding noisy subcarriers.

8 PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed system on activity recognition and
user authentication in both a university office and an apartment.

8.1 Experimental Methodology
Devices and Network. We emulate the WiFi network in IoT environments with two commercial
laptops equipped with 802.11𝑛WiFi NICs (i.e., Intel 5300 NICs). Specifically, we deploy a Dell 𝐸6430
laptop as transmitter and a Lenovo 𝑇61 laptop as receiver. Both of the transmitter and receiver
are equipped with three embedded antennas and run Ubuntu 14.04 operating system with the
4.2.0 kernel for measuring CSI over 30 subcarrier groups [8]. We extract the CSI amplitude on
the link between the main antenna pair (i.e., 1𝑠𝑡 antenna in both transmitter and receiver), and
compute the relative phase of CSI between the two links from the transmitter’s main antenna
to the first two antennas on the receiver. For multi-antenna abstraction extraction, we extract
CSI amplitude/relative phase from all transmitter-receiver antenna pairs (i.e., 9 links). The packet
transmission rate is fixed at 1000 pkts/s to enable high resolution analysis in the frequency domain.
Environments and Activities. The proposed system is evaluated in both a university office

and an apartment with the size of 26𝑓 𝑡 × 14𝑓 𝑡 and 36𝑓 𝑡 × 22𝑓 𝑡 , respectively. Figure 12 shows the
experimental setups involving two laptops to emulate as IoT-enabled devices (e.g., smart refrigerator
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Fig. 12. Experimental setups and the illustration of activities in an office and an apartment.

Table 1. Detailed daily activities performed.

Code Walking activity Code Stationary activity

A Entrance→Seat a Working (i.e., typing keyboard)

B Seat→Entrance b Turning on the light

C Seat→Light Switch c Opening the cabinet

D Light Switch→Seat d Fetching documents

E Seat→Cabinet e Eating at the table

F Cabinet→Seat f Opening the microwave oven

G Entrance→Kitchen g Opening the refrigerator

H Kitchen→Entrance h Opening the door

and smart TV) and generate WiFi traffics. A total of 8 walking activities and 8 stationary activities
(30 rounds for each) are performed by 11 and 5 volunteers in these two indoor environments,
respectively. 14 volunteers are males and the other 2 volunteers are females. The weights of the 16
volunteers are within 53kg 78kg and their heights range from 1.51m 1.87m. Some volunteers have
similar body shape and height. Due to the functionality differences of the two environments, we
choose different yet still typical stationary activities in the two environments. The details of the
activities are listed in Table 1, and the locations of stationary activities and walking trajectories are
also shown in Figure 12. In total, we collect 3336 activity segments performed by 11 subjects in the
office environment, and 834 activity segments performed by 5 subjects in the apartment. Unless
mentioned otherwise, half of the collected data-set (i.e., 15 rounds of each activity per subject) is
used for training the DNN model, and the rest of data is used for testing the system performance.

Classification Strategies. In the user enrollment phase (i.e., training phase), our system collects
CSI measurements through WiFi scanning while people are performing daily activities. Then, we
associate activity/identity labels with the corresponding CSI segments as the training data (i.e.,
user profile). We extract both time and frequency domain features from the data and feed them
to the CNN model for training. We empirically determine the filter size of each CNN layer as 64
and kernel size as (3, 3). During the testing phase, our system first segments and processes the CSI
measurements, which is the same as that in the training phase, and then identifies the user through
the trained CNN model. The inference time for an activity segment is around 0.78 seconds (i.e.,
including feature extraction and user identification).
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Fig. 13. Performance of user authentication grounded on multi-link abstraction extraction.

Evaluation Metrics. To evaluate our system, we use four evaluation metrics: identification
accuracy, confusion matrix, true-positive rate (TPR) and false-positive rate (FPR). Following existing
work on using WiFi signals for user identification [35], we use identification accuracy as the main
evaluation metric. It is defined as the percentage of the human identity/activity correctly recognized
by our system. We use the confusion matrix to further illustrate user identification/activity recogni-
tion performance, with each entry represents the percentage of correctly classified identify/activity.
Each column in the confusion matrix indicates the ground truth of an identity/activity and each
row represents the classified identity/activity in our system. TPR denotes the percentage of users
that are correctly verified as legitimate users, and FPR is the percentage of attackers that mistakenly
pass our system.

8.2 User Authentication Performance
We first present the performance of the proposed system on user identification in both office and
apartment environments. As shown in Figure 13 (a), we observe that, our system achieves over
93.0% user identification accuracy for all users and the average accuracy is 96.8% with a standard
deviation of 2.6% in the office environment. Compared with WiWho [35], our system can identify a
larger group of people (i.e., 11 vs. 6) with higher user identification accuracy (i.e., 96.8% vs 80.0%).
Figure 13 (b) gives the confusion matrix for the user identification in the apartment. Our system
achieves over 93.0% identification accuracy for 4 of the users. The average user identification
accuracy is 95.4% with a standard deviation of 1.8%. We have comparable high accuracies on
user authentication in the two different environments, and thereby confirm the effectiveness and
reliability of the proposed system on user identification.

8.3 Spoofer Detection Performance
Robustness to Spoofing Attacks. As indicated in Section 6.4, threshold selection is critical for
accurate detection of spoofing attacks. To obtain an appropriate threshold, we simulate a spoofing
attack scenario in an office environment, where 8 of the 11 users act as spoofers and the rest are
legitimate users. A threshold that maximizes the TPR while minimizing the FPR is selected for
evaluating our system under naive, content-aware, and knowledge observer attacks.
We take turns to set each participant as the legitimate user and the remaining users as the

attackers in both office and apartment environments. We first evaluate the performance of our
system on defending against naive attacks, where the attacker does not possess prior knowledge
about the user’s activities. As shown in Figure 14, our system can achieve over 96.3% TPR with less
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Fig. 14. Performance of our system on defending against naive attacks.
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Fig. 15. Performance of our system on defending against content-aware attacks.
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Fig. 16. Performance of our system on defending against knowledgeable observer attacks.

than 3.2% FPR for all users in the two environments. The results confirm that the random activities
of attacker can hardly create similar biometrics as those of the profiled activities of the legitimate
users, and thus the proposed system can reliably defend against random attacks. Figure 15 shows
the performance of the proposed system under content-aware attacks, where the attackers try to
pass the authentication system through performing the same activity as the legitimate user. The
average TPRs are 88.5% and 90.4% for the office and the apartment environments, respectively, with
FPR lower than 10% in both environments. The results show that even when the adversary has a
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Fig. 17. Performance of activity recognition grounded on multi-link abstraction extraction.

similar body shape and height to the legitimate user, our system can still identify the legitimate
user based on unique behavioral characteristics. Figure 16 shows the robustness of our system
against the knowledge observer attack, the most extreme attack, where the attacker is capable of
observing the behaviors of the legitimate user. For both environments, we find our system can still
achieve over 86.3% and 87.6% TPR, respectively. The FPRs are less than 8.3% and 10.1% in for the
two environments. The results show that the proposed system is still effective in defending against
the knowledgable observer attacks.
We further analyze the system’s robustness using entropy-based metric, which quantifies the

system’s security strength. Due to the limited size of our dataset, we use the Euclidean distance
between every pair of feature abstractions from different users to calculate the entropy, instead of
performing uncertainty analysis on a large group of users. The entropies for the spoofing detection
in the two environments are 7.9 and 7.4, respectively. This means that our system at least has a
similar security level to human chosen 4-digit PINs [9].

8.4 Activity Recognition Performance
We examine the activity recognition performance in the DNNmodel. Figure 17 depicts the confusion
matrix for activity recognition (i.e., outputs of DNN layer 2) in both office and apartment envi-
ronments. The average activity recognition accuracies for both stationary and walking activities
are as high as 98.6% and 99.1% in the office and apartment, respectively. Further, it is encouraging
to find that DNN model achieves similar accuracy for both stationary and walking activities. The
slight difference on the recognition accuracy between the two types of activities is caused by the
limited resolution of WiFi signals on capturing small scale body movements for stationary activities.
Overall, the proposed DNN model is highly effective on recognizing different types of activities.

8.5 Impact of Various Factors
Impact of Surrounding People. In the office environment, we ask 1/2/3 participants acting as
surrounding people to walk around when a target subject is conducting activities, which is a typical
scenario in small offices and homes. We use walking activities to examine the system’s robustness
since they produce more significant interference to CSI than stationary activities (e.g., turning on a
light, sitting). In the experiment, the participants walk 6ft away from the target subject, without
cutting the LOS path between the transmitter and the receiver, and the distance between every two
people is around 6ft. We do not limit their walking trajectory/speed. We recruit other 5 subjects
acting as target subjects and each of them conducts 6 walking and 4 stationary activities. The
activity profiles are constructed by using the CSI measurements collected without the interferences.
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Fig. 18. User authentication and activity recognition performance under the impacts of surrounding people.
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Fig. 19. Comparison of features used in deep learning based user authentication under different activities.

Figure 18 shows the performance of multi-antenna and single-antenna based abstraction extraction
schemes. We can observe that the multi-antenna based scheme could help to maintain high user
recognition/authentication accuracies under interferences from different number of surrounding
people. As shown in Figure 18 (a), the proposed scheme achieves 93.1%, 90.2% and 87.1% average
accuracies under the interference of 1, 2, 3 surrounding people, respectively. We can also find that
the single-antenna based scheme is susceptible to the impacts from the activity of surrounding
people. Furthermore, as shown in Figure 18 (b), the multi-antenna based scheme could also maintain
a high activity recognition accuracy under the impacts of people moving nearby. The results confirm
the effectiveness on mitigating the interferences of surrounding people.

Feature Comparison. To further analyze the impact of different features on the system perfor-
mance, we compare the authentication performance using different kinds of CSI features in both
time and frequency domains: Amplitude, Relative phase and all of these features (i.e., Combined).
We present the comparison results of user authentication accuracy in Figure 19 for both office and
apartment environments. Figure 19 (a) shows that CSI relative phase features have relative higher
user identification accuracies for stationary activities (e.g., 𝑎, 𝑏, 𝑐, 𝑑) comparing to the amplitude
feature. This is primarily because relative phase exhibits higher sensitivity on capturing small-scale
body movements. In addition, we also find in both Figure 19 (a) and (b) that the combined features
of both CSI amplitude and relative phase achieve the best performance, indicating the combining
features can provide the finest features to distinguish individual subjects.

Impact of Training Size. The DNN model needs to build CSI profiles for each activity or each
individual before performing activity recognition and human authentication. It is necessary to
study the impact of training size on system performance. Here we define the training size as the
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Fig. 20. System performance under different training sizes.
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Fig. 21. Impacts of sampling rate.

number of training samples for each activity or for each individual. As shown in both Figure 20
(a) and (b), our system can achieve consistently high accuracy on user identification and activity
recognition with different training sizes. Especially, our deep learning model maintains over 90%
accuracy on user identification and activity recognition even with the training size as small as 4.
The above results show that our system has minimum requirement on building the CSI profile
while ensure remarkable performance.

Impact of Sampling Rate. In order to validate that our user authentication scheme can work
under various sampling frequencies of WiFi enabled IoT devices, we evaluate our system under
different frame rates. We show the average user authentication accuracy of office and apartment
under different sampling rates in Figure 21. We can observe that our system can maintain high
accuracy across different frame rates from 200𝐻𝑧 to 1000𝐻𝑧. Particularly, the authentication
accuracy is still over 86% even for the low sampling rates such as 200𝐻𝑧 and 400𝐻𝑧. The above
observations confirm that our system can be applied on IoT devices with different sampling
capabilities.

8.6 Effectiveness of Transfer Learning
Finally, we conduct experiments with 5 new users on evaluating the performance of the proposed
transfer learning technique. Specifically, we reuse the parameters of a pre-trained CNN for dif-
ferentiating 5 existing users to initialize the weights of a new CNN model for recognizing new
users. Additionally, we leverage another CNN model directly trained with data of the same 10
users as the baseline. Both the existing and new CNN models are trained/fine-tuned with all data
from the same amount of samples (i.e., 2-14) from new users. As shown in Figure 22 (a), transfer
learning can greatly improve user identification accuracy under various training sizes for the new
users. Especially, our transfer learning method could help to achieve 86.1% accuracy even with
the training size as low as 2. Such improvements could greatly reduce training samples required
for new enrollments. Our other experiments with fewer new users (e.g., 1 ∼ 2 users) show more
significant improvements when utilizing the transfer learning technique.

We also exploit transfer learning to adapt an existing CNN model to new environments. Both the
existing and the new CNN models are trained with data from both environments (i.e., apartment
and office) but the existing CNN model does not reuse the parameters of the pre-trained CNN. As
shown in Figure 22, transfer learning could help to increase the user identification accuracy by
around 10% for each of the training sizes. The results show that the proposed transfer learning
based scheme could greatly improve system extensibility for new user enrollments/environments.
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Fig. 22. Comparison of training sizes for new users/environments with/without the proposed transfer learning
method.

9 CONCLUSION
As the proliferation of the Internet of things (IoT), the prevalence of wireless connections among IoT
devices provides the opportunity to authenticate users through examining the wireless signal char-
acteristics inherited from daily activities. In this paper, we propose a device-free user authentication
system by extracting unique physiological and behavioral characteristics embedded in human daily
activities captured by the fine-grained Channel State Information (CSI). Our system takes one
step forward to support the extended user authentication concept in not only preventing unautho-
rized users to access restricted information but also identifying users for customized services (e.g.,
prohibiting a kid to operate a hot stove) in both corporate and home environments. We find that
both amplitude and relative phase available in CSI readings are impacted by the environmental
changes caused by human activities in different scales. To extract meaningful patterns from noisy
CSI measurements, we design data calibration and subcarrier selection algorithms to filter out
various noises while preserving human physiological and behavioral characteristics. A CNN-based
user authentication mechanism is developed leveraging the extracted CSI features in both time and
frequency domains to accurately identify each individual. By utilizing features from multiple WiFi
antennas, the proposed CNN model could robustly authenticate a user even under interferences
from surrounding people. Additionally, we design a transfer learning-based approach to reduce
training efforts for adapting the CNNmodel to new users/environments. We show that the proposed
system can authenticate users with high accuracy while being resilient to various spoofing attacks.
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