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The restrained electrostatic potential (RESP) approach is a highly regarded and widely used

method of assigning partial charges to molecules for simulations. RESP uses a quantum-

mechanical method that yields fortuitous overpolarization and thereby accounts only

approximately for self-polarization of molecules in the condensed phase. Here we present

RESP2, a next generation of this approach, where the polarity of the charges is tuned by a

parameter, δ, which scales the contributions from gas- and aqueous-phase calculations.

When the complete non-bonded force field model, including Lennard-Jones parameters, is

optimized to liquid properties, improved accuracy is achieved, even with this reduced set of

five Lennard-Jones types. We argue that RESP2 with δ≈ 0.6 (60% aqueous, 40% gas-phase

charges) is an accurate and robust method of generating partial charges, and that a small set

of Lennard-Jones types is a good starting point for a systematic re-optimization of this

important non-bonded term.
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Molecular simulations are widely used to study chemical
and biophysical processes at the atomistic level1,2.
Applications include modeling of macromolecular

interactions3–6, protein folding7, and drug design8,9. Because
calculations with high-level quantum-mechanical (QM) methods
are too slow for many systems of interest, simulations typically
use fast, empirical potential functions known as empirical force
fields (FFs)10–12. Instead of treating electronic degrees of freedom
explicitly, FFs treat them implicitly via analytical energy terms

containing parameters that are empirically adjusted to replicate
experimental and quantum chemistry reference data. The accu-
racy of simulations performed with empirical FFs thus depends
critically on the accuracy of these parameters.
Non-bonded interactions, comprising dispersion, steric repul-

sion, and electrostatic interactions, make large contributions to
atomistic forces and energies13, so it is essential that empirical FFs
treat them accurately. Dispersion forces and steric repulsion are
commonly modeled by a Lennard-Jones (LJ) potential, though
more complex functional forms have been proposed and used to
model these interactions14. Electrostatic interactions include
Coulombic interactions among the permanent charges of mole-
cules, as well as interactions involving field-induced shifts in
electron density, i.e., electronic polarization. Despite important
advances in FFs that treat electronic polarization explicitly15–17,
fixed-charge FFs that treat electronic polarization implicitly are
still widely used, as they allow more thorough conformational
sampling with the same computing resources. Thus, optimization
of fixed-charge FFs would immediately benefit applications that
require efficient conformational sampling; it would also define a
baseline of accuracy that a polarizable FF should exceed.
Common methods to generate partial atomic charges for fixed-

charge FFs are either based on atoms-in-molecules approaches,
e.g., the Hirshfeld or iterative stockholder methods, or are opti-
mized to reproduce the electrostatic potential (ESP) around a
molecule18–29. Among the most popular methods for small
molecules are restrained electrostatic potential (RESP, hereafter
called RESP1)20 and AM1-BCC (refs. 21,22). Both generate partial
charges designed to reproduce the ESPs of molecules in gas phase
as computed at the Hartree–Fock (HF)30,31 level with the 6–31G*
basis set32. This QM method fortuitously overestimates the gas-
phase polarity of molecules by about the right amount to yield
charges appropriate for hydrated molecules, which are polarized
by the reaction field of the solvent20,33,34. An interesting nuance
of prepolarizing partial charges for use in nonpolarizable FFs is
that, since the energetic cost of polarization is neglected, it is
desirable to underestimate the amount of true polarization so that
the energetic stabilization of favorable polar interactions in the FF
is not overestimated35. However, the overpolarization of HF/
6–31G* still appears to underestimate the polarization typically
induced by hydration and to be inconsistent across different
molecules36. It is therefore of interest to consider whether ESPs
computed with higher-level QM methods could provide more
accurate charges and thus more accurate simulations.
Prior studies have explored this idea. For example, Cerutti and

coworkers developed the implicitly polarized charge method
(IPolQ), in the context of an AMBER biomolecular FFs (ref. 37).
In IPolQ, partial charges are obtained by performing two MP2/
cc-pV(T+ d)Z QM calculations, one in the gas phase and the
other in an explicit solvent reaction field derived from MM
simulation snapshots, then averaging the two sets of fitted char-
ges19. Muddana and coworkers subsequently suggested the
IPolQ-Mod approach, which is identical in spirit to IPolQ but
saves time by running QM in the context of an implicit hydration
model, rather than using multiple simulation snapshots38. Fol-
lowing the physically motivated logic of Karamertzanis and
coworkers39, IPolQ methods weight the gas-phase and aqueous-
phase charges equally in arriving at the final charge set. In a
similar spirit, Duan and coworkers fitted amino acid charges to
ESPs computed with B3LYP/cc‐pVTZ//HF/6‐31G** for mole-
cules immersed in a dielectric continuum with a dielectric con-
stant of 4 (ref. 18). This choice of dielectric constant was intended
to mimic the interior of a protein, and yields charges intermediate
between those of the gas and aqueous phases.
Regardless of what improvement is brought to the calculation

of partial atomic charges, the total non-bonded energy depends

Fig. 1 Mean errors in electrostatic properties. Mean errors in molecular
dipole moments a and electrostatic potentials b across 71 test
compounds, relative to reference double-hybrid calculations, for various
QM methods. Compute time requirements, normalized to the duration of
the corresponding HF/6–31G* calculations, are provided as well c.
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not only on charges but also on LJ interactions, so using more
accurate charges without adjusting LJ parameters also may not in
fact afford greater accuracy. Indeed, both Cerutti and cow-
orkers19, and Mobley and coworkers40 found that changing the
charge parameters alone did not increase the accuracy of simu-
lations. In addition, although Karamertzanis and coworkers39

argued that aqueous-phase charges should be a 50:50 average of
QM charges computed in the gas and aqueous phases, this bal-
ance might not actually lead to optimal accuracy, because the
simplified functional forms used in most FFs may require some
cancellation of error among terms to reach greatest accuracy.
Nonetheless, we are not aware of any systematic study of whether
ESP charges derived as mixtures of gas- and aqueous-phase
charges can yield greater simulation accuracy in the context of co-
optimized LJ parameters, or of how simulation accuracy depends
on the mixing weights placed on gas- vs aqueous-phase charges.
Here we address these issues. We determine a suitable level of

QM theory for generation of accurate ESPs and then compute
partial atomic charges as linear combinations of gas- and
aqueous-phase charges, with mixing parameter δ. Increases in
accuracy relative to RESP1 may derive both from the use of QM
calculations more accurate than HF/6–31G*, and from the fine-
tuning of the mixing parameter δ against experimental
condensed-phase data. This approach, termed RESP2, decouples
the calculation of ESP charges from reliance on the arbitrary and
inconsistent pattern of overpolarization afforded by HF/6–31G*
calculations. We evaluate RESP2 by using the ForceBalance
software41 to co-optimize the mixing parameter δ and LJ para-
meters against experimentally measured properties of pure
organic liquids. The resulting parameter sets are then tested
against a second set of experimental data, including added data
types expected to be sensitive to partial atomic charges. The
results are compared with those obtained with standard RESP1,
both with LJ parameters drawn from an existing FF and with
optimized LJ parameters. Implications for further development
and for fixed point-charge FFs in general, as well as further
directions are given.

Results
QM methods for ESP calculations. We tested QM methods to
assess their computational speed and the accuracy of the gas-
phase dipole moments and ESPs they afford for 71 test com-
pounds, where accuracy was assessed based on comparisons with
higher-level calculations using DSD-PBEP86-D3BJ (ref. 42) with
an aug-cc-pV(Q+ d)Z basis set43, as detailed in the Methods
section. As shown in Fig. 1, all post-HF methods yield more
accurate dipole moments and ESPs than HF. Although the choice
of functional does not seem to be very critical, the usage of either
partially (jun) or fully (aug) augmented basis sets, improves
accuracy for these electrostatic properties. This has been observed
before44,45, though rarely in the fixed-charge FF literature. The
computational cost varies widely across basis sets and functionals.
We selected PW6B95/aug-cc-pV(D+ d)Z as a solid combination
of speed and accuracy for use with RESP2. With the current
version of psi4 (ref. 46; v.1.3.2) these gas-phase calculations are
around seven times slower than HF/6–31G*, which is historically
the de facto standard for RESP1. When used with implicit solvent,
the calculations are 20 times slower than HF/6–31G*. Carrying
out a full RESP2 calculation for one of the present training or test
set compounds takes ~30 min with psi4 on a single CPU. It is
worth noting that, because RESP2 does not rely on the fortuitous
overpolarization afforded by HF/6–31G* but is instead based on
calculations that aim for maximum accuracy, PW6B95/aug-cc-pV
(D+ d)Z could appropriately be replaced by other methods that
also yield good agreement with gold standard reference methods.

Assessment of charge models with baseline LJ parameters. We
first compared the accuracy of liquid state properties and
hydration free energies (HFE) computed using RESP1 and RESP2
with values of δ ranging from 0 to 1, both in combination with
existing LJ and valence parameters from the SMIRNOFF99Frosst
v.1.0.7 FF. For brevity, we will use the notation RESP2δ so, for
example, RESP2 with δ= 0.6 is called RESP20.6. Although no LJ
parameters were trained at this stage, we report the training and
test set results separately, to facilitate comparison with the cor-
responding results following optimization of the LJ parameters
(section 3.3). Densities and heats of vaporization (HOV) of pure
organic liquids computed using RESP2 charges with δ values near
0.5 are about as accurate as those with RESP1 charges, based on
both mean unsigned errors (MUE; Fig. 2) and mean signed errors
(MSE; Supplementary Fig. 4). However, pure liquid dielectric
constants are somewhat more accurate with RESP2 charges when
δ > 0.2. The pattern of changes in accuracy as δ moves away from
0.5 differ across properties, with HOV and densities somewhat
more accurate overall for δ > 0.5 but dielectric constants and HFE
more accurate for δ > 0.5.

Assessment of charge models with optimized LJ parameters.
The accuracy of non-bonded interactions is controlled by the
choice of both partial charges and LJ parameters. As a con-
sequence, the utility of a given charge set cannot be properly
assessed unless LJ parameters are adjusted along with it. We
therefore examined the accuracy (MUE) afforded by RESP1
(Fig. 3, green line) and by RESP2 charges with a range of δ values
(Fig. 3, blue line), when LJ parameters are optimized separately
for each charge assignment method based on experimental den-
sities and HOV (MSE, Supplementary Fig. 5). In order to enable
efficient optimization, we restricted the number of LJ types to five,
corresponding to elements, C, O, and N, along with polar and
nonpolar H, for a total of ten LJ parameters, ϵ and rmin�half for
each type. (Using a single H type led to markedly worse agree-
ment with experiment; see sample results in Supplementary
Table 4). The results obtained by optimization of this parsimo-
nious set of LJ parameters are furthermore compared with results
obtained using RESP1 and the full set of standard (non-opti-
mized) SMIRNOFF99Frosst v1.0.7 LJ parameters (Fig. 3, red
line). The combinations of RESP1 and RESP2 with optimized LJ
parameters are referred to as RESP1/LJ opt and RESP2/ LJ opt,
respectively, while RESP1 with baseline LJ parameters is termed
RESP1/SMIRNOFF. The optimized LJ parameters of selected LJ
models can be found in Supplementary Fig. 6 and Supplementary
Notes 2–4.
One broad observation is that, when LJ parameters are adjusted

for each value of δ in the RESP2 model, the level of error becomes
much less sensitive to δ, so the blue curves in Fig. 3 are much
flatter than those in Fig. 2. This reflects the strong interdepen-
dence of the LJ parameters with the charge model, wherein
adjustment of LJ parameters can allow a range of charge models
to yield similar levels of accuracy. Considering the results in more
detail, one may see that, for the training set data (Fig. 3a, b),
RESP1/LJ opt (green) and RESP2/LJ opt (blue) afford consistently
lower errors than RESP1/SMIRNOFF (red). For the test set
densities (Fig. 3c), RESP1/LJ opt and RESP2/LJ opt with all values
of δ give consistently lower error than RESP1/SMIRNOFF.
Interestingly, RESP2/LJ opt with δ < 0.8 yields HOV similar to
RESP1/SMIRNOFF, while RESP1/LJ opt affords somewhat
greater accuracy. However, RESP2/LJ opt with δ < 0.2 yields the
most accurate dielectric constants, as perhaps expected given that
this property may be particularly sensitive to the quality of the
charge model. HFE computed with RESP2/LJ opt are more
accurate than those computed with RESP1/LJ opt, except when
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the most gas phase-like (δ < 0.2) RESP2 charges are used. HFE
computed with RESP2/LJ opt are similar in accuracy to those
obtained with RESP1/SMIRNOFF. Note, however, that the HFE
calculations are not pure tests of the present FF approaches,
because they use the TIP3P water model, and other water models

will give different results. Overall, RESP2/LJ opt with δ < 0.6 led
to improved dielectric constants, densities, and HFE, but some
loss in accuracy for HOV, relative to RESP1/LJ opt.
To examine how overall accuracy varies with δ, we graphed the

average unsigned error, given relative to RESP1/SMIRNOFF, as a

Fig. 2 MUE with SMIRNOFF LJ parameters. Comparison of theoretical and experimental results (MUE) as a function of the charge mixing parameter δ
with SMIRNOFF LJ parameters. No parameters are optimized for these results. Separation of training and test set is kept to facilitate comparison with Fig. 3.
Mean error for densities and HOV for the training set a, b and test set c, d. Mean error for the dielectric constants e of the test set, and HFE error for all
molecules in the FreeSolv database and either in the test or training set f. The red line are results obtained with RESP1 charges and is used as a reference.

Fig. 3 MUE with reoptimized LJ parameters. Comparison of theoretical and experimental results as a function of the RESP2 charge mixing parameter δ
with reoptimized LJ parameters. Mean error for densities and HOV for the training set a, b and test set c, d. Mean error for the dielectric constants e for the
test set, and HFE error for all molecules in the FreeSolv database and either in the test or training set f. The red lines are results obtained with RESP1
charges and smirnoff99Frosstv1.0.7 LJ parameters. The green lines are results with RESP1 charges and reoptimized LJ parameters.
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function of this mixing parameter (Fig. 4). Some of the roughness
of the graph appears to be noise, such as from slight variations in
the convergence behavior of the ForceBalance runs with different
values of δ. With this in mind, the best value of δ appears to be
between 0.5 and 0.7, and provisionally choose the center of this
range, 0.6, as the best current choice. Note, however, that the
shape of the graph depends on the weighting of the four
experimental properties. Here, they have been accorded equal
weight. If densities and HOV were weighted more heavily, the
minimum would shift to the left. If dielectric constants and HFE
were weighted more heavily, the minimum would shift to the
right.
It is also of interest that optimization of even a very small set of

LJ parameters can lead to markedly improved accuracy relative to
the larger baseline set of LJ parameters. For most LJ types, the
observed changes in ε and rmin�half relative to the initial
SMIRNOFF values are subtle. The greatest change is observed
for the nitrile carbon ε value, which decreases from 0.21 kcal/mol
to 0.085 kcal/mol. Nonetheless, molecules containing this atom
type do not show a higher than average error (Supplementary
Fig. 1). These observations raise the question whether all of the LJ
types in smirnoff99Frosst are necessary. This issue is beyond the
scope of the present study and will be addressed in a
subsequent work.

Molecular dipole moments and atomic partial charges. Because
RESP2 is based on a higher level of theory than RESP1, we

conjectured that molecular dipole moments computed with
RESP2 charges would correlate better with dipole moments
obtained directly from QM calculations. This expectation holds
true, as shown in Fig. 5. Thus, dipole moments computed with
RESP20.6 charges have R2 values of 0.99 against both gas-phase
and aqueous QM dipole moments, while RESP1 yields R2 values
of 0.97 and 0.96, respectively. Similar results are obtained for
RESP20.5 (Supplementary Fig. 2). Moreover, some RESP1 dipole
moments are less than the corresponding gas-phase QM results,
indicating that HF/6–31G* does not consistently yield the over-
polarization assumed to make RESP1 partial charges suitable for
aqueous-phase simulations36. In contrast, RESP2 dipole moments
are never below the corresponding QM gas-phase results. Inter-
estingly, RESP2 charges tend to yield 10% larger dipole moments
than RESP1, as evident by inspection of Fig. 5 and from the
regression slopes provided there. The differences between indi-
vidual dipole moments obtained from RESP1 and RESP20.6
charges range up to 30% (Supplementary Table 1).
It is also of interest to compare RESP1 and RESP20.6 partial

charges directly. As shown in Fig. 6, the differences are on par
with those between QM charges computed for gas vs aqueous
phase, but less than the differences between RESP1 and widely
used AM1-BCC charges. Although the molecular dipoles
moments are increased by ~10% (above), the charges are of a
similar magnitude for RESP20.6 and RESP1, as indicated by the
regression coefficient (slope) of 0.999.

Discussion
The present study defines and tests a non-bonded interaction
model based on RESP2 charges, a logical extension of prior work
aimed at developing physically meaningful, atom-centered, fixed,
partial charges for FFs used in molecular simulations. This work
seeks to overcome limitations in accuracy of RESP1 that result
from its reliance on the HF/6–31G* QM method and spotlights
the importance of allowing LJ parameters to be adjusted along
with a partial charge model, in order to generate an optimal
representation of non-bonded interactions.
Gas-phase HF/6–31G* calculations are widely used to obtain

ESP-based partial charges in the RESP1 method20. Although this
method/basis set combination leads to overpolarization and thus
makes the resulting charges plausible for the condensed phase,
the degree of overpolarization is inconsistent across com-
pounds36. For example, as reported in the Results section, RESP1
partial charges sometimes lead to molecular dipole moments even
smaller than reference gas-phase QM dipole moments. Moreover,
Duan and coworkers have argued that the pattern of

Fig. 4 Average error as function of the mixing parameter δ. Average
unsigned error, relative to baseline RESP1/SMIRNOFF (red), of test set
predictions as a function of the RESP2 charge mixing parameter δ with
reoptimized LJ parameters (blue).

Fig. 5 Comparison of molecular dipole moments from partial charges with those obtained directly from QM calculations. Scatter plots of molecular
dipole moments based on RESP1 and RESP20.6 point charges against molecular dipole moments based on electron density from QM (PW6B95/aug-cc-pV
(D+ d)Z) calculations in gas phase a and aqueous phase b. Black line: slope of unity.
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overpolarization by HF/6–31G* does not match the actual
polarization induced by the reaction field of a solvent, as the

former will tend to overpolarize all parts of a molecule, while the
latter will tend to polarize mainly solvent-exposed parts18.

The RESP2 approach is similar in spirit to previous approaches
aimed at overcoming these issues, including that of Duan and
coworkers, who used higher-level QM methods with an implicit
solvent having a dielectric constant of 4 to obtain high-quality
partial charges suitable for the condensed phase; the IPolQ
method, which obtains partial charges by a 0.5 scaling between
higher-level gas-phase QM calculations and QM calculations
carried out in an ensemble of explicit water conformations drawn
from simulations; and to the IPolQ-Mod method, which may be
viewed as RESP20.5 run with a different but still higher-level QM
method. However, the present study is distinguished from prior
work by our assigning the scaling between gas- and condensed-
phase charges to the adjustable parameter, δ, whose value is
adjusted based on empirical fitting to experimental data. The
empirical fitting enables to compensate for possible errors and
bias introduced by other parts of the charge derivation, such as
the details of the PCM model, and for limitations of the FF’s
functional form. This approach has the additional benefit that no
additional QM calculations are needed to adjust the polarity of
the charge model when fitting against additional experimental
data or adjusting charges in the context of a modified functional
form; one only needs to adjust the value of δ.
It is perhaps worth commenting on our use of the high

dielectric constant of water in the condensed-phase QM calcu-
lations used in RESP2. This choice might be expected to lead to
excessive polarization of the compounds making up organic
liquids with much lower dielectric constants. The fact that rea-
sonably good results are obtained despite this simplification may
result from the fact that apolar molecules generate only a weak
reaction field no matter what the surrounding dielectric constant,
so the precise value of the dielectric constant used in computing
their charges may not matter much. For polar molecules, on the
other hand, where the choice of dielectric constant in the calcu-
lations has a greater effect on the fitted partial charges, the liquids
have a dielectric constant closer to water, making this choice
more reasonable.
We have not only tested RESP2 in the context of existing LJ

parameters, but have also optimized the entire non-bonded part
of the FF by adjusting LJ parameters in the context of RESP1
charges and of RESP2 charges with a range of scaling parameters,
in order to learn which method is capable of giving best agree-
ment with experiment. A key observation is that optimizing LJ
parameters significantly reduces the errors relative to experiment
for all of the charge sets. These improvements are in spite of the
small number of LJ types used in our work, which assigns the
same parameters to all instances of each element, except for a
split of hydrogen into polar and nonpolar types. Further, when LJ
parameters are optimized for each proposed charge model, the
sensitivity to the choice of charge model decreases considerably.
Thus, the empirical utility of a charge model cannot be fully
assessed without determining how well it performs with corre-
spondingly optimized LJ parameters. Indeed, we would argue that
a charge model should ultimately be assessed within the context
of a full optimization of the entire FF, based on a range of suitable
reference data that can include both experimental and QM
results; this is a central strategy of the Open FF project47. The
present LJ optimization results also suggest that the many LJ
types in most current FFs may not be needed, because similarly
accurate results might be obtainable with a much smaller number
of types. Automated optimization methods, such as the For-
ceBalance tool used here41, open the possibility of systematically
addressing this issue in future work.
When RESP2 was tested along with baseline SMIRNOFF99-

Frosst parameters (RESP2/SMIRNOFF), the accuracy of densities

Fig. 6 Comparison of partial atomic charges generated by various
methods. Charge comparisons between RESP1 charges and RESP2 charges
with a mixing parameter of 0.6 a; RESP2 gas phase and RESP2 implicit
solvent charges b, and AM1-BCC and RESP1 charges c.
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was well-preserved, but HOV became somewhat less accurate,
even with optimal values of ~0.5–0.6 for δ. On the other hand,
dielectric constants immediately become more accurate with
RESP2 charges, presumably because these are particularly sensi-
tive to the fidelity of the charge distribution afforded by the
charge model. Also, as noted in the Results section, molecular
dipole moments computed with RESP2 correlate better with QM
results than dipole moments from RESP1 charges. Interestingly,
the overall accuracy of the liquid state properties afforded by all
charge models improved when LJ parameters were optimized.
This was true even for RESP1, even though one might have
expected that “standard” LJ parameters would have been opti-
mized over time for use with the long-standing RESP1 method.
These results are consistent with the findings of Cerutti et al., who
found it necessary to begin adjusting LJ parameters to improve
results with the IPolQ charge model. Note, however, that they did
not check how adjusting LJ parameters might also improve
accuracy with the baseline RESP1 charge model19.

The present analysis supports the use of RESP2 with δ ≈ 0.6
(i.e., RESP20.6), with LJ parameters optimized along with
RESP20.6 charges, as this show the biggest improvement for
reproducing experimental properties in comparison to RESP1/
SMIRNOFF (all properties are weighted equally). Note that the
scaling factor of 0.6 is close to the value of 0.5 used with IPolQ
(ref. 19) and IPolQ-Mod (ref. 38) based on physical reasoning39.
In comparison with RESP1/LJ opt, RESP20.6/LJ opt gives balanced
results across densities, HOV, and HFE, along with improved
dielectric constants. However, this initial study cannot definitively
establish RESP2 as superior to RESP1. Additional studies span-
ning a range of experimental observables and against the

background of additional FF optimizations will be needed to fully
compare the two methods. However, we anticipate that the
accuracy of current fixed-charge FFs can be improved by moving
to higher-level QM calculations, as done here. An additional
advantage of the present method is that the scaling parameter δ is
a simple, physically motivated control to tune the overall polarity
of the charges generated. This may be co-optimized with the LJ
parameters, allowing for straightforward tuning of charges along
with the LJ parameters. It is also worth noting that optimization
of valence terms, especially torsions, along with the current non-
bonded forces should result in further improvement in accuracy.
Ultimately, it will be important to assess the accuracy of FFs
based on the present approach with that of other popular force
fields, e.g. OPLS3, CHARMM, and GAFF2 (refs. 48,49), which
provide highly competitive performance relative to RESP1/GAFF,
which in turn is similar to RESP1/SMIRNOFF (refs. 48,50).

In considering the present results, it is also worth keeping in
mind that, although the HFE calculations are a useful reality
check, they do not cleanly test the charge models. This is because
they rely on a specific water model, TIP3P, which was chosen
somewhat arbitrarily from among other excellent options, such as
TIP3P-FB (ref. 41), SPC/E (refs. 51,52), TIP4P-Ew (ref. 53), and
OPC (ref. 54). We anticipate that changing to a different water
model will have a nonuniform effect on the accuracy of the
various models tested here. It is also worth noting that both HFE
and HOV could place a needless burden on fixed-charge models
whose intended use is only for the calculation of condensed-phase
properties. This is because the changes in electronic polarization
that are not explicitly treated by fixed-charge models are greatest
in the setting of a gas-to-condensed-phase transfer, but a
condensed-phase simulation does not need to handle such sce-
narios. By the same token, FFs that do not account explicitly for
electronic polarization are not able to model the electronic con-
tribution to the dielectric constants of organic liquids. As a
consequence, they tend to underestimate these dielectric con-
stants, particularly for nonpolar compounds where orientational
polarizability cannot compensate for the lack of electronic
polarization.
Thus, although dielectric constants, HOV, and HFE have long

been a mainstay for the adjustment and testing of FFs, it would
seem preferable to focus in the future on other experimental
properties that involve only condensed-phase processes and can
be modeled accurately with non-polarizable FFs e.g., liquid
mixture data and surface tension55.
The chief drawback of RESP2 is that it is slower than RESP1,

because it requires two higher-level QM calculations, one of them
with an implicit solvent model, for each molecular conformer
included in the calculation. This is not likely to be problematic for
applications focusing on, e.g., tens of compounds, but can be
burdensome for larger-scale studies. It may thus be of interest to
develop what amounts to a second-generation AM1-BCC
method21,22, trained to match RESP2 instead of RESP1 charges.
We envision replacing AM1 with a higher level, but still efficient
QM method, and then training a new set of BCCs to agree with
RESP2 charges and/or to yield accurate condensed-phase prop-
erties when used in simulations. Alternatively, fast, machine-
learning (ML) methods for generating partial charges have
recently been devised56,57, and these methods need to be trained
against some kind of data. The encouraging results for RESP20.6
found here suggest it as a promising physics-based charge model
to train fast ML methods.

Methods
Definition and calculation of RESP2 charges. We propose RESP2, a method of
generating atom-centered partial charges for small organic molecules. To compute
RESP2 charges, one carries out two separate RESP calculations, one for the

Fig. 7 Flow chart to generate RESP2 charges from SMILES strings.
Conformers are generated using Openeye’s Omega. QM calculations are
done with psi4. Respyte is used for the ESP point selection and the charge
fitting stage.
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molecule of interest in gas phase, and the other for the same molecule in water; i.e.,
using an implicit solvent model with dielectric constant 78.39. As detailed below,
each RESP calculation may use multiple conformers of the molecule. The two
resulting charge sets, termed, qgasi and qaqueousi , respectively, for atoms indexed by i,
are then combined with a mixing parameter δ:

qRESP2i ¼ ð1� δÞqgasi þ δqaqueousi ð1Þ

The value of δ effectively defines the polarity of the RESP2 charges, with δ= 0
providing less polar gas-phase charges and δ= 1 providing more polar aqueous-
phase charges. This scaling procedure has the merit of preserving the total charge
of the molecule, so it can be used with both neutral and charged compounds. It also
allows the polarity of the charge model to be varied without any requirement for
additional QM calculations, unlike the alternative approach of running QM in
implicit solvent with various values of the dielectric constant. Note, too, that setting
δ= 0.5 causes RESP2 charges to equal IPolQ-Mod charges38, assuming the same
QM method and implicit solvent model are used. Both methods are in the spirit of
IPolQ (refs. 19,39) with the difference that IPolQ uses explicit solvent simulations to
generate the reaction field. In the present study, we systematically examine the
accuracy of condensed-phase simulations carried out with a range of δ values.

The generation of RESP2 charges for the molecules in this study follows the flow
chart in Fig. 7. First, up to five conformers (using the maxconfs keyword) were
generated with the program Omega58,59; more conformers may be appropriate for
larger and more flexible compounds. Conformers with energy >10 kcal/mol (based
on the Omega energy function) above the most stable conformer were discarded.
Conformationally distinct low-energy structures were selected using Omega
keywords RangeIncrement 2 and RMSRange 0.5 1.0 1.5 2.0. Each
conformer was energy-minimized in the program psi4 (ref. 46) with QM at the
selected level of theory, PW6B95/cc-pV(D+ d)Z (see the Results section). Based on
visual inspection, the conformations generated by this protocol were not particularly
compact and did not have a high degree of intramolecular hydrogen bonding, so
they seem reasonably representative of the condensed phase. The program respyte60

was used to generate ESP points on Merz-Singh-Kollman (MSK) shells28 with inner
and outer radii of 1.6 Ri and 2.0 Ri, and 0.2 Ri spacing between point layers where Ri
is the van der Waals radius (Bondi radii), and with a density of 2.4 points/Å2 in each
layer. The ESPs at these points were calculated with psi4 using PW6B95/aug-cc-pV
(D+ d)Z, first in vacuo and then with implicit solvent (ε= 78.39, CPCM
(refs. 61,62), Bondi radii). Like the initial RESP method, RESP2 uses a two-stage
fitting protocol. In the first optimization step, all charges are allowed to change
independently, with a weak hyperbolic restraint constant of 0.005 e/a02 centered at
0.0. In the second step, chemical symmetry is enforced and only apolar parts of the
molecules are refitted, with a higher restraint constant of 0.01 e/a02. The restraints
reduce the conformational dependency of the charges and to ensure chemically
sensible charges on buried atoms, which otherwise might be not well defined, as
previously detailed20. The RESP method was used to simultaneously fit a single set
of partial charges qgasi to the gas-phase ESPs of all conformers, with all
conformations assigned equal weight. Likewise, a single set of partial charges qaqueousi

was fit to the aqueous-phase ESPs of all conformers. The partial charges qgasi and
qaqueousi were then used in Eq. (1), with any desired value of δ.

Selection of QM method for RESP2. We evaluated a number of QM methods in
order to arrive at a level of theory for RESP2 that affords good accuracy at modest
computational cost. Because atomic charges are not physical observables, one
cannot directly assess the accuracy of the charges themselves. Therefore, we instead
examined molecular dipole moments and ESPs, which are closely related to partial
charges. We used a set of 71 molecules (Supplementary Fig. 3), including those
previously used by Hickey and Rowley to benchmark QM calculations of elec-
trostatic properties44. For all property calculations, we used molecule geometries
built with Open Babel 2.4.1 (ref. 63) and optimized with B3LYP (ref. 64)/ aug-cc-pV
(Q+ d)Z (refs. 65–67). High-quality reference calculations were carried out using
DSD-PBEP86-D3BJ (ref. 42) with an aug-cc-pV(Q+ d)Z basis set43. This method is
a close relative to DSD-PBEPBE-D3BJ, which offers accuracy, for gas-phase dipoles
and polarizabilities, on par with CCSD (ref. 68) calculations at much lower com-
putational cost69,70.Note that Dunning basis sets with additional tight d functions
for second row atoms are necessary to reproduce molecular properties for sulfur-
containing molecules with high accuracy71. Gaussian16 (ref. 72) was used to select
the QM method for RESP2, as double-hybrid functional properties were not
available in psi4 at the time of this study. The open-source Psi4 package was used
for the rest of the project. We evaluated five methods with five different basis sets
against the DSD-PBEP86-D3BJ reference: the methods used were MP2 (ref. 73), HF
(refs. 30,31), B3LYP (ref. 64), PBE0 (ref. 74), and PW6B95 (ref. 75) and the bases were
aug-cc-pV(D+ d)Z, cc-pV(T+ d)Z, jun-cc-pV(T+ d)Z, aug-cc-pV(T+ d)Z, and
aug-cc-pV(Q+ d)Z (refs. 65–67). ESP points were selected based on (MSK) grids28

with 17 points per unit area and ten layers (gaussian keywords IOP(6/41= 10,
6/42= 17)). Timings were noted and the dipole moments and ESPs were com-
pared with the corresponding reference results. A method/basis combination that
offered a good compromise between performance and cost was chosen for charge
derivation (PW6B95/aug-cc-pV(D+ d)Z; see the Results section).

Evaluation of RESP2 charges with and without LJ parameter optimization. We
evaluated RESP2 charges for their ability to replicate experimental observables,
such as the densities and HOV of pure organic liquids. The results were compared
with matched evaluations of RESP1 charges. We first ran tests of these charge
models in the context of otherwise unchanged SMIRNOFF v1.0.7 FF parameters50.
Then, recognizing that the accuracy afforded by a charge model depends on the LJ
parameters used with it, we examined the accuracy achievable by each charge
model with LJ parameters optimized in the context of that charge model. This was
done by optimizing LJ parameters against training set experimental data for a given
charge set and testing the resulting partial charge/LJ combinations against a
separate set of experimental data. Details of these procedures follow.

The program ForceBalance41 was used to optimize the LJ parameters for RESP1
charges and for RESP2 with values of δ from 0 to 1 in steps of 0.05. To simplify and
speed the optimizations, we limited the number of different LJ types to five: C, N, and
O, polar H, and apolar H. Polar hydrogens were defined by the following extended
SMARTS pattern: [#1:1]-[#7,#8]. Because each LJ type has two parameters, rmin�half and
ε, the optimizations were done in a ten-dimensional parameter space. Starting
parameters were drawn from SMIRNOFF v1.0.7 (Supplementary Notes 1). Training
was based on measured HOV and pure liquid densities of 15 molecules (Fig. 8a) with a
variety of functional groups. The ForceBalance procedure was terminated when the step
size for the mathematical parameters fell <0.01 or the objective function changed <1.0
between two iterations; further details are provided below in this section. The resulting
parameters were tested against measured HOVs and densities for a separate set of 53
molecules (Fig. 8b), as well as the measured dielectric constants and HFE of a subset of
these compounds. All experimental values for HOV were taken from ThermoML76.
Densities were taken from ThermoML when available, and otherwise from PubChem77.
Dielectric constants were taken from multiple sources78. HFE were taken from the
FreeSolv database79. All values are summarized in Supplementary Tables 2 and 3.

The objective function used in the ForceBalance calculations is now described;
further details are available elsewhere15. The N physical parameters
K ¼ ðK1;K2; ¼KN Þ—here the values of ϵ and rmin�half for each of the five LJ types
—are mapped to mathematical parameters k ¼ ðk1; k2; ¼ kN Þ by shifting and
scaling according to the following expression

ki ¼
1
ti

Ki � Ko
i

� �
ð2Þ

where K0
i is the initial value of the FF parameter Ki, and 1/ti is a scaling factor

determined by the prior for each FF parameter. Prior widths were set to 0.4184 kJ/
mol for ε and 1.0 Å for rmin�half . For a training set with M molecules, the objective
function L(k) contains a contribution Lm(k) from each training set molecule m,
which quantifies the deviation of its P computed properties from experiment; and a
Tikhonov regularization term, weighted by wreg ¼ 10, which avoids large
deviations from the starting values:

LðkÞ ¼
XM

m¼1

LmðkÞ þ wreg kj j2 ð3Þ

LmðkÞ ¼
XP

p¼1

Lmp ðkÞ ð4Þ

Lmp ðkÞ ¼
1
d2p

ymp ðkÞ � ymp;ref

���
���
2

ð5Þ

Here ymp kð Þ is the value of the pth property for molecule m (e.g., its HOV)
computed for mathematical parameters k, and ymp;ref is the experimental reference
value of this property. The scaling factors dmp balance the weighting of the

properties and remove their units; we used dHOV ¼ 0:3 kJ=mol and ddensity ¼
30 kg=m3 for all molecules m.

Finally, we evaluated the overall accuracy of RESP2δ/LJ opt as a function of the
mixing parameter, δ, in terms of the mean relative error it affords, reported relative
to the baseline RESP1/SMIRNOFF model:

E δð Þ ¼ 1
NP

XNP

j¼1

ERESP2δ=LJopt
j � ERESP1;SMIRNOFF

j

ERESP1;SMIRNOFF
j

ð6Þ

Here j indexes the NP= 4 experimental properties (densities, HOV, dielectric
constants, and HFE), and the MUE for the superscripted model and property j is
given by:

Emodel
j ¼ 1

Nd

XNd

i¼1

xmodel
ij � xexptij

���
��� ð7Þ

where Nd is the number of test set data, xmodel
ij is the value of property j for molecule

i, computed with either the RESP2δ/LJ opt or RESP1/SMIRNOFF model, and xexpti
is the corresponding experimental result.

Simulation details. In the course of its iterative parameter optimization, For-
ceBalance called OpenMM80 to compute physical properties from molecular
simulations. In each iteration, a gas-phase and a liquid-phase simulation at
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T= 298 K were run for each molecule, to enable the calculation of liquid state
properties and of the HOV. ForceBalance was also used to set up single-point
simulations with baseline SMIRNOFF parameters, as well as with optimized
parameters for the test set molecules after optimization on the training set. HOV
were calculated as the gas/liquid difference between the mean potential energy per
molecule plus the pressure–volume term RT. Liquid state densities were calculated
from the mean volumes of the liquid state NPT simulations. Dielectric constants of
liquids were calculated from the fluctuations of the simulations box’s dipole
moments, as implemented in ForceBalance41.

For all simulations, the bonded FF terms were drawn from SMIRNOFF v1.0.7,
and covalent bonds to hydrogen atoms were constrained to their equilibrium
lengths with CCMA and SETTLE(water)81,82. Single-molecule gas-phase
simulations were run for 25 ns (5 ns equilibration, 20 ns production) with a
timestep of 1 fs using a Langevin integrator with a collision frequency of 1 ps−1

and, infinite distance cutoffs and without periodic boundary conditions. Liquid-
phase calculations, with 700 molecules in the box, were run for 1.2 ns (0.2 ns
equilibration, 1 ns production), with a Langevin integrator timestep of 1 fs and a
collision frequency of 1 ps−1. The pressure was maintained at 1 atm with a Monte

Fig. 8 Molecules used in this study. Molecules in a were used to train new LJ models, whereas the molecules in b were used to test the new parameters.
The SMILES string for each molecule is given under the chemical structure.
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Carlo barostat with a move attempt interval of 25 timesteps83. For the liquids, long-
ranged electrostatics were included via Particle Mesh Ewald summation with a
cutoff of 8.5 Å. A long-range dispersion correction was applied.

HFE were computed alchemically with the YANK program34. The temperature
and pressure were set to 298 K and 1 atm, respectively, and the TIP3P water model
was used. We used 5 lambda values in gas-phase and 20 lambda windows (5
windows for the electrostatics and 15 for the steric interactions) for the solution.
The calculations used Hamiltonian replica exchange over 1000 iterations consisting
each of 500 timesteps of 2 femtoseconds each. Analysis was done using Yank’s
standard analysis framework, which is based on multistate Bennett acceptance
ratios84.

All reference data and example input files to conduct this study, as well as the
optimized force fields and charge parameters are available on GitHub (https://
github.com/MSchauperl/RESP2). Additionally, a python library with a tool to
parameterize molecules with RESP2 charges, including examples can be
downloaded.

Data availability
The data supporting the findings of this study are available within the article and
its Supplementary Information files. All other relevant source data are available on
https://github.com/MSchauperl/RESP2, https://doi.org/10.5281/zenodo.3593762, or from
the corresponding authors upon reasonable request.

Code availability
The code used to generate the results is available on https://github.com/MSchauperl/
RESP2 and https://github.com/lpwgroup/respyte.
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