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Abstract
The increase in the sensitivity of gravitational wave (GW) interferometers will
bring additional detections of binary black hole (BBH) and double neutron star
(NS) mergers. It will also very likely add many merger events of BH–NS bina-
ries. Distinguishing mixed binaries from BBHs mergers for high mass ratios
could be challenging because in this situation the NS coalesces with the BH
without experiencing signi!cant disruption. To investigate the transition of
mixed binary mergers into those behaving more like BBH coalescences, we
present results from merger simulations for different mass ratios. We show how
the degree of deformation and disruption of the NS impacts the inspiral and
merger dynamics, the properties of the !nal BH, the accretion disk formed from
the circularization of the tidal debris, the GWs, and the strain spectrum and mis-
matches. The results also show the effectiveness of the initial data method that
generalizes the Bowen–York initial data for BH punctures to the case of binaries
with NS companions.

Keywords: general relativity, black holes, neutron stars, gravitational waves,
compact binaries, numerical relativity

(Some !gures may appear in colour only in the online journal)

1. Introduction

The gravitational-wave (GW) catalogue by LIGO and Virgo has been recently updated to
bring the total number of detections to 50 [1], with 46 of the events con!rmed binary
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black hole (BBH) mergers and two double neutron stars (NSs) mergers (GW170817 [2] and
GW190425 [3]). Although not fully con!rmed, the remaining two detections (GW190814 [4]
and GW190426_152155 [1]) suggest that the GWs detected were produced from mergers of
black hole–neutron star (BHNS) binaries. As LIGO and Virgo reach design sensitivity, we will
have more GW detections from BHNS binaries. Characterising these events calls for numerical
simulations that are not only more accurate but that include the relevant micro-physics.

Numerical studies of BHNSs have considered different aspects of the merger. Some have
focused on the formation of the accretion disk from the tidal debris as well as the relativis-
tic jets emanating from the remnant BH. Speci!cally, the studies have investigated how the
accretion disk, ejecta and the jets depend on the mass ratio of the binary [5–9], and the spin
magnitude and orientation of the BH [9–17]. The studies have also looked at the impact of
the characteristics of the NS, such as its spin [18], magnetic !eld [17, 19–21] and equation of
state [11, 13, 16, 22–27]. For low mass ratio systems with highly spinning BH and/or lower
compactness of the NS, the !nal BH is typically surrounded with massive accretion disks with
densities ! 1012 g cm−3 [28]. On the other hand, for systems with high mass ratio and low BH
spin, the NS barely suffers any disruption before reaching ISCO and can be swallowed almost
completely by the BH hardly leaving any trace of matter to generate detectable electromagnetic
signatures. In the absence of any signi!cant disruption, the BHNS systems behave as a BBH,
with almost identical GW signatures [29].

The work in this paper has two main objectives. One is to test the effectiveness of the ini-
tial data method introduced in reference [30]. The method generalizes the Bowen–York [31]
approach for initial data with BHs modeled as punctures to the case of NSs. The second is to
provide further insights on the transition of a BHNS into a BBH-like behavior as the effects
from the disruption of the NS change with the mass ratio of the binary. Our results show that
for low mass ratio cases, a considerable amount of energy and angular momenta, that other-
wise would have been radiated in GWs, gets trapped in the accretion disk and redistributed
as the BH accretes the material. The tidal debris also affects the ringing of the !nal BH when
compared with the BBH case. For all the cases considered, the BHNS binary merges earlier
than the corresponding BBH. This is due to the tidal deformation that the NS experiences. The
deformation introduces a correction to the potential that increases the orbital velocity and thus
the emission of GWs [28]. Our results have limitations since we model the NS as a polytrope
and do not include magnetic !elds or neutrino transport. At the same time, we demonstrate
that the initial data method has promising feature, such as simplicity of implementation and
generalization to realistic equations of state.

The paper is organized as follows: section 2 provides a summary of the initial data method
developed in [30]. Section 3 details the parameters of the initial BHNS and BBH con!gura-
tions. The section also includes the setup of the numerical simulations and convergence tests.
Results are presented in section 4 organized by (i) inspiral and merger dynamics, (ii) the !nal
BH, (iii) tidal debris, (iv) GWs, and (v) spectrum and mismatches. Conclusions are given in
section 5. We use geometrical units in which G = c = 1 and express all dimensions in terms
of M, the total initial mass of the binary system. When necessary, we will also use physical
units (SI units). Indices with latin letters from the beginning of the alphabet denote space-time
dimensions and from the middle of the alphabet spacial dimensions.

2. Initial data

We will brie"y review the approach we introduced in reference [30] to construct initial data
for binaries with NS companions. Under the 3 + 1 decomposition of the Einstein equations,
initial data consist of the spatial metric γi j of the constant time initial hypersurface, the extrinsic
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curvature Ki j in this hypersurface, and the projections

ρH ≡ nanbTab (1)

Si ≡ −γ i jnbT jb (2)

of the stress-energy tensor Tab, with na the unit time-like normal to the hypersurface. For the
present work we will only consider perfect "uids. Thus,

Tab = (ρ + p)uaub + pgab, (3)

with ρ the energy density, p the pressure, ua the four velocity of the "uid, and gab = γab − nanb

the space-time metric. With this form for Tab,

ρH = (ρ + p) W2 − p (4)

Si = (ρ + p)Wui, (5)

where W = −naua is the Lorentz factor, which can be rewritten as

W2 =
1
2

(
1 +

√

1 +
4SiSi

(ρ + p)2

)
. (6)

The initial data {γi j, Ki j, ρH , Si} must satisfy the constraints

R + K2 − Ki jKi j = 16πρH (7)

∇ j
(
Ki j − γ i jK

)
= 8πSi, (8)

namely the Hamiltonian and momentum constraints, respectively. Here, R is the Ricci scalar,
and ∇ j is the covariant derivative associated with γi j.

We solve equations (7) and (8) following the conformal-transverse-traceless (CTT)
approach pioneered by Lichnerowicz [32], York and collaborators [33]. The central idea of
this approach is to apply the following transformations to isolate the four quantities obtained
by solving the constraints:

γi j = ψ4γ̃i j (9)

Ki j = Ai j +
1
3
γi jK (10)

Ai j = ψ−10
(

Ãi j
TT + Ãi j

L

)
, (11)

∇̃ jÃ
i j
TT = 0 (12)

Ãi j
L = 2∇̃(iV j) − 2

3
γ̃i j ∇̃kVk (13)

ρ̃H = ρHψ
8 (14)

S̃i = Siψ10, (15)

where ψ is the conformal factor. The last two transformations imply that ρ̃ = ρψ8, p̃ = pψ8,
ũi = uiψ2 and W̃ = W.
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We also adopt the common choices of conformal "atness (γ̃ i j = ηi j), maximal slicing
(K = 0), and ÃTT

i j = 0. With these choices and the CTT transformations above, the Hamiltonian
and momentum constraints take the following form:

∆̃ψ +
1
8
ψ−7Ãi jÃi j = −2πψ−3ρ̃H (16)

∇̃ jÃi j = 8πS̃i. (17)

Bowen and York [31] found point-source solutions to the source-free momentum constraint
(17) that can be used to represent BHs with linear momentum Pi and spin Ji. The solutions
read:

Ãi j =
3

2 r2

[
2 P(il j) − (ηi j − lil j)Pklk

]
, (18)

Ãi j =
6
r3 l(iε j)klJkll, (19)

where li = xi/r, a unit radial vector.
In reference [30], we followed Bowen’s approach [34] to construct solutions to the momen-

tum constraint that represent NSs. The solutions assume spherically symmetric sources and
are given by

Ãi j =
3Q
2r2

[
2P(il j) − (ηi j − lil j)Pklk

]
+

3C
r4

[
2P(il j) + (ηi j − 5lil j)Pklk

]
(20)

Ãi j =
6 N
r3 l(iε j)klJkll, (21)

where

Q = 4π
∫ r

0
σr̄2 dr̄ (22)

C =
2π
3

∫ r

0
σr̄4 dr̄ (23)

N =
8 π
3

∫ r

0
χ r̄4 dr̄. (24)

The source functions σ and χ are radial functions with compact support r " R and are such
that

S̃i = Piσ (25)

S̃i = εijkJ jxkχ. (26)

Outside the sources, Q = N = 1 and C = 0; thus, the extrinsic curvatures (20) and (21) reduce
to those of point sources, i.e. (18) and (19) respectively.

Since S̃i = (ρ̃ + p̃)W ũi, we set

σ = (ρ̃ + p̃)/K (27)

χ = (ρ̃ + p̃)/N (28)
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with the constants K and N obtained from

K = 4 π
∫ R

0
(ρ̃ + p̃) r2 dr (29)

N =
8 π
3

∫ R

0
(ρ̃ + p̃)r4 dr. (30)

Given these solutions for the extrinsic curvature, we solve the Hamiltonian constraint (16),
assuming that the conformal factor has the form ψ = 1 + mp/(2r) + u where mp is the bare or
puncture mass of the BH. To solve (16), we used a modi!ed version of the TwoPunctures
code [35] which handles the source ρ̃H .

The method to construct BHNS initial data in reference [30] for a BH with irreducible mass
Mh and NS with mass M∗ follows similar steps to that for BBHs initial data with punctures.
That is, one selects the target values for M∗ and the mass ratio q = Mh/M∗. For BBH systems,
one usually chooses instead of M∗ the total mass M of the binary. Next, one carries out iterations
solving the Hamiltonian constraint until the target values for q and M∗ are obtained. After each
Hamiltonian constraint solve iteration, one computes Mh from the irreducible mass of the BH.
The challenge is in !nding an appropriate de!nition for the mass M∗ of the NS in the binary.
Options are the ADM mass MA or rest mass M0 of the NS in isolation, which in isotropic
coordinates read

MA = 2π
∫ R

0
ρψ5r2 dr (31)

M0 = 4π
∫ R

0
ρ0 ψ

6r2 dr (32)

respectively, with ρ0 the rest-mass density. The approach we suggested in reference [30] is
to compute the mass after each Hamiltonian constraint solve iteration from M(n)

∗ = ξ(n−1) M(n)
0

where ξ(n−1) = M(n−1)
A /M(n−1)

0 , namely the ratio of the ADM and rest mass of the star in
isolation. Here

M0 =

∫
ρ0W

√
γ d3x =

∫
ρ̃0Wψ−2 d3x (33)

is the rest mass of the NS after each Hamiltonian constraint solve. For n = 1, M(1)
∗ = M(1)

A ;
thus, ξ(0) = 1. We have found that for the simulations we have considered, ξ ≈ 0.93, with
variations less than 1% throughout the iteration procedure; thus, our method is close to those
in which the value of the rest mass of the NS is the target.

3. Initial parameters, numerical setup, and convergence tests

We study mixed binaries with mass ratio q = 2, 3 and 5, labeled Q2, Q3, and Q5, respectively.
In the present work, we will consider only non-spinning BHs and NSs and model the NS as a
polytrope, i.e. P = κ ρΓ0 equation of state. In all cases, we set M∗ = 1.35M', κ = 93.65M2

',
Γ = 2, and coordinate separation 9M, where M = Mh + M∗. The momenta Pi for each compact
object in the binary is obtained by solving the 3.5 post-Newtonian equation of motion from a
large separation and stopping at separation where the numerical relativity simulation begins.
Table 1 shows the initial parameters for the simulations at the end of the construction of the
initial data. Our con!gurations closely mimic models M20.145, M30.145, and M50.145 in
reference [7], models B and A3 in reference [8], and models A and D in reference [14].
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Table 1. Initial con!guration parameters: q = Mh/M∗ binary mass ratio, M0 is the rest mass of the NS,
Mh irreducible mass of the BH, ΩM orbital frequency, m̄p = mpκ1/2 bare or puncture mass of the BH,
M̄0 = M0/κ1/2 rest mass of the NS in isolation, M̄A = MA/κ1/2 ADM mass of the NS in isolation,
ρ̄c = ρcκ, central density of the isolated NS, and C = MA/R∗ compactness of the isolated NS. For all
cases, κ = 93.65 M2

', Γ = 2, coordinate separation 9M, and M∗ = 1.35M'.

Case q M0/M' Mh/M' ΩM m̄p M̄0 M̄A ρ̄c C

Q2 2 1.456 2.7 0.0319 0.2733 0.1549 0.1436 0.1381 0.1529
Q3 3 1.456 4.05 0.0318 0.4123 0.1553 0.1439 0.1391 0.1536
Q5 5 1.457 6.75 0.0318 0.6907 0.1557 0.1443 0.1401 0.1543

We use the MAYA code [30, 36, 37] for the simulations; the code is our local version of the
Einstein Toolkit code [38]. It solves the BSSN [39, 40] form of the Einstein evolution
equations and follows the implementation in the Whisky code [41–43] for the hydrodynam-
ical evolution equations. We use the Marquina solver [44] to handle the Riemann problem
during "ux computation and the piece-wise parabolic method [45] for reconstruction of prim-
itive variables. The BH apparent horizon is found using the AHFinderDirect code [46].
We use two methods to track the NS. One method tracks the maximum density within the star.
The other tracks the star using the VolumeIntegrals thorn in the Einstein Toolkit
[38]. The properties of the BH, mass, spins and multipole moments, are computed using the
QuasiLocalMeasures thorn [47] based on the dynamical horizons framework [48]. The
GW strain is computed from the Weyl scalar Ψ4 [47, 49, 50]. To compute the radiated quanti-
ties, we follow the method developed in [51]. The gauge choice for the evolutions is the moving
puncture gauge [52, 53].

We use the moving box mesh re!nement approach as implemented by Carpet [54]. The
starting point in setting the grid structure and number of re!nement levels is the number of
points needed to resolve the BH and the NS. For the results in this work, we ensure that at
the !nest level both, the BH and the NS, are completely enclosed by a mesh with at least 100
points across. This translates to a grid-spacing of ∼225 m for the NS. From the !nest level
up, we add coarse re!nements until we reach a resolution with grid-spacing ∼ M, which is a
suitable resolution for GW extraction. For the mass ratios in this study, the end result is 9 levels
of re!nement from the BH up to the coarsest and 8 for the NS.

To test convergence, we carried out three simulations for q = 2 at initial coordinate separa-
tion 7M with resolutions decreasing by a factor of θ = 1.5. The !nest meshes covering the NS
have grid-spacing M/24 (248 m), M/36 (166 m) and M/54 (102 m). Since the size of the BH
is smaller than the NS, the hole has an additional re!nement level with twice the resolution
of the !nest mesh at the NS. Figure 1 shows the convergence results for the (2, 2) mode of
the Weyl scalar Ψ4. Top panels show the amplitude (left) and phase evolution (right) for the
three cases. Assuming a convergence rate of k and re!nement factor θ, one should have that
(medium–low) = θk (high–medium). The panels on the bottom show the left and right-hand
side of this expression for θ = 1.5 and k = 1.7. We see very good convergence in both ampli-
tude and phase until t ∼ 25M. Beyond this time, i.e. the late ringdown phase, convergence is
not as clean. The high noise in the amplitude and phase differences in the bottom panels during
the initial time is due to the junk radiation from the initial data. To understand the challenge of
not having a clean convergence during the late rigndown, we carried out a convergence test for
q = 3 with resolutions of M/21.43 (374 m), M/32.14 (248 m) and M/48.21 (166 m). Figure 2
shows the convergence in amplitude and phase of (2, 2) mode of Ψ4 with k = 2.1. We see now
cleaner convergence even during the late ringdown phase. The main difference is that during

6
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Figure 1. Convergence results for the (2, 2) mode of the Weyl scalar Ψ4 for mass ratio
2 case. Top panels show the amplitude (left) and phase evolution (right) for the three
resolutions. Assuming a convergence rate of k and re!nement actor θ, one should have
that (medium–low) = θk (high–medium). Bottom panels show the left and right-hand
side of this equation for amplitude (left) and phase (right) for θ = 1.5 and k = 1.7.

the late ringdown for q = 3 there is signi!cantly less tidal debris being accreted by the BH.
Because of its low density, it is dif!cult to demonstrate clean convergence.

A shortcoming of our initial data methodology is the presence of spurious oscillations in
the NS. We suspect that the oscillations are likely triggered by how the star is boosted, i.e. via
the Bowen–York extrinsic curvature, since we observe similar oscillations for tests with single
boosted stars. Another source could be tidal effects, which are not included in the initial data.
Although these effects could be reduced if one starts the simulations at larger separations. In the
left panel of !gure 3, we show the oscillations in the normalized rest mass density of the NS as
a function of time for the three mass ratio cases. We !nd oscillation amplitude ranges between
15 and 18%, with the oscillation frequency that of the fundamental mode of the NS. To test
that the oscillations are likely due to the boost and tidal effects, we compare the oscillations
for different initial separations for q = 2, as shown in the panel on the right. As we increase
the initial separation, tidal forces become weaker and the initial velocity of the star smaller, as
a consequence the amplitude of the oscillations reduce. We should stress that the oscillations
are small and do not have any effect on the stability of the star.

7
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Figure 2. Same as !gure 1 but for mass ratio 3 case. Here, θ = 1.5 and k = 2.1.

Figure 3. Oscillations in the normalized central density of the NS. Here, ρmax is the
central density of the NS at any time t and ρinit is the central density at initial time. Panel
on the left shows a comparison of density oscillations for different mass ratio while panel
on the right shows the comparison for four different separation for mass ratio 2.

8
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Figure 4. Evolution of the binary coordinate separation for each BHNS and BBH binary
described in table 1. Solid squares denote when the binary has reached the tidal radius
as computed by equation (36).

4. Results

4.1. Inspiral and merger dynamics

During the late inspiral stage of a BHNS binary, the NS will face a constant battle between the
tidal forces from the BH and its self gravity. Depending on the mass of the BH, this could lead
to the complete disruption of the star before it gets swallowed by the BH. The tidal forces by
the NS could also in"ict deformations in a companion, such as in a double NS binary merger.
However, although not generally accepted [55], there is strong evidence that BHs are immune
to tidal deformations [56]. Thus, there are potentially fundamental differences between a BBH
and a BHNS.

For compact object binaries, the luminosity of gravitational radiation and the rate of change
of radiated angular momenta depend on the mass ratio as q2/(1 + q)4 [32]. As a consequence,
the higher the mass ratio, the longer it takes for the binary to merge. In !gure 4, we show the
evolution of the coordinate separation of the binary for each of the BHNS systems described
in table 1 and its BBH counterpart. The delay as a function of q for both, the BHNS binaries
and BBHs, is evident in this !gure. For a given q, we also see that the coordinate separation of
the BHNS binary decreases faster than its corresponding BBH. For the q = 5 case, the BBH
and BHNS follow each other up to a separation ∼ 7.5M. For q = 3, the binaries diverge a
little earlier at a separation of approximately 8M. The earliest deviation occurs for the q = 2

9
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Table 2. Binary system, mass ratio q, ADM energy EADM and angular momentum JADM,
eccentricity e, retarded time to peak luminosity Tmx , and !nal BH offset ∆mx at Tmx .

System q EADM/M JADM/M2 e/10−3 Tmx/M ∆mx/M

BBH 2 0.9901 0.829 6.3 648 0.027
BHNS 2 0.9914 0.829 6.8 537 0.746
BBH 3 0.9918 0.702 5.5 743 0.058
BHNS 3 0.9921 0.702 8.3 662 0.782
BBH 5 0.9939 0.523 10.5 957 0.037
BHNS 5 0.9941 0.523 9 848 1.03

case, approximately at a time 50M from the start of the simulation. That is, as the mass ratio
increases, the BHNS binaries resemble longer a BBH. The difference in the binary separation
between BBH and BHNS systems grows stronger as the merger is approached.

Regarding the time when compact objects merge, for BBH, it is marked by the sudden for-
mation of a common apparent horizon. The apparent horizon appears a few Ms before the
gravitational radiation reaches peak luminosity. For BHNS binaries, we do not have the for-
mation of a common apparent horizon since the only horizon is the one from the single BH in
the binary. Therefore, when making comparisons near coalescence, we will focus on the time
when the gravitational radiation reaches peak luminosity (corresponding to the peak of |Ψ4|).

In table 2, Tmx denotes the retarded time to peak luminosity and ∆mx the !nal BH offset
at Tmx . Notice that the BHNS binaries reach peak luminosity earlier than their correspond-
ing BBH. We will address the reasons for this difference when we discuss the GWs emitted
by the binaries. An interesting aspect to point out is that this difference does not decrease
monotonically with q.

Also in !gure 4, denoted with solid squares is the coordinate separation when the binary
reaches the tidal radius as estimated by [32, equation (17.19)]

RT

Mh
) 2.4 q−2/3 C−1. (34)

Relative to the ISCO radius RI ) 6Mh, the tidal radius is given by

RT

RI
)

( q
4.3

)−2/3
(

C
0.15

)−1

. (35)

For q ! 4.3, RT " RI, and the NS is swallowed by the BH relatively intact. For reference, the
tidal radius in units of the total mass M is given by

RT

M
) 16

q1/3

1 + q

(
C

0.15

)−1

. (36)

Thus, RT/M ) 6.6, 5.6 and 4.4 for q = 2, 3 and 5, respectively. For reference, the coordinate
separation at the beginning of the simulations is 9M

To get an overall sense of the inspiral and merger, !gures 5–7 show snapshots of the rest
mass density in the orbital plane for all the cases under consideration. For q = 2, the tidal
forces from the BH trigger mass shedding early on, at approximately 440M from the beginning
of the simulation when the binary separation is approximately 6.25M. This happens roughly
96M before the peak luminosity. Figure 5 shows four evolution snapshots for this case. The
BH is represented by a black circle with white boundary. The initial central density of star is

10
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Figure 5. Snapshots of the rest mass density for the q = 2 BHNS. The BH is represented
by a black circle with white boundary. Panel on the top left shows the beginning of stellar
disruption 96M before peak luminosity. Top right panel shows the stellar disruption at
the time of merger followed by circularization of matter forming an spiral arm around
BH 100M after the merger (bottom left panel). The last panel shows the !nal state of the
accretion disk 500M after the merger.

0.02M−2 (7.7 × 1014 g cm−3). Top left panel shows a snapshot at time 96M before the peak
luminosity, when the NS begins to be disrupted. Top right panel shows the stellar disruption
at the time of merger. Notice that the NS has been completely destroyed, deforming into a
spiral arm around the BH which extends to 7M beyond the hole. Bottom left panel show the
circularization stage of matter around the BH about 100M after the merger. We found that
about 90% of the star’s material falls into the BH within the !rst 100M of evolution while the
remaining material continues to expand outwards slowly morphing into an accretion disk. The
bottom right panel shows the !nal state of the accretion disk 500M after the merger, reaching
a core density of ∼ 10−4M−2 (∼ 1012 g cm−3).

The q = 3 BHNS merger follows the q = 2 steps but not as dramatic in terms of disruption
effects. In !gure 6, the top left panel shows the beginning of tidal disruption and tail formation
78M before the merger. The channel of mass transfer is much narrower due to weaker tidal
interactions. This is followed by complete disruption of the star at the merger shown in the
top right panel more than 95% of which is consumed by the BH within 30M. The bottom
left panel shows matter circularization 30M after the merger. The bottom right panel depicts

11
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Figure 6. Snapshots for q = 3 BHNS merger. Top left panel shows the beginning of
tidal disruption and tail formation 78M before peak luminosity, and the top right panel
shows the consumption of disrupted star by the BH at peak luminosity. The bottom left
panel shows matter circularization 30M after peak luminosity. The bottom right panel
depicts the formation of a very tenuous accretion disk 500M after peak emission.

the formation of a very tenuous accretion disk 500M after peak emission with characteristic
density of ∼10−5M−2 (∼1011 g cm−3).

As mentioned before, the q = 5 for a BHNS behaves more like a BBH, with the star remain-
ing almost intact by the time it reaches RI since RT ) 4.4M. The top left panel in !gure 7 shows
a snapshot at 45M prior to the merger. There are hints of material being stripped from outer
layers of the star. The top right panel shows the situation 20M before the merger and the bot-
tom left panel at the merger. The bottom right panel shows the result 20M after the merger. At
that point, 99% of the NS has been swallowed by the hole. This leaves a remnant state with
extremely low densities. Since there is very little change in this case of triggering electromag-
netic signatures, the BHNS and BBH are almost indistinguishable from each other. This will
be more apparent when we compare GW emissions.

4.2. The final BH

The mass and spin of the !nal BH in a BHNS merger will depend on the extent to which the
NS is devoured by the BH. Table 3 shows Mh the irreducible mass of the initial BH (mass of
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Figure 7. Snapshots for the BHNS q = 5 binary merger. The top left panel shows the
rest mass density at 45M prior peak luminosity. The top right panel shows the situation
20M before peak luminosity and the bottom left panel at the merger. The bottom right
panel shows the result 20M after peak luminosity.

Table 3. Mh irreducible mass of the initial BH (mass of the larger BH in BBH cases), M∗ initial mass
of the NS (irreducible mass of the smaller BH in BBH cases), Mf irreducible mass of the !nal BH, Mc
Christodoulou mass of the !nal BH, Mtd mass left outside the !nal BH, af dimensionless spin of the !nal
BH, Erad radiated energy, and vk its kick.

System q Mh/M M∗/M Mf/M Mc/M Mtd/M af EradM−1 vk(km s−1)

BBH 2 0.667 0.333 0.9073 0.9598 0.617 0.0295 147.7
BHNS 2 0.667 0.333 0.8984 0.9659 0.019 0.683 0.0077 39.1
BBH 3 0.750 0.250 0.9319 0.9712 0.5405 0.0208 169
BHNS 3 0.750 0.250 0.9308 0.974 0.008 0.563 0.0102 29.2
BBH 5 0.833 0.167 0.9598 0.9823 0.4166 0.0118 135.7
BHNS 5 0.833 0.167 0.9603 0.9834 0.0004 0.4203 0.0106 103.5

the larger BH in BBH cases), M∗ the initial mass of the NS (irreducible mass of the smaller
BH in BBH cases), Mf the irreducible mass of the !nal BH, Mc the Christodoulou mass of the
!nal BH, Mtd the mass left outside the !nal BH, af the dimensionless spin of the !nal BH, Erad

the radiated energy, and vk the kick of the !nal BH.
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Figure 8. Top left panel shows with solid lines the growth of the irreducible mass of the
BH as a function of time for BHNS binaries. Dashed horizontal lines denote the !nal
mass of BH for the corresponding BBH merger. T = 0 is the time at peak luminosity. Top
right panel shows the corresponding mass growth rate Ṁh. Middle left panel shows with
solid lines the growth of the spin of the BH for BHNS binaries. For reference, dashed
horizontal lines denote the spin of the !nal BH for the corresponding BBH merger. Mid-
dle right panel shows the corresponding spin growth rate Ṡz. Bottom left panel shows
the accumulation of linear momentum emitted by GWs for both, the BHNS (solid lines)
and BBH systems (dashed lines). Bottom right panel depicts the corresponding rate of
linear momentum accumulation.

First thing to notice is that the irreducible and Christodoulou masses of the !nal BH in the
BHNS and BBH are comparable. On the other hand, the energy radiated and the spins and
kicks of the !nal BH differ signi!cantly. BHNS mergers produce a !nal hole with higher spin
but with a lower kick. The differences in both the !nal spin and kick decrease as q increases
since the binary becomes more BBH-like. The main culprits of the differences are again the
tidal deformations and disruption of the NS.

To understand the differences in the mass, spin and kicks of the !nal BH, we plot in !gure
8 their evolution. The top left panel shows with solid lines the growth of the irreducible mass
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of the BH in BHNS mergers. Dashed horizontal lines denote the !nal mass of BH, Mf , for the
corresponding BBH merger. T = 0 is the time at the peak luminosity. Notice that as expected,
for q = 5, the growth is abrupt because the NS is swallowed almost intact, thus mimicking a
BBH in which a common apparent horizon suddenly appears to signal the merger. For q = 2
the transitions takes much longer and the !nal mass of the BH does not get closer to the mass
of the BBH !nal BH. This is because of the material left behind. The rates at which the mass of
the !nal BH changes are depicted in the top right panel of !gure 8. The rates clearly emphasize
that the growth is sharp for q = 5 and smoother for q = 2.

Regarding the spin of the !nal BH, the middle left panel in !gure 8 shows with solid lines the
growth of the spin of the !nal BH for BHNS binaries given by Sz/M2, and, for reference, dashed
horizontal lines denote the spin of the !nal BH for the corresponding BBH merger. Middle right
panel shows the corresponding spin growth rate Ṡz/M. Here also one observes that for lower q
the transition is smoother. Important to notice that Sz/M2 is not the dimensionless spin of the
!nal BH. The dimensionless spin is given af = Sz/M2

c with Mc the Christodoulou mass of the
!nal BH. The reason why af for BHNS are higher is because, as we will see later, the emission
of gravitational radiation carrying out angular momentum is lower; thus, at merger, the !nal
BH is left with high angular momentum.

For the kicks of the !nal BH the situation reverses. The gravitational recoil is lower for
BHNS mergers. This is because most of the accumulation of the gravitational recoil in compact
object binaries takes place in the last few orbits, but this is precisely the stage when BBH and
BHNS differ the most. As the NS undergoes disruption, and thus lose its compactness, the
BHNS binary radiates less and with it the opportunity to carry out linear momentum. This is
clear from the bottom panels in !gure 8 where the left panel shows the accumulation of linear
momentum emitted by GWs for both, the BHNS (solid lines) and BBH systems (dashed lines).
It is interesting to notice that while the magnitude of the kicks for BBHs are Q5 < Q2 < Q3,
consistent with the results in reference [57], the kicks for BHNS systems are Q3 < Q2 < Q5.

4.3. Tidal debris

We have seen from !gure 5 that the disruption of the NS would leave behind a trail of material
in the vicinity of the BH. To get a better understanding of how the remnant material outside
the BH depends on the mass ratio q, we plot in !gure 9 the rest mass of tidal debris Mtd outside
the BH normalized to the initial rest mass of the NS. After peak luminosity, Mtd accounts for
both the mass in the accretion disk and the unbound debris. For t < −50M, the material from
the NS has not reached yet the hole; thus, Mtd includes the entire mass of the star.

For q = 2, approximately 90% of the mass of the NS falls into the BH within t ∼ 100M
after peak luminosity. By t ∼ 400M, the accretion process slows down, leaving behind 5% of
the mass of the NS. The q = 3 case follows a similar trend. At t ∼ 100M, the BH has already
consumed ∼ 94% of the stellar material, and at t ∼ 400M only ∼ 3% is left outside the holes.
As expected, the case q = 5 is signi!cantly different since 99% of star is devoured by the
hole just t ∼ 20M after peak luminosity, leaving outside barely any material. Table 3 lists the
!nal Mtd for each case. Comparing with the results in [7, 14], we !nd that our masses agree
well for q = 2 but they differ by approximately 20% for q = 3. A possible explanation for this
difference could be the effects from the arti!cial atmosphere used in this type of simulations
to handle the vacuum regions in the computational domain.

4.4. Gravitational waves

Figure 10 shows the real part of the (2, 2) mode of the Weyl scalar Ψ4 for the BHNS binaries
(solid line) together with their corresponding waveform for the BBH (dashed line). The insets
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Figure 9. Rest mass of the tidal debris Mtd outside the horizon normalized to the initial
rest mass of the NS.

show the waveforms early on between 150 " T/M " 450, from which one can see that the
BBH and BHNS waveforms are closer to each other as q grows. In this !gure, it is also evident
that Ψ4 for BHNS binaries reaches its maximum amplitude earlier. Since peak luminosity also
signals that the binary merges around that time, this also implies that BHNS binaries merge
earlier than their corresponding BBH system. Before addressing the reasons for the prompt
merger of BHNS binaries, we will discuss the differences in the peak luminosity.

Figure 11 depicts the amplitude of Ψ4. The left panel shows the waveform amplitudes of
both the BBH and BHNS mergers around peak luminosity. For the BBH amplitudes, from
highest to lowest are q = 2, 3 and 5, respectively. This is not surprising since, as stated before,
the luminosity of gravitational radiation depends on the mass ratio as q2/(1 + q)4. Interestingly,
the situation reverses for BHNS systems. The amplitudes are not only lower than those of the
BBHs, but now instead from highest to lowest are q = 5, 3 and 2. For q = 2 and 3, the decrease
in amplitude is due to the disruption the NS experiences that makes it loose compactness and
thus decrease the quadrupole moment of the binary. The q = 5 BHNS case is comparable to
the BBH case because, once again, this is the case in which the star merges with the hole
without signi!cant disruption. The ‘bump’ observed in this case is an artifact of the way the
spherical decomposition is done. It assumes that the coordinate system is centered at the origin
of the computational domain. From table 2, we see that at merger time the center of mass of
the binary for q = 5 is already displaced 1M from the origin. As a consequence the (2, 2) mode
has contributions from higher modes. The other two q cases also undergo displacements, but
they are not as large, and the higher modes for low q’s are not as dominant as in q = 5.

The right panel in !gure 11 shows the amplitudes of Ψ4 for BHNS binaries during the
time window of the insets in !gure 10. Since this is during the early stage of the simulation,
disruption effects do not play a signi!cant role yet, and the situation resembles the BBH case
in which the amplitude decreases with q. The oscillations in the amplitude of Ψ4 are due to the
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Figure 10. Real part of the (2, 2) mode of the Weyl scalar Ψ4. From top to bottom
q = 2, 3 and 5. BHNS waveforms are depicted with solid lines and the corresponding
BBH waveform with dashed lines. The inset shows the waveforms early on between
150 " T/M " 450.
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Figure 11. Amplitude of the (2, 2) mode of Ψ4. The left panel shows the waveform
amplitudes of both the BBH and BHNS mergers around peak luminosity. The right panel
shows the waveform amplitudes for BHNS binaries during the time window of the insets
in !gures 10.

spurious oscillations in the NS because of the initial data. In separating amplitude and phase
in Ψ4, we did not explicitly separated the effects from the NS oscillations, thus, the oscillatory
behavior remains in the amplitude.

Regarding the prompt merger of BHNS systems, there are only two channels to transport
angular momentum out of the binary to harden it. As with BBH systems, one channel is via GW
emission. The other channel is transport of angular momentum by the tidal debris. Because the
initial data is constructed using a generalization of the puncture Bowen–York approach, the
ADM angular momentum in the initial data is the same for the BHNS binary and its corre-
sponding BBH as stated in table 2. Since we are dealing with non-spinning BHs and NSs, we
only need to look at the angular momentum perpendicular to the orbital plane, namely the z-
component. In !gure 12, we plot with solid lines |JADM

z | − |JGW
z | from top to bottom the cases

q = 2, 3 and 5, respectively. Here, JADM
z is the ADM angular momentum in the initial data,

and JGW
z is the angular momentum carried out by GWs. In !gure 12, dashed lines denote the

angular momentum of the !nal BH. For both, dashed and solid lines, blue denotes the BBH
case and red the BHNS. Since for BBHs there is only one channel, GWs, to remove angular
momentum from the binary, |JADM

z | − |JGW
z | after merger and ring-down closely matches the

value of the angular momentum of the !nal BH. The slight difference is because of the junk
radiation in the initial data.

The situation is different for BHNS binaries. The !rst thing to notice in !gure 12 is that
there is a gap between the value that |JADM

z | − |JGW
z | reaches after merger and ring-down and the

value of the angular momentum of the !nal BH. This gap is closed if in addition one includes the
angular momentum carried out by the tidal debris. The gap is larger the lower the q because the
tidal disruptions is stronger. The other feature in !gure 12 is that the decrease of |JADM

z | − |JGW
z |

is faster for BHNS binaries. The differences start appearing after approximately 300M, 400M
and 500M of evolution for q = 2, 3 and 5, respectively. At those times, as clear from equation
(36), the binary is far from the tidal disruption separation. Therefore, the most likely culprit
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Figure 12. |JADM
z | − |JGW

z | with JADM
z is the ADM angular momentum in the initial data

and JGW
z the angular momentum carried out by GWs. Dashed lines denote the angular

momentum of the !nal BH. For both, dashed and solid lines, blue denotes the BBH case
and red the BHNS. From top to bottom the cases q = 2, 3 and 5, respectively.
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Table 4. Quasi-normal frequencies and damping times computed from the mass and the
spin of the !nal BH in table 3 using the standard !ts in the literature [58].

System q ω2,1
f τ 2,1

f ω2,2
f τ 2,2

f ω3,3
f τ 3,3

f

BHNS 2 0.471 11.73 0.546 11.8 0.866 11.49
BHNS 3 0.446 11.42 0.499 11.42 0.794 11.06
BHNS 5 0.421 11.26 0.454 11.27 0.726 10.86

is the tidal deformations on the NS. This effect was pointed out in reference [28] using post-
Newtonian arguments. Speci!cally, it was noted that the deformation in the NS introduces a
correction term in the potential whose magnitude increases steeply with the decrease of the
orbital separation. The effect is an acceleration of the inspiral and thus on the emission of
GWs, leading to a prompt merger.

4.5. Quasi-normal ringing

Next is to discuss the onset of the quasi-normal ringing of the !nal BH. Given the mass and
the spin of the !nal BH in table 3, we compute from the standard !ts in the literature [58]
the quasi-normal frequency and decay time for the (2, 1), (2, 2) and (3, 3) modes. The values
are given in table 4. Figure 13 shows the amplitude (left panels) and phase (right panels) of
the (2, 1), (2, 2) and (3, 3) modes of Ψ4 after peak luminosity when the !nal BH is expected
to undergo quasi-normal ringing. In these log-linear for the amplitude and linear-linear for
the phase plots, quasi-normal ringing (i.e. exponentially damped sinusoidal) would show up as
linear dependence with time for both the amplitude and the phase. For reference, the solid lines
are the quasi-normal ringing computed from table 4. Table 5 shows the quasinormal frequency
and decay time computed from linear !ts of the data.

For the (2, 1) mode, we see that the only case showing quasi-normal behavior is the q = 5,
the one with the more BBH-like characteristics. For the other two cases, there are two factors
that prevent a clean quasi-normal ringing. One is that the geometry of the tidal debris does not
favor excitation of the !nal BH in this mode. The other is that, during the time spanned in the
!gure for the decay of Ψ4 (∼ 100M), the !nal BH is still growing as one can see from !gure 8.
The (2, 2) mode is the one with more noticeable quasi-normal characteristics, in particular in
the phase. The exponential decay of the amplitude is cleaner for the q = 3 case, and the q = 5
case shows the bumps associated with the contributions from higher modes due to the center
of mass displacement. The q = 2 case shows exponential decay after 50M, which according
to the left panel in !gure 8 is when the BH has almost stopped accreting the debris from the
disrupted NS. Interestingly, in all cases, the phase of the (3, 3) mode shows an approximate
linear growth (i.e. constant frequency of oscillation), but only in the case q = 5 the growth
matches that of quasi-normal ringing. Similarly, exponential decay in the amplitude is not as
clear with the exception of the q = 5. The oscillations in the q = 3 we conjecture are associated
with the accretion of tail of debris observed in the bottom left panel in !gure 6.

4.6. Spectrum and mismatches

Ultimately, comparisons between BBH and BHNS systems would be incomplete if not looked
through the eyepiece of data analysis tools. The focus of a follow up paper will pay particular
attention to observational signatures from the compactness of the NS. For the present work, we
start by showing in !gure 14 the strain of both the BHNS and BBH systems for each mass ratio
(from top to bottom). Panels on left show the plus polarization of the (2, 2) mode of the strain
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Figure 13. Amplitude (left panels) and phase (right panels) of Ψ4 after peak luminosity
for BHNS systems. The solid lines are the quasi-normal ringing computed from table 4.

and panels on the right show the phase difference between the BHNS and BBH waveforms.
We observe very similar characteristics to Ψ4 as seen in !gure 10. The peak of strain in the
BHNS systems occurs earlier than the BBH for the same mass ratio suggesting early mergers.
The two signals overlap for longer durations with increasing mass ratio as seen from the phase
differences. The phase differences grow steadily reaching a peak beyond which the BHNS
signal dies off as the system reaches a stable state.

Figure 15 shows the Fourier spectrum of strain of both the BHNS and BBH systems. It is
evident how the BHNS and the corresponding BBH system agree early on for low frequencies,
with the q = 5 following each other through merger.

Next we show in table 6 mismatches, 1 − O(h1, h2), relative to LIGO and the Einstein
telescope, with the matches given by

O(h1, h2) =
maxφc,tc〈h1, h2〉√
〈h1, h1〉〈h2, h2〉

(37)
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Figure 14. Panels on the left show the real part of the (2, 2) mode of the strain. From
top to bottom q = 2, 3 and 5. BHNS waveforms are depicted with solid lines and the
corresponding BBH waveform with dashed lines. Panels on the right show the phase
differences between BBH and BHNS waveforms.

maximized by the time and phase at coalescence, tc, and φc. The inner product 〈, 〉 is de!ned
as

〈h1, h2〉 ≡ 4 Re
∫ ∞

0

h̃∗
1( f )h̃2( f )

Sn( f )
d f . (38)

In this expression, h are strains including modes up to l = 8 and Sn( f ) is the one sided power
spectral density of the detector noise. The mismatches in table 6 include three different incli-
nations: i = 0, π/6 and π/3. As expected, for i = 0 (face-on), the mismatch is highest for
q = 2 because the (2, 2) mode dominates in this case; the mismatch decreases with increas-
ing mass ratios consistent with our previous observations. Across the detectors, mismatches
are smaller for the Einstein telescope compared to LIGO, given the higher sensitivity of the
former. For i = π/6, the trend remains similar though the mismatch values decrease for q = 2
while increase for other two cases because of the contributions from higher modes. This sit-
uation becomes more visible for i = π/3, where the contributions of higher modes increase
signi!cantly. The mismatch now increases with mass ratio with 12% mismatch between BBH
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Figure 15. Fourier spectrum of the strain.

Table 5. Quasi-normal frequencies and damping times computed from !tting the data
in !gure 13.

System q ω2,1 τ 2,1 ω2,2 τ 2,2 ω3,3 τ 3,3

BHNS 2 0.155 55.62 0.543 9.898 0.603 9.86
BHNS 3 −0.332 13.1 0.492 11.32 0.483 11.52
BHNS 5 0.436 10.83 0.449 11.08 0.71 10.08

Table 6. Mismatches between BBH and BHNS waveforms for three different inclination
angle i and for the Einstein telescope (ET) and LIGO.

q Detector i = 0 i = π/6 i = π/3

2 LIGO 0.0845 0.0756 0.074
2 ET 0.0767 0.0686 0.0666
3 LIGO 0.0611 0.0731 0.0984
3 ET 0.0464 0.0576 0.0814
5 LIGO 0.0046 0.0401 0.1194
5 ET 0.0030 0.0349 0.1072

and NSBH waveforms for q = 5 and 10% mismatch for q = 3. This shows the importance of
higher modes in the study of mixed binaries at high mass ratios.

23



Class. Quantum Grav. 38 (2021) 185008 B Khamesra et al

5. Conclusions

For high mass ratio systems, distinguishing BHNS binaries from BBH binaries will incur chal-
lenges because the NS is swallowed by the hole without experiencing signi!cant disruption. To
investigate the transition of the merger behavior of a BHNS into a BBH-like system, we have
carried out three BHNS merger simulations and their corresponding BBH mergers for mass
ratios q = 2, 3 and 5. The BHNS system with q = 2 represents the case of total NS disruption
before merger, and the q = 5 case is an example of a BBH-like merger. The focus was on the
effects that the disruption of the NS imprints on the inspiral and merger dynamics, the proper-
ties of the !nal BH, the accretion disk, the GWs, and the strain spectrum and mismatches. A
secondary objective of the study was to demonstrate the effectiveness of the method we devel-
oped in reference [30] to construct initial data with a generalization of the Bowen–York data
for BH punctures to the case of NSs.

The most noticeable feature observed in the simulations of the merger dynamics of the
BHNS binaries was that they merge earlier than their corresponding BBHs. We found that
the dominant factor hardening the mixed binary is the enhanced angular momentum emission
carried out by the GWs due to the tidal deformations in the NS. On the other hand, the tidal
disruption of the NS suppresses the gravitational recoil of the !nal BH in BHNS mergers when
compared with BBHs. Regarding the !nal BH, its mass is comparable between the BHNS and
BBH systems. This, however, is not the case regarding the !nal spin. For instance, in the case
of q = 2, the tidal debris as is accreted by the hole increases the spin by approximately 10%.
The same tidal debris has an in"uence in the quasi-normal ringing of the !nal BH. For low
q’s only the (2, 2) mode exhibits a clean damped exponential sinusoidal behavior. In terms of
mismatches, the most favorable con!guration to distinguish between BHNS and BBH systems
with large q’s would be that for large inclinations where higher modes are more in"uential.
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