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SENSELET: Distributed 
Sensing Infrastructure for 
Improving Process Control  
and Safety in Academic 
Cleanroom Environments 

Semiconductor cleanrooms are used to fabricate devices with 
feature sizes that can be much smaller than a dust particle. Hence, 
any environmental deviations in temperature, or humidity around 
fabrication instruments may become the root cause of hundreds 

of transistors failing during the manufacturing. Furthermore, researchers 
work with dangerous chemicals in cleanrooms and violation of safety 
may lead to disastrous consequences. Therefore, we have developed 
an affordable, locally-controlled distributed sensing infrastructure, 
called SENSELET, for academic cleanrooms. It provides highly effective 
services for environment sensing around scientific instruments, sensory 
data collection and visualization, indoor localization, and instrument 
proximity detection for safety of researchers. 

Semiconductor cleanrooms provide a 
pristine environment to fabricate devices 
with feature sizes much smaller than a 
dust particle. A dust particle landing on a 
silicon wafer can be the root of hundreds 
of transistors failing during manufacturing. 
For next-generation computers and displays, 
transistors and LEDs are becoming increas-
ingly smaller and more complex in order 
to provide larger computation powers or 
pixel densities in a smaller package. With 
critical dimensions down to nanometers in 
size (10,000 times smaller than the width 

of a hair), tight process control is necessary. 
Furthermore, to yield successful devices, 
humidity, temperature, and pressure around 
cleanroom instruments must be strictly 
controlled. Shown in Figure 1, we can see 
the optical microscope image of developed 
photoresist in a controlled environment that 
forms sharp waveguides versus photoresist 
showing delamination attributed to excess 
humidity of the cleanroom [1,2].

To enable this control, real-time auto-
mated sensing of environment data around a 
cleanroom’s instruments must be collected. 

Hence, we need a sensing system to ensure 
correctness of physical experimentation. 

The automated sensory data collection 
not only benefits the researchers when 
fabricating devices, but also cleanroom 
administrators responsible for the upkeep 
and operation of these instruments. These 
specialized microscopy tools cost hun-
dreds of thousands of dollars and can be a 
significant expense for smaller academic 
cleanrooms, such as the cleanrooms in the 
Holonyak Micro & Nanotechnology Labora-
tory (HMNTL) at the University of Illinois, 
Urbana-Champaign. Hence, it is critical to 
monitor and maintain these instruments 
for as long as possible. Automated sensing 
of the external temperature of a vacuum 
pump may show trends that indicate when 
parts are wearing down so that preventative 
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maintenance can be done more efficiently 
and costly failures can be avoided. 

Beyond improving device fabrication, a 
sensing system is critical for improving the 
safety of cleanrooms. Dangerous chemicals  
and gasses are often involved in the semi- 
conductor device manufacturing process 
so being able to monitor for leaks and the 
function of safety equipment is critical. 
Additionally, systems to monitor personnel 
can detect the proximity between users and 
instruments, ensure access control, and help 
locate people in case of an emergency. 

While large, industrial cleanrooms can 
afford to implement customized high-
performance distributed sensing systems 
(e.g., [3]) that are often very costly, smaller 
academic cleanrooms often do not have that 
luxury. Therefore, we develop an affordable 

and scalable sensing cyber-infrastructure, 
called SENSELET (Sensory Network  
Infrastructure for Scientific Lab Environ-
ments), to enable academic cleanrooms to 
improve their process control and safety. 

The challenges for SENSELET are: (a) 
SENSELET is a campus cyberinfrastructure 
tailored to cleanrooms where the environ-
ment monitoring system has to accom-
modate the layout of cleanrooms, cover 
every corner of these cleanrooms, and yet 
follow a tight budget. (b) Cleanrooms are 
often equipped with expensive scientific 
instruments (e.g., microscopes), and detect-
ing anomalies in environmental data is of 
significant value to cleanroom administra-
tors to react promptly in case of emergency. 
(c) User-friendly interpretation of data must 
be available for cleanroom administrators 

and researchers to gain new insights. (d) 
Proximity detection must distinguish users 
in white protective suits and achieve high 
location accuracy in complex indoor spaces. 

Considering these challenges, SENSELET 
is developed as an edge-cloud two-tier archi-
tecture, collecting temperature and humidity 
measurements, which are stored, analyzed, 
and visualized at the private cloud, and moni-
tored by cleanroom managers. SENSELET 
deploys watchdog algorithms to automati-
cally restart sensors and provide reliable sen-
sor readings. Wi-Fi sensing and cleanroom 
cameras are used for indoor localization  
and proximity detection.

The SENSELET benefits are: (1) It is a 
powerful tool to monitor cleanrooms, and 
send alerts in case of hazardous events. 
(2) Researchers become aware of chang-
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charts, graphs, query builders, and alerts. 
Grafana allows users to attach rules to their 
dashboard panels that give off alerts. Users 
can configure these rules and schedule them 
as to how often and under what conditions 
an alert should send a notification to clean-
room administrators. 

In Figure 3, we show five sensors S0 – S4 
and instruments inside the HMNTL lithog-
raphy cleanroom. Figure 3 (right) visualizes 
the data from S0-S4 with upper panel show-
ing temperature, and lower panel showing 
humidity measurements. The visualization 
shows that SenseEdge devices are able to 
capture well variations in temperature and 
humidity measurements. 

LOCALIZATION AND PROXIMITY 
DETECTION SERVICES
For security and safety reasons, a cleanroom 
administrator needs a service that can record 
users’ locations and proximity to instruments 
precisely. Traditional ID card-based access 
control typically provides room-level record 
only. Surveillance cameras only [5] do not 
work well in cleanrooms either, because 
users wear the same type of protective suits, 
which makes it hard to distinguish them by 
appearance. Although localization techniques 
based on Wi-Fi signals work well in indoor 
spaces and achieve low cost [6], their accuracy 
(1- 2m) is not enough as the instruments in 
cleanrooms are even closer to each other. 

In SENSELET, we build localization 
and proximity detection services, shown in 
Figure 4, based on the fusion between Wi-Fi 
fingerprints and computer vision techniques.

The location sensing subsystem is a 
client-server system, in which the client 
uses the user’s mobile device and the server 

crucial aspect of this reliability lies in 24-7 
availability. The monitoring service must 
be highly available, and even a temporary 
service outage could potentially miss the 
reporting of hazardous conditions, leading 
to catastrophic results.

We design a Watchdog mechanism on 
SenseEdge. As the reset signal from Sense-
Cloud to SenseEdge could be corrupted or 
delayed, we let SenseEdge monitor its health 
on its own and reset itself when necessary. 
SenseEdge sends heartbeats to the Sense-
Cloud and waits for SenseCloud ACKs. If 
SenseEdge receives successfully an ACK 
from SenseCloud, it knows that it is healthy 
at this time, otherwise, after a number of 
failed heartbeats it knows that communica-
tion between itself and SenseCloud failed 
and it should reset itself. In our implemen-
tation, we leverage the Linux kernel module 
softdog, which monitors ACKs from 
SenseCloud and restarts SenseEdges when 
ACKs are not received for some preconfig-
ured time interval. 

The environment monitoring data are 
collected at SenseCloud via Wi-Fi net-
work. At SenseCloud, we run a time-series 
open source database, called InfluxDB [4], 
because time-series databases are optimized 
for compression, storage and query of time-
series sensory data. Queries of time-series 
data are of interest to cleanroom adminis-
trators to audit environment data at specific 
time points in history, and to researchers 
to get their data corresponding to times of 
their experiments instead of irrelevant data. 
SenseCloud storage employs a strict access 
control service based on IP whitelisting. 
SenseCloud deploys the Grafana visualiza-
tion tool [8], which provides web-hosted 

FIGURE 1. Data in controlled environment (left)  
and data due to excess humidity of cleanroom (right).

ing environmental conditions during their 
experiments. They can correlate their yielded 
samples with external environmental sam-
ples, and they can better reason about their 
sample defects. (3) Localization and proxim-
ity detection assist in safety provisioning. 

The first section presents the SENSELET 
architecture and its environment moni-
toring service. The next section discusses 
indoor localization and proximity detection 
services. We conclude in the last section. 

SENSELET ARCHITECTURE  
AND ENVIRONMENT  
MONITORING SERVICES 
SENSELET is a distributed sensing infra- 
structure for academic cleanrooms. SENSE-
LET’s two-tier architecture has four compo-
nents: Environment Monitoring, Localiza-
tion and Proximity Detection, Data Storage, 
and Visualization as shown in Figure 2. We 
discuss here the Environment Monitoring, 
Data Storage and Visualization components, 
and present Localization and Proximity 
Detection in Section 3.   

Environment monitoring employs 
SENSELET edge devices, called SenseEdges, 
which we place inside cleanrooms. Sens-
eEdges focus on sensory data acquisition, 
reliability assurance, and communication 
with the private cloud, called SenseCloud, 
located on the campus. As shown in Figure 
2, SenseEdge consists of a Wi-Fi-equipped 
single board computer (Raspberry Pi), and a 
commercial off-the-shelf sensor(s), soldered 
to the single board computer. Our solution 
is significantly easier to deploy in almost ev-
ery corner of cleanrooms than existing Eth-
ernet gateway-based industrial solutions for 
cleanroom sensing. The Ethernet gateways 
put constraints on the availability and abun-
dance of Ethernet ports inside these rooms. 
Also, even though soldered sensors are less 
convenient than wireless sensors such as 
Zigbee sensors, the board computers can 
directly power these sensors, hence they last 
significantly longer. Other industrial sensing 
solutions, such as Samsung SmartThings 
Hub [3], could not be considered for our 
deployment since these solutions require a 
remote cloud outside of campus, monthly 
usage fees to access data, and closed solu-
tions towards scaling with new sensors and 
services as cleanroom administrators need. 

“Sensing Reliability” is of great impor-
tance to cleanroom administrators. One 
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resides in SenseCloud. The used localization 
method, MMLOC [7], consists of offline 
and online phases. 

Offline Phase: In cleanrooms, because 
of diverse factors, such as installation 
positions, barrier positions, and power 
levels, each access point (AP) generates a 
unique RSS distribution. During the offline 
phase, we first divide the indoor space into 
small grids with a constant size (e.g., 1 m × 
1 m), and measure the RSS from each APs 
at the center of each grid. In each grid, the 
RSS values from the APs are named as the 

fingerprint of that grid. Due to many factors 
such as signal fading, the RSS measurement 
result for an AP is not constant. To improve 
the localization accuracy, for each AP, we 
record multiple RSS values in each grid. We 
store the measurement results in SenseCloud 
and build a mapping between grid locations 
and fingerprints. 

Online Phase: The client keeps measuring 
the RSS from each AP, caches the most 
recent results and periodically uploads them 
to SenseCloud. For each AP, the uploaded 
results contain multiple cached values.  

The server compares the uploaded RSS 
values with the stored fingerprints, and finds 
the best matched fingerprint. Then, the grid 
mapped to the fingerprint is the estimated 
user’s location. 

We evaluate our service in a 40 m2 
cleanroom. There are many obstacles and 
thus the environment is complex. We deploy 
four Tenda AC1200 APs uniformly around 
the room. In the offline phase, we divide the 
experiment field into 40 grids and collect 
the RSS fingerprints using four Android 
smartphones (Samsung Nexus S). In each 
grid, we collect 30 RSS values from each AP. 
During the online phase, we use another 
Samsung Nexus S to measure RSS in the 40 
grids, and in each grid it caches and uploads 
two RSS values for each AP.

The average errors are 3.08 m, 2.09 m 
and 1.67 m when the number of APs used 
for localization ranges from one to three. 
When all four APs are used for localization, 
the average accuracy achieves 1.15 m. The 
results show that, as long as each grid is 
covered by enough APs, our system can 
achieve good performance in cleanrooms. 

The video segments from a monocular 
camera, mounted on the cleanroom ceiling, 
are sent to SenseCloud to run the proximity 
detection (see Figure 4). The algorithm is 
as follows: (1) Background-foreground 
subtraction highlights different blobs. (2) 
The contour detection selects the blobs that 
correspond to users. (3) We convert 2D 
coordinates of the user and instrument into 
3D through parameters, obtained from a 
calibration process because it is not possible 
to get real-time depth information of users 
from a 2D camera; the only plane that stays 
the same between background and user is 
the floor; and the distance of user and two 
instruments can be almost the same in 2D 
while being different in 3D. (4) The 3D floor 
coordinates of the user and blobs are used 
for tracking and checking the nearness to the 
instrument. (5) Proximity detection results  
are merged with localization results to localize 
and identify user using the instrument. The 
results are stored in SenseCloud. 

In Figure 4, we show proximity detection 
output with two users being tracked, high- 
lighted in green and red boxes, working 
on instruments marked with circles on 
the floor. The yellow circle indicates an 
“available” instrument and green indicates an 
“occupied.” We evaluate proximity detection 

FIGURE 2. SENSELET Architecture.
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FIGURE 3. Deployment of SENSELET (left) 
and visualization of collected data (right).
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with a seven-minute video segment captured 
from one HMNTL cleanroom. We manually 
label the video segment in frame intervals 
for ground truth. Our algorithm yields an 
accuracy of 71%, which is the number of 
correct instruments that users are working  
on as compared to the ground truth.

CONCLUSION 
To take sensor-edge-cloud solutions, devel-
oped for highly controlled and/or artificial 
environments, and deploy them in academic 
cleanrooms was non-trivial. We gained sev-
eral insights: (1) Due to diverse cleanroom 
users, it was important to understand users’ 
requirements. In SENSELET, the biggest 
concerns were reliability and availability of 
data. (2) Enhancing reliability of commodity 
sensors in SenseEdge required non-computing 
considerations, e.g., external protection of  
sensors. (3) Camera’s blind spots exist in clean-
rooms, which makes it hard to determine 
always proximity of users to an instrument. 
Hence, even though Wi-Fi sensing helped in 
our proximity detection, other sensing tech-
nologies are needed to increase accuracy. n
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FIGURE 4. Localization and Proximity Detection System in SENSELET.




