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SENSELET:

Distributed

Sensing Infrastructure for
Improving Process Control
and Safety in Academic
Cleanroom Environments

emiconductor cleanrooms are used to fabricate devices with
feature sizes that can be much smaller than a dust particle. Hence,
any environmental deviations in temperature, or humidity around
fabrication instruments may become the root cause of hundreds
of transistors failing during the manufacturing. Furthermore, researchers
work with dangerous chemicals in cleanrooms and violation of safety
may lead to disastrous consequences. Therefore, we have developed
an affordable, locally-controlled distributed sensing infrastructure,
called SENSELET, for academic cleanrooms. It provides highly effective
services for environment sensing around scientific instruments, sensory
data collection and visualization, indoor localization, and instrument
proximity detection for safety of researchers.

Semiconductor cleanrooms provide a
pristine environment to fabricate devices
with feature sizes much smaller than a

dust particle. A dust particle landing on a
silicon wafer can be the root of hundreds
of transistors failing during manufacturing.
For next-generation computers and displays,
transistors and LEDs are becoming increas-
ingly smaller and more complex in order
to provide larger computation powers or
pixel densities in a smaller package. With
critical dimensions down to nanometers in
size (10,000 times smaller than the width

of a hair), tight process control is necessary.
Furthermore, to yield successful devices,
humidity, temperature, and pressure around
cleanroom instruments must be strictly
controlled. Shown in Figure 1, we can see
the optical microscope image of developed
photoresist in a controlled environment that
forms sharp waveguides versus photoresist
showing delamination attributed to excess
humidity of the cleanroom [1,2].

To enable this control, real-time auto-
mated sensing of environment data around a
cleanroom’s instruments must be collected.
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Hence, we need a sensing system to ensure
correctness of physical experimentation.
The automated sensory data collection
not only benefits the researchers when
fabricating devices, but also cleanroom
administrators responsible for the upkeep
and operation of these instruments. These
specialized microscopy tools cost hun-
dreds of thousands of dollars and can be a
significant expense for smaller academic
cleanrooms, such as the cleanrooms in the
Holonyak Micro & Nanotechnology Labora-
tory (HMNTL) at the University of Illinois,
Urbana-Champaign. Hence, it is critical to
monitor and maintain these instruments
for as long as possible. Automated sensing
of the external temperature of a vacuum
pump may show trends that indicate when
parts are wearing down so that preventative
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maintenance can be done more efficiently
and costly failures can be avoided.

Beyond improving device fabrication, a
sensing system is critical for improving the
safety of cleanrooms. Dangerous chemicals
and gasses are often involved in the semi-
conductor device manufacturing process
so being able to monitor for leaks and the
function of safety equipment is critical.
Additionally, systems to monitor personnel
can detect the proximity between users and
instruments, ensure access control, and help
locate people in case of an emergency.

While large, industrial cleanrooms can
afford to implement customized high-
performance distributed sensing systems
(e.g., [3]) that are often very costly, smaller
academic cleanrooms often do not have that
luxury. Therefore, we develop an affordable

{

and scalable sensing cyber-infrastructure,
called SENSELET (Sensory Network
Infrastructure for Scientific Lab Environ-
ments), to enable academic cleanrooms to
improve their process control and safety.
The challenges for SENSELET are: (a)
SENSELET is a campus cyberinfrastructure
tailored to cleanrooms where the environ-
ment monitoring system has to accom-
modate the layout of cleanrooms, cover
every corner of these cleanrooms, and yet
follow a tight budget. (b) Cleanrooms are
often equipped with expensive scientific
instruments (e.g., microscopes), and detect-
ing anomalies in environmental data is of
significant value to cleanroom administra-
tors to react promptly in case of emergency.
(c) User-friendly interpretation of data must
be available for cleanroom administrators

[MOBILE PLATEORMS]

and researchers to gain new insights. (d)
Proximity detection must distinguish users
in white protective suits and achieve high
location accuracy in complex indoor spaces.

Considering these challenges, SENSELET
is developed as an edge-cloud two-tier archi-
tecture, collecting temperature and humidity
measurements, which are stored, analyzed,
and visualized at the private cloud, and moni-
tored by cleanroom managers. SENSELET
deploys watchdog algorithms to automati-
cally restart sensors and provide reliable sen-
sor readings. Wi-Fi sensing and cleanroom
cameras are used for indoor localization
and proximity detection.

The SENSELET benefits are: (1) Itis a
powerful tool to monitor cleanrooms, and
send alerts in case of hazardous events.

(2) Researchers become aware of chang-
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ing environmental conditions during their
experiments. They can correlate their yielded
samples with external environmental sam-
ples, and they can better reason about their
sample defects. (3) Localization and proxim-
ity detection assist in safety provisioning.
The first section presents the SENSELET
architecture and its environment moni-
toring service. The next section discusses
indoor localization and proximity detection
services. We conclude in the last section.

SENSELET ARCHITECTURE

AND ENVIRONMENT
MONITORING SERVICES

SENSELET is a distributed sensing infra-
structure for academic cleanrooms. SENSE-
LET’s two-tier architecture has four compo-
nents: Environment Monitoring, Localiza-
tion and Proximity Detection, Data Storage,
and Visualization as shown in Figure 2. We
discuss here the Environment Monitoring,
Data Storage and Visualization components,
and present Localization and Proximity
Detection in Section 3.

Environment monitoring employs
SENSELET edge devices, called SenseEdges,
which we place inside cleanrooms. Sens-
eEdges focus on sensory data acquisition,
reliability assurance, and communication
with the private cloud, called SenseCloud,
located on the campus. As shown in Figure
2, SenseEdge consists of a Wi-Fi-equipped
single board computer (Raspberry Pi), and a
commercial off-the-shelf sensor(s), soldered
to the single board computer. Our solution
is significantly easier to deploy in almost ev-
ery corner of cleanrooms than existing Eth-
ernet gateway-based industrial solutions for
cleanroom sensing. The Ethernet gateways
put constraints on the availability and abun-
dance of Ethernet ports inside these rooms.
Also, even though soldered sensors are less
convenient than wireless sensors such as
Zigbee sensors, the board computers can
directly power these sensors, hence they last
significantly longer. Other industrial sensing
solutions, such as Samsung SmartThings
Hub [3], could not be considered for our
deployment since these solutions require a
remote cloud outside of campus, monthly
usage fees to access data, and closed solu-
tions towards scaling with new sensors and
services as cleanroom administrators need.

“Sensing Reliability” is of great impor-
tance to cleanroom administrators. One
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crucial aspect of this reliability lies in 24-7
availability. The monitoring service must
be highly available, and even a temporary
service outage could potentially miss the
reporting of hazardous conditions, leading
to catastrophic results.

We design a Watchdog mechanism on
SenseEdge. As the reset signal from Sense-
Cloud to SenseEdge could be corrupted or
delayed, we let SenseEdge monitor its health
on its own and reset itself when necessary.
SenseEdge sends heartbeats to the Sense-
Cloud and waits for SenseCloud ACKs. If
SenseEdge receives successfully an ACK
from SenseCloud, it knows that it is healthy
at this time, otherwise, after a number of
failed heartbeats it knows that communica-
tion between itself and SenseCloud failed
and it should reset itself. In our implemen-
tation, we leverage the Linux kernel module
softdog, which monitors ACKs from
SenseCloud and restarts SenseEdges when
ACKs are not received for some preconfig-
ured time interval.

The environment monitoring data are
collected at SenseCloud via Wi-Fi net-
work. At SenseCloud, we run a time-series
open source database, called InfluxDB [4],
because time-series databases are optimized
for compression, storage and query of time-
series sensory data. Queries of time-series
data are of interest to cleanroom adminis-
trators to audit environment data at specific
time points in history, and to researchers
to get their data corresponding to times of
their experiments instead of irrelevant data.
SenseCloud storage employs a strict access
control service based on IP whitelisting.
SenseCloud deploys the Grafana visualiza-
tion tool [8], which provides web-hosted
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charts, graphs, query builders, and alerts.
Grafana allows users to attach rules to their
dashboard panels that give off alerts. Users
can configure these rules and schedule them
as to how often and under what conditions
an alert should send a notification to clean-
room administrators.

In Figure 3, we show five sensors SO — S4
and instruments inside the HMNTL lithog-
raphy cleanroom. Figure 3 (right) visualizes
the data from S0-S4 with upper panel show-
ing temperature, and lower panel showing
humidity measurements. The visualization
shows that SenseEdge devices are able to
capture well variations in temperature and
humidity measurements.

LOCALIZATION AND PROXIMITY
DETECTION SERVICES
For security and safety reasons, a cleanroom
administrator needs a service that can record
users’ locations and proximity to instruments
precisely. Traditional ID card-based access
control typically provides room-level record
only. Surveillance cameras only [5] do not
work well in cleanrooms either, because
users wear the same type of protective suits,
which makes it hard to distinguish them by
appearance. Although localization techniques
based on Wi-Fi signals work well in indoor
spaces and achieve low cost [6], their accuracy
(1- 2m) is not enough as the instruments in
cleanrooms are even closer to each other.

In SENSELET, we build localization
and proximity detection services, shown in
Figure 4, based on the fusion between Wi-Fi
fingerprints and computer vision techniques.

The location sensing subsystem is a
client-server system, in which the client
uses the user’s mobile device and the server
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resides in SenseCloud. The used localization
method, MMLOC [7], consists of offline
and online phases.

fingerprint of that grid. Due to many factors
such as signal fading, the RSS measurement
result for an AP is not constant. To improve
the localization accuracy, for each AP, we
record multiple RSS values in each grid. We
store the measurement results in SenseCloud
and build a mapping between grid locations
and fingerprints.

Offline Phase: In cleanrooms, because

of diverse factors, such as installation
positions, barrier positions, and power
levels, each access point (AP) generates a
unique RSS distribution. During the offline
phase, we first divide the indoor space into Online Phase: The client keeps measuring
the RSS from each AP, caches the most
recent results and periodically uploads them
to SenseCloud. For each AP, the uploaded
results contain multiple cached values.

small grids with a constant size (e.g., 1 m X
1 m), and measure the RSS from each APs
at the center of each grid. In each grid, the
RSS values from the APs are named as the
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The server compares the uploaded RSS
values with the stored fingerprints, and finds
the best matched fingerprint. Then, the grid
mapped to the fingerprint is the estimated
user’s location.

We evaluate our service in a 40 m?
cleanroom. There are many obstacles and
thus the environment is complex. We deploy
four Tenda AC1200 APs uniformly around
the room. In the offline phase, we divide the
experiment field into 40 grids and collect
the RSS fingerprints using four Android
smartphones (Samsung Nexus S). In each
grid, we collect 30 RSS values from each AP.
During the online phase, we use another
Samsung Nexus S to measure RSS in the 40
grids, and in each grid it caches and uploads
two RSS values for each AP.

The average errors are 3.08 m, 2.09 m
and 1.67 m when the number of APs used
for localization ranges from one to three.
When all four APs are used for localization,
the average accuracy achieves 1.15 m. The
results show that, as long as each grid is
covered by enough APs, our system can
achieve good performance in cleanrooms.

The video segments from a monocular
camera, mounted on the cleanroom ceiling,
are sent to SenseCloud to run the proximity
detection (see Figure 4). The algorithm is
as follows: (1) Background-foreground
subtraction highlights different blobs. (2)
The contour detection selects the blobs that
correspond to users. (3) We convert 2D
coordinates of the user and instrument into
3D through parameters, obtained from a
calibration process because it is not possible
to get real-time depth information of users
from a 2D camera; the only plane that stays
the same between background and user is
the floor; and the distance of user and two
instruments can be almost the same in 2D
while being different in 3D. (4) The 3D floor
coordinates of the user and blobs are used
for tracking and checking the nearness to the
instrument. (5) Proximity detection results
are merged with localization results to localize
and identify user using the instrument. The
results are stored in SenseCloud.

In Figure 4, we show proximity detection
output with two users being tracked, high-
lighted in green and red boxes, working
on instruments marked with circles on
the floor. The yellow circle indicates an
“available” instrument and green indicates an
“occupied” We evaluate proximity detection
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with a seven-minute video segment captured
from one HMNTL cleanroom. We manually
label the video segment in frame intervals
for ground truth. Our algorithm yields an
accuracy of 71%, which is the number of
correct instruments that users are working
on as compared to the ground truth.

CONCLUSION

To take sensor-edge-cloud solutions, devel-
oped for highly controlled and/or artificial
environments, and deploy them in academic
cleanrooms was non-trivial. We gained sev-
eral insights: (1) Due to diverse cleanroom
users, it was important to understand users’
requirements. In SENSELET, the biggest
concerns were reliability and availability of
data. (2) Enhancing reliability of commodity
sensors in SenseEdge required non-computing
considerations, e.g., external protection of
sensors. (3) Camerass blind spots exist in clean-
rooms, which makes it hard to determine
always proximity of users to an instrument.
Hence, even though Wi-Fi sensing helped in
our proximity detection, other sensing tech-
nologies are needed to increase accuracy. B
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