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Marcello Di Martino a,b, Styliani Avraamidou b, Julie Cook a,b, Efstratios N. Pistikopoulos a,b,* 

a Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States 
b Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, United States   

H I G H L I G H T S  

• A superstructure framework for screening of reverse osmosis plant designs is derived. 
• The framework enables techno-economic and food-energy-water scenario analysis. 
• A surrogate model for the depiction of a reverse osmosis stage is developed. 
• The framework is applied to a case study in South-Central Texas.  
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A B S T R A C T   

Due to a growing population, globally depleting water supplies, as well as the effects of climate change, demands 
for water are ever increasing. Reverse osmosis desalination could play a key role in generating new water sources 
since treating saline water for reuse has become possible. An optimization based framework under food-energy- 
water nexus considerations is developed in this work to tackle water scarcity sustainably for arid and semi-arid 
regions. With the aid of a surrogate model, a single reverse osmosis stage is depicted, with which varying 
desalination process designs can be composed, considering different membrane modules, as well as varying input 
energy and saline water sources. Then, the process was modeled through a superstructure representation that 
resulted into a mixed-integer nonlinear optimization problem, enabling the optimization of an array of objectives 
for a given set of input water and energy supply, as well as output water demand restrictions. The developed 
framework facilitates informed decision making through the fast screening and optimization of desalination plant 
designs. To illustrate the elaborated framework methodology, a food-energy-water nexus approach is imple
mented for South-Central Texas in three distinct scenario analyses.   

1. Introduction 

Water scarcity is a severe challenge, especially for arid and semi-arid 
regions such as Texas [1], California and Baja California [2] or the 
Middle Eastern Region [3]. With a growing population, not only the 
water and food demands increase, but also the energy consumption. 
Since water is traditionally used as a coolant in energy production 
plants, as well as needed for agriculture and livestock for food produc
tion, the water consumption further rises [4,5]. Consequently, water, 
food, and energy production are linked to each other, which in turn 
means that these challenges need to be solved by a food-energy-water 
nexus approach [6,7]. The food-energy-water nexus, which describes 
the interconnectivity of natural resources, postulates that when 

decisions concerning the utilization of one resource, in this case water, 
are made, other resources, in this case food and energy, are affected and 
vice versa [8,9]. Thus, leading scientists and policy makers to think 
about food, energy and water systems as connected and coevolving [10]. 
Moreover, the food-energy-water nexus not only consists of domains 
related to water resources research [11], sustainability [12], food-waste 
management [13] or metropolitan scale water management [14], but 
also of various other scientific fields like psychology [15], sociology 
[16] and many more. The interested reader is advised to consult 
[17–19], as well as [20] for further information relating to the princi
ples, practices, decision-making methods, planning and trade-off anal
ysis for the interdisciplinary treatment of the food-energy-water nexus. 

Further, existing water supplies, like groundwater aquifer storage 
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systems, are depleting globally. If the groundwater recharge is exceeded 
by the groundwater withdrawal for extensive areas and an extensive 
period of time, overexploitation or persistent groundwater depletion can 
occur, which can result in devastating effects on natural streamflow, 
groundwater-fed wetlands and related ecosystems [21]. 

Additionally, climate change is expected to make water shortages 
worse: the Intergovernmental Panel on Climate Change (IPCC) projected 
that up to two billion people worldwide could be facing water shortages by 
2050. Moreover, climate change will not only affect water scarcity but also 
a sustainable water supply by decreasing natural water storage capacity 
and affecting the capacity and reliability of water supply infrastructure 
(due to extreme weather or flooding) [22,23]. Therefore, to cope with these 
upcoming severe challenges, novel water sources are needed [24]. 

Desalination processes could play a key role in tackling these challenges 
since treating sea water, surface water, industrial wastewater or brackish 
water for reuse has become possible [25,26]. A process that removes salts 
and minerals from a saline water source, for human consumption and do
mestic or industrial usage, is referred to as desalination [27]. Traditionally, 
thermal separation methods were used to purify saline water. However, 
with recent advances in membrane technology, membrane separation 
methods have become more and more popular, particularly reverse 
osmosis (RO) desalination processes [26,28]. Reverse osmosis desalination 
systems have high energy efficiency, low space requirements, as well as 
process and plant compactness among other advantages in comparison to 
thermal desalination technology [27]. Consequently, 88% of the desali
nated water in the United States is produced by reverse osmosis [29]. This 
work investigates reverse osmosis process systems, but future extensions 
could cover other desalination processes. 

So far, there have been a variety of distinct optimization analyses 
concerning reverse osmosis systems, but to our knowledge, a holistic 
Food-Energy-Water Nexus approach, alternating or rather optimizing 
the water and energy sources, as well as the membrane system itself, in 
an attempt to meet the local water demands for varying output water 
applications, has not yet been investigated, which is the scope of this 
work. Therefore, data for renewable energy and grid electricity, as well 
as for seawater, surface water, groundwater, and industrial wastewater, 
together with reverse osmosis process properties is collected and used 
for the modeling and simulation of different desalination alternatives 
that can then be used for optimization. The developed process systems 
engineering approach for reverse osmosis desalination possibilities 
dependent on regional factors is summarized in Fig. 1. Grossmann et al. 

[30,31] already discussed that process systems engineering (PSE) is 
uniquely positioned to address the challenges encountered in the sus
tainability of food-energy-water nexus problems, as well as sustain
ability problems in general, within chemical engineering and beyond. 
Within PSE hierarchical decomposition and superstructure synthesis are 
the two main approaches for conceptual process design, although su
perstructure synthesis is the preferred alternative, as it has the key 
advantage of systematic and integrated analysis of alternative process 
structures [32]. 

Thus, a superstructure based mathematical model is developed, 
which has the form of a mixed-integer nonlinear programming (MINLP) 
problem. The developed model can then be optimized for various sce
narios resulting in a plethora of optimal solutions for decision makers, 
enabling a framework methodology, for the techno-economic and 
feasibility analysis of desalination plants. Hence, this approach can be 
used for reliable and fast screening of reverse osmosis plant designs prior 
to detailed plant modeling. 

This work focuses on the Food-Energy-Water Nexus for South-Central 
Texas (USA), defined as Region L by the Texas Water Development Board 
(TWDB), but can be easily modified and applied to any given region 
around the world, underlining the framework nature. Region L is histor
ically rooted in agriculture and contains a growing metropolitan hub with 
the city of San Antonio. Furthermore, the region is characterized by a 
finite supply of water resources [8]. Therefore, water management is a 
key issue for Region L (likewise for the whole state of Texas and other 
regions with water scarcity challenges). Conventional water management 
strategies, like conservation or groundwater, are not sufficient for 
meeting prognosticated demands, resulting in a growing share of tech
nology based water supplies, like reverse osmosis desalination [1]. 

The population of Region L is expected to reach more than 5 million 
by 2070, with a water demand projected to increase by 34% [33]. While 
the total water demand increases, the existing ground water supply of 
Region L stays approximately constant (expected to increase by 2%) 
[33]. Consequently, the discrepancy between water demand and supply 
will rise significantly over the upcoming years. This prognosis un
derlines that a holistic nexus approach, which considers the inter
connectivity of resources like food, energy, and water, is a necessity for 
tackling these challenges sustainably [8,34]. 

The water demand projection for various industries, the sum of 
which gives the total water demand forecast, needs to be evaluated as 
well. The main water demand drivers are not only municipal water 

Fig. 1. Summary of the elaborated framework methodology approach.  
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usage, but also water for irrigation, as well as livestock together with the 
water demand for steam-electric power, mining and manufacturing 
[33]. Therefore, output water applications other than municipal water 
usage need to be considered when tackling reverse osmosis desalination 
optimization holistically. 

Fortunately, Texas is perfectly suited for desalination with more than 
360 miles of coastline along the Gulf of Mexico, and more than 30 
aquifers spreading across the state, each containing an ample supply of 
brackish groundwater [1]. Therefore, analyzing different desalination 
systems holistically for various energy and water inputs is necessary to 
assess the possibilities and limitations of desalination systems, evaluate 
food-energy-water nexus trade-offs and identify optimal cost-effective 
and sustainable desalination plant designs. A novel framework for the 
optimal design of desalination process plants is developed and presented 
in this work as a means of tackling the water scarcity in water-stressed 
regions such as Texas. Furthermore, the proposed approach is easily 
applicable to other regions around the globe facing water scarcity. 

After a brief literature review that comprises advances in the opti
mization of desalination systems as well as advances in RO optimization 
with and without food-energy-water nexus considerations, the super
structure representation of the reverse osmosis desalination system is 
described. Then, the single-stage reverse osmosis surrogate model is 
derived and used to compose a multi-stage process, depending on the 
total dissolved solids concentration of the input water source. Subse
quently, the energy optimization model, which is used for deriving 
electricity prices, is defined. Before applying the optimization frame
work to a threefold case study of South-Central Texas, the optimization 
model itself, together with the solution methodology are stated. 

2. Literature review 

In recent years, publications addressing, summarizing or reviewing 
advances in RO technology and processes have been released regularly, e. 
g. [27,35]. In these cases, either an overview of advancements in sys
tematic optimization of the design and operation of water desalination, 
together with a summary of techniques and optimization tools that have 
been applied to desalination processes for design and/or operation pur
poses of said processes are given [35], or distinct aspects of reverse 
osmosis processes are reviewed, such as studies related to membrane 
modules, characterization, fouling and cleaning, different pre-treatment 
technologies, principles of RO process designs including the embedded 
economy, as well as energy considerations, together with hybrid RO 
process designs and current challenges faced by RO desalination pro
cesses [27]. Additionally, there has been an opulence of work concerning 
desalination process optimization, particularly regarding reverse osmosis 
processes, without food-energy-water nexus considerations. 

Generally, RO optimization has been studied with a focus on key 
aspects of the desalination process: Kotb et al. [36] analyzed and opti
mized the RO desalination system arrangement, as well as operating 
conditions. Al-Obaidi et al. [37] evaluated the performance of a multi- 
stage RO wastewater treatment system considering a number of alter
native configurations with recycling of permeate, retentate, and 
permeate-retentate streams. Ghobeity et al. [38] optimized time- 
dependently the operation of a seawater desalination process. Zhu 
et al. [39] optimized the energy consumption of a RO process prone to 
feed water salinity fluctuations. In addition, RO processes only powered 
by solar energy haven been simulated and optimized with the aim of 
enhancing the recovery rate and product quality of the system, while 
operational limits of the system are reduced [40]. Hybrid desalination 
processes have been under investigation as well, e.g. Ghobeity et al. [41] 
developed a conceptual design and system-level models of a cogenera
tion solar-thermal plant, whose operating conditions have been subse
quently optimized. In contrast, Sadri et al. [42] determined the best 
trade-off between the exergetic efficiencies of multi-effect desalination 
(MED) and RO, which led to the selection of a hybrid MED-RO system. 
Additionally, Al-hotmani et al. [43] studied a hybrid system of multi 

effect distillation thermal vapor compression and reverse osmosis, for 
seawater desalination. To take into account increasing water demands, 
the permeate reprocessing design of the RO process is introduced in 
several configuration of different upstream processes. 

Different types of optimization approaches for desalination systems 
has already been studied. Saif et al. [44] developed a deterministic 
branch-and-bound global optimization-based algorithm for the solution 
of the reverse osmosis network synthesis problem. In this case, to 
illustrate the global optimization of the RO network, water desalination 
is considered as a case study. Du et al. [45] investigated RO networks for 
seawater desalination with spiral-wound membrane modules. After 
comparing the model results with actual operational plant data from the 
literature, the optimum design problem was formulated as a MINLP 
problem and solved. Subsequently, Du et al. (2014) [46] extended their 
study to multi-objective optimization, using the ∈-constraint method, to 
investigate the trade-off between total annualized cost, energy con
sumption and the recovery rate of the process. Khor et al. [47] developed 
a detailed model representation for water regeneration network syn
thesis, in which nonlinear mechanistic models of the regeneration units 
are embedded within an overall MINLP optimization framework, which 
is then used for an illustrative industrial case study of an operating re
finery in Malaysia. The results indicate the possibility of 58% freshwater 
savings. Sassi et al. [48] focused on a MINLP optimization framework for 
boron removal in RO desalination systems. The approach includes a 
seawater pass containing a normal two-stage RO system housing 
seawater membrane modules and a brackish water pass accommodating 
brackish water membrane modules. 

All mentioned studies have in common that they do not address the 
food-energy-water nexus holistically, but rather focus on principal 
challenges for distinct scenarios. Although, the overall water demand of 
arid and semi-arid regions not only consists of municipal water usage 
but also of the water consumption of other industries like livestock, 
irrigation or power generation [33], usually only one specific water 
output application, mostly for drinking purposes, has been considered in 
optimization studies of RO processes. 

Lately, RO desalination optimization with food-energy-water nexus 
reflections has become more and more common. For example, Gabriel 
et al. [49] reviewed and optimized a hybrid RO system coupled with 
industrial processes exhibiting a net surplus of heat energy. Li [50] 
optimized a multi-stage hybrid RO-PRO (pressure retarded osmosis) 
membrane process to address the energy-water nexus. Al-Aboosi et al. 
[51] developed a design framework for integrating water and energy 
systems, a cogeneration process and desalination technologies, to treat 
wastewater and provide fresh water for shale gas production. Linke et al. 
[52] visualized the trade-offs between the minimum total annual cost 
and environmental sustainability metrics of industrial water networks. 
Additionally, Al-Mohannadi et al. [53] maximized carbon reduction, as 
well as economic performance of a defined industrial cluster containing 
e.g. oil refinery, steel production and natural gas fired power plants 
among other sources and sinks, using a multi-objective multi-period 
optimization tool. Again, comparable to RO optimization studies 
without nexus considerations, these exemplary studies focus on key 
parts and challenges of reverse osmosis desalination processes to address 
the interconnectivity of energy and water resources. 

A review by Vakilifard et al. [54], which addresses the role of the 
energy-water nexus in optimizing water supply systems, has identified a 
lack of studies attempting to optimize the energy-water nexus holistically. 
Also, optimization frameworks with the possibility of incorporating 
environmental impact studies were deemed to be virtually nonexistent. 
Moreover, the water demand or rather the impact on a water supply 
scenario by the food industry is frequently not taken into consideration 
when talking about nexus solutions or optimization studies. 

Since the development of new processes and technologies is more 
and more driven by sustainable criteria [55], the goal of the here elab
orated reverse osmosis desalination optimization framework is to 
develop an integrated methodology, which facilitates incorporating 
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environmental impact studies of solution strategies, while simulta
neously addressing the food-energy-water nexus holistically. The po
tential of desalination alternatives can be assessed for varying supply 
and demand scenarios, while further restrictions or goals, as the envi
ronmental impact of process solutions, can be considered, in an attempt 
to initially, partially fill the research void concerning reverse osmosis 
desalination optimization studies addressing the food-energy-water 
nexus identified by Vakilifard et al. [54]. 

3. Superstructure representation 

The intent of this work is to address the design of reverse osmosis 
desalination processes holistically in terms of the input water types, the 
energy sources, the membrane types, as well as the process operation and 
parameters, for various output goals and output water applications. The 
goals considered do not only include maximizing revenue or minimizing 
cost, but also satisfying a given water demand for different output water 
characteristics (like municipal, irrigation, livestock or power plant 
usage), or minimizing environmental stresses. Thus, the food-energy- 
water nexus is incorporated in the approach, through varying applica
tion possibilities, considering water and energy resources for defined 
output utilizations like the food industry. Consequently, the framework 
can be used in food application processes to incorporate the inter
connectivity of food, energy and water. A summary of these consider
ations is given in Fig. 2. The framework is modifiable for any given region 
by adjusting restrictions concerning water and energy, emphasizing the 
framework methodology nature of the implemented approach. A sche
matic representation of the developed superstructure can be found in 
Fig. 3. The superstructure can be subsequently expressed in a mathe
matical model, which has the form of a MINLP problem. 

The RO desalination framework is derived in the following steps:  

1. A mathematical model to describe a single-stage reverse osmosis 
process is developed (Section 4 and 1.1–1.3 of the supplementary 
file), with which a multi-stage process can be configured (Section 1.4 
of the supplementary file).  

2. The optimization program for decision making concerning the usage 
of available energy sources is elaborated (Section 2 of the supple
mentary file). 

3. The equations governing the design optimization problem are pre
sented and discussed (Section 5), before introducing the used solu
tion strategy (Section 6). 

Then, the derived model is used for case studies in South-Central 
Texas to analyze the potential and applicability of the derived model 
(Section 7). 

4. Development of the reverse osmosis model 

A schematic representation of a one-stage reverse osmosis process, 

together with the variables describing it is illustrated in Fig. 4. A feed 
stream with volume flow Qf and concentration Cf is pressurized to a 
pressure Pf, so that separation of the saline feed into a diluted permeate 
(Qp, Cp, Pp) and a concentrated retentate (Qr, Cr, Pr) can be achieved in 
the reverse osmosis membrane module. Membrane modeling is classi
cally used to calculate the necessary pressurization of the feed streams 
for a certain permeate concentration quality (or vice versa) since the 
pressurization is the main energy cost driver of the system [56]. 

To calculate the specific energy consumption of the pump pressur
izing the feed, the transmembrane pressure needs to be calculated (ΔP =
Pf − Pp) together with the feed and permeate volume flow [m3/d] (see 
Eq. (1)), while also considering the pump efficiency η [57]. 

SECpump =
Qf ⋅ΔP
η⋅Qp

(1) 

In Eq. (1) the reciprocal of Qp
Qf 

can be found. This fraction is also called 
the water recovery of the process [24]. 

To further define the volume flows and the transmembrane pressure, 
a mass balance and a component mass balance is derived (Eqs. (2) and 
(3)) [58]: 

Qf = Qp + Qr (2)  

Qf ⋅Cf = Qp⋅Cp + Qr⋅Cr (3) 

The permeate volume flow can also be expressed in terms of the 
membrane surface area A in [m2] and the membrane water flux Jv in [m/ 
s] [27]: 

Qp = A⋅Jv (4) 

Additionally, it is possible to use the water Jv and salt flux Js, to 
define the permeate concentration [36]: 

Js = Jv⋅Cp (5) 

The water flux is typically proportional to the net pressure driving 
force across the membrane (ΔP − ΔΠ, transmembrane pressure differ
ence minus osmotic pressure difference of the feed and permeate side), 
whereas the salt flux is defined by the amount of salt passing through a 
unit membrane surface area per unit time, which is proportional to the 
salt concentration difference across the membrane [27]. 

However, these equations are not yet sufficient to fully describe the 
membrane system. To further investigate the mass transfer principles 
around a reverse osmosis membrane, the Film Theory can be consulted, 
which takes the concentration polarization phenomenon on the feed 
membrane side into account [59]: 

Cw − Cp

Cb − Cp
= exp

(
Jv

k

)

(6) 

Here Cw denotes the salt concentration at the membrane surface, 
whereas Cb gives the salt concentration in the bulk solution. k =

δf
D is the 

Fig. 2. RO desalination optimization framework considerations.  
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convective mass transfer coefficient, which needs to be calculated by a 
convective mass transfer correlation. The Film Theory is presented in 
detail in [27,36]. 

Further, all equations mentioned above are summarized in the so 
called solution-diffusion model [60], which has been shown to 
adequately predict the local behavior and performance of high rejection 
membranes such as reverse osmosis membranes [61]. Using the 
solution-diffusion model for membrane modeling as part of an optimi
zation problem results in a highly nonlinear non-convex programming 
problem. Since integer decisions additionally need to be incorporated 
for design decisions, solving the generated optimization program will 
take a lot of computational effort [62]. Besides, in order to use the 
solution-diffusion model, access to the exact membrane geometry and 
flow conditions for the convective mass transfer correlations is needed. 
To overcome these challenges, a membrane supplier software was used, 
which takes into account the solution-diffusion model to generate input- 
output data, which can then be approximated by a multivariate linear 
regression, resulting in a reduction of computational effort [63]. 

This multivariate linear regression yields an approximation of a 
single stage RO unit and can subsequently be used to compose a RO 
desalination process with varying flow structures. Furthermore, a deci
sion between various available energy sources and used generating 
technologies is enforced by minimizing the sum of operational and in
vestment costs of each alternative with the aim of satisfying a given 
yearly energy demand. The details of both approaches are specified in 
Sections 1 and 2 of the supplementary file of this publication, as well as 
in Table 6 and 7 of Appendix A. 

5. Design optimization 

min
x,n,w

f (x, n, w) (7a)  

s.t. 

∑n

i=1
mi,j⋅Qp,i,j = Qp,sum,j ∀j = 1, …, w, (7b) 

∑n
i=1Cp,i,jQp,i,j⋅mi,j

Qp,sum,j
= Cp,sum,j ∀j = 1, …, w, (7c)  

Qp,sum,j

Qf ,1,j
= WRsum,j ∀j = 1, …, w, (7d)  

Cf ,1,j = Cwater,j ∀j = 1, …, w, (7e)  

Cp,sum,j ≤ Cp,restriction ∀j = 1, …, w, (7f)  

WRsum,j ≥ WRrestriction,j ∀j = 1, …, w, (7g)  

Qp,sum,j ≥ Qp,demand ∀j = 1, …, w, (7h)  

nj ∈ {1, 2, 3, 4} ∀j = 1, …, w, (7i)  

n ∈ N, N = {n1, …, nw}, (7j)  

j ∈ J, J = {1, …, w}, (7k) 

The design optimization problem is summarized in (Eqs. (7a)–(7k)). 
After explaining the governing equations, possible objective functions f 
(x,n,w) are stated. The objective function f(x,n,w) is not only dependent on the 
degrees of freedom (DOF) x and the number of stages n, but also on the 
available water sources w. Here, x consists of the overall feed flow per water 
source (Qf,1,j), the water recovery (WRi,j), the pressurization (Pi,j), the 
membrane surface area (Ai,j) and the parallel flows (mi,j) per stage i and 
water source j, for i=1,...,n and j=1,...,w (the length of x is dependent on 
n and w), resulting in a number of degrees of freedom of x = w ⋅ (4 ⋅ n +
1). 

The DOF are all box-constrained optimization variables. The 
maximum allowable pressure for each membrane depending on the 
input water is used as an upper boundary for the pressurization, while 
the lower boundary ensures applicability and water transport to the 
membrane. It is important to mention that Pi,j describes the necessary 
pressurization of stage i for water source j to generate the required 
transmembrane pressure for the separation. The permeate pressure, 
which is needed for transporting the purified water away from the 
reverse osmosis module (Pp,i,j), is also included in the pressurization of 
stage i (Pf, i, j = Pi, j + Pp, i, j) to ensure transport to the membrane, ul
timately resulting in: 

ΔPi,j = Pf ,i,j − Pp,i,j = Pi,j, ∀i = 1, .., n, ∀j = 1, .., w.

When a membrane surface area range is implemented, a membrane 
budget is indirectly considered. Not more than 100 membranes per stage 
are allowed to be used (to compare: the H2Oaks Desalination plant in 
San Antonio uses 70 membranes in the first stage of their brackish water 
desalination process [64]). The boundaries concerning the overall feed 
flow and water recovery ensure operability and can be modified from 
scenario to scenario. The design optimization variable mi,j is introduced 
to account for parallel flows for each stage i and water type j to take 
higher feed volume flows and water demands into consideration and is 
limited to five, but can be adjusted if necessary. 

Fig. 3. RO desalination superstructure representation.  

Fig. 4. A schematic representation of a one-stage membrane process.  
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Beginning with the overall feed (Qf,1,j), the parallel flows per stage (m1, 

j) and the water recovery of the first stage (WR1,j), the permeate flow of the 
first stage is calculated (Qp,1,j), before using the surrogate model to 
determine the permeate concentration of the first stage (Cp,1,j). After 
closing the mass and component mass balances, the retentate of the first 
stage (Qr,1,j and Cr,1,j) is redefined as the feed flow for the second stage 
(Qf,2,j and Cf,2,j). This procedure is continued until all stages n, for all water 
sources w are determined. For each stage and water type, the feed flow is 
divided by mi,j to calculate a single stage membrane process (surrogate 
model applicability). Afterward, the permeate flow as well as the reten
tate flow are multiplied by mi,j, to calculate the overall stage flows and 
concentrations. For seawater desalination processes, the feed of a stage is 
either defined as the permeate of the previous stage (for stage two) or as 
the retentate of the previous stage (for stages three and four). 

According to the aforementioned process structures, the mass and 
component mass balances are formulated for each stage i and water 
source j and subsequently used for the definition of a successive stage, 
although the equations are not shown in Eqs. (7a)–(7k). Once all desa
lination stages are evaluated, the overall permeate flow (Qp,sum,j, see Eq. 
7b), permeate concentration (Cp,sum,j, see Eq. 7c) and water recovery 
(WRsum,j, see Eq. 7d) for each water source j are calculated. These 
equations need to be adjusted when seawater is used as an available 
water source, according to the aforementioned seawater desalination 
process structure. Additional restrictions include an upper boundary for 
Cp,sum,j (depending on the desired water quality output, see Eq. 7f), as 
well as two lower boundaries for WRsum,j and Qp,sum,j (to ensure a distinct 
water demand can be met, see Eq. 7g and Eq. 7h). These boundary values 
are either dependent on the input water source or on the specific sce
nario. Also, the feed water concentration (Cf,1,j, see Eq. 7e) is set to the 
input water type concentration value under investigation (Cwater,j). 

Furthermore, model specific restrictions need to be enforced to 
guarantee the feasibility of the surrogate model. Since the generated 
data points cannot cover the whole applicable value space, linear 
interpolation concerning the feed concentration and water recovery is 
used to extend the model. 

Consequently, the following restrictions are enforced for brackish 
water reverse osmosis processes, to ensure that the brackish water case 
stays valid (see Eqs. (8) and (9)): 

Cr,i,j ≤ 10000mg
/

L ∀i = 1, .., n − 1, ∀j = 1, .., w (8)  

Cr,n−1,j ≥ 700mg
/

L ∀j = 1, .., w (9) 

The mentioned restrictions need to be adjusted accordingly to 
guarantee feasibility in the case of seawater desalination processes. For a 
two-stage seawater reverse osmosis process, it is practical to force the 
permeate of the first stage to be less than 10,000 mg/L so that inter
polation between seawater and brackish water membrane data is not 
necessary (see Eq. (10)): 

Cp,1,j ≤ 10000mg
/

L ∀j = 1, .., w (10) 

Additionally, the following restrictions are necessary for a three- and 
four-stage seawater reverse osmosis process, respectively (see Eqs. (11) 
and (12) for three stages and Eqs. (11), (13) and (14) for four stages): 

Cr,2,j ≤ 10000mg
/

L ∀j = 1, .., w (11)  

Cr,2,j ≥ 700mg
/

L ∀j = 1, .., w (12)  

Cr,3,j ≤ 10000mg
/

L ∀j = 1, .., w (13)  

Cr,3,j ≥ 700mg
/

L ∀j = 1, .., w (14) 

Consequently, this results in a process scheme which uses a seawater 
membrane for the first stage and brackish water membranes in subse
quent stages. 

5.1. Objective functions 

A variety of objective functions can be considered within the pro
posed framework. Approaches for maximizing the water recovery, 
minimizing the energy, as well as minimizing operational costs are 
presented in this work. 

Maximizing the water recovery for a given water source j is presented 
in Eq. (15): 

f (x, n, w)1 = −
Qp,sum,j

Qf ,1,j
= −

∑n
i=1mi,j⋅Qp,i,j

Qf ,1,j
(15) 

To maximize the overall water recovery (Eq. (15)), the negative 
fraction of the overall permeate (

∑
i=1
n mi, j ⋅ Qp, i, j) and overall feed (Qf,1, 

j) is minimized. 
For minimizing the energy of the system for a given water source j, 

the specific energy consumption of the pumps as well as possible energy 
recovery devices need to be considered (see Eq. (16)) [39]: 

f (x, n, w)2 =
∑n

i=1

(
Qf ,nec,i,j⋅Pnec,i,j

ηpump
− ηERD⋅Qres,i,j⋅Pres,i,j

)

(16) 

In Eq. (16), ηpump and ηERD take the pump efficiency as well as the 
efficiency of the ERD into account. Pnec,i,j describes the necessary pres
surization of a stage and is set to 0 if the residual pressure of a previous 
stage is sufficiently high to be used in a subsequent stage. Accordingly, 
Qf,nec,i,j incorporates the feed flows of stages where pressurization is 
needed. In contrast, Pres,i,j is a vector of pressure differences that can be 
used for energy recovery, if the pressure of the retentate is higher than 
the necessary transmembrane pressure of the successive stage (these 
differences are then added to Pres,i,j). The retentate flows are saved in 
Qres,i,j accordingly. Thus, f(x,n,w)2 is calculated in [MW]. 

The main portion of operating costs of reverse osmosis desalination 
systems is constituted by energy costs (CE,j) [35]. The only additional 
factors that contribute significantly to operational costs are brine 
concentrate disposal costs (CB,j) as well as membrane costs (CM,j). 
Therefore, operational costs of a desalination system using an input 
water source j are assumed to only consist of the aforementioned three 
components (Eqs. (17) to (20)). 

f (x, n, w)3 = CE,j + CB,j + CM,j (17)  

CE,j = ec⋅
f (x, n, w)2

Qp,sum,j
(18) 

The energy cost factor ec (Eq. (18)) is dependent on the energy supply 
system (see section energy optimization model in the supplementary 

material). By dividing ec ⋅ f(x, n, w)2 by Qp,sum,j, the energy costs 
[

$
m3

]
are 

calculated on the basis of the permeate volume flow. 

CB,j = bc,j⋅
(

Cf ,1,j − 1000
35000 − 1000

⋅100⋅
(

1 − WRsum,j

WRsum,j

))

(19) 

The brine cost function (Eq. (19)) was obtained from [39], where the 
fraction 1−WRsum,j

WRsum,j 
can also be expressed as Qr,sum,j

Qp,sum,j
. Additionally, a linear 

approximation 
(

Cf ,1,j−1000
35000−1000⋅100

)

was used to incorporate the brine 

management cost (defined as b
Π0 

by [39], where b is the brine manage
ment cost and Π0 the osmotic pressure of the feed). For example, a feed 
concentration of 1000 mg/L has a dimensionless brine management cost 
of 0, whereas a feed concentration of 35,000 mg/L has a dimensionless 
brine management cost of 100. Further, an additional factor of bc,j in 
[$/m3] is introduced to scale the brine management costs and has 
changing values dependent on the water source (see section Model as

sumptions). Consequently, CB,j is in 
[

$
m3

]
. 
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CM,j =
mec,j⋅Nm,j + vc,j⋅Nv,j +

(
Rv,j⋅vc,j−vv,one,c,j

7−1 + nj

)

(LS/365/24)⋅Qp,sum,j
(20) 

The membrane costs (Eq. (20)) consist of the membrane purchase 
costs as well as the pressure vessel purchase costs. The number of 
membranes Nm,j is calculated by dividing the total membrane surface 
area (

∑
i=1
n mi, j ⋅ Ai, j, ∀j=1,...,w) by the area of a single membrane (37 m2 

for all three membrane types). Nm,j is divided by 7 (maximum of 7 
membranes in one pressure vessel), to calculate the overall number of 
pressure vessels (Nv,j). It may occur that the last pressure vessel per stage 
is only partially filled with membranes. In this case, a pressure vessel, 
which has room for 7 membrane units, is not needed as the last pressure 
vessel of the stage, since a smaller one can be selected. This is considered 
with (Rv,j⋅

vc,j−vv,one,c,j
7−1 + nj), where Rv,j is the remainder of the fraction Nm,j

7 . 
The prices of membranes mec,j, pressure vessels vc,j and the correlation 
(Rv,j⋅

vc,j−vv,one,c,j
7−1 + nj) are summarized in the section Model assumptions. 

Additionally, the stated costs are divided by the assumed membrane 
lifetime LS in [years] as well as the overall permeate flow, resulting in a 

membrane cost unit of 
[

$
m3

]
. 

5.2. Model assumptions 

The previously defined design model (Eqs. (7a)–(7k)) is only 
focusing on the reverse osmosis separation unit itself. Moreover, it is 
assumed that the feed water of the desalination unit is pretreated by 
ultrafiltration (defined in WAVE for the data generation for the surro
gate model), making sure that only dissolved solids are left to be sepa
rated from the feed water stream. Consequently, the model does not 
consider membrane cleaning or fouling, since these factors strongly 
depend on the used pretreatment unit and its operation quality [65], 
which is not considered in detail. 

Concerning the permeate pressure no numerical assumption is 
necessary, since the transmembrane pressure has been selected as a 
decision variable. It is assumed that the needed pressure for trans
portation to the membrane on the feed side and the needed pressure for 
transportation away from the membrane of the permeate side are equal 
and thus cancel out when focusing on the transmembrane pressure. 

An additional assumption is that the desalination plant is operated in 
steady-state, although practically fluctuations in input parameters occur 
regularly (e.g. concerning the feed volume flow), which are noticeable 
but not significant for the process design. Further, ramping up and down 
a given desalination plant from distinct capacities (from 0 to 1 excluded; 
0: plant is not running; 1: plant is operated at maximum capacity, ca
pacity = Qf ,operation

Qf ,maxpossible
) is not challenging [64]. However, since for a reverse 

osmosis desalination unit control strategies can be easily implemented, a 
quasi-stationary process can be enforced [27]. Therefore, the assump
tion of steady-state is not too strict and still applicable. 

Furthermore, assumptions concerning the energy and operational 
cost objective functions have been made:  

1. The efficiencies of the pump as well as of the ERD are constant (ηpump 
= 0.74 and ηERD = 0.8) [66].  

2. The average membrane life is assumed to be 7 years. The membrane 
lifetime depends on the pretreatment and is usually between 3 and 5 
years but can also last up to 15 years [67].  

3. A brine cost parameter bc,j has been introduced in the brine cost 
function, which is 0.2$/m3 for brackish water applications [39] and 
0.05$/m3 for seawater applications [68]. Additionally, the stated 
brine cost correlation can be updated for any specific application and 
region. The given function is used to illustrate the process implica
tions of brine disposal, more specifically, to penalize low water re
coveries due to the scarcity of water and high value of available 
water sources in arid and semi-arid regions, to reduce process water 
waste reasonably.  

4. Investment costs are not considered. Here, decisions are only made 
based on maximizing water recovery, minimizing energy consump
tion or operational cost minimization. 

An overview of the membrane costs and membrane pressure vessel 
costs can be found in Table 8 in Appendix A. High-pressure pressure 
vessels can withstand a pressure of up to 83 bar, whereas low-pressure 
pressure vessels can tolerate a pressure of only 31 bar. 

Moreover, the stated assumptions can be subsequently investigated 
by performing sensitivity analyses. The assumed membrane lifetime 
(LS), as well as the brine cost parameter bc,j of the brine cost function, 
have been selected respectively for a sensitivity analysis, which can be 
found in the supplementary file. 

6. Solution methodology 

The stated design optimization model, as well as the surrogate 
model, have been implemented in MATLAB. An overview of the 
framework solution methodology can be found in Fig. 5. 

First of all, a problem needs to be defined in the sense that the 
available water (total dissolved solids concentrations and possible daily 
volume flows) and energy sources (cost of each energy source) need to 
be specified. Secondly, all available water sources are summarized in 
J=1,...,w. 

Now, the counting variable j ∈ J is initialized to one (j = 1), to 
evaluate the first water source. Then, design optimization is performed, 
which includes the number of stages and the number of parallel flows 
(mi,j) as integer variables. The integer variable number of stages n is 
always limited to four (1 ≤ nj ≤ 4, ∀j ∈ J), so a brute-force approach is 
selected to determine the optimal number of stages for a desalination 
process using water source j ∈ J. However, because of the integer vari
able mi,j, the resulting optimization problem is a MINLP problem. 

The resulting MINLP problems with nonlinear inequality constraints 
were solved with the genetic algorithm introduced by Deep et al. for 
integer and mixed-integer optimization problems [69]. The best solution 
is then saved before checking if other water sources are still to be evalu
ated. If this is the case (j < length (J)), the counting variable is adjusted (j =
j + 1) and the same optimization is performed for the next water source. 
Once all water sources are evaluated, all solutions are compared and the 
best one is selected. Since there is always only a finite and comparably 
small number of water sources (e.g. no more than five) for each water 
scarce region, binary decision variables for each water source are obsolete 
and only cost additional computational effort. Additionally, the least sa
line water source is always the cheapest option concerning operational 
cost because of the lower necessary pressures throughout the system. 
Once a water demand cannot be satisfied with the lowest saline water 
source, the next higher saline water source is selected until this water 
source cannot fulfill a given demand anymore and so on. 

For all calculated and presented cases a local minimum was found, 
which satisfies the determined constraints. Global optimality cannot be 
guaranteed when using the genetic algorithm. Although by using a 
global MINLP solver such as ANTIGONE [70] or BARON [71] global 
optimality could be guaranteed, it is at this point not necessary, as this 
methodology is used to make a first assessment of available water and 
energy sources for desalination. Therefore, the goal of the developed 
holistic process systems approach of desalination processes is to point 
decision makers in the right direction to help evaluate which cases 
should be investigated in a more detailed fashion and which not. 

If no parallel flows per stage are to be considered, the optimization 
problem is reduced to a non-linear program (NLP) by brute forcing the 
number of stages n. Consequently, an interior-point solution algorithm 
can be used for solving the optimization problem. The interior-point 
algorithm was selected to guarantee feasibility since all iterates are 
required to satisfy the inequality constraints of the problem strictly [62]. 
The NLP is here called operation optimization and is used for deter
mining possible process flow structures for varying water sources (see 
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supplementary file), in addition to performing sensitivity analyses 
concerning the membrane lifespan and the brine cost function param
eter (see supplementary file). 

7. Case study region L (South-Central Texas) 

Before analyzing three exemplary water supply scenarios, each 
addressing another aspect of the food-energy-water nexus (municipal 
usage, irrigation, power generation), the available water sources and 
water restrictions for Region L are stated. 

7.1. Available water sources and restrictions 

An overview of possible input water types for the desalination design 
optimization framework of Region L defined by the TWDB can be found 
in Appendix A, Table 9. The specified TDS concentrations (Table 9 in 
Appendix A) are used to define Cwater,j of the design optimization 
program. 

With these different input water sources, various output water 
characteristics can be achieved by applying a reverse osmosis desali
nation process. A summary of possible output water restrictions and 
applications is given in Table 1. Municipal, irrigation, livestock and 
steam electric power are major water demand applications and are 
therefore the only applications considered in this work [33,72]. 

The dissolved solids concentration restrictions specified in Table 1 are 
used to define Cp,restriction for design optimization. Hence, all input and 
output water types are well defined. If the framework methodology 
should be applied to another region around the globe, the input water 
definitions and output water restrictions need to be updated accordingly. 

7.2. Scenarios 

As stated in Section 1, there is an increasing discrepancy between the 
water supply and the water demand forecast [33]. Therefore, there is not 
only a desire for minimizing operational costs but also to maximize the 
generated permeate flow of desalination systems. In the following, the 
developed methodology is used to analyze and optimize three different 
case studies to evaluate these competing process objectives:  

1. Drinking water: The energy supply for a municipal water demand 
scenario needs to be satisfied with a combination of grid electricity 
and renewable energy sources. The competing objectives minimizing 
operational costs and maximizing permeate flow are assessed for 
varying fractions of grid electricity to renewable energy, so that an 
environmental metric, like penalizing energy sources which emit 
carbon, with the goal of minimizing carbon emissions, can be indi
rectly considered.  

2. Water for irrigation: Seawater, aquifer water, and surface water are 
used to analyze the trade-off between minimizing costs and maxi
mizing increasing output water demands for irrigation purposes. The 
energy for the desalination process is supplied by grid electricity.  

3. Water for power generation: Only seawater is used to fulfill a specific 
power generation water demand. Firstly, the design of the desali
nation plant is determined when only grid electricity is used. Sec
ondly, the same optimization will be performed, but now only solar 
and wind energy are available energy supply sources. 

7.2.1. Scenario I: drinking water 
The energy supply for the desalination process consists of a combi

nation of renewable energy sources and grid electricity. Pareto Front for 
various grid electricity to renewable energy fractions are created to 
capture the impact of an environmental metric on the solution of 
competing objectives like maximizing the permeate flow and mini
mizing the operational costs. The changing energy supply fraction re
sults in varying energy cost factors ec and therefore directly influences 
the operational costs. Exemplary environmental metrics can incorporate 
penalizing carbon based energy production or rewarding renewable 
energy sources. 

Fig. 5. Schematic illustration of the framework solution methodology.  

Table 1 
Desalination output water characteristics depending on application.  

Water application Permeate restriction Source 

Drinking water Cp,sum ≤ 500 mg/L [73] 
Irrigation Cp,sum ≤ 600 mg/L [73,74] 
Livestock Cp,sum ≤ 1000 mg/L [73] 
Power plant Cp,sum ≤ 2500 mg/L [75]  
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In this case, industrial wastewater from a semi-conductor manufac
turer in San Antonio is used as input water (Cf, 1, j=5600 mg/L and Qf, 1, j 
≤ 12500 m3/d). Additionally, the permeate flow is restricted to be at 
least Qp, sum, j ≥ 8750 m3/d, resulting in a water recovery of WRsum, j ≥

70%. Initially, the stated specifications were used with ec = 29.84 
$/MWh (assuming renewable energies only, for details see Scenario III) 
to determine an energy output range for the energy optimization model 
by minimizing the energy and the operational cost. 

Minimizing the energy of the system results in a three-stage process 
(WRsum, j=78.57%, Qp, sum, j=8750 m3/d) with an energy demand of 
0.2112 MW and operational cost of 0.8022$/m3 (CE, j=0.0174$/m3, CB, 

j=0.7379$/m3, CM, j=0.0469$/m3). In contrast, minimizing operational 
costs yields an energy consumption of 0.470 MW and an operational cost 
of 0.5891$/m3 (CE, j=0.0336$/m3, CB, j=0.5389$/m3, CM, j=0.0167 
$/m3), for a two-stage process (WRsum, j=83.39%, Qp, sum, j=10021 m3/ 
d). From these results, distinct energy output points, for each of which 
the grid electricity fraction to renewable energy fraction is altered, are 
defined (0.2 MW, 0.3 MW, 0.4 MW and 0.5 MW). 

The Energy Optimization Model is used to determine the minimized 
cost of an energy supply process with a constant energy output, which is 
altered between 0.2 MW and 0.5 MW. For each of the energy demand 
points, the available grid electricity is defined as a fraction of the neces
sary energy supply and is changed from 0% to 100% in 20% increments. 
Only solar and wind energy are considered as renewable energy sources. 

The results are summarized in Fig. 6, where the energy cost factor in 
[$/h] depending on the grid electricity fraction for energy outputs from 
0.2 MW to 0.5 MW is shown. As expected, the energy cost factor de
creases for an increasing amount of grid electricity fraction. The energy 
cost factor also decreases for a lower energy output demand for a con
stant fraction of grid electricity. 

To further evaluate the results, the energy cost factor has been trans
formed with the constant energy output, for each case respectively, to 
[$/MWh], see Fig. 7. In this case, the energy output demand for each 
fraction of grid electricity point does not influence the energy cost factor. 
Overall, the energy cost factor exhibits an almost linear decline (R2 = 0.99 
for the case of 0.2 MW) with an increasing amount of grid electricity. Since 
the energy costs for varying fractions of grid electricity are approximately 
the same (maximal deviation of 0.8% in the case of 0% grid electricity 
between 0.2 MW and 0.4 MW), the determined energy cost factors for 0.2 
MW (black line in Fig. 7) have been selected arbitrarily as representative 
costs to be used in the following design optimization. 

It is important to mention that in all cases, storage systems are 
needed to satisfy the energy demand, except for the case of 100% grid 
electricity. The cost and the capacity of storage systems are always taken 
into account for determining the overall energy cost factor of distinct 

supply scenarios. For all cases, only solar energy is selected because one 
wind turbine already satisfies much higher energy demands than 
necessary and is more expensive than the determined necessary amount 
of solar panels. 

Pareto Front for varying energy supply systems, meaning fractions of 
grid electricity to the overall energy supply, have been created by 
minimizing the energy cost for changing permeate output flow re
strictions (Qp, sum ≥ Qp, restriction). The results can be found in Fig. 8. 

The output permeate flow has been restricted between Qp, 

restriction=1500 m3/d and 10,000 m3/d. All Pareto Front show the same 
general behavior: From 1500 m3/d to 3000 m3/d, the energy cost factor 
increases only marginally (maximum of 12% increase for 0% grid 
electricity). Then, from 3000 m3/d to 10,000 m3/d, the cost factor in
creases almost linearly in all cases. For 0% grid electricity, the energy 
costs are the highest, whereas 100% grid electricity results in the lowest 
energy cost case. Accordingly, the increment grid electricity supply 
fractions give energy cost sequences in between 0% and 100% grid 
electricity supply. An interesting result can be assessed when the two 
boundary cases of 0% and 100% grid electricity are being compared: the 
energy cost factor increases by 77% when grid electricity decreases from 
100% to 0%. The energy cost, however, rises between 57% (for Qp, 

sum=1500 m3/d) and 80% (for Qp, sum=10000 m3/d) with the same 
decrease in grid electricity. So depending on the necessary output 
permeate flow, a smaller energy cost increase compared to the energy 
cost factor increase is observed (for Qp, sum ≤ 7500 m3/d, the energy cost 
increase is ≤77%). Thus, these indirect savings can be exploited in 

Fig. 6. Energy cost factor ec in [$/h] for varying fractions of grid electricity for 
a constant energy output between 0.2 MW to 0.5 MW. 

Fig. 7. Energy cost factor ec in [$/MWh] for varying fractions of grid electricity 
for a constant energy output between 0.2 MW to 0.5 MW. 

Fig. 8. Results of minimizing energy cost for changing output permeate re
strictions and varying grid electricity fractions (from 0% to 100% in 
20% increments). 
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future applications, since the expectation that the energy cost increase is 
proportional to the energy cost factor increase is negated with the 
developed optimization model. 

To further evaluate the determined optimization results, the energy 
consumption for each fraction of the grid electricity case has been 
calculated in [kWh/m3] and is illustrated depending on the permeate 
output flow of the system in Fig. 9. Generally, the same behavior as in 
Fig. 8 can be seen: for a permeate output of 1500 m3/d to 3000 m3/d, the 
energy consumption increases only marginally, whereas, the energy 
consumption increases almost linearly (from 3000 m3/d to 10,000 m3/ 
d). In this case, however, a clear distinction between the grid electricity 
fractions is not possible. Therefore, Fig. 11 in Appendix B shows all 
energy consumption points in [kWh/m3] depending on the permeate 
output and independent of the grid electricity fraction. These points can 
be linearly approximated with a residual of R2 = 0.97 (blue dotted line). 
Hence, the energy consumption of all systems increases with increasing 
output permeate water flow, as expected. All determined results of this 
case study can be found in Appendix B, Table 10. 

7.2.2. Scenario II: water for irrigation 
For the second scenario, restrictions concerning the available water 

sources are needed for each water type, respectively. Otherwise, the 
water source with the lowest total dissolved solids concentration is al
ways chosen (for all here presented objective functions), which is 
generally surface water. At certain feed flows (Qf,1) this is not sustain
able anymore since a river or lake is drained empty. Therefore, a realistic 
representation of flow restrictions is necessary. 

To consider a viable restriction for surface water (water from the 
Medina River in this case), a water treatment facility at Lake Medina, 
operated by SAWS, was analyzed. When working at full capacity, the 
plant can treat 13000 acreft

year . Having said this, the plant has not been 
operated at full capacity since 2013. To ensure a reasonable water level 
of Lake Medina, one third of the maximum capacity is implemented as a 
feed flow restriction, Qf, 1, M ≤ 15000 m3/d [76,77]. Derived from the 
highest possible feed volume flows of the H2Oaks Desalination plant, 
which uses water from the Carrizo-Wilcox aquifer, a feed flow restriction 
of Qf, 1, A ≤ 35000 m3/d is defined [64]. 

Technically, a restriction for a seawater input flow is not required, 
due to the absence of restrictions concerning seawater discharge flows. 
However, an arbitrarily chosen limitation of Qf, 1, S ≤ 100000m3/d is 
implemented to maintain applicability of the seawater desalination 
plant and take into account technical limitations. At certain high volume 
flows, a second desalination plant would be built rather than trying to 
further increase the capacity of the original one [64]. 

To generate a Pareto Front of operational costs and permeate flow, 
the operational costs are minimized, while the permeate flow restriction 
(Qp, sum, j ≥ Qp, sum, set) has been altered from Qp, sum, set=200 m3/d to 
60,000 m3/d, while three different water sources j = (Medina River (M), 
Carrizo-Wilcox Aquifer (A), Seawater (S)) were considered. The results 
are summarized in Appendix B, Table 11, as well as in Fig. 10. 

In Fig. 10 the Pareto Front for minimizing operational cost and 
maximizing the permeate flow for surface water (blue circles), aquifer 
water (orange circles) and seawater (dark blue circles) can be seen. 
Optimizing the operational cost while the first permeate flow restriction 
(Qp, sum, set=200 m3/d) is enforced already results in a permeate flow of 
Qp, sum, M=6299 m3/d. Consequently, when one is interested in gener
ating a permeate flow between 200 m3/d and 6299 m3/d, a permeate 
flow of 6299 m3/d results in minimal operational costs, meaning that a 
higher permeate flow is advantageous here. For other restrictions, the 
same behavior can be seen, but not as significantly as for the first re
striction (see Table 11). A reason for this correlation could be that at a 
certain volume flow, parallel flows per stage become more advantageous 
resulting in lower pressures and consequently lower energy costs. 
Additionally, less membrane surface per stage can be sufficient due to 
the parallel flow arrangement. This explanation can be compared to the 
economy of scales, meaning that depending on the desalination process 
scale, cost advantages can be found. 

However, when the feed flow restriction of surface water (Qf, 1, M ≤

15000 m3/d) is reached, aquifer water is utilized next. With the increase 
of the feed total dissolved solids concentration, an operational cost level 
jump from around 0.0187$/m3 to 0.0431$/m3 can be seen. For surface 
and aquifer water, respectively, the price for increasing the permeate flow 
over the whole possible range rises moderately (surface water: 9.5%, 
aquifer water: 3.3%). However, the operational cost more than doubles 
when the water source is switched from surface to aquifer water. 

The same effect can be seen when the water source is specified as 
seawater instead of aquifer water (due to the feed flow restriction Qf, 1, A ≤

35000 m3/d): the operational cost increases from around 0.0431$/m3 to 
4.4502$/m3. When seawater operational costs are compared to the opera
tional costs of the other two water sources, one can see that aquifer and 
surface water operational costs are negligible in regard to seawater 
processes. 

Overall, it can be seen how much more cost intensive seawater 
desalination is. On the other hand, significantly higher permeate flows 
are possible. For certain water demand scenarios (here Qp, sum, j ≥ 35000 
m3/d), seawater is the only water source which can satisfy the given 
demand without substantial environmental impacts (e.g. by draining an 
aquifer or river linked with unforeseeable consequences for ecosystems). 
Moreover, with the Pareto Front in Fig. 10, the tradeoff between 
reducing operational costs for as high as possible water outputs has 

Fig. 9. Energy consumption of an energy cost minimized process with changing 
output permeate restrictions and varying grid electricity fractions (from 0% to 
100% in 20% increments). 

Fig. 10. Pareto front for minimizing operational costs for varying permeate 
flow restriction (lower bound), for surface water, aquifer water and seawater. 
(For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.) 
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successfully been visualized. 

7.2.3. Scenario III: water for power generation 
The focus of the third case study is to evaluate the impact of changing 

energy sources on the design of seawater desalination plants producing 
water for cooling purposes in power generation plants. To determine a 
representative daily water demand of a power plant, a typical Texan 
power generation facility is selected. Since Texas’ primary energy source 
is natural gas [78], the Sim Gideon Natural Gas Power Plant in Bastrop, 
Texas (South-Central Texas) is chosen. The plant is taking its cooling 
water from Lake Bastrop [79], which is a freshwater reservoir, so a 
closed-loop reservoir cooling system is assumed, which demands 
approximately 2200 L/MWh water [80]. Because of the plant’s 
maximum capacity of 620 MW [79], the highest possible daily water 
demand is 32,736 m3/d. To be on the safe side, a permeate output re
striction of Qp, sum ≥ 35000 m3/d is enforced. 

Now, the minimal operational cost plant design, depending on the 
energy supply system (energy supply only by grid electricity or only by 
solar and wind energy), for satisfying at least a permeate flow of Qp, sum 
≥ 35000 m3/d can be determined. Results of the design optimization 
when only grid electricity (ec=22.4$/MWh) is used as an energy source 
can be found in Tables 2 and 3. 

For minimizing operational costs, a three-stage process is suggested 
with an overall water recovery of WRsum, grid=59%. For a seawater 
desalination process, the calculated water recovery is comparably high, 
underlining that high water recoveries result in lower brine disposal 
costs. The process results in an operational power generation cooling 
water process cost of 13.011 $

103 ⋅gal . These obtained operational costs are 

comparably high for a seawater process (usually 10 to 12 $
103⋅gal, taken 

from the Texas Desalination 2019 Conference). Looking at the energy 
consumption of 2.3482 kWh/m3 for the process, it can be seen that in 
terms of energy consumption the process is very competitive [35]. The 
energy cost of a seawater RO desalination process is specified in [24] to 
be 0.311$/m3. The here elaborated energy cost is 0.0526$/m3, so 
approximately six times cheaper. Focusing on the composition of the 
operational costs shows that the major cost driver is the brine disposal 
cost. However, the challenges arising for seawater reverse osmosis are 
the construction of seawater intakes and concentrated brine ocean 
discharge systems, which are considered as capital costs constituents, 
rather than the disposal itself [81,82]. Consequently, it can be derived 
that the used brine concentration disposal cost function results in 
comparably high values for seawater desalination processes. 

Next, a design optimization for minimizing the operational costs of a 
seawater desalination process only using solar and wind energy is per
formed. Therefore, the energy optimization model is used to generate an 
energy cost function for solar and wind energy under consideration of 
energy storage systems. The result of this optimization can be seen in 
Fig. 12 in Appendix B. The slope of the shown nearly linear (R2 = 0.996) 
relationship between total cost (investment and operational costs) of the 
energy supply system in [$/h] and the desired power output in [MW] is 

ec=29.84$/MWh. Now, with the specified renewable energy consump
tion cost, design optimization can be performed. The generated results for 
the design optimization of a desalination process only using renewable 
energies for minimizing operational costs can be seen in Tables 4 and 5. 

The results are comparable to the ones obtained by the design opti
mization with grid electricity. The energy cost factor increases from grid 
electricity to renewable energies by 33%. Accordingly, the energy cost 
increases as well by 33%, but the operational costs are approximately 
constant (an increase of 0.12%). In contrast, Di Martino et al. found cost 
savings in this case for brackish water desalination processes producing 
drinking water, meaning that with an increasing energy cost factor of 
33% the operational cost only increases by 11% [83]. Thus, these 
principles are not applicable for seawater desalination systems. In the 
here presented case, the energy source has virtually no effect on the 
operational costs due to the high brine disposal costs. In subsequent 
work, sensitivity analyses concerning the impact of the electricity cost 
on the operational cost for increasing electricity prices should be per
formed to evaluate if an electricity price influence boundary exists. This 
concludes the presented case studies for the design optimization model, 
showing the versatility of the developed framework for desalination 
processes, as well as the potential for saving energy and operational 
costs for reverse osmosis systems in general. 

8. Conclusion 

The goal of this work is to develop a framework methodology that 
incorporates various input energy and input water sources to satisfy 
increasing water demands for regions that are characterized by water 
scarcity (e.g. South Central Texas). Consequently, depending on the 
available input resources, the membrane system as well as the operating 
parameters of the desalination system change. The approach presented 
here can be modified for distinct regions and incorporate the given 
limitations or availabilities of water or energy sources. Additionally, the 
water quality output of the reverse osmosis process can be adjusted to 
the desired water application, so that not only municipal water usage 
can be considered, but also applications like irrigation or livestock. A 
superstructure representation and optimization are then used as part of 
the developed framework to generate optimal desalination designs. 
Thus, a plethora of optimal solutions for scenario analyses can be 
created. The incorporated approach enables a systematic process sys
tems engineering approach for reverse osmosis desalination process 
possibilities dependent on regional factors. Thus, a holistic framework 
for reverse osmosis desalination, to satisfy an array of partially 
competing output goals, has been developed. 

In three different case studies, each tackling a distinct facet of the 
food-energy-water nexus, the applicability of the framework has been 
illustrated. By changing the fraction of grid electricity of the energy 
supply system of a desalination plant producing drinking water, an 
environmental metric can indirectly be incorporated. Additionally, a 
linear approximation of the energy consumption of the system inde
pendently of the grid electricity fraction could be determined. Moreover, 

Table 2 
Overview results design optimization minimizing operational costs with seawater and grid electricity (Qf, 1 ≤ 100000 m3/d, Cf, 1=34000 mg/L, Qp, sum ≥ 35000 m3/d).  

Stage Qf [m3/d] Cf [mg/L] P [bar] WR [%] A [m2] Cp [mg/L] Cr [mg/L] mi,j 

Stage 1  59,276  34,000  41.82  64.92  3626  5273  87,150  5 
Stage 2  38,479  5273  5.015  69.88  351  3236  10,000  1 
Stage 3  11,590  10,000  5.002  69.99  120  60  33,178  1  

Table 3 
Operational costs design optimization minimizing operational costs with seawater and grid electricity (Qf, 1 ≤ 100000m3/d, Cf, 1=34000 mg/L, Qp, sum ≥ 35000 m3/d).  

Energy costs Brine costs Membrane costs Total operational costs Total operational costs 

[$/m3] [$/m3] [$/m3] [$/m3] [$/1000 gal] 

0.0526 3.366 0.0054 3.424 13.011  
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a Pareto Front for minimizing operational cost and maximizing the 
permeate flow for water for irrigation was visualized. For water for 
power generation applications with seawater as a water source, the in
fluence of changing energy supply systems on the desalination plant 
design has been evaluated. 

To summarize, the key contributions of this work are:  

1. A reliable and fast screening of reverse osmosis plant designs prior to 
detailed plant modeling.  

2. The development of a techno-economic and feasibility analysis of 
desalination plants.  

3. The enabling and facilitating of various possible scenario analyses.  
4. The implementation of a Water-Energy Nexus approach, in an 

attempt to tackle water scarcity challenges for arid and semi-arid 
regions, considering not only the modeling and optimization of 
desalination systems but also the energy supply system of the 
process. 

Future works can entail modifications of the framework methodol
ogy to increase model accuracy and applicability. For example, other 
desalination process steps can be included additionally in the framework 
approach, like pre- and posttreatment. Also, recycle streams or bypasses 
can be incorporated. Generally, this framework can be expanded and 
applied to other desalination technologies and hybrid desalination 
process designs, with the aim of developing a tool to adequately rate 
desalination alternatives. Moreover, investment costs as well as mem
brane cleaning costs and other cost factors can be added in future works. 
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Nomenclature 

List of abbreviations 

DOF Degrees of Freedom 
ERD Energy Recovery Device 
MILP Mixed-Integer Linear Programming 
MINLP Mixed-Integer Nonlinear Programming 
MIP Mixed-Integer Programming 

NLP Nonlinear Programming 
PSE Process Systems Engineering 
RO Reverse Osmosis 
SARA San Antonio River Authority 
SAWS San Antonio Water System 
TDS Total Dissolved Solids 
TWDB Texas Water Development Board 

Index directory 

B Brine 
c Cost 
demand Set Demand Restriction 
E Energy 
f Feed Stream 
i Stage i 
j Water Source j 
M Membrane 
nec Necessary operational value 
p Permeate Stream 
pump Input Value for Pumping Operation 
r Retentate Stream 
res Residual Variable 
restriction Set Quality Restriction 
s Dissolved Salts 
sum Summation of Variables 
ν Membrane Pressure Vessel 
v Water 

Symbol directory 

η Efficiency, [−] 
bc Brine Disposal Cost Function Factor, [ $

m3] 
ec Energy Cost Function Factor, [ $

m3] 
A Surface Area, [m2] 
C Concentration, [mg

L ] 
J Flux, [m

s ] 
LS Membrane Lifespan, [years] 
m Parallel Flows per Stage, [−] 
me Membrane Cost, [$] 
N Number of, [−] 
P Pressure, [bar] 
Q Volume Flow, [m3

s ] 
R Fraction Remainder, [−] 
SEC Specific Energy Consumption, [ J

m3] 
v Membrane Pressure Vessel Cost, [$] 
WR =

Qp
Qf

Water Recovery, [−] 

Table 4 
Overview results design optimization minimizing operational costs with seawater and renewable energies (only solar and wind, Qf, 1 ≤ 100000 m3/d, Cf, 1=34000 mg/ 
L, Qp, sum ≥ 35000m3/d).  

Stage Qf [m3/d] Cf [mg/L] P [bar] WR [%] A [m2] Cp [mg/L] Cr [mg/L] mi,j 

Stage 1  59,182  34,000  41.53  65.39  3690  5429  87,968  5 
Stage 2  38,696  5429  5.022  68.18  299  3297  10,000  1 
Stage 3  12,312  10,000  5.001  69.98  113  60  33,170  1  

Table 5 
Operational costs design optimization minimizing operational costs with seawater and renewable energies (only solar and wind, Qf, 1 ≤ 100000 m3/d, Cf, 1=34000 mg/ 
L, Qp, sum ≥ 35000 m3/d).  

Energy costs Brine costs Membrane costs Total operational costs Total operational costs 

[$/m3] [$/m3] [$/m3] [$/m3] [$/1000 gal] 

0.0699 3.353 0.0055 3.428 13.026  
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Appendix A  

The pressure vessel unit costs in Table 8 are defined for 7 membranes per vessel. The pressure vessel costs reduce to $800 or $700, respectively, 
when a pressure vessel for only one membrane is needed [67]. 

An overview of the various process input water specifications is given in Table 9. For the total dissolved solids concentration of the Gulf of Mexico, 
a near coastal drain was assumed. Additionally, all industrial wastewater streams are effluents from industries in San Antonio. Further, the TDS 
concentration of 700 mg/L for Medina River was measured at the San Antonio River Authority (SARA) station 14195 at Leon Creek, which is a 
tributary of Medina River. The specification of the salinity of the Carrizo-Wilcox aquifer water was supplied by the H2Oaks Desalination facility and 
also confirmed by the TWDB.  

Table 6 
Overview input data for membrane data generation with WAVE. Additional information can be found in the supplementary file.  

Feed water Selected membrane Cf [mg/L] 

Seawater SW30HRLE-400i 36,000 
32,000 

Brackish water BW30-400/34 10,000 
3000 
1500 

Surface water XLE-440 700  

Table 7 
Summary of specifications of used DOW FILMTEC membranes.  

Specification SW30HRLE – 400i BW30 – 400/34 XLE – 440 

Description Lower lifecycle cost for medium and high salinity feedwaters High rejection, high surface area Extra low energy, high productivity 
Membrane type Polyamide thin-film composite Polyamide thin-film composite Polyamide thin-film composite 
Active area [m2] 41 37 41 
Stabilized salt rejection [%] 99.80 99.50 99.00 
Max. pressure [bar] 83 41 41 
Max. temperature [K] 318.15 318.15 318.15 
pH range 2–11 2–11 2–11 
Maximum feed silt density index SDI 5 SDI 5 SDI 5 

For additional information please refer to: 
https://www.lenntech.com/Data-sheets/Dow-Filmtec-SW30HRLE-440i.pdf, https://www.lenntech.com/Data-sheets/Dow-Filmtec-BW30-400.pdf, https://www. 
lenntech.com/Data-sheets/Dow-Filmtec-XLE-440.pdf. 

Table 8 
Costs of membrane modules and pressure vessel units (obtained from Consolidated Water Co. Ltd.) [67].  

Membrane type Module cost [$] Pressure vessel Unit cost [$] Rv,j correlation [$] 

SW30HRLE-400i  695 High pressure  2000 Rv,j⋅
2000 − 800

7 − 1
+ 600  

BW30-400/34  525 Low pressure  1900 Rv,j⋅
1900 − 700

7 − 1
+ 500  

XLE-440  560 Low pressure  1900 Rv,j⋅
1900 − 700

7 − 1
+ 500   
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Appendix B

R² = 0.9693
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Fig. 11. Linear approximation of the energy consumption of an energy cost minimized process with changing output permeate restrictions and varying grid elec
tricity fractions (from 0% to 100% in 20% increments). 
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Fig. 12. Energy cost function for renewable energies only using solar and wind (including energy storage).   

Table 9 
Desalination input water characterization and definition.  

Water type Water specification TDS concentration [mg/L] Source 

Seawater Gulf of Mexico  34,000 [84] 
Ground water Carrizo-Wilcox Aquifer  1500 [64,85] 
Surface water Medina River  700 [86] 
Industrial wastewater Metal Finishing Industry  3000 [87] 

Semi-Conductor Manufacturer  5600 [87] 
Johnson Controls Battery  7600 [87]  
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Table 10 
Overview energy cost and energy consumption for varying grid electricity fractions of the energy supply system (grid electricity and renewable energies, FracGrid) for 
minimizing the energy costs of the system (Cf=5600 mg/L, Qf ≤ 12500 m3/d, Qp, sum ≥ Qp, restriction).  

FracGrid Energy cost factor Qp,restriction Qp,sum WRsum Energy cost Energy consumption 

[–] [S/MWh] [m3/d] [m3/d] [%] [$/m3] [kWh/m3]  

0.00  39.612  1500  1522  70.00  0.0094  0.237  
3000  3020  84.03  0.0105  0.265  
5000  5003  83.71  0.0143  0.361  
7500  7507  80.04  0.0188  0.476  

10,000  10,002  83.18  0.0251  0.634  
0.20  35.261  1500  1504  69.82  0.0084  0.237  

3000  3256  83.55  0.0090  0.254  
5000  5003  83.54  0.0123  0.348  
7500  7502  83.21  0.0168  0.475  

10,000  10,533  83.35  0.0223  0.633  
0.40  31.670  1500  1512  69.96  0.0075  0.238  

3000  3247  83.91  0.0084  0.264  
5000  5002  83.72  0.0111  0.350  
7500  7504  83.55  0.0142  0.447  

10,000  10,002  83.47  0.0183  0.577  
0.60  28.454  1500  1532  69.51  0.0068  0.238  

3000  3018  83.98  0.0075  0.262  
5000  5001  83.62  0.0097  0.339  
7500  7501  79.52  0.0127  0.448  

10,000  10,000  82.40  0.0166  0.585  
0.80  25.427  1500  1532  69.99  0.0061  0.239  

3000  3037  70.37  0.0064  0.250  
5000  5008  83.09  0.0086  0.340  
7500  7502  83.65  0.0119  0.468  

10,000  10,002  82.42  0.0146  0.573  
0.00  22.400  1500  1803  84.14  0.0056  0.250  

3000  3008  83.85  0.0056  0.251  
5000  5007  83.71  0.0079  0.353  
7500  7503  82.96  0.0106  0.472  

10,000  10,002  82.44  0.0139  0.621   

Table 11 
Summary results design optimization case 2, Pareto front (minimizing operational costs vs. maximizing permeate 
output).  

Qp,sum,set [m3/d] Qp,sum [m3/d] Operational cost [$/m3] Cf [mg/L]  

200  6299  0.0179  700  
6500  11,431  0.0180  700  
12,000  12,348  0.0181  700  
13,000  13,416  0.0192  700  
13,500  13,561  0.0195  700  
14,000  14,329  0.0196  700  
15,000  17,565  0.0424  1500  
18,000  21,329  0.0428  1500  
22,000  27,823  0.0432  1500  
32,000  33,114  0.0438  1500  
35,000  35,000  4.0442  34,000  
40,000  40,003  4.1243  34,000  
45,000  45,005  4.3222  34,000  
50,000  51,064  4.6393  34,000  
60,000  60,000  5.1208  34,000  

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.desal.2021.114937. The supplementary file summarizes and 
specifies the reverse osmosis model development, the energy optimization model, representative operation optimization results, as well as performed 
sensitivity analyses. 
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