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HIGHLIGHTS
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e A surrogate model for the depiction of a reverse osmosis stage is developed.

e The framework is applied to a case study in South-Central Texas.
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Due to a growing population, globally depleting water supplies, as well as the effects of climate change, demands
for water are ever increasing. Reverse osmosis desalination could play a key role in generating new water sources
since treating saline water for reuse has become possible. An optimization based framework under food-energy-
water nexus considerations is developed in this work to tackle water scarcity sustainably for arid and semi-arid
regions. With the aid of a surrogate model, a single reverse osmosis stage is depicted, with which varying
desalination process designs can be composed, considering different membrane modules, as well as varying input
energy and saline water sources. Then, the process was modeled through a superstructure representation that
resulted into a mixed-integer nonlinear optimization problem, enabling the optimization of an array of objectives
for a given set of input water and energy supply, as well as output water demand restrictions. The developed
framework facilitates informed decision making through the fast screening and optimization of desalination plant
designs. To illustrate the elaborated framework methodology, a food-energy-water nexus approach is imple-
mented for South-Central Texas in three distinct scenario analyses.

1. Introduction decisions concerning the utilization of one resource, in this case water,

are made, other resources, in this case food and energy, are affected and

Water scarcity is a severe challenge, especially for arid and semi-arid
regions such as Texas [1], California and Baja California [2] or the
Middle Eastern Region [3]. With a growing population, not only the
water and food demands increase, but also the energy consumption.
Since water is traditionally used as a coolant in energy production
plants, as well as needed for agriculture and livestock for food produc-
tion, the water consumption further rises [4,5]. Consequently, water,
food, and energy production are linked to each other, which in turn
means that these challenges need to be solved by a food-energy-water
nexus approach [6,7]. The food-energy-water nexus, which describes
the interconnectivity of natural resources, postulates that when

vice versa [8,9]. Thus, leading scientists and policy makers to think
about food, energy and water systems as connected and coevolving [10].
Moreover, the food-energy-water nexus not only consists of domains
related to water resources research [11], sustainability [12], food-waste
management [13] or metropolitan scale water management [14], but
also of various other scientific fields like psychology [15], sociology
[16] and many more. The interested reader is advised to consult
[17-19], as well as [20] for further information relating to the princi-
ples, practices, decision-making methods, planning and trade-off anal-
ysis for the interdisciplinary treatment of the food-energy-water nexus.

Further, existing water supplies, like groundwater aquifer storage
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systems, are depleting globally. If the groundwater recharge is exceeded
by the groundwater withdrawal for extensive areas and an extensive
period of time, overexploitation or persistent groundwater depletion can
occur, which can result in devastating effects on natural streamflow,
groundwater-fed wetlands and related ecosystems [21].

Additionally, climate change is expected to make water shortages
worse: the Intergovernmental Panel on Climate Change (IPCC) projected
that up to two billion people worldwide could be facing water shortages by
2050. Moreover, climate change will not only affect water scarcity but also
a sustainable water supply by decreasing natural water storage capacity
and affecting the capacity and reliability of water supply infrastructure
(due to extreme weather or flooding) [22,23]. Therefore, to cope with these
upcoming severe challenges, novel water sources are needed [24].

Desalination processes could play a key role in tackling these challenges
since treating sea water, surface water, industrial wastewater or brackish
water for reuse has become possible [25,26]. A process that removes salts
and minerals from a saline water source, for human consumption and do-
mestic or industrial usage, is referred to as desalination [27]. Traditionally,
thermal separation methods were used to purify saline water. However,
with recent advances in membrane technology, membrane separation
methods have become more and more popular, particularly reverse
osmosis (RO) desalination processes [26,28]. Reverse osmosis desalination
systems have high energy efficiency, low space requirements, as well as
process and plant compactness among other advantages in comparison to
thermal desalination technology [27]. Consequently, 88% of the desali-
nated water in the United States is produced by reverse osmosis [29]. This
work investigates reverse osmosis process systems, but future extensions
could cover other desalination processes.

So far, there have been a variety of distinct optimization analyses
concerning reverse osmosis systems, but to our knowledge, a holistic
Food-Energy-Water Nexus approach, alternating or rather optimizing
the water and energy sources, as well as the membrane system itself, in
an attempt to meet the local water demands for varying output water
applications, has not yet been investigated, which is the scope of this
work. Therefore, data for renewable energy and grid electricity, as well
as for seawater, surface water, groundwater, and industrial wastewater,
together with reverse osmosis process properties is collected and used
for the modeling and simulation of different desalination alternatives
that can then be used for optimization. The developed process systems
engineering approach for reverse osmosis desalination possibilities
dependent on regional factors is summarized in Fig. 1. Grossmann et al.
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[30,31] already discussed that process systems engineering (PSE) is
uniquely positioned to address the challenges encountered in the sus-
tainability of food-energy-water nexus problems, as well as sustain-
ability problems in general, within chemical engineering and beyond.
Within PSE hierarchical decomposition and superstructure synthesis are
the two main approaches for conceptual process design, although su-
perstructure synthesis is the preferred alternative, as it has the key
advantage of systematic and integrated analysis of alternative process
structures [32].

Thus, a superstructure based mathematical model is developed,
which has the form of a mixed-integer nonlinear programming (MINLP)
problem. The developed model can then be optimized for various sce-
narios resulting in a plethora of optimal solutions for decision makers,
enabling a framework methodology, for the techno-economic and
feasibility analysis of desalination plants. Hence, this approach can be
used for reliable and fast screening of reverse osmosis plant designs prior
to detailed plant modeling.

This work focuses on the Food-Energy-Water Nexus for South-Central
Texas (USA), defined as Region L by the Texas Water Development Board
(TWDB), but can be easily modified and applied to any given region
around the world, underlining the framework nature. Region L is histor-
ically rooted in agriculture and contains a growing metropolitan hub with
the city of San Antonio. Furthermore, the region is characterized by a
finite supply of water resources [8]. Therefore, water management is a
key issue for Region L (likewise for the whole state of Texas and other
regions with water scarcity challenges). Conventional water management
strategies, like conservation or groundwater, are not sufficient for
meeting prognosticated demands, resulting in a growing share of tech-
nology based water supplies, like reverse osmosis desalination [1].

The population of Region L is expected to reach more than 5 million
by 2070, with a water demand projected to increase by 34% [33]. While
the total water demand increases, the existing ground water supply of
Region L stays approximately constant (expected to increase by 2%)
[33]. Consequently, the discrepancy between water demand and supply
will rise significantly over the upcoming years. This prognosis un-
derlines that a holistic nexus approach, which considers the inter-
connectivity of resources like food, energy, and water, is a necessity for
tackling these challenges sustainably [8,34].

The water demand projection for various industries, the sum of
which gives the total water demand forecast, needs to be evaluated as
well. The main water demand drivers are not only municipal water
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usage, but also water for irrigation, as well as livestock together with the
water demand for steam-electric power, mining and manufacturing
[33]. Therefore, output water applications other than municipal water
usage need to be considered when tackling reverse osmosis desalination
optimization holistically.

Fortunately, Texas is perfectly suited for desalination with more than
360 miles of coastline along the Gulf of Mexico, and more than 30
aquifers spreading across the state, each containing an ample supply of
brackish groundwater [1]. Therefore, analyzing different desalination
systems holistically for various energy and water inputs is necessary to
assess the possibilities and limitations of desalination systems, evaluate
food-energy-water nexus trade-offs and identify optimal cost-effective
and sustainable desalination plant designs. A novel framework for the
optimal design of desalination process plants is developed and presented
in this work as a means of tackling the water scarcity in water-stressed
regions such as Texas. Furthermore, the proposed approach is easily
applicable to other regions around the globe facing water scarcity.

After a brief literature review that comprises advances in the opti-
mization of desalination systems as well as advances in RO optimization
with and without food-energy-water nexus considerations, the super-
structure representation of the reverse osmosis desalination system is
described. Then, the single-stage reverse osmosis surrogate model is
derived and used to compose a multi-stage process, depending on the
total dissolved solids concentration of the input water source. Subse-
quently, the energy optimization model, which is used for deriving
electricity prices, is defined. Before applying the optimization frame-
work to a threefold case study of South-Central Texas, the optimization
model itself, together with the solution methodology are stated.

2. Literature review

In recent years, publications addressing, summarizing or reviewing
advances in RO technology and processes have been released regularly, e.
g. [27,35]. In these cases, either an overview of advancements in sys-
tematic optimization of the design and operation of water desalination,
together with a summary of techniques and optimization tools that have
been applied to desalination processes for design and/or operation pur-
poses of said processes are given [35], or distinct aspects of reverse
osmosis processes are reviewed, such as studies related to membrane
modules, characterization, fouling and cleaning, different pre-treatment
technologies, principles of RO process designs including the embedded
economy, as well as energy considerations, together with hybrid RO
process designs and current challenges faced by RO desalination pro-
cesses [27]. Additionally, there has been an opulence of work concerning
desalination process optimization, particularly regarding reverse osmosis
processes, without food-energy-water nexus considerations.

Generally, RO optimization has been studied with a focus on key
aspects of the desalination process: Kotb et al. [36] analyzed and opti-
mized the RO desalination system arrangement, as well as operating
conditions. Al-Obaidi et al. [37] evaluated the performance of a multi-
stage RO wastewater treatment system considering a number of alter-
native configurations with recycling of permeate, retentate, and
permeate-retentate streams. Ghobeity et al. [38] optimized time-
dependently the operation of a seawater desalination process. Zhu
et al. [39] optimized the energy consumption of a RO process prone to
feed water salinity fluctuations. In addition, RO processes only powered
by solar energy haven been simulated and optimized with the aim of
enhancing the recovery rate and product quality of the system, while
operational limits of the system are reduced [40]. Hybrid desalination
processes have been under investigation as well, e.g. Ghobeity et al. [41]
developed a conceptual design and system-level models of a cogenera-
tion solar-thermal plant, whose operating conditions have been subse-
quently optimized. In contrast, Sadri et al. [42] determined the best
trade-off between the exergetic efficiencies of multi-effect desalination
(MED) and RO, which led to the selection of a hybrid MED-RO system.
Additionally, Al-hotmani et al. [43] studied a hybrid system of multi
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effect distillation thermal vapor compression and reverse osmosis, for
seawater desalination. To take into account increasing water demands,
the permeate reprocessing design of the RO process is introduced in
several configuration of different upstream processes.

Different types of optimization approaches for desalination systems
has already been studied. Saif et al. [44] developed a deterministic
branch-and-bound global optimization-based algorithm for the solution
of the reverse osmosis network synthesis problem. In this case, to
illustrate the global optimization of the RO network, water desalination
is considered as a case study. Du et al. [45] investigated RO networks for
seawater desalination with spiral-wound membrane modules. After
comparing the model results with actual operational plant data from the
literature, the optimum design problem was formulated as a MINLP
problem and solved. Subsequently, Du et al. (2014) [46] extended their
study to multi-objective optimization, using the e-constraint method, to
investigate the trade-off between total annualized cost, energy con-
sumption and the recovery rate of the process. Khor et al. [47] developed
a detailed model representation for water regeneration network syn-
thesis, in which nonlinear mechanistic models of the regeneration units
are embedded within an overall MINLP optimization framework, which
is then used for an illustrative industrial case study of an operating re-
finery in Malaysia. The results indicate the possibility of 58% freshwater
savings. Sassi et al. [48] focused on a MINLP optimization framework for
boron removal in RO desalination systems. The approach includes a
seawater pass containing a normal two-stage RO system housing
seawater membrane modules and a brackish water pass accommodating
brackish water membrane modules.

All mentioned studies have in common that they do not address the
food-energy-water nexus holistically, but rather focus on principal
challenges for distinct scenarios. Although, the overall water demand of
arid and semi-arid regions not only consists of municipal water usage
but also of the water consumption of other industries like livestock,
irrigation or power generation [33], usually only one specific water
output application, mostly for drinking purposes, has been considered in
optimization studies of RO processes.

Lately, RO desalination optimization with food-energy-water nexus
reflections has become more and more common. For example, Gabriel
et al. [49] reviewed and optimized a hybrid RO system coupled with
industrial processes exhibiting a net surplus of heat energy. Li [50]
optimized a multi-stage hybrid RO-PRO (pressure retarded osmosis)
membrane process to address the energy-water nexus. Al-Aboosi et al.
[51] developed a design framework for integrating water and energy
systems, a cogeneration process and desalination technologies, to treat
wastewater and provide fresh water for shale gas production. Linke et al.
[52] visualized the trade-offs between the minimum total annual cost
and environmental sustainability metrics of industrial water networks.
Additionally, Al-Mohannadi et al. [53] maximized carbon reduction, as
well as economic performance of a defined industrial cluster containing
e.g. oil refinery, steel production and natural gas fired power plants
among other sources and sinks, using a multi-objective multi-period
optimization tool. Again, comparable to RO optimization studies
without nexus considerations, these exemplary studies focus on key
parts and challenges of reverse osmosis desalination processes to address
the interconnectivity of energy and water resources.

A review by Vakilifard et al. [54], which addresses the role of the
energy-water nexus in optimizing water supply systems, has identified a
lack of studies attempting to optimize the energy-water nexus holistically.
Also, optimization frameworks with the possibility of incorporating
environmental impact studies were deemed to be virtually nonexistent.
Moreover, the water demand or rather the impact on a water supply
scenario by the food industry is frequently not taken into consideration
when talking about nexus solutions or optimization studies.

Since the development of new processes and technologies is more
and more driven by sustainable criteria [55], the goal of the here elab-
orated reverse osmosis desalination optimization framework is to
develop an integrated methodology, which facilitates incorporating
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environmental impact studies of solution strategies, while simulta-
neously addressing the food-energy-water nexus holistically. The po-
tential of desalination alternatives can be assessed for varying supply
and demand scenarios, while further restrictions or goals, as the envi-
ronmental impact of process solutions, can be considered, in an attempt
to initially, partially fill the research void concerning reverse osmosis
desalination optimization studies addressing the food-energy-water
nexus identified by Vakilifard et al. [54].

3. Superstructure representation

The intent of this work is to address the design of reverse osmosis
desalination processes holistically in terms of the input water types, the
energy sources, the membrane types, as well as the process operation and
parameters, for various output goals and output water applications. The
goals considered do not only include maximizing revenue or minimizing
cost, but also satisfying a given water demand for different output water
characteristics (like municipal, irrigation, livestock or power plant
usage), or minimizing environmental stresses. Thus, the food-energy-
water nexus is incorporated in the approach, through varying applica-
tion possibilities, considering water and energy resources for defined
output utilizations like the food industry. Consequently, the framework
can be used in food application processes to incorporate the inter-
connectivity of food, energy and water. A summary of these consider-
ations is given in Fig. 2. The framework is modifiable for any given region
by adjusting restrictions concerning water and energy, emphasizing the
framework methodology nature of the implemented approach. A sche-
matic representation of the developed superstructure can be found in
Fig. 3. The superstructure can be subsequently expressed in a mathe-
matical model, which has the form of a MINLP problem.

The RO desalination framework is derived in the following steps:

1. A mathematical model to describe a single-stage reverse osmosis
process is developed (Section 4 and 1.1-1.3 of the supplementary
file), with which a multi-stage process can be configured (Section 1.4
of the supplementary file).

2. The optimization program for decision making concerning the usage
of available energy sources is elaborated (Section 2 of the supple-
mentary file).

3. The equations governing the design optimization problem are pre-
sented and discussed (Section 5), before introducing the used solu-
tion strategy (Section 6).

Then, the derived model is used for case studies in South-Central

Texas to analyze the potential and applicability of the derived model
(Section 7).

4. Development of the reverse osmosis model

A schematic representation of a one-stage reverse 0smosis process,

/" Energy \ / InputWater

Sources Types
)
S —

__ Electricity | Industrial
Waste

Surface

Hybrid

Desalination 503 (2021) 114937

together with the variables describing it is illustrated in Fig. 4. A feed
stream with volume flow Qs and concentration Cy is pressurized to a
pressure Py, so that separation of the saline feed into a diluted permeate
(Qp, Cp, Pp) and a concentrated retentate (Q, Cy, P;) can be achieved in
the reverse osmosis membrane module. Membrane modeling is classi-
cally used to calculate the necessary pressurization of the feed streams
for a certain permeate concentration quality (or vice versa) since the
pressurization is the main energy cost driver of the system [56].

To calculate the specific energy consumption of the pump pressur-
izing the feed, the transmembrane pressure needs to be calculated (AP =
Py — Py) together with the feed and permeate volume flow [m3/d] (see
Eq. (1)), while also considering the pump efficiency 5 [57].

Q-AP
-0y

SECpmnp = 1)

In Eq. (1) the reciprocal of % can be found. This fraction is also called

the water recovery of the process [24].
To further define the volume flows and the transmembrane pressure,
a mass balance and a component mass balance is derived (Egs. (2) and

(3)) [58]:
O =0,+0: (2)

Qf'cf = Qp'cp+Qr'Cr 3

The permeate volume flow can also be expressed in terms of the
membrane surface area A in [m2] and the membrane water flux J, in [m/
s] [27]:

Q]) =AJ, “4)

Additionally, it is possible to use the water J, and salt flux Js, to
define the permeate concentration [36]:

J; =J,-C, )

The water flux is typically proportional to the net pressure driving
force across the membrane (AP — All, transmembrane pressure differ-
ence minus osmotic pressure difference of the feed and permeate side),
whereas the salt flux is defined by the amount of salt passing through a
unit membrane surface area per unit time, which is proportional to the
salt concentration difference across the membrane [27].

However, these equations are not yet sufficient to fully describe the
membrane system. To further investigate the mass transfer principles
around a reverse osmosis membrane, the Film Theory can be consulted,
which takes the concentration polarization phenomenon on the feed
membrane side into account [59]:

C.—C, T,
p—"t 6
G =G exp<’<> ©

Here C,, denotes the salt concentration at the membrane surface,
whereas Cj, gives the salt concentration in the bulk solution. k = %f is the
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Fig. 2. RO desalination optimization framework considerations.
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Fig. 4. A schematic representation of a one-stage membrane process.

convective mass transfer coefficient, which needs to be calculated by a
convective mass transfer correlation. The Film Theory is presented in
detail in [27,36].

Further, all equations mentioned above are summarized in the so
called solution-diffusion model [60], which has been shown to
adequately predict the local behavior and performance of high rejection
membranes such as reverse osmosis membranes [61]. Using the
solution-diffusion model for membrane modeling as part of an optimi-
zation problem results in a highly nonlinear non-convex programming
problem. Since integer decisions additionally need to be incorporated
for design decisions, solving the generated optimization program will
take a lot of computational effort [62]. Besides, in order to use the
solution-diffusion model, access to the exact membrane geometry and
flow conditions for the convective mass transfer correlations is needed.
To overcome these challenges, a membrane supplier software was used,
which takes into account the solution-diffusion model to generate input-
output data, which can then be approximated by a multivariate linear
regression, resulting in a reduction of computational effort [63].

This multivariate linear regression yields an approximation of a
single stage RO unit and can subsequently be used to compose a RO
desalination process with varying flow structures. Furthermore, a deci-
sion between various available energy sources and used generating
technologies is enforced by minimizing the sum of operational and in-
vestment costs of each alternative with the aim of satisfying a given
yearly energy demand. The details of both approaches are specified in
Sections 1 and 2 of the supplementary file of this publication, as well as
in Table 6 and 7 of Appendix A.

5. Design optimization

mm f(x, n, W) (7a)
s.t.
Z Mi3-Qpis = Qpumy Vi=1,...,w, (7b)
i=1
i1 Cpig Qpij i
M = Cl),sum.j Vi=1...,w, 7
Qp.mm.j

% = WRyum, Vi=1,..,w, (7d)
Crij = Cuaterj Vi=1,...,w, (7e)
Cpsumj < Cprestriction Vi=1,...,w, 79)
WRnj = WRestriciion j Vi=1,...,w, 7g)
Opsumj = Op demand Vi=1,...,w, (7h)
n € {1,2,3,4} =1, 7i)
neN, N ={ny,...,n,}, 75)
jEJ, J=A{1,...,w}, (7k)

The design optimization problem is summarized in (Egs. (7a)-(7k)).
After explaining the governing equations, possible objective functions f
(x,n,w) are stated. The objective function f{x,n,w) is not only dependent on the
degrees of freedom (DOF) x and the number of stages n, but also on the
available water sources w. Here, x consists of the overall feed flow per water
source (Qr,), the water recovery (WRy;), the pressurization (P;j), the
membrane surface area (A;;) and the parallel flows (m;;) per stage i and
water source j, for i=1,...,n and j=1,...,w (the length of x is dependent on
n and w), resulting in a number of degrees of freedom of x =w - (4 - n +
1).

The DOF are all box-constrained optimization variables. The
maximum allowable pressure for each membrane depending on the
input water is used as an upper boundary for the pressurization, while
the lower boundary ensures applicability and water transport to the
membrane. It is important to mention that P;; describes the necessary
pressurization of stage i for water source j to generate the required
transmembrane pressure for the separation. The permeate pressure,
which is needed for transporting the purified water away from the
reverse osmosis module (P, ;;), is also included in the pressurization of
stage i (P, i, j = Py j + Pp, ;, j) to ensure transport to the membrane, ul-
timately resulting in:

AP;j=P;;;—P,;; =P, Vi=1,.,n Vi=1,.,w.

When a membrane surface area range is implemented, a membrane
budget is indirectly considered. Not more than 100 membranes per stage
are allowed to be used (to compare: the H20aks Desalination plant in
San Antonio uses 70 membranes in the first stage of their brackish water
desalination process [64]). The boundaries concerning the overall feed
flow and water recovery ensure operability and can be modified from
scenario to scenario. The design optimization variable m;; is introduced
to account for parallel flows for each stage i and water type j to take
higher feed volume flows and water demands into consideration and is
limited to five, but can be adjusted if necessary.
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Beginning with the overall feed (Qy;1 ), the parallel flows per stage (m;,
j) and the water recovery of the first stage (WR j), the permeate flow of the
first stage is calculated (Qp,1,), before using the surrogate model to
determine the permeate concentration of the first stage (C,,1;). After
closing the mass and component mass balances, the retentate of the first
stage (Qr,1, and C;,1) is redefined as the feed flow for the second stage
(Qf2,jand Cy2 ). This procedure is continued until all stages n, for all water
sources w are determined. For each stage and water type, the feed flow is
divided by m; to calculate a single stage membrane process (surrogate
model applicability). Afterward, the permeate flow as well as the reten-
tate flow are multiplied by mj, to calculate the overall stage flows and
concentrations. For seawater desalination processes, the feed of a stage is
either defined as the permeate of the previous stage (for stage two) or as
the retentate of the previous stage (for stages three and four).

According to the aforementioned process structures, the mass and
component mass balances are formulated for each stage i and water
source j and subsequently used for the definition of a successive stage,
although the equations are not shown in Egs. (7a)-(7k). Once all desa-
lination stages are evaluated, the overall permeate flow (Qp,sum,j, See Eq.
7b), permeate concentration (Cp sumj, See Eq. 7c) and water recovery
(WRgum,j, see Eq. 7d) for each water source j are calculated. These
equations need to be adjusted when seawater is used as an available
water source, according to the aforementioned seawater desalination
process structure. Additional restrictions include an upper boundary for
Cp,sum,j (depending on the desired water quality output, see Eq. 7f), as
well as two lower boundaries for WRg, j and Qp sum,j (to ensure a distinct
water demand can be met, see Eq. 7g and Eq. 7h). These boundary values
are either dependent on the input water source or on the specific sce-
nario. Also, the feed water concentration (Cy, j, see Eq. 7e) is set to the
input water type concentration value under investigation (Cyater,)-

Furthermore, model specific restrictions need to be enforced to
guarantee the feasibility of the surrogate model. Since the generated
data points cannot cover the whole applicable value space, linear
interpolation concerning the feed concentration and water recovery is
used to extend the model.

Consequently, the following restrictions are enforced for brackish
water reverse osmosis processes, to ensure that the brackish water case
stays valid (see Egs. (8) and (9)):

C.;; £10000mg/L Vi=1,..n—1, Yj=1,,w (8

Crp1y = 700mg/L Vji=1,.,w 9

The mentioned restrictions need to be adjusted accordingly to
guarantee feasibility in the case of seawater desalination processes. For a
two-stage seawater reverse osmosis process, it is practical to force the
permeate of the first stage to be less than 10,000 mg/L so that inter-
polation between seawater and brackish water membrane data is not
necessary (see Eq. (10)):

Cp1; < 10000mg/L Vj=1,.,w (10)

Additionally, the following restrictions are necessary for a three- and
four-stage seawater reverse osmosis process, respectively (see Egs. (11)
and (12) for three stages and Egs. (11), (13) and (14) for four stages):

C,2; < 10000mg/L Vj=1,.,w 1)
Cr2y 2700mg/L Vji=1,.,w 12)
C,3; < 10000mg/L Vj=1,.,w 13)
Cr3; >700mg/L Vji=1,.,w (14)

Consequently, this results in a process scheme which uses a seawater
membrane for the first stage and brackish water membranes in subse-
quent stages.
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5.1. Objective functions

A variety of objective functions can be considered within the pro-
posed framework. Approaches for maximizing the water recovery,
minimizing the energy, as well as minimizing operational costs are
presented in this work.

Maximizing the water recovery for a given water source j is presented
in Eq. (15):

n
Flrmw), = — Op sum,j _ S i Qi
Oraj Oraj

To maximize the overall water recovery (Eq. (15)), the negative
fraction of the overall permeate (31 1m;, j* Qp, i j) and overall feed (Qy;1,
) is minimized.

For minimizing the energy of the system for a given water source j,
the specific energy consumption of the pumps as well as possible energy
recovery devices need to be considered (see Eq. (16)) [39]:

(15)

(O ey Precij
f('x‘,n‘7 W)Z = Z( d . L — ﬂERD'Qres.ij'Prc:j.j) (16)

i=1 Mpump

In Eq. (16), fpump and ngrp take the pump efficiency as well as the
efficiency of the ERD into account. Py ;; describes the necessary pres-
surization of a stage and is set to 0 if the residual pressure of a previous
stage is sufficiently high to be used in a subsequent stage. Accordingly,
Qf nec,ij incorporates the feed flows of stages where pressurization is
needed. In contrast, Py is a vector of pressure differences that can be
used for energy recovery, if the pressure of the retentate is higher than
the necessary transmembrane pressure of the successive stage (these
differences are then added to Pre;j). The retentate flows are saved in
Qres,i,j accordingly. Thus, f(x,n,w); is calculated in [MW].

The main portion of operating costs of reverse osmosis desalination
systems is constituted by energy costs (Cg;) [35]. The only additional
factors that contribute significantly to operational costs are brine
concentrate disposal costs (Cp;) as well as membrane costs (Cp).
Therefore, operational costs of a desalination system using an input
water source j are assumed to only consist of the aforementioned three
components (Egs. (17) to (20)).

fx,n,w)y = Cg;+Cgj+ Cuj a7
CEJ — er.f(xan7w)2 (18)
Op,sum

The energy cost factor e. (Eq. (18)) is dependent on the energy supply
system (see section energy optimization model in the supplementary

material). By dividing e, - f(x, n, w)2 by Qp sum,j, the energy costs [%] are
calculated on the basis of the permeate volume flow.

Cr1; — 1000 1 — WRym;
Cpj = boy [ L% 100- : 19
B e (35000—1000 ( WR (19)

The brine cost function (Eq. (19)) was obtained from [39], where the
fraction %Rm;"’ can also be expressed as g;—:j Additionally, a linear

approximation (%JOO) was used to incorporate the brine
management cost (defined as nio by [39], where b is the brine manage-
ment cost and Iy the osmotic pressure of the feed). For example, a feed
concentration of 1000 mg/L has a dimensionless brine management cost
of 0, whereas a feed concentration of 35,000 mg/L has a dimensionless
brine management cost of 100. Further, an additional factor of b.; in
[$/m3] is introduced to scale the brine management costs and has
changing values dependent on the water source (see section Model as-

sumptions). Consequently, Cp; is in [%] .
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c me.j-Nyj + vejNyj + (R”% + nj)
My (LS/365/24)-pcum;

The membrane costs (Eq. (20)) consist of the membrane purchase
costs as well as the pressure vessel purchase costs. The number of
membranes Ny,; is calculated by dividing the total membrane surface
area (3_{Lamy j - A, j, Vj=1,...,w) by the area of a single membrane (37 m?
for all three membrane types). Np,; is divided by 7 (maximum of 7
membranes in one pressure vessel), to calculate the overall number of
pressure vessels (Ny,j). It may occur that the last pressure vessel per stage
is only partially filled with membranes. In this case, a pressure vessel,
which has room for 7 membrane units, is not needed as the last pressure
vessel of the stage, since a smaller one can be selected. This is considered
with (R, J% + ny), where R, is the remainder of the fraction @
The prices of membranes me,j, pressure vessels v.; and the correlation
(Ry,; "2l 4 py) are summarized in the section Model assumptions.

(20)

Additionally, the stated costs are divided by the assumed membrane
lifetime LS in [years] as well as the overall permeate flow, resulting in a

membrane cost unit of [%]

5.2. Model assumptions

The previously defined design model (Egs. (7a)-(7k)) is only
focusing on the reverse osmosis separation unit itself. Moreover, it is
assumed that the feed water of the desalination unit is pretreated by
ultrafiltration (defined in WAVE for the data generation for the surro-
gate model), making sure that only dissolved solids are left to be sepa-
rated from the feed water stream. Consequently, the model does not
consider membrane cleaning or fouling, since these factors strongly
depend on the used pretreatment unit and its operation quality [65],
which is not considered in detail.

Concerning the permeate pressure no numerical assumption is
necessary, since the transmembrane pressure has been selected as a
decision variable. It is assumed that the needed pressure for trans-
portation to the membrane on the feed side and the needed pressure for
transportation away from the membrane of the permeate side are equal
and thus cancel out when focusing on the transmembrane pressure.

An additional assumption is that the desalination plant is operated in
steady-state, although practically fluctuations in input parameters occur
regularly (e.g. concerning the feed volume flow), which are noticeable
but not significant for the process design. Further, ramping up and down
a given desalination plant from distinct capacities (from 0 to 1 excluded;

0: plant is not running; 1: plant is operated at maximum capacity, ca-
Qf operation
Qf maxpossible

pacity = ) is not challenging [64]. However, since for a reverse
osmosis desalination unit control strategies can be easily implemented, a
quasi-stationary process can be enforced [27]. Therefore, the assump-
tion of steady-state is not too strict and still applicable.

Furthermore, assumptions concerning the energy and operational

cost objective functions have been made:

1. The efficiencies of the pump as well as of the ERD are constant (1pump
= 0.74 and nggp = 0.8) [66].

2. The average membrane life is assumed to be 7 years. The membrane
lifetime depends on the pretreatment and is usually between 3 and 5
years but can also last up to 15 years [67].

3. A brine cost parameter b; has been introduced in the brine cost
function, which is 0.2$/m? for brackish water applications [39] and
0.05$/m? for seawater applications [68]. Additionally, the stated
brine cost correlation can be updated for any specific application and
region. The given function is used to illustrate the process implica-
tions of brine disposal, more specifically, to penalize low water re-
coveries due to the scarcity of water and high value of available
water sources in arid and semi-arid regions, to reduce process water
waste reasonably.
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4. Investment costs are not considered. Here, decisions are only made
based on maximizing water recovery, minimizing energy consump-
tion or operational cost minimization.

An overview of the membrane costs and membrane pressure vessel
costs can be found in Table 8 in Appendix A. High-pressure pressure
vessels can withstand a pressure of up to 83 bar, whereas low-pressure
pressure vessels can tolerate a pressure of only 31 bar.

Moreover, the stated assumptions can be subsequently investigated
by performing sensitivity analyses. The assumed membrane lifetime
(LS), as well as the brine cost parameter b of the brine cost function,
have been selected respectively for a sensitivity analysis, which can be
found in the supplementary file.

6. Solution methodology

The stated design optimization model, as well as the surrogate
model, have been implemented in MATLAB. An overview of the
framework solution methodology can be found in Fig. 5.

First of all, a problem needs to be defined in the sense that the
available water (total dissolved solids concentrations and possible daily
volume flows) and energy sources (cost of each energy source) need to
be specified. Secondly, all available water sources are summarized in
J=1,...,w.

Now, the counting variable j € J is initialized to one (j = 1), to
evaluate the first water source. Then, design optimization is performed,
which includes the number of stages and the number of parallel flows
(m;;) as integer variables. The integer variable number of stages n is
always limited to four (1 < n; < 4, Vj € J), so a brute-force approach is
selected to determine the optimal number of stages for a desalination
process using water source j € J. However, because of the integer vari-
able my, the resulting optimization problem is a MINLP problem.

The resulting MINLP problems with nonlinear inequality constraints
were solved with the genetic algorithm introduced by Deep et al. for
integer and mixed-integer optimization problems [69]. The best solution
is then saved before checking if other water sources are still to be evalu-
ated. If this is the case (j < length (J)), the counting variable is adjusted (j =
j + 1) and the same optimization is performed for the next water source.
Once all water sources are evaluated, all solutions are compared and the
best one is selected. Since there is always only a finite and comparably
small number of water sources (e.g. no more than five) for each water
scarce region, binary decision variables for each water source are obsolete
and only cost additional computational effort. Additionally, the least sa-
line water source is always the cheapest option concerning operational
cost because of the lower necessary pressures throughout the system.
Once a water demand cannot be satisfied with the lowest saline water
source, the next higher saline water source is selected until this water
source cannot fulfill a given demand anymore and so on.

For all calculated and presented cases a local minimum was found,
which satisfies the determined constraints. Global optimality cannot be
guaranteed when using the genetic algorithm. Although by using a
global MINLP solver such as ANTIGONE [70] or BARON [71] global
optimality could be guaranteed, it is at this point not necessary, as this
methodology is used to make a first assessment of available water and
energy sources for desalination. Therefore, the goal of the developed
holistic process systems approach of desalination processes is to point
decision makers in the right direction to help evaluate which cases
should be investigated in a more detailed fashion and which not.

If no parallel flows per stage are to be considered, the optimization
problem is reduced to a non-linear program (NLP) by brute forcing the
number of stages n. Consequently, an interior-point solution algorithm
can be used for solving the optimization problem. The interior-point
algorithm was selected to guarantee feasibility since all iterates are
required to satisfy the inequality constraints of the problem strictly [62].
The NLP is here called operation optimization and is used for deter-
mining possible process flow structures for varying water sources (see
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Fig. 5. Schematic illustration of the framework solution methodology.

supplementary file), in addition to performing sensitivity analyses
concerning the membrane lifespan and the brine cost function param-
eter (see supplementary file).

7. Case study region L (South-Central Texas)

Before analyzing three exemplary water supply scenarios, each
addressing another aspect of the food-energy-water nexus (municipal
usage, irrigation, power generation), the available water sources and
water restrictions for Region L are stated.

7.1. Avadilable water sources and restrictions

An overview of possible input water types for the desalination design
optimization framework of Region L defined by the TWDB can be found
in Appendix A, Table 9. The specified TDS concentrations (Table 9 in
Appendix A) are used to define Cyarerj of the design optimization
program.

With these different input water sources, various output water
characteristics can be achieved by applying a reverse osmosis desali-
nation process. A summary of possible output water restrictions and
applications is given in Table 1. Municipal, irrigation, livestock and
steam electric power are major water demand applications and are
therefore the only applications considered in this work [33,72].

The dissolved solids concentration restrictions specified in Table 1 are
used to define Cj restriction for design optimization. Hence, all input and
output water types are well defined. If the framework methodology
should be applied to another region around the globe, the input water
definitions and output water restrictions need to be updated accordingly.

Table 1

Desalination output water characteristics depending on application.
Water application Permeate restriction Source
Drinking water Cp,sum < 500 mg/L [731
Irrigation Cpsum < 600 mg/L [73,74]
Livestock Cp,sum < 1000 mg/L [73]
Power plant Cp,sum < 2500 mg/L [75]

7.2. Scenarios

As stated in Section 1, there is an increasing discrepancy between the
water supply and the water demand forecast [33]. Therefore, there is not
only a desire for minimizing operational costs but also to maximize the
generated permeate flow of desalination systems. In the following, the
developed methodology is used to analyze and optimize three different
case studies to evaluate these competing process objectives:

1. Drinking water: The energy supply for a municipal water demand
scenario needs to be satisfied with a combination of grid electricity
and renewable energy sources. The competing objectives minimizing
operational costs and maximizing permeate flow are assessed for
varying fractions of grid electricity to renewable energy, so that an
environmental metric, like penalizing energy sources which emit
carbon, with the goal of minimizing carbon emissions, can be indi-
rectly considered.

2. Water for irrigation: Seawater, aquifer water, and surface water are
used to analyze the trade-off between minimizing costs and maxi-
mizing increasing output water demands for irrigation purposes. The
energy for the desalination process is supplied by grid electricity.

3. Water for power generation: Only seawater is used to fulfill a specific
power generation water demand. Firstly, the design of the desali-
nation plant is determined when only grid electricity is used. Sec-
ondly, the same optimization will be performed, but now only solar
and wind energy are available energy supply sources.

7.2.1. Scenario I: drinking water

The energy supply for the desalination process consists of a combi-
nation of renewable energy sources and grid electricity. Pareto Front for
various grid electricity to renewable energy fractions are created to
capture the impact of an environmental metric on the solution of
competing objectives like maximizing the permeate flow and mini-
mizing the operational costs. The changing energy supply fraction re-
sults in varying energy cost factors e. and therefore directly influences
the operational costs. Exemplary environmental metrics can incorporate
penalizing carbon based energy production or rewarding renewable
energy sources.
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In this case, industrial wastewater from a semi-conductor manufac-
turer in San Antonio is used as input water (Cy, 1, j7=5600 mg/L and Qy, 1, j
< 12500 m3/d). Additionally, the permeate flow is restricted to be at
least Qp, sum, j > 8750 m3/d, resulting in a water recovery of WRgym, j >
70%. Initially, the stated specifications were used with e, = 29.84
$/MWh (assuming renewable energies only, for details see Scenario III)
to determine an energy output range for the energy optimization model
by minimizing the energy and the operational cost.

Minimizing the energy of the system results in a three-stage process
(WRsum, j=78.57%, Qp, sum, =8750 m3/d) with an energy demand of
0.2112 MW and operational cost of 0.8022$/m> (Cg, ;j=0.0174$/m>, Cg,
j:0.7379$/m3, Cu, j:0.0469$/m3). In contrast, minimizing operational
costs yields an energy consumption of 0.470 MW and an operational cost
of 0.5891$/m> (Cg, j=0.0336$/m>, Cp j=0.5389$/m> Cp, j=0.0167
$/m>), for a two-stage process (WRsm, j=83.39%, Qp, sum, j=10021 m3/
d). From these results, distinct energy output points, for each of which
the grid electricity fraction to renewable energy fraction is altered, are
defined (0.2 MW, 0.3 MW, 0.4 MW and 0.5 MW).

The Energy Optimization Model is used to determine the minimized
cost of an energy supply process with a constant energy output, which is
altered between 0.2 MW and 0.5 MW. For each of the energy demand
points, the available grid electricity is defined as a fraction of the neces-
sary energy supply and is changed from 0% to 100% in 20% increments.
Only solar and wind energy are considered as renewable energy sources.

The results are summarized in Fig. 6, where the energy cost factor in
[$/h] depending on the grid electricity fraction for energy outputs from
0.2 MW to 0.5 MW is shown. As expected, the energy cost factor de-
creases for an increasing amount of grid electricity fraction. The energy
cost factor also decreases for a lower energy output demand for a con-
stant fraction of grid electricity.

To further evaluate the results, the energy cost factor has been trans-
formed with the constant energy output, for each case respectively, to
[$/MWh], see Fig. 7. In this case, the energy output demand for each
fraction of grid electricity point does not influence the energy cost factor.
Overall, the energy cost factor exhibits an almost linear decline (R2 =0.99
for the case of 0.2 MW) with an increasing amount of grid electricity. Since
the energy costs for varying fractions of grid electricity are approximately
the same (maximal deviation of 0.8% in the case of 0% grid electricity
between 0.2 MW and 0.4 MW), the determined energy cost factors for 0.2
MW (black line in Fig. 7) have been selected arbitrarily as representative
costs to be used in the following design optimization.

It is important to mention that in all cases, storage systems are
needed to satisfy the energy demand, except for the case of 100% grid
electricity. The cost and the capacity of storage systems are always taken
into account for determining the overall energy cost factor of distinct
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Fig. 6. Energy cost factor e, in [$/h] for varying fractions of grid electricity for
a constant energy output between 0.2 MW to 0.5 MW.
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Fig. 7. Energy cost factor e. in [$/MWh] for varying fractions of grid electricity
for a constant energy output between 0.2 MW to 0.5 MW.

supply scenarios. For all cases, only solar energy is selected because one
wind turbine already satisfies much higher energy demands than
necessary and is more expensive than the determined necessary amount
of solar panels.

Pareto Front for varying energy supply systems, meaning fractions of
grid electricity to the overall energy supply, have been created by
minimizing the energy cost for changing permeate output flow re-
strictions (Qp, sum > Qp, restriction)- The results can be found in Fig. 8.

The output permeate flow has been restricted between Q,
restriction=1500 m®/d and 10,000 m3/d. All Pareto Front show the same
general behavior: From 1500 m3/d to 3000 m3/d, the energy cost factor
increases only marginally (maximum of 12% increase for 0% grid
electricity). Then, from 3000 m3/d to 10,000 m3/d, the cost factor in-
creases almost linearly in all cases. For 0% grid electricity, the energy
costs are the highest, whereas 100% grid electricity results in the lowest
energy cost case. Accordingly, the increment grid electricity supply
fractions give energy cost sequences in between 0% and 100% grid
electricity supply. An interesting result can be assessed when the two
boundary cases of 0% and 100% grid electricity are being compared: the
energy cost factor increases by 77% when grid electricity decreases from
100% to 0%. The energy cost, however, rises between 57% (for Qp,
sum=1500 m3/d) and 80% (for Qp, sum=10000 m3/d) with the same
decrease in grid electricity. So depending on the necessary output
permeate flow, a smaller energy cost increase compared to the energy
cost factor increase is observed (for Qp, sym < 7500 m®/d, the energy cost
increase is <77%). Thus, these indirect savings can be exploited in
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Fig. 8. Results of minimizing energy cost for changing output permeate re-
strictions and varying grid electricity fractions (from 0% to 100% in
20% increments).
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future applications, since the expectation that the energy cost increase is
proportional to the energy cost factor increase is negated with the
developed optimization model.

To further evaluate the determined optimization results, the energy
consumption for each fraction of the grid electricity case has been
calculated in [kWh/m®] and is illustrated depending on the permeate
output flow of the system in Fig. 9. Generally, the same behavior as in
Fig. 8 can be seen: for a permeate output of 1500 m>/d to 3000 m>/d, the
energy consumption increases only marginally, whereas, the energy
consumption increases almost linearly (from 3000 m>/d to 10,000 m®/
d). In this case, however, a clear distinction between the grid electricity
fractions is not possible. Therefore, Fig. 11 in Appendix B shows all
energy consumption points in [kWh/m>] depending on the permeate
output and independent of the grid electricity fraction. These points can
be linearly approximated with a residual of R? = 0.97 (blue dotted line).
Hence, the energy consumption of all systems increases with increasing
output permeate water flow, as expected. All determined results of this
case study can be found in Appendix B, Table 10.

7.2.2. Scenario II: water for irrigation

For the second scenario, restrictions concerning the available water
sources are needed for each water type, respectively. Otherwise, the
water source with the lowest total dissolved solids concentration is al-
ways chosen (for all here presented objective functions), which is
generally surface water. At certain feed flows (Qy;1) this is not sustain-
able anymore since a river or lake is drained empty. Therefore, a realistic
representation of flow restrictions is necessary.

To consider a viable restriction for surface water (water from the
Medina River in this case), a water treatment facility at Lake Medina,
operated by SAWS, was analyzed. When working at full capacity, the
plant can treat 13000 2ceft

vear- Having said this, the plant has not been
operated at full capacity since 2013. To ensure a reasonable water level
of Lake Medina, one third of the maximum capacity is implemented as a
feed flow restriction, Qy, 1, » < 15000 m3/d [76,77]. Derived from the
highest possible feed volume flows of the H20aks Desalination plant,
which uses water from the Carrizo-Wilcox aquifer, a feed flow restriction
of Qf, 1, 4 < 35000 m3/d is defined [64].

Technically, a restriction for a seawater input flow is not required,
due to the absence of restrictions concerning seawater discharge flows.
However, an arbitrarily chosen limitation of Qy, 1, s < 100000 m3/d is
implemented to maintain applicability of the seawater desalination
plant and take into account technical limitations. At certain high volume
flows, a second desalination plant would be built rather than trying to
further increase the capacity of the original one [64].
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Fig. 9. Energy consumption of an energy cost minimized process with changing
output permeate restrictions and varying grid electricity fractions (from 0% to
100% in 20% increments).
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To generate a Pareto Front of operational costs and permeate flow,
the operational costs are minimized, while the permeate flow restriction
(Qp, sum, j > Qp, sum, sed) has been altered from Qp, sum, see=200 m®/d to
60,000 m3/d, while three different water sources j = (Medina River (M),
Carrizo-Wilcox Aquifer (A), Seawater (S)) were considered. The results
are summarized in Appendix B, Table 11, as well as in Fig. 10.

In Fig. 10 the Pareto Front for minimizing operational cost and
maximizing the permeate flow for surface water (blue circles), aquifer
water (orange circles) and seawater (dark blue circles) can be seen.
Optimizing the operational cost while the first permeate flow restriction
(Qp, sum, see=200 m3/d) is enforced already results in a permeate flow of
Qp, sum, M=6299 m3/d. Consequently, when one is interested in gener-
ating a permeate flow between 200 m>/d and 6299 m3/d, a permeate
flow of 6299 m>/d results in minimal operational costs, meaning that a
higher permeate flow is advantageous here. For other restrictions, the
same behavior can be seen, but not as significantly as for the first re-
striction (see Table 11). A reason for this correlation could be that at a
certain volume flow, parallel flows per stage become more advantageous
resulting in lower pressures and consequently lower energy costs.
Additionally, less membrane surface per stage can be sufficient due to
the parallel flow arrangement. This explanation can be compared to the
economy of scales, meaning that depending on the desalination process
scale, cost advantages can be found.

However, when the feed flow restriction of surface water (Qy, 1, » <
15000 m3/d) is reached, aquifer water is utilized next. With the increase
of the feed total dissolved solids concentration, an operational cost level
jump from around 0.0187$,/m? to 0.0431$/m> can be seen. For surface
and aquifer water, respectively, the price for increasing the permeate flow
over the whole possible range rises moderately (surface water: 9.5%,
aquifer water: 3.3%). However, the operational cost more than doubles
when the water source is switched from surface to aquifer water.

The same effect can be seen when the water source is specified as
seawater instead of aquifer water (due to the feed flow restriction Qy, 1,4 <
35000 m3/d): the operational cost increases from around 0.0431$/m° to
4.4502$/m°. When seawater operational costs are compared to the opera-
tional costs of the other two water sources, one can see that aquifer and
surface water operational costs are negligible in regard to seawater
processes.

Overall, it can be seen how much more cost intensive seawater
desalination is. On the other hand, significantly higher permeate flows
are possible. For certain water demand scenarios (here Qp, sum, j > 35000
m>/d), seawater is the only water source which can satisfy the given
demand without substantial environmental impacts (e.g. by draining an
aquifer or river linked with unforeseeable consequences for ecosystems).
Moreover, with the Pareto Front in Fig. 10, the tradeoff between
reducing operational costs for as high as possible water outputs has
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Table 2

Overview results design optimization minimizing operational costs with seawater and grid electricity (Qs 1 < 100000 m®/d, Cf,1=34000 mg/L, Qp, sum > 35000 m3/d).
Stage Qf [m3/d] Cy [mg/L] P [bar] WR [%] A [m?] Cp [mg/L] C, [mg/L] m;;
Stage 1 59,276 34,000 41.82 64.92 3626 5273 87,150 5
Stage 2 38,479 5273 5.015 69.88 351 3236 10,000 1
Stage 3 11,590 10,000 5.002 69.99 120 60 33,178 1

successfully been visualized.

7.2.3. Scenario III: water for power generation

The focus of the third case study is to evaluate the impact of changing
energy sources on the design of seawater desalination plants producing
water for cooling purposes in power generation plants. To determine a
representative daily water demand of a power plant, a typical Texan
power generation facility is selected. Since Texas’ primary energy source
is natural gas [78], the Sim Gideon Natural Gas Power Plant in Bastrop,
Texas (South-Central Texas) is chosen. The plant is taking its cooling
water from Lake Bastrop [79], which is a freshwater reservoir, so a
closed-loop reservoir cooling system is assumed, which demands
approximately 2200 L/MWh water [80]. Because of the plant’s
maximum capacity of 620 MW [79], the highest possible daily water
demand is 32,736 m>/d. To be on the safe side, a permeate output re-
striction of Qp, sum > 35000 m®/d is enforced.

Now, the minimal operational cost plant design, depending on the
energy supply system (energy supply only by grid electricity or only by
solar and wind energy), for satisfying at least a permeate flow of Qp, sum
> 35000 m®/d can be determined. Results of the design optimization
when only grid electricity (e;=22.4$/MWh) is used as an energy source
can be found in Tables 2 and 3.

For minimizing operational costs, a three-stage process is suggested
with an overall water recovery of WRgm, gig=59%. For a seawater
desalination process, the calculated water recovery is comparably high,
underlining that high water recoveries result in lower brine disposal
costs. The process results in an operational power generation cooling
These obtained operational costs are
$

103-gal
from the Texas Desalination 2019 Conference). Looking at the energy
consumption of 2.3482 kWh/m? for the process, it can be seen that in
terms of energy consumption the process is very competitive [35]. The
energy cost of a seawater RO desalination process is specified in [24] to
be 0.311$/m>. The here elaborated energy cost is 0.0526$/m>, so
approximately six times cheaper. Focusing on the composition of the
operational costs shows that the major cost driver is the brine disposal
cost. However, the challenges arising for seawater reverse osmosis are
the construction of seawater intakes and concentrated brine ocean
discharge systems, which are considered as capital costs constituents,
rather than the disposal itself [81,82]. Consequently, it can be derived
that the used brine concentration disposal cost function results in
comparably high values for seawater desalination processes.

Next, a design optimization for minimizing the operational costs of a
seawater desalination process only using solar and wind energy is per-
formed. Therefore, the energy optimization model is used to generate an
energy cost function for solar and wind energy under consideration of
energy storage systems. The result of this optimization can be seen in
Fig. 12 in Appendix B. The slope of the shown nearly linear (R? = 0.996)
relationship between total cost (investment and operational costs) of the
energy supply system in [$/h] and the desired power output in [MW] is

water process cost of 13.011 wiL@'

comparably high for a seawater process (usually 10 to 12 taken

Table 3

e.=29.84$/MWh. Now, with the specified renewable energy consump-
tion cost, design optimization can be performed. The generated results for
the design optimization of a desalination process only using renewable
energies for minimizing operational costs can be seen in Tables 4 and 5.

The results are comparable to the ones obtained by the design opti-
mization with grid electricity. The energy cost factor increases from grid
electricity to renewable energies by 33%. Accordingly, the energy cost
increases as well by 33%, but the operational costs are approximately
constant (an increase of 0.12%). In contrast, Di Martino et al. found cost
savings in this case for brackish water desalination processes producing
drinking water, meaning that with an increasing energy cost factor of
33% the operational cost only increases by 11% [83]. Thus, these
principles are not applicable for seawater desalination systems. In the
here presented case, the energy source has virtually no effect on the
operational costs due to the high brine disposal costs. In subsequent
work, sensitivity analyses concerning the impact of the electricity cost
on the operational cost for increasing electricity prices should be per-
formed to evaluate if an electricity price influence boundary exists. This
concludes the presented case studies for the design optimization model,
showing the versatility of the developed framework for desalination
processes, as well as the potential for saving energy and operational
costs for reverse osmosis systems in general.

8. Conclusion

The goal of this work is to develop a framework methodology that
incorporates various input energy and input water sources to satisfy
increasing water demands for regions that are characterized by water
scarcity (e.g. South Central Texas). Consequently, depending on the
available input resources, the membrane system as well as the operating
parameters of the desalination system change. The approach presented
here can be modified for distinct regions and incorporate the given
limitations or availabilities of water or energy sources. Additionally, the
water quality output of the reverse osmosis process can be adjusted to
the desired water application, so that not only municipal water usage
can be considered, but also applications like irrigation or livestock. A
superstructure representation and optimization are then used as part of
the developed framework to generate optimal desalination designs.
Thus, a plethora of optimal solutions for scenario analyses can be
created. The incorporated approach enables a systematic process sys-
tems engineering approach for reverse osmosis desalination process
possibilities dependent on regional factors. Thus, a holistic framework
for reverse osmosis desalination, to satisfy an array of partially
competing output goals, has been developed.

In three different case studies, each tackling a distinct facet of the
food-energy-water nexus, the applicability of the framework has been
illustrated. By changing the fraction of grid electricity of the energy
supply system of a desalination plant producing drinking water, an
environmental metric can indirectly be incorporated. Additionally, a
linear approximation of the energy consumption of the system inde-
pendently of the grid electricity fraction could be determined. Moreover,

Operational costs design optimization minimizing operational costs with seawater and grid electricity (Qy, 1 < 100000m>/d, Cf,1=34000 mg/L, Qp, sum > 35000 m3/d).

Energy costs

[$/m>]

Brine costs

[$/m>]

Membrane costs

[$/m?]

Total operational costs

[$/m>]

Total operational costs

[$/1000 gal]

0.0526 3.366 0.0054

3.424 13.011
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Table 4
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Overview results design optimization minimizing operational costs with seawater and renewable energies (only solar and wind, Q¢ ; < 100000 m3/d, Cf, 1=34000 mg/

L, Qp, sum > 35000m°/d).

Stage Qs [m®/d] Cr [mg/L] P [bar] WR [%] A [m?] Cp [mg/L] C, [mg/L] my;

Stage 1 59,182 34,000 41.53 65.39 3690 5429 87,968 5

Stage 2 38,696 5429 5.022 68.18 299 3297 10,000 1

Stage 3 12,312 10,000 5.001 69.98 113 60 33,170 1
Table 5

Operational costs design optimization minimizing operational costs with seawater and renewable energies (only solar and wind, Qy, ; < 100000 m/d, Cr,1=34000 mg/

L, Qp, sum > 35000 m®/d).

Energy costs

[$/m>]

Brine costs

[$/m>]

Membrane costs

[$/m?]

Total operational costs

[$/m>]

Total operational costs

[$/1000 gal]

0.0699 3.353 0.0055

3.428 13.026

a Pareto Front for minimizing operational cost and maximizing the
permeate flow for water for irrigation was visualized. For water for
power generation applications with seawater as a water source, the in-
fluence of changing energy supply systems on the desalination plant
design has been evaluated.

To summarize, the key contributions of this work are:

1. Areliable and fast screening of reverse osmosis plant designs prior to
detailed plant modeling.

2. The development of a techno-economic and feasibility analysis of
desalination plants.

3. The enabling and facilitating of various possible scenario analyses.

4. The implementation of a Water-Energy Nexus approach, in an
attempt to tackle water scarcity challenges for arid and semi-arid
regions, considering not only the modeling and optimization of
desalination systems but also the energy supply system of the
process.

Future works can entail modifications of the framework methodol-
ogy to increase model accuracy and applicability. For example, other
desalination process steps can be included additionally in the framework
approach, like pre- and posttreatment. Also, recycle streams or bypasses
can be incorporated. Generally, this framework can be expanded and
applied to other desalination technologies and hybrid desalination
process designs, with the aim of developing a tool to adequately rate
desalination alternatives. Moreover, investment costs as well as mem-
brane cleaning costs and other cost factors can be added in future works.
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MILP Mixed-Integer Linear Programming
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PSE Process Systems Engineering

RO Reverse Osmosis

SARA San Antonio River Authority
SAWS San Antonio Water System

DS Total Dissolved Solids

TWDB  Texas Water Development Board

Index directory

B Brine

c Cost

demand Set Demand Restriction

E Energy

f Feed Stream

i Stage i

j Water Source j

M Membrane

nec Necessary operational value
p Permeate Stream

pump Input Value for Pumping Operation
r Retentate Stream

res Residual Variable

restriction Set Quality Restriction

s Dissolved Salts

sum Summation of Variables

v Membrane Pressure Vessel
v Water

Symbol directory

n Efficiency, [—]

b, Brine Disposal Cost Function Factor, [%]
ec Energy Cost Function Factor, [%]

A Surface Area, [m?]

C Concentration, [?]

J Flux, []

LS Membrane Lifespan, [years]

m Parallel Flows per Stage, [—]

me Membrane Cost, [$]

N Number of, [—]

P Pressure, [bar]

Q Volume Flow, [’"Tz]

R Fraction Remainder, [—]

SEC Specific Energy Consumption, [#]
\% Membrane Pressure Vessel Cost, [$]
WR = (% Water Recovery, [—]
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Appendix A
Table 6
Overview input data for membrane data generation with WAVE. Additional information can be found in the supplementary file.
Feed water Selected membrane Cy [mg/L]
Seawater SW30HRLE-400i 36,000
32,000
Brackish water BW30-400/34 10,000
3000
1500
Surface water XLE-440 700
Table 7
Summary of specifications of used DOW FILMTEC membranes.
Specification SW30HRLE - 400i BW30 - 400/34 XLE - 440
Description Lower lifecycle cost for medium and high salinity feedwaters High rejection, high surface area Extra low energy, high productivity
Membrane type Polyamide thin-film composite Polyamide thin-film composite Polyamide thin-film composite
Active area [mZ] 41 37 41
Stabilized salt rejection [%] 99.80 99.50 99.00
Max. pressure [bar] 83 41 41
Max. temperature [K] 318.15 318.15 318.15
pH range 2-11 2-11 2-11
Maximum feed silt density index SDI 5 SDI 5 SDI 5

For additional information please refer to:
https://www.lenntech.com/Data-sheets/Dow-Filmtec-SW30HRLE-440i.pdf, https://www.lenntech.com/Data-sheets/Dow-Filmtec-BW30-400.pdf, https://www.
lenntech.com/Data-sheets/Dow-Filmtec-XLE-440.pdf.

The pressure vessel unit costs in Table 8 are defined for 7 membranes per vessel. The pressure vessel costs reduce to $800 or $700, respectively,
when a pressure vessel for only one membrane is needed [67].

An overview of the various process input water specifications is given in Table 9. For the total dissolved solids concentration of the Gulf of Mexico,
a near coastal drain was assumed. Additionally, all industrial wastewater streams are effluents from industries in San Antonio. Further, the TDS
concentration of 700 mg/L for Medina River was measured at the San Antonio River Authority (SARA) station 14195 at Leon Creek, which is a
tributary of Medina River. The specification of the salinity of the Carrizo-Wilcox aquifer water was supplied by the H20aks Desalination facility and
also confirmed by the TWDB.

Table 8
Costs of membrane modules and pressure vessel units (obtained from Consolidated Water Co. Ltd.) [67].
Membrane type Module cost [$] Pressure vessel Unit cost [$] Ry; correlation [$]

- i i 2000 — 800
SW30HRLE-400i 695 High pressure 2000 R — 4 600
BW30-400/34 525 Low pressure 1900 Rv.j‘19070:1700 4500
XLE-440 560 Low pressure 1900 Rv.j'19070:1700 4500
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Table 9
Desalination input water characterization and definition.
Water type Water specification TDS concentration [mg/L] Source
Seawater Gulf of Mexico 34,000 [84]
Ground water Carrizo-Wilcox Aquifer 1500 [64,85]
Surface water Medina River 700 [86]
Industrial wastewater Metal Finishing Industry 3000 [871
Semi-Conductor Manufacturer 5600 [871
Johnson Controls Battery 7600 [87]

* 0% to 100% Grid Electricity

R?=0.9693

Appendix B
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Table 10
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Overview energy cost and energy consumption for varying grid electricity fractions of the energy supply system (grid electricity and renewable energies, FracGrid) for
minimizing the energy costs of the system (C;/=5600 mg/L, Qs < 12500 m3/d, Qp, sum > Qp, restriction)-

FracGrid Energy cost factor Qp,restriction Qp,sum WRsum Energy cost Energy consumption
-] [S/MWh] [m*/d] [m*/d] [%] [$/m®] [kWh/m®]
0.00 39.612 1500 1522 70.00 0.0094 0.237
3000 3020 84.03 0.0105 0.265
5000 5003 83.71 0.0143 0.361
7500 7507 80.04 0.0188 0.476
10,000 10,002 83.18 0.0251 0.634
0.20 35.261 1500 1504 69.82 0.0084 0.237
3000 3256 83.55 0.0090 0.254
5000 5003 83.54 0.0123 0.348
7500 7502 83.21 0.0168 0.475
10,000 10,533 83.35 0.0223 0.633
0.40 31.670 1500 1512 69.96 0.0075 0.238
3000 3247 83.91 0.0084 0.264
5000 5002 83.72 0.0111 0.350
7500 7504 83.55 0.0142 0.447
10,000 10,002 83.47 0.0183 0.577
0.60 28.454 1500 1532 69.51 0.0068 0.238
3000 3018 83.98 0.0075 0.262
5000 5001 83.62 0.0097 0.339
7500 7501 79.52 0.0127 0.448
10,000 10,000 82.40 0.0166 0.585
0.80 25.427 1500 1532 69.99 0.0061 0.239
3000 3037 70.37 0.0064 0.250
5000 5008 83.09 0.0086 0.340
7500 7502 83.65 0.0119 0.468
10,000 10,002 82.42 0.0146 0.573
0.00 22.400 1500 1803 84.14 0.0056 0.250
3000 3008 83.85 0.0056 0.251
5000 5007 83.71 0.0079 0.353
7500 7503 82.96 0.0106 0.472
10,000 10,002 82.44 0.0139 0.621
Table 11
Summary results design optimization case 2, Pareto front (minimizing operational costs vs. maximizing permeate
output).
Qp,sum,set [m®/d] Qp,sum [m®/d] Operational cost [$/m°] Cr [mg/L]
200 6299 0.0179 700
6500 11,431 0.0180 700
12,000 12,348 0.0181 700
13,000 13,416 0.0192 700
13,500 13,561 0.0195 700
14,000 14,329 0.0196 700
15,000 17,565 0.0424 1500
18,000 21,329 0.0428 1500
22,000 27,823 0.0432 1500
32,000 33,114 0.0438 1500
35,000 35,000 4.0442 34,000
40,000 40,003 4.1243 34,000
45,000 45,005 4.3222 34,000
50,000 51,064 4.6393 34,000
60,000 60,000 5.1208 34,000

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.desal.2021.114937. The supplementary file summarizes and
specifies the reverse osmosis model development, the energy optimization model, representative operation optimization results, as well as performed

sensitivity analyses.
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