
Land-Use Changes in Distant Places:
Implementationof a TelecoupledAgent-Based
Model
Yue Dou1,2, Guolin Yao3, Anna Herzberger1, Ramon Felipe Bicudo
da Silva4, Qian Song4, Ciara Hovis1, Mateus Batistella4,5, Emilio
Moran1,6, Wenbin Wu4, Jianguo Liu1

1Center for Systems Integration and Sustainability, Michigan State University, 1405 S Harrison Rd. East Lans-
ing, MI 48823, United States
2Environmental Geography Group, Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam,
De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
3University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD 21532 United
States
4Center for Environmental Studies and Research, State University of Campinas, Rua dos Flamboyants, 155 -
Cidade Universitária Campinas - SP, Brazil
5Brazilian Agricultural Research Corporation (Embrapa), Av. André Tosello, 209 Campus da Unicamp, Barão
Geraldo,13083-886, Campinas - SP, Brazil
6Center for Global Change and Earth Observations, Michigan State University, 1405 SHarrison Rd, East Lans-
ing, MI 48823, United States
Correspondence should be addressed to yuedou@msu.edu

Journal of Artificial Societies and Social Simulation 23(1) 11, 2020
Doi: 10.18564/jasss.4211 Url: http://jasss.soc.surrey.ac.uk/23/1/11.html

Received: 15-03-2019 Accepted: 12-12-2019 Published: 31-01-2020

Abstract: International agricultural trade has changed land uses in trading countries, altering global food se-
curity and environmental sustainability. Studies have concluded that local land-use drivers are largely from
global sources (e.g., trade increases deforestation in exporting countries). However, little is known about how
these local land-use changes a�ect distant locations, namely the feedback between them. Yet these distant
impacts and feedbacks can be significant for governing local land systems. The framework of telecoupling (i.e.,
socioeconomic-environmental interactions between distant places) has been shown to be an e�ective concep-
tual tool to study international trade and the associated socio-economic and environmental impacts. However,
a systems simulation tool to quantify the telecoupled causes and e�ects is still lacking. Here, we construct a
new type of agent-based model (ABM) that can simulate land-use changes at multiple distant places (namely
TeleABM, telecoupled agent-based model). We use soybean trade between Brazil and China as an example,
where Brazil is the sending system and China is the receiving system because they are the world’s largest soy-
bean exporter and importer respectively. We select one representative county in each country to calibrate and
validate the model with spatio-temporal analysis of historical land-use changes and the empirical analysis of
household survey data. We describe the model following the ODD+D protocol, and validate the model results
in each location respectively. We then illustrate how the aggregated farmer agents’ land-use behaviors in the
sending system result in land-use changes in the receiving system, and vice versa. One scenario example (i.e.,
a high-tari� scenario) is given to demonstrate the results of TeleABM. Such a model allows us to advance the
understanding of telecoupling features and the influence on land system science, and to test hypotheses about
complex coupled human-natural systems (e.g., cascading e�ect).
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Introduction

1.1 Feeding the world’s population and achieving environmental sustainability is a grand global challenge which
calls for global e�orts to ensure food securitywith increasingly scarce natural resources, particularly land (God-
fray et al. 2010; Lambin & Meyfroidt 2011). During the past several decades, the international trade of food and
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agricultural products has grown exponentially, and almost a quarter of food produced is traded internationally
nowadays (D’Odorico et al. 2014). Studies show that international trade can facilitate regional and global food
security, especially under the risk of climate change (Baldos & Hertel 2015).

1.2 The globalization of food production systems, however, has spatially displaced food production and consump-
tion activities in distant geographic locations. For example, the demand for palm oil in emerging economies
(e.g., China, India) has expanded into the tropics (e.g., Indonesia, Columbia) and become a major driver of
tropical deforestation that has global implications on carbon and climate dynamics (Butler et al. 2009; Furumo
& Aide 2017). The international soybean trade has caused rapid land-use changes and deforestation in Mato
Grosso, Brazil, threatening not only biodiversity but also regional hydrological conditions in the Amazon and
Cerrado biomes (Barona et al. 2010; Lathuillière et al. 2012; Morton et al. 2006).

1.3 Thechallengesposedby international agricultural trade for landsystemsand land-use sustainabilityworldwide
call for a global perspective that goes beyond the classic place-based research framework. A key component
of land system science is place-based research, andmost land-use issues have been studied in the site-specific
context of locally coupled human-natural systems (Friis & Nielsen 2017; Liu et al. 2007; van Vliet et al. 2015; Ver-
burg et al. 2016). Although important, this approach lacks a linked global perspective andmay have overlooked
the feedback between the local changes and socio-ecological implications elsewhere when investigating land-
use changes of international trade (Chen et al. 2019; Friis &Nielsen 2017). For instance, place-based land-use re-
searchhas treated soybean trade as an external driver, focusing only on thedeforestation and land-use changes
within the state of Mato Grosso (Barona et al. 2010; Garrett et al. 2013; Morton et al. 2006). This mentality may
lead to conclusions such as that China and European countries have benefited from the exacerbation of the
local environment and natural resources (Lathuillière et al. 2014; Morton et al. 2006) and therefore overlook the
potential impacts to these importing parties.

1.4 To confront these shortcomings, the telecoupling framework is needed, which identifies causes and e�ects
between distant coupled human-natural systems through the flows of material, species, and information (Liu
et al. 2013, 2019). Since the first publication of the framework, there have been almost hundred articles and
studies that use this framework (Andriamihaja et al. 2019; Dou et al. 2018; Liu 2014; Silva et al. 2017; Sun et al.
2017; Wang & Liu 2016; Yang et al. 2016), suggested by a recent systematic review (Kapsar et al. 2019). Empirical
studies have demonstrated that telecoupled causes and e�ects on land systems can be significant (Dou et al.
2018; Silvaet al. 2017; Sunet al. 2017). Oneexampleamongmany is the cascadinge�ect. The soybeanexpansion
in Brazil has pushed corn from a dominant crop to a second place (only grown in the second season that has
higher climate risks than the first season). Adding factors such as trade and currency exchange fluctuation
has caused a shortage of corn within the Brazilian domestic food market (Silva et al. 2017). For the importing
countries, studieshave found that soybean tradehasalsocaused land-usechangesandnegativeenvironmental
impacts (Sun et al. 2017, 2018; Tong et al. 2017).

1.5 Thesedistant feedbacks, generatedby land-usechanges inagricultural frontiersand resulting in land-usechanges
in the importing regions, require a system simulation tool for researchers to study the flows and interactions
between distant land systems and quantify e�ects of telecouplings on land-use dynamics across scales and
space (Verburg et al. 2019). Using a simulation model, a series of overlooked research questions that link land-
use demand and supply from di�erent spatial locations can be answered. For example, how do telecoupling
processes (e.g., trade) and internal processes (local land-use decision-making) enhance or o�set each other in
terms of their e�ects on human-natural dynamics (land-use changes in telecoupled land systems), and what
e�ects does food production in the exporting countries at the national scale have on land uses in the importing
countries at local and regional scales, and vice versa?

1.6 Agent-BasedModelling (ABM) is a computer simulation tool inwhichanumberof agents interactwithadynamic
environment andwith other agents through prescribed decision-making rules. It has beenwidely employed to
simulate land-use changes in both theoretical and empirical grounds (An 2012; Huang et al. 2014; Huber et al.
2018; Parker et al. 2003). Themajor advantagesof anABM include its flexibility of incorporatinganycomponents
of a system (Parker et al. 2003), the power of aggregating heterogeneous behaviors (Huang et al. 2013), and the
capability of representing processes, social norms and structures (An 2012; Chen et al. 2014; Holzhauer et al.
2019).

1.7 Current land-use studies usually focus on land-use changes in one place or system, as domost land-use ABMs.
To the best of our knowledge, no land-use ABMs are designed to investigate how local land-use changes af-
fect changes at distant locations, and vice versa. In other fields, scholars have begun to experiment on linking
multiple ABMs to represent the feedbacks across boundaries and between systems, such as simulating human
migration across di�erent human-natural systems (Thober et al. 2018). However, the potential of using ABMs to
represent a telecoupled land system has rarely been discussed (Liu et al. 2015).
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1.8 While the purpose of this paper is to introduce model implementation, as an example we use a case study to
explore the cascading e�ects and complex dynamics on land-use changes in two distant places triggered by
a sudden shock in a telecoupled flow, which is an increase in the tari� imposed by China, the importer, on
soybeans from Brazil, the soybean exporter. The ABM, here a�er known as TeleABM, is the first to model and
simulate complex dynamics and interactions in a telecoupled land system. We first describe the TeleABM in
the ODD+D protocol, discuss the land-use decision representations in the two di�erent land systems, show the
validation of the model results, and then demonstrate one sample simulation using the model. The objective
of this model is to show the land-use feedbacks between supply and demand in two distantly located land
systems, which are referred to as sending and receiving systems in the telecoupling studies, and to facilitate
flow-based governance schemes. Using the high-tari� scenario as an example, we address the question: what
are the land-use e�ects of telecouplings on the area of production in the exporting country and the area of
production in the importing country?

Model Descriptions Following ODD +D Protocol

2.1 This sectiondescribes theTeleABM followingODD+D (Overview, Design concepts, andDetail, with thedecision-
making extension) protocol (Grimm et al. 2010; Müller et al. 2013; Polhill et al. 2008). The common concepts of
ABM (e.g., emergence, adaptation) are summarized in the Appendix; so are the details (e.g., initialization, input
data, submodels).

Overview

Purpose

2.2 The telecoupling concept and framework investigate socioeconomic and environmental interactions over dis-
tances and have been conceptually and empirically applied to a variety of cases. Some special land-use change
e�ects (e.g. cascading e�ect, spillover e�ect) can, therefore, be identified using the telecoupling framework.
A comprehensive system model that can represent and simulate land-use changes in telecoupled human and
natural systems, however, is still lacking. Built on the telecoupling framework and written in Java using the
RePast platform, our model simulates the land-use changes in sending and receiving systems and the interac-
tions between them. TeleABM is also designed to be flexible to model land-use changes in other telecoupled
land systems.

2.3 TeleABM is a hierarchical agent-based model to simulate soybean and other agricultural land-use changes in
distant places (e.g., Table 4 in the Appendix). The model version presented in this paper uses the telecoupled
Brazil-China soybean trade system as an example. Themodel is calibrated on empirical data and/or interviews
of individual farmers’ behavior rules, and aggregated to regional-level land-use patterns and production to in-
fluence the soybean price in the other system. As a systems simulation tool, this model is a powerful tool to
study the complex dynamics of telecoupled system compared to currently used approaches in the telecoupling
field (e.g., network analysis, case study).

2.4 Study area
One county, Sinop, Mato Grosso state, Brazil is used to represent the sending system and one county Gannan,
Heilongjiang province, China is the representative of the receiving system (Dou et al. 2019). We chose these
two counties as study areas because (1) the two counties are similar in size, (2) soybean production is one of
themain agricultural activities, (3) we conducted fieldwork in both counties, and (4) their land-use changes are
consistent with the overall trends in themajor agricultural commodity production regions in the two countries.

2.5 Agricultural intensification in the sending system
The main land-use phenomenon in Sinop the sending system is agricultural intensification. Multiple studies
have found that soybean production in Mato Grosso has shi�ed from predominantly single cropping systems
to majority double cropping systems (Figure 14 in the Appendix). The areas used for single cropping increased
from 20,056 hectares in 2004 to 30,885 hectares in 2014, while areas of double cropping have grown almost 3.5
times to 102,810 hectares in 2014 (Kastens et al. 2017). The growth in double cropping is strongly correlatedwith
socio-economic development (e.g., measured by income, literacy, and longevity) and agricultural intensifica-
tion (Garrett & Rausch 2016; Spera et al. 2014; VanWey et al. 2013).

2.6 Crop conversion in the receiving system
Since the soybean trade boom, farmers in Heilongjiang have converted large areas of soybean land to corn and
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rice paddies (Figure 15 in the Appendix) (Sun et al. 2018, 2015). The conversion from soybean land to corn land
and rice paddies results in increased nitrogen pollution (Sun et al. 2018) and largely alters the landscape, which
a�ects biodiversity and regional water flux. The land-use maps of the two systems are in Figure 1.

Figure 1: Land-use maps of the sending system and receiving system. (a) Land-use map of Sinop, Moto Grosso
in 2014 (Kastens et al. 2017); (b) Land-use map of Gannan, Heilongjiang in 2010 (Sun et al. 2015).

Entities, state variables, and scales

2.7 Theprimary entities in thismodel are systems, agents and environment. All the entities are hierarchically struc-
tured (Figure 2): systems, agents, and environments all have an abstract class in themodel with commonprop-
erties shared between sending and receiving systems. The receiving and sending systems are derived from the
abstract module to create an instance of agents and environments for the systemwith unique properties.

2.8 Systems in TeleABM include the overall telecoupled soybean systemwhich has the sending system and receiv-
ing system. The land-use changes in the sending and receiving systems are individually represented and in-
teract with each other through the flows of soybean trade, which together constitute the telecoupled soybean
system. In each system, there are agents interacting with the environment.
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Figure 2: Hierarchical structure of TeleABM. From the abstract module, the model can be initialized and im-
plemented to represent di�erent systems (e.g., ABM-S, ABM-R). ABM-S is made of modules that are used to
represent the sending system, constituting agents from the sending system (i.e., sendingSoybeanAgent, send-
ingTradeAgent, sendingGovernmentAgent) and environment that represents the biophysical conditions of the
sending system. So is the ABM-R. The same shape of agents and environment in these systemsmean that they
share the same basic features and functions; however, di�erent coloursmean that the agents and environment
in each system are initialized di�erently as they may have unique attributes and functions.

2.9 Agents. In both sending and receiving systems, there are farmer agents, trade agents, and government agents
(Table 1). In the abstract class, a farmer agent has a list of general properties (e.g., labor, capital, and land prop-
erty) and a list of common abstract actions (e.g., land-use decision, calculate cost and profit). Farmer agents
can be instanced as farmer agent class in the sending system (as a sendingSoybeanAgent class) or farmer agent
class in receiving system (as a receivingSoybeanAgent class) based on the system’s initialization. Attributes
of agents are drawn from household surveys, information from yearbooks, interviews, and mental models (a
mathematical pairwise association that semi quantitatively captures the qualitative knowledge and percep-
tions of stakeholders (Gray et al. 2015; Mehryar et al. 2018) that were conducted in study areas.

2.10 Additionally, there are government agents and trade agents. Government agents decide levels of commodity
tari�s, crop subsidies, and trade volumes. International trade agents determine the soybean crop prices based
on a partial demand-supply relationship and connect the two systems by flows of soybean commodity and
soybean price. Local trade agents disseminate soybean prices and facilitate the trade by collecting soybeans
from local farmers.

2.11 Environment. The environment of TeleABM is based on a grid of cells, typically representing 900 m2 or 0.0625
km2 based on the land-usemap resolution (e.g., in the current version, we use 250m× 250m land-usemaps for
the receiving county and 240m× 240 m for the sending county, due to data availability). Each cell has defined
biophysical properties including empirical data (e.g., temperature, precipitation, elevation, and soil texture)
and hypothetical data (e.g., cadastral ownership) (layer A in Figure 3). Cells are assigned to and managed by
farmer agents (layer B and C in Figure 3). Crop yields are functions of fertilizer inputs and crop rotation, which
are derived from literature and expert opinions fromboth sites (see Table 4 in the Appendix). Local trade agents
interact with farmer agents who arewithin their spatial coverage (layer C and D in Figure 3), by passing the crop
price to these farmer agents and purchasing their crop products.

Process overview and scheduling

2.12 The initialization of TeleABM includes three parts: 1) setting the global parameters (e.g., users determine which
system(s) to simulate, initialize farmer agents, use static crop price, empirical crop price, or simulated interna-
tional price), 2) reading land-use and other maps (e.g., suitability map) and external files (e.g., empirical crop
prices, subsidy); 3) initializing farmer agents and other agents, including land cells allocation to farmer agents,
agents properties setup (e.g. capital, diversifying preference) according to empirical and/or hypothetical data,
and farmer agents and trade agents connections.
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Agent Class Property Function

Farmer Agent

• land property, labor endowments, capital endow-
ments

• land cells with current and historical land-use in-
formation

• crop production and profits

• read land uses from land-use maps (initialization
step)

• get commodity price

• step (execute every year, including abstract func-
tion of updating production, updating costs, up-
dating profits, and land-use decisions, updating
land uses)

sendingSoybeanAgent

X diversifying preferences X land-use decision in the sending system

– land-use probability

– expansion

receivingSoybeanAgent

X number of family members

X household head gender and age, unhealthy pro-
portion, dependent ratio, knowledge of soybean
trade

X attitudes towards soybean trade

X land-use decision in the receiving system

– rice cultivation

– soybean and corn cultivation

– allocate crops to suitable cells

– expansion

Trade Agent

• capital endowments

• spatial coverage

• purchase soybeans and pass local prices to local
farmer agents

sendingTradeAgent

X deliver the international price to local farmer
agents

receivingTradeAgent

X deliver the international price to local farmer
agents

internationalTradeAgent

X conduct the international soybean trade

Government Agent

• implement top-down policies

sendingGovernmentAgent

X implement environmental policies X SoyMoratorium scenario (future scenario)

receivingGovernmentAgent

X tari� imported crops and subsidize domestic crops X tari� scenario

Table 1: Agent properties and functions. Note: the symbol • is the common properties in the abstract module,
whileXis the unique property that is not shared between the two systems and – is for sub-functions.

2.13 A�er initialization, TeleABM operates on an annual basis and is divided into major steps of (1) human land-
use decisions, (2) land cell changes and (3) annual accounting to update socio-economic and environmental
conditions (Figure 4). Once both sending and receiving systems are simulated, telecoupling flows (e.g., the flow
of soybean commodity and price) in the annual accounting are triggered, via international trade agents, who
facilitate trade and update crop price.

2.14 At every time step, the internal agent factors are updated first (e.g. last yearâĂŹs crop cost and profit), then
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Figure 3: Layers and spatial representation. In layer B, colors represent di�erent types of land use (e.g., in the
sending system, double cropping and single cropping; in the receiving system, it is soybean, corn, and rice
paddy). In layer C, patterns mean di�erent property ownership. In layer D, patterns mean trade coverage of
di�erent trade agents.

farmer agents interact with local trade agents to obtain the crop price, which is either exogenous (i.e., if only
one system is simulated, price information is given in theprice file) or endogenous (i.e. the cropprice is updated
every year from the international trade agent). Farmer agents in the receiving system allocate their resources
to grow soybeans, rice, and corn. Farmer agents in the sending system allocate their resources to grow a single-
season of soybeans, a double-season of soybeans and corn, and/or a double-season of soybeans and cotton.

2.15 Farmer agents pass the land-use decisions and associated agricultural input (e.g., fertilizer and fuel use) to land
cells and update the land use for the current step. Previous land uses are recorded to land cell property. Land
cells undergo ecological processes to generate the new crop yield and soil organic matter in response to fertil-
izer use (Materials Submodels in the Appendix). Sending and receiving systems have separate ecological pro-
cesses that endogenize local-level environmental variability. However, for simplicity, in the example simulation
average crop yield is assigned to each crop to highlight the land-use change aspects.

2.16 Once all agents and land cells are updated, the model moves to annual accounting steps during which farmer
agents’ profit is calculated and stored, as well as the environmental-impacts (i.e. water usage, fuel input, and
crop production). When both sending and receiving systems are initialized, soybean production from the send-
ing system is aggregated through the local trade agents and sent to international trade agent as a flow, so that
next year’s crop price is estimated by the international trade agents (Figure 4). When only one system is initial-
ized, the crop price is either a static price from the initialization step or a dynamic price that is read in from a
configuration file. A�er this, the annual time step is finished and the model moves to the next time step.
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Figure 4: Major steps in TeleABM flowchart (adapted from Murray-Rust et al. (2014)). Each system completes
accounting its dynamics and communicates through the telecoupling flow (i.e., soybean commodity and price)
facilitated by the international trade agent.

Design concepts

2.17 Herewe introduce the theoretical andempirical background, thedecision-making representation, and the tele-
coupling flow. Common concepts of ABMs required by ODD+D are in the Appendix.

Theoretical and empirical background

Telecoupled soybean trade system

2.18 TeleABM is designed to test hypotheses that have emerged from the telecoupling framework (Liu et al. 2013).
Using the telecoupled soybean system as an example, our model can answer “what-if” questions under alter-
native scenarios, such as the question in this paper “if China increases its tari� on imported Brazilian soybeans,
what land-use outcomes will occur in Brazil as well as China?”. The simulation results from addressing this
“what-if” question can be used to evaluate the relationship between the telecoupling process (e.g., trade) and
internal processes (e.g., local land use), and to test cascading e�ect hypothesis (e.g., changes in one land-use
system radiate outward to land uses in other systems). Practically, we ask this specific question concerning the
current soybean tari� disputes between the United States and China. We hope that although the simulated
scenario is between Brazil and China, the land-use consequences can still inspire policy makers in all trading
parties.

Individual decisionmaking

2.19 We utilize di�erent approaches to construct and validate the land-use change patterns in the two systems due
to di�erent fieldwork approaches and data availability. In our case, a household survey was conducted in the
receiving systemand amentalmodelling approach (Özesmi &Özesmi 2004; van Vliet et al. 2010; Voinov &Bous-
quet 2010) was used per the project requirement and situation in the study sites (Dou et al. 2019).

Representing decisionmaking in the sending system

2.20 Several factors have been indicated to bemain drivers of the agricultural expansion and intensification in Mato
Grosso, Brazil (Garrett et al. 2013; Garrett & Rausch 2016; Richards et al. 2012), such as topography, climate con-
ditions, and distance to the closest ports. Land-use history is also an important factor in Mato Grosso, because
soybean land o�en replaces land deforested for pasture or previously under pasture. Due to data availability
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and research interests, we select the previous two-year land-use history (to be consistent with the usual prac-
tice in the field (Spera et al. 2014), yield, profit, and elevation, slope, distance to ports, and distance to urban
area as explanatory factors (Table 2). Soil property is homogenous in Sinop; therefore we exclude it for this
analysis. Using the crop cover maps from 2001 to 2014 that are provided by Kastens et al. (2017), we apply a
multi-nomial logistic regression to calculate the probability of agricultural land use at year t.

prob(lci,t) = f(lct−1, lct−2, Ci,t−1, Pi,t−1, Si, elevation, slope, distance) (1)

where lci is the land cover type i at year t, t− 1, and t− 2. Land cover at year t is the function of previous land
covers, Ci,t−1 is the cost of type i land cover at year t − 1, Yi,t−1 is the yield of the land cover i at year t − 1,
Pi,t−1 is the profit of crop i at year t − 1. S is the frequency of crop i at a specific cell across all years. We feed
logistic regression when t =2006 and t =2011, because we only have cost information in years 2000, 2005,
2010, and 2015, and land-use maps from 2004 to 2014. The results of parameters for this logistic regression are
implemented in the decision-making module of farmers in the sending system. To compensate for temporal
change and preference of intensification that is limited by the regression, we calibrate the probability for single
cropping (i.e., subtract by 0.02 every year to match the decreasing trend) and double cropping (i.e., increase
the probability by 0.02 every year) over time in the model.

Unit
(real/ha)

single-
soybean
gross re-
turn

soybean-
corn gross
return

soybean-
cotton
gross re-
turn

single-
soybean
cost

soybean-
corn cost

soybean-
cotton
cost

year 2005 1833 3125 12148 1975 4410 8140
year 2010 2475 4285 11628 1611 3531 6529

Unit (me-
ters)

distance to
urban

distance to
roads

elevation Slope

mean value 17830 8173 364.6 0.982

Table 2: Empirical values of land-use characters in the sending system

2.21 In addition to land-use probability, farmers’ decisionmaking is incorporated. Two factors (i.e., capital capacity
and preferences for diversification) are identified as significant by soybean producers that we interviewed dur-
ing fieldwork. In themodel, even if the probability suggests double cropping, farmer agents would only be able
to implement single cropping without enough capital endowments. The other property, “pro-diversifying”, is
extracted from the fieldwork conducted by our team in the summers of 2016 and 2017. The preliminary analysis
suggests that farmers in Brazil have di�erent risk-taking attitudes. In current simulation, farmer agents are split
evenly between the two risk-taking attitudes (50% simulated agents as “pro-diversifying” and 50% not) as a
hypothetical distribution to even out the e�ects of this attitude, whichwill be explored in future work. The pro-
diversifying farmer agents have a higher probability of choosing double cropping over single croppingwhen all
other factors hold the same.

Representing decisionmaking in the receiving system

2.22 The land-use changes in the receiving systemmostly appear on small-scale farmswhich are operated by house-
hold labor. It is necessary to first establish crop suitability maps because rice paddy needs special topography
and water condition. We then analyze land-use changes based on the extensive household survey conducted
in the summer of 2017 to quantify the land-use decisions at the household level.

2.23 Crop suitability
First, empirical data on soil type (Institute of Soil Science - Chinese Academy of Science 2019; Liu et al. 2006),
accumulated temperature (≥ 10◦C) (Li et al. 2014; NationalMeteorological InformationCenter 2019), distance to
water and distance to roads (calculated using ArcMap) are collected. Then, themulti-nomial logistic regression
is used to calculate the probability based on the 2005 and 2010 spatial distribution of the three crops classified
from remote sensing images and these land-use factors. This probability of crop presence is used as a proxy for
suitability which is a common practice in land use and ecological modelling (Chen et al. 2010; Magliocca et al.
2013;Walsh et al. 2013). Last, thehigher probability among the two timepoints is selectedas the crop suitability,
in case suitability has changed due to crop conversion (Figure 5).
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Figure 5: Crop suitability in Gannan, Heilongjiang (receiving system).

2.24 The choice of which crop to grow is a complex decision, and it is particularly true among smallholder farming
households (An 2012; An et al. 2005; Huber et al. 2018). The representation of farmers’ land-use decisions cru-
cially depends on the purpose of the study and the attributes of the system. There are many decision-making
mechanisms and rules used in modelling farmer agents’ crop choice, among which the statistical regression
model is o�en used to describe the relationship between land-use patterns and empirical farmers’ attributes
(e.g., LUDAS, see Le et al. 2008). Many factors have been noted crucial to the crop/land-use choices by small-
holders, such as the dependent ratio thatmeasures the number of dependants to farmworkers and reflects the
number of mouths each worker feeds (Chayanov 1966; Le 2005), the gender ratio that measures the number of
adult males over the total number of family members (Walsh et al. 1999), the education level of the household
heads and familymembers (An et al. 2002; Dou et al. 2017), and the size of o�-farm income (Dou et al. 2017; Yang
et al. 2018).

2.25 In the receiving system of TeleABM, several tiers of statistical relationships are used to represent the land-use
behaviors of these farmer agents (Figure 6). If agents engage in agriculture in a given year t, they 1) first decide
the proportion of rice to cultivate on the whole property, 2) decide the proportion of soybeans and corn to
cultivate, and then3) allocate cells that are suitable for cultivating these crops. Dataon farmeragents’ attributes
were collected during a household survey in the year 2017 (total count: 411, Table 3), which were tested for
collinearities and used for calculating the statistical relationships.

2.26 Rice cultivation proportion among rice-farmers

prop(Ricet = f(HHage, Hfm, Rdep, Rg, Ruh, Edu, Ns, Nm, Ad, Ap, FCi,t, GIi,t, HHg,K,HHedu) (2)

2.27 The receiving land-usemodule calculates the proportion of rice in a receiving farmer agent at the current year t
using regression analysis. Only the rice cost and profit are used to calculate this proportion (FCi,t andGIi,t are
rice cost and gross income at the year t). These variables (Table 3) are initialized following the empirical distri-
bution using theMonte Carlo approach. The proportion of corn and soybeans is assigned using the distribution
of the two crops collected from the survey.

2.28 Soybean cultivation proportion in non-rice farmers
For farmer agents that do not grow rice, the proportion of soybeans is calculated using the following regression
equation, and the corn proportion complements to 100%. This is because based on soybean and corn suitabil-
ity, soybeans and corn are likely interchangeable. TheFCi,t andGIi,t here are soybean cost and gross income
at the year t.

prob(Soybean)t = f(HHage, Hfm, Rdep, Rg, Ruh, Edu, Ns, Nm, Ad, Ap, FCi,t, GIi,t, HHg,K,HHedu) (3)

2.29 Allocate cells
For a receiving farmer agent i that ownsN number of land cells, it first sorts itsN land cells by rice suitability
and then allocatesNr = N ∗ prop(rice)t to cultivate rice for year t. However, these cells have to be either rice
paddy, or next to a rice paddy or water. Otherwise these cells are assigned to grow soybean or corn. The rest of
the cells are sorted by soybean and corn suitability and allocated to soybean and corn cells respectively.
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variable
abbr.

HHage Hfm Rdep Rg Edu Ns Nm Ruh

variable
names

Household
head age

number
of family
mem-
bers

dependent
ratio

gender
ratio

average
school
years

number
o�- farm
salary

number
of big
ma-
chines

unhealthy
propor-
tion

mean
value

44.8 3.672 0.2184 0.1346 9.721 0.4647 2.908 0.05615

variable
abbr.

Ad Ap FCsoybean FCcorn FCrice GIsoybean GIcorn GIrice

variable
names

rain-fed
area (ha)

paddy
area (ha)

soybean
fertil-
izer cost
(yuan/ha)

corn
fertil-
izer cost
(yuan/ha)

rice
fertil-
izer cost
(yuan/ha)

soybean
gross
income
(yuan/ha)

corn
gross
income
(yuan/ha)

rice
gross
income
(yuan/ha)

mean
value

3.371 2.198 347.2 870.1 1054.2 2847 4595 4599

variable
abbr.

HHg K HHedu

variable
names

household
head
gender

whether
know
soybean
import

education
of house-
hold
head

head
count

male
400;
female 11

No: 146;
Yes: 265

illiterate:
2

elementary
school:
56

middle
school:
261

high
school:
79

college:
13

Table 3: Household characters in the receiving system

2.30 Property expansion
A receiving farmer agent can also reclaim non-agricultural cells as agricultural cells. We assume that every year
the agent reclaims some new areas as agricultural land (i.e., follows a u =0.2, δ =0.05 Gaussian distribution
for a hypothetical constant-paced expansion). The reclaimed cells are assigned to the highest profitable crop.

Figure 6: Decision-making process in the receiving system of TeleABM (ABM-R).

Telecoupling features

2.31 TeleABM can simulate solely the sending system and its land-use changes, or the receiving system and its land-
use changes, or both systems and their telecoupled interactions during one simulation. In this section, we
describe how the telecoupling feedbacks are represented in this model.
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Model structure of telecoupling feedbacks

2.32 In each system, there are one government agent, local trade agents, and farmer agents. The two systems are
connected through an international trade agent (Figure 7). In the sending system, farmer agentsmake land-use
decisions based on a local soybean price (ps). Local trade agents purchase soybeans from local farmer agents,
which are aggregated to the international trade agent. The total traded volume of soybeans from the sending
system a�ects international soybean price (pfob), which is passed to trade agents in the receiving system. This
price is then distributed to local farmer agents (pr). The government agent in the receiving system sets up a
subsidy based on the aggregated soybean production in the receiving system, which aims to meet a certain
quantity of domestic production.

Telecoupling flows in themodel

2.33 Many factors a�ect international soybean trade and thus change the soybean prices. Such factors include tari�
disputes, transportation system improvements, favorable climate conditions or climatic hazards, andexchange
rate fluctuations. It is unrealistic to include all potential factors and relationships in onemodel. We simplify the
model by focusing on the land-use changes driven by the soybean supply and demand dynamics only. Sev-
eral assumptions are applied to this international trade simplification: 1) the supply and demand relationship
between Brazil and China determines their traded soybean price; 2) the two counties used as model examples
represent the average land use and trade conditions in the two countries. In TeleABM, we use several rela-
tionships (e.g., elasticity) between soybean price and the supply-demand quantity obtained from literature to
represent the dynamics of telecoupling flows between the sending and receiving systems.

Figure 7: Telecoupling feedback loop. Local trade agents aggregate all soybeanproductions from farmer agents
in the sending systemsandsend the soybeanasa flow to the international tradeagent. This amountdetermines
the soybean price in the international market (pfob, short for free on board), following a supply-demand rela-
tionship. This international price is disseminated to local trade agents in the receiving system as pr (i.e., short
for price in the receiving system) and in the sending system as ps (i.e., short for local price in the sending sys-
tem). Local trade agents then provide the local soybean price to farmer agents in the two systems. Solid lines
represent soybean trade and price while dashed lines are policy and information.

2.34 Sending system a�ects international soybean prices
Weassumethesupplyof soybeanproductiona�ects the international soybeanprice (pfob), andweuseanexport
demand elasticity to measure this dynamic. The export demand elasticity measures the percentage change in
exports associatedwith the 1% change in the price of the exporting country pfob (Reimer et al. 2012). We assume
this export demand elasticity is fixed in the short run, and pfob is only a�ected by the supply changes resulted
frommixedproduction changes (Qt−Qt−1) in the sending system that are causedby climate, land-use change,
and other factors. We apply the empirical point elasticity (-0.9) obtained fromReimer et al. (2012) and calculate
the price at year t given export change and price at year t− 1.

ptfob = pt−1
fob + pt−1

fob · EQ
t − EQt−1

εep · EQt−1
(4)
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EQt = Qt (5)
where εep is the point elasticity of export demand (-0.9 estimated by Reimer et al. (2012). Q is the quantity
of soybeans produced in Brazil, and EQ is the soybeans exported from Brazil to China. We assume that the
demand of soybeans from China is unlimited and all the soybeans produced in Sinop, Brazil, are taken by the
international soybean trade agent without tari� dispute. Therefore, EQ in this equation equals soybean pro-
duction (Q) in the sending system (we assume that the simulated county Sinop is a representative of Brazil) in
the no-tari� scenario in themodel (for tari� scenario,EQ is changed, see below at the section of high-tari� sce-
nario). pfobt is the traded soybean price (free on board) at year t. The soybean production (Qt) in the sending
systems is endogenous from themodel, except the initial one that is given.

2.35 International soybean price conversion to local prices
To local prices in the sending systems: Local prices in the sending system could also be impacted by its exter-
nal factors, such as the global fuel price (pfuel, US$ per gallon), the proportion of Brazilian soybean production
over the global soybean production (RB), and the proportion of Chinese soybean import over the global soy-
bean production (RC ), 2009 “zero-deforestation” supply-chain initiative (Gibbs et al. 2016)(ZD dummy (0=no,
1=yes)). Global soybean production reflects the climate e�ect and the global economy. Fuel price has proved a
significant factor in global agricultural trade. Theproportionof soybean import over global soybeanproduction
reflects the overall economy and demand of China. We thus convert international soybean prices calculated
above to Brazil’s local soybean prices using the following calibrated regression:

pts = f(ptfob, pfuel, RB , Rc, ZD) (6)

2.36 To the local prices in the receiving system: We employ a price transmission elasticity function (Reimer et al. 2012)
to convert international soybean prices (ptfob) to China’s local soybean prices (p

t
r), given local prices in the last

year (pt−1
r ), the current international soybean prices, the trend (year), together with several other exogenous

factors used above (i.e., pfuel,RC ), as well as local prices of corn and rice at current year t (ptcorn and ptrice). Local
prices of corn and rice in the current year represent government policy on stockpiling and incentives. This price
transmission function from international soybean prices to China’s local prices can be specified as:

ln ptr = β0 + β1 ln pt−1
r + β2 ln ptfob + β3TREND+ β4pfuel + β5RC + β6p

t
corn + β7p

t
rice (7)

where the βS are parameters estimated based on empirical data.
2.37 High-tari� scenario: elasticity of ChinaâĂŹs soybean demands

In a high-tari� scenario, we try to investigate the soybean import volume changes due to the tari�-driven price
increase. A tari� increase inChina that imposed toBrazilian soybeanswill boostChina’s received soybeanprices
fromBrazil (pt−1

fob ). For this purposeonly,weapply abilateral import demandelasticity εep for Chinawith respect
to Brazilian soybeans. It means that a price increase in pfob will lower China’s soybean imports and thus impact
Brazilian soybean exports andproduction. We followed themethod fromReimer et al. (2012) and calculated the
import demand elasticity of Chinawith respect to Brazilian soybeans using the data over the years of 2009-2015
(Hjorth&Wilensky2019;Bank2019;UNComtrade2019). The importdemandelasticitymeasures thepercentage
changes of import quantity∆IQwith respect to onepercent changes inBrazilian soybeanprice δp. Weusedata
a�er 2009 to avoid the potential noise of 2007 and 2008when therewas aworld foodprice and economic crisis.
The calculated elasticity εip is approximately -0.29, meaning one percentage increase of soybean import price
will reduce China’s import by 0.29 percent.

∆IQ =
εep · ∆p · IQt−1

pt−1
fob

(8)

where εep is the point elasticity of import demand (-0.29 as calculated above). ∆IQ is the change of import
quantity caused purely by the tari� increase. This value is zero in the no-tari� scenario, because we assume
all produced soybeans from the sending system will be bought and consumed by the receiving system. In the
tari� scenario, this value is subtracted by the sending soybean production at year t (i.e., EQt = Qt − ∆IQt),
to indicate the decline of import demands caused by the higher price resulted from the tari�. IQt−1 is the
imported soybean quantity from last year t−1 (which is equal to the export quantity from the sending system).
pt−1
fob is the lagged soybean international price from last year t− 1.

Validation

2.38 The validation of TeleABM requires two sequential processes: validation of the sending/receiving system inde-
pendently, and then the validation of the flow between them. Due to di�erent data availability and decision-
making representation in the two systems, the validation methods are also di�erent.
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Validation of decisionmaking in the sending system

2.39 Two years’ (t = 2007 and t = 2012) land-use data are selected to validate the regression results using the
receiver operating characteristics (ROC curve, presented in Figure 8). ROC is a commonly used measure of
goodness-of-fit in classification problems (Chen et al. 2014; Sun &MüLler 2013). A ROC curve is derived by plot-
ting the rate of true positives versus the rate of false positives. We select years 2007 and 2012 because one is in
the earlier period and the other is at the later period over the simulated 10 years (2005-2015). The areas under
the ROC curve for all three crops in both years are larger than 0.8.

Figure 8: Validation of the sending system. ROC curve for simulated and empirical land use in the sending
system: The ROC value for double-soybean, single-soybean, soybean-cotton for (a) the year of 2007 are: 0.9061,
0.8695, 0.9631, and for (b) the year of 2012 are: 0.8672, 0.8345, and 0.8974.

Validation of the receiving system

2.40 In the receiving system, pattern-oriented modelling approach (POM) is used to calibrate and validate the sim-
ulation results. The POM is a strategy to construct and validate the model with multiple observed patterns at
di�erent scales and scopes of the modeled complex system (Castella & Verburg 2007; Grimm& Railsback 2012;
Grimmet al. 2005). If amodel can reproducemultiple patterns observed in real systems, we think it is less likely
to falsify themodel design than theones that reproduceonly oneor nopattern. We comparepatterns of agricul-
tural land-use change at two levels: the crop planted areas and proportion at the county level (the aggregated
area and aggregated proportion) (Figure 9) and the soybean proportion at the household level (Figure 10).

2.41 At the aggregated level, the slope coe�icients between time and the simulated crop area are compared with
the slope coe�icients between time and the empirical crop area by t-test (e.g., we compute the t-test statistics
by dividing the di�erence between the two slopes over the residual variance see Wuensch (2018). The results
are not significant for all three crops, which indicate that the receiving system of TeleABM can reproduce the
changing pattern of planted areas and the proportion of the three crops.

2.42 At the household level, the soybeanproportion of each agent (i.e., simulated soybean area over the total house-
hold agricultural area) at the beginning of the simulation (year 1) and at the end of the simulation (year 10) are
recorded and compared with the reported soybean proportion from the household survey. The pattern of indi-
vidual soybean proportion is thatmore farmers abandoned soybean cultivation or largely reduced the soybean
proportion. Although the simulatedsoybeanproportiondistribution isnot statistically identical to theobserved
distribution (using Kolmogorov-Smirnov test), we believe that the model can represent the pattern of farmers
reducing and/or abandoning soybean production in the receiving system. The di�erence in distributionmay be
due to the hypothetical initialization of properties.
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Figure 9: Aggregated land-use area and proportion change in the receiving system. The x-axes are years (from
the year 2006 to2015, or the year 1 to 10 in simulation). The y-axis is either cropareaorproportion. Figures in the
le� panel are the areas of threemajor crops (from top to bottom: (a1) soybean, (b1) rice, and (c1) corn). The red
dots are the real crop planted area from yearbooks (note that some data are missing, so at certain years there
are no actual land-use data; in addition, there is a systematic gapbetween actual land-use data fromyearbooks
and remote sensing classified land-usemaps,weadda constant value to the actual area tomatchwith the land-
use map that is used for simulation, for example, 23,719 ha for soybean) and black dots are simulated results.
Figures in the right side panel are the proportion of each crop in the total planted area (from top to bottom: (a2)
soybean, (b2) rice, and (c2) corn). Because we have 20 replicates for the samemodel initialization, we have 20
black dots on every year.

Validation of the telecoupling feature

2.43 The soybean price in the sending system is a�ected by the production change in the sending system and this
pricewill a�ect the local soybeanprice in the receiving systemalongwith other factors suchas fuel price. There-
fore, the simulated soybean prices in both systems are compared with empirical data, and t-tests show no sig-
nificant di�erence which indicates the telecoupling module of our model can reproduce the empirical price
dynamics (Figure 11).

A Sample Simulation

3.1 To show how the results can be used to understand telecoupling features, we include a simple sample simu-
lation. The sample simulation has two settings: (A) Baseline scenario - no tari�, and (B) High-tari� scenario —
25% tari�. In scenario (A), a business-as-usual international trade is assumed. Thismeans that the international
soybean price is determined only by the change of soybean production from the sending system, as well as the
exogenous global factors such as average global fuel price. In scenario (B), a 25% tari� is charged on the soy-
bean production from the sending system to the receiving system starting from simulated year 5. The soybean
price is then a�ected by both the import demand elasticity and export demand elasticity. All the other settings
are the same. To eliminate randomness in the initialization andmodelling process, 20 replicates are simulated
for 10 years each.

Less agricultural intensification in the sending system at the tari� scenario

3.2 The land-use changes in the sending systemunder the tari� scenario are compared to the baseline scenario (no
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Figure 10: Distributionof soybeancultivatedproportionathousehold level in the receiving system. On the x-axis
is the soybean proportion (areas cultivating soybean over the entire family property) and on the y-axis is the
number of farmers (agents) with this proportion. The upper panel (a) is the distribution of soybean proportion
among the interviewed 411 households (y-axis is from zero to 120 farm households). The le� panels (a1 and b1)
are their soybean proportions 10 years ago while the right panels (a2 and b2) present the current soybean pro-
portion. The lower panel (b) is the simulated distribution (y-axis is from zero farmer agents to 6,000 simulated
farmer agents).

Figure 11: Simulated soybean price and empirical soybean price. The unit in the two systems are local curren-
cies: (a) real/kg and (b) yuan/kg respectively. T-test results for the empirical and simulated soybean price in
both systems are not significant, which indicates that the simulated and empirical soybean prices are from the
same sample distribution. Empirical prices are adjusted for inflation.

tari�) (Figure 12). Both scenarios indicate that the double-soybeanplanted area (soybean-corn) increaseswhile
single soybean cultivation decreases. However, when the tari� charge starts at year 5, fewer cells are converted
to soybean-corn each year, andmore cells are converted to single soybean compared to the business-as-usual
scenario. This suggests that the tari� slows down the intensification on Brazilian soybean farms, because farm-
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Figure 12: Annual land-use changes: (a) single soybean and (b) soybean-corn in the sending system in the sam-
ple simulation. The tari� becomes e�ective starting from year 5. Hence we show results starting from year 4.

Figure 13: Annual land-use changes: (a) soybean and (b) corn in the receiving system in the sample simulation.

ers may not be able to prepare for a second growing season since they get less profit from the soybean trade.

Cascading e�ect on the land-use changes in the receiving system

3.3 A cascading e�ect (i.e., chain events caused by the trade of one crop a�ecting other systems and components
Silva et al. 2017) is also observed in this sample simulation. The tari� not only a�ects the land uses in the send-
ing system but also a�ects land-use changes in the receiving system (Figure 13). The tari� drives the Brazilian
soybean price and production down due to less demand from China which, in turn, a�ects the international
soybean price. In the receiving system, because soybean imports are lower than domestic demand, the govern-
ment agent provides a subsidy to local farmers for added soybeans to their crop cultivation (5,000 yuan/ha).
This changes farmers’ preference fromcorn to soybeansand slows crop conversion fromsoybeans to corn in the
receiving system. The di�erences between the baseline scenario and the tari� scenario in the receiving system
start from year 6, which is one year later than the sending system (year 5) as a cascading e�ect.
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Discussion

Di�erent approaches used for receiving and sending system land-use simulation

4.1 To the best of our knowledge, there is no model in current ABM applications that represent two distant land
systems in one model. As mentioned above, the individual systems in our model (i.e., sending and receiving
systems) vary in agent attributes, behaviors, interactions, andmarket structure. One of the challenges of build-
ing telecoupledABMs is to represent the landuse anddecisionmakingof two very di�erent land systems. More-
over, the available datasets for the two systems aremost likely not interoperable. Fieldwork outcomes from the
two systems are also very di�erent: a quantitative database that details hundreds and thousands small farm-
ing householdsâĂŹ characteristics and land-use information in the receiving system, and a mixed qualitative
and quantitative dataset that describes dozens of large soybean producers in the sending system. The key is
to identify the common features and variations in both systems and minimize the modelling workload. This is
discussed in detail in another article that focuses on the design philosophy of TeleABM (Dou et al. 2019).

Aggregated errors from local simulation to telecoupling simulation

4.2 Another major challenge of TeleABM is validation, similar tomany other modeling e�orts (van Vliet et al. 2016).
The validation of ABMs can use either the structure or the model outcome (Evans 2012; Millington et al. 2011).
For TeleABM, we need to validate both the individual system as well as the flows between the two systems.
Therefore, in total three validations are conducted for TeleABM. Validationmethods for the sending and receiv-
ing systems di�er and are based on data availability. For the sending system, the land use is validated by using
a ROC curvewhile in the receiving system, the land-use simulation results are validated by the pattern-oriented
approach. The flow between the receiving and sending systems is compared to the simulated soybean price
with the historical local soybeanprices. Basedon insights gainedduring the validation process, we recommend
the integration of many datasets frommultiple coupled human-natural systems into a common, interoperable
database following the telecoupling framework. This will eliminate errors for calibration and validation.

4.3 The flow between the two systems is represented by the supply and demand function and calibrated with sev-
eral other global factors (e.g., average fuel price). For validation, we use the simulated soybean supply from the
sending system to feed the international soybean trade agent, which is di�erent from the empirical soybean
supply. Although this di�erence (between empirical soybean supply and simulated soybean supply) is within
theacceptable range, itmaybepassed fromthe international soybean tradeagent to local soybean tradeagents
in China, creating a larger deviation of soybean price in the receiving system from the empirical soybean price.

Alternativemodelling structures

4.4 Oneof theshortcomingsofABMs is theYAAWNsyndrome (YetAnotherAgent-BasedModel. . .Whatever. . .Nevermind. . . ),
which addresses thatmany ABMs in land science are case-specific (O’Sullivan&Manson 2015). There have been
attempts to easily apply ABMs from one place to other places, such as proposing generalizedmodelling frame-
works including MP-MAS (Marohn et al. 2013; Schreinemachers & Berger 2011) and the CRAFTY framework (Ar-
neth et al. 2014; Blanco et al. 2017; Murray-Rust et al. 2014), or using inter-model comparisons to identify the
common attributes and functions (Huber et al. 2018; Parker et al. 2008).

4.5 The presented model is constructed from empirical data and common variables from land system science,
rather than following CRAFTY or a similarmodelling framework. This is because these frameworks are o�en ac-
cumulated from European land-use changes andmodelling. It may underrepresent certain important features
if applying such frameworks in agricultural frontier (Brazil) or in small farming households (China), or require
rich datasets to calibrate. As new research pointed out, in urban studies the field is dominated by global north
researcherswhichunderrepresenturgent issues in theglobal south (Nagendraet al. 2018). Ourdecision-making
processes in the sending and receiving systems are both based onwidely used statisticalmethods (e.g., logistic
regression); hence it can be easily adopted by other cases with similar properties.

4.6 Somescholars have suggested to the first author touse individual ABMsand thenconnect the simulation results
in a di�erent program (e.g., system dynamicsmodels or computable general equilibriummodel) instead of the
current format as simulating multiple systems in one model. This indeed is the approach that another project
adopted for studying the telecoupling land-use changes inBrazil (Millingtonet al. 2017). However, weargue that
the focus of this other telecoupling project is solely on the local land-use changes in Brazil in the telecoupled
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soybean system. What we care most about and what insights our model can o�er is the causes and e�ects of
local land-usechangeson theother landsystems. Moreover, ifweexternalize the feedbacks inanotherprogram,
the validation might be an additional challenge since it is di�icult to adjust the chain of changes in local land
systems caused by the change from the flow.

Future directions and policy implications

4.7 The design, development and implementation of the first ABM that represents land-use changes in two sys-
temsdistantly connected through trade flowsopensnew research avenues formany issues in di�erent research
fields, such as the sustainable governance in land system science and environmental impact assessment of in-
ternational trade. In the present study, we simplify international trade dynamics by only modeling flows be-
tween the sending and receiving systems. Future work could expand upon this by simulating flows between
multiple senders and receivers as well as flows to spillover systems. For example, TeleABM could be expanded
to include land-use change in the United States, the second largest soybean producer and exporter. Producers
in the U.S. are a�ected by trade dynamics between Brazil and China and vice versa. Spillover systems are one
of the most elusive and underrepresented components in current telecoupling studies (Liu et al. 2018). For ex-
ample, TeleABM could be improved by including some emerging soybean producing regions (e.g., Argentina,
Uruguay).

4.8 TeleABM can playmultiple roleswithin land system science and can be used to derive policy implications. First,
TeleABMaddresses theomissionof distant land-use actors andprocesses in current land-usemodelingpractise
(Verburg et al. 2019). The underlying mechanisms of certain land-use demand that are generated from outside
of themodeled area can be explicitly represented in onemodel. Second, we can employ themodel to simulate
potential policies and technology changes in one system and evaluate the responses in its telecoupled part-
ners. For example, in the high-tari� scenario, potential subsides from Brazilian government to local soybean
farmers could reshape land uses in China. In the future, improvements in domestic transportation and port ac-
cesswill influenceBrazilian farmers’ production decisions and thus potentially a�ect China’s land-use changes.
Meanwhile, China’s e�orts to protect its natural land cover (Liu et al. 2018), such as the Grain-to-Green Program
(Liu et al. 2008), could reduce China’s crop production, incentivize imports from its trading partners, and im-
pact land uses in the exporting country. Lastly, as a tool to analyze distantly coupled human-natural systems,
TeleABM can enable researchers and policy-makers evaluate potential trends and policies, such as land consol-
idation and cropdiversity, to achieve food security and sustainable development in the overall food production
system including both importing and exporting regions.

Conclusion

5.1 In this study, wedevelop TeleABM, a novel telecoupled agent-basedmodel using a hierarchicalmodelling struc-
ture and the telecoupling framework. The validated model is used for a sample simulation of a high-tari� sce-
nario on international soybean tradeand the e�ects on land-use changes inboth sending and receiving systems
were demonstrated. TeleABM is useful in threemajor aspects. First, it fills a gap in current land systems science.
Besides assessing the one-way land-use changes under external forces, it demonstrates land-use feedbacks
between distant land systems. Second, it is a valuable research tool for testing telecoupling hypotheses and
quantifying telecoupling relationships across distant land systems. Last, the experiences and lessons learned
through its construction can be used to advance themethodology of agent-basedmodelling, since no ABM has
simulated more than one land system simultaneously.
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Model Documentation

The model was implemented in RePast Simphony 2.4 (https://repast.github.io/download.html). The
code is available at: https://www.comses.net/codebases/c7e925e0-a228-4e56-81e9-07455f453497/
releases/1.0.1/.

Appendix

Year Sending system Year Receiving system
Sinop, Mato Grosso, Brazil Gannan, Heilongjiang, China

area (km2) 3,194 4,792
population 2017 135,874 2012 390,000
soybean planted area (km2) 2017 1,437 2012 318
soybean production (tons) 2016 403,200 2012 56,335
soybean yield (kg/ha) 2016 3300 2015 2007

Table 4: General description of sending and receiving systems

Figure 14: Land-use changes in the sending system, Sinop, from 2004 to 2014 (Kastens et al. 2017).
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Figure 15: Land-use changes in the receiving system, Gannan, from 2000 to 2012. Data source: Heilongjiang
Provincial Bureau of Statistics & Survey O�ice of the National Bureau of Statistics in Heilongjiang (2019).

Common ABM concepts represented in themodel

The feedback between distant places is the primary feature of TeleABM. To follow the ODD+D protocol, we still
document the following properties even though some concepts are not used in this paper.

Emergence

Farmer agents’ land-use behaviors are expected to vary when their characteristics are initialized di�erently,
the crop subsidy changes, and by the trading/climate scenarios. The expansion of rice paddy in the receiving is
expected to emerge as well as the expansion of soybean-corn in the sending system.

Adaptation

Farmer agents do not change their decision-making rules. However, they adjust their land-use behaviors ac-
cording to the crop price, profit, labor, previous land use, and other factors.

Objectives

Farmer agents in both systems try to maximize the suitability of the land cells in their property.

Learning

Farmer agents in the two systems update the crop profit every year. They also learn from their neighbors about
the crop profit and use it to decide next year’s land-use decision, if they do not grow the crop at current year.

Fitness

No survival fitness is included in the model.

Prediction

Farmer agents are not able to predict accurate crop price for next time step.
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Sensing

Farmer agents can sense the crop profit of neighbour agents if they themselves do not grow this crop.

Interaction

Direct interactions occur between farmer agents and local trade agents. Direct interactions also happen be-
tween neighbour agents from observing each other and a�ecting the landscape (e.g., only when a neighbour-
ing cell is rice paddy one can change it to rice paddy). Indirect interactions occur between farmer agents in
the sending and receiving systems through international trade agents. Farmer agents also interact with the
environment through land-use decisions andmanagement.

Stochasticity

Farmer agents have individual variation in attributes and decision-making parameters, which are drawn from
survey data and set as statistical distribution. Furthermore, noises are added to crop management (e.g. a ran-
dom number is added to fertilizer input and yield) and crop price (e.g. the crop price sensed by farmer agents
have a small random value).

Collectives

The crop production from individual farmer agents is aggregated at the end of each time step, and enters the
international trade agent. The crop price generated by the international trade agent later a�ects the individ-
ual land-use changes in both systems. Government agent also implements certain policies by reviewing the
aggregated land-use results.

Heterogeneity

Heterogeneity is represented by farmer agents’ properties, such as farm size and education. It is also deter-
mined by varying certain decision-making features, such as pro-diversifying in the sending system.

Observation

At each time step, land uses are recorded at each farmer agent level, as well as their capital and environmental
usage (e.g. fertilizer use, yield, water usage).

Path dependence

Land-use decision of cell i at step t is a�ected by the land use of this cell at previous steps. The influence
comes from (1) soybean farmer agent’s knowledge of di�erent crops, (2) land-use history that a�ects current
crop choice and yield, (3) neighbours’ land-use conversions from and to rice paddy can a�ect the possibility of
agent’s rice paddy decisions.

Details

Initialization

The initialization includes three parts:

Users set up global parameters: users determine which system(s) to run simulation on, the scenario of crop
prices, and number of initial farmer agents and vision.

• static crop price: themodel reads crop price written by users at the panel, andwill stay the same over the
simulation time steps
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• dynamic crop price: the model reads files that include crop price at every year

• telecoupling feature: themodel has sending and receiving systems, and exchange price information dur-
ing simulation.

The model reads configure files andmaps to initialize land cells:

• crop land-use maps from remote sensing data

• empirical crop suitability map

• empirical or hypothetical soil map

Themodel initializes agents and their characteristics:

• initialize parameters for each system, such as the range of production cost

• several attributes of agents (e.g. capital, gender ratio, education) are initialized based on weighted or
normal distribution drawn on statistical distribution from survey data and other sources.

Input data

TeleABM uses three types of input data, which also corresponds to three initialization steps.

Input file Function

Parameter setting

sending system representation

receiving system representation

number of initial farmer agents in sending system

number of initial farmer agents in receiving system

priceof crops (soybean, corn, rice, cotton): if>0, staticprice, if<0, usedynamic
price or use telecoupling price

Bio-physical data

land-use maps (classified MODIS images(2005 and 2010) and Landsat images
(2000, 2006, 2011, 2016, as a verification source) of Gannan, Heilongjiang,
and PRODES data (2004-2014) of Sinop, MT)

temperature and precipitation map (empirical data, such as maps of annual
accumulated temperature above 10◦C and maps of precipitation of Hei-
longjiang)

nmaps of soil types

maps of elevation and slope

Socio-economic scenario

text files contain annual price of crops

di�erent settings of tari�

maps of distance to urban and roads

Table 5: Input data of TeleABM
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Submodels

Ecological model. In this model (LandCell class in the receiving system), yield of crops (converted to land cell
spatial unit from per ha) is a function of fertilizer, precipitation, and temperature, based on relationships found
in literature. However, in this version, we do not include the crop yield response to fertilizer use in the receiving
system. Crop yield is a constant value using the survey average (i.e., soybean 2,008 kg/ha, corn yield 9,597
kg/ha, and rice 8,112 kg/ha). In the sending system, the parameterization of each crop yield is given based on
experts’ opinion (Table 6 in the Appendix). For instance, if a cell is used as soybean-corn, the soybean yield is
3,007.2∗90% kg/ha and the corn yield is 4,120∗100% kg/ha.

crop average yield (kg/ha) land use parameter (%)

soybean 3007.2 single soybean 105
soybean-corn 95
soybean-cotton 95

corn 4120.0 soybean-corn 100
cotton 3346.2 single cotton 105

soybean-cotton 95

Table 6: Average crop yields to each land use type in Sinop, MT, Brazil
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