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Increasing global demand for agricultural commodities has driven local land use/cover change (LUCC) and
agricultural production across Brazil during the 21st century. Modelling tools are needed to help understand the
range of possible outcomes due to these ‘telecoupled’ global-to-local relationships, given future political, eco-
nomic and environmental uncertainties. Here, we present CRAFTY-Brazil, a LUCC model representing production
of multiple agricultural commodities that accounts for spatially explicit (e.g., land access) and temporally
contingent (e.g., agricultural debt) processes of importance across our nearly four million km? Brazilian study

area. We calibrate the model calibration for 2001-2018, and run tests and scenarios about commodity demand,
agricultural yields, climate change, and policy decisions for 2019-2035. Results indicate greater confidence in
modelled time-series than spatial allocation. We discuss how our approach might be best understood to be
agency-based, rather than agent-based, and highlight questions more and less appropriate for this approach.

1. Introduction

It is now well understood that local land use/cover changes in many
regions of the world are influenced by international demand for agri-
cultural commodities and that socio-ecological systems are often ‘tele-
coupled’ over great distances (Liu et al. 2013, 2018). For example,
increased Chinese demand for soybean over the last several decades has
contributed to increased production in Brazil, making the country a key
soybean production region in the global food system and driving change
in local land use (Silva et al., 2017; Sun et al., 2017). Increased pro-
duction has been achieved through a combination of expansion of
agricultural land, increases in yields, and changes in farming practices,
including the development of a double-crop system with maize (pre-
dominantly) as a second crop. Improvements in yields have come
through improved seed varieties (including genetic modification), in-
creases in agricultural inputs (fertilisers, pesticides, machinery) and
economies of scale (Wesz 2016). These changes have come in tandem
with significant economic changes in the Brazilian farming system,
meaning that many farmers are faced by tough economic decisions to
ensure the future viability of their businesses (Silva et al., 2020). Future
uncertainty is further exacerbated by the spectre of climate change
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which may bring increased frequency of drought during the second crop
and other conditions unfavourable to consistent production from
year-to-year (Heinemann et al., 2017; Hampf et al., 2020).

To create a tool for examining the range of possible outcomes given
such a range of drivers and uncertainties, we set out to develop a
spatially-explicit land use/cover change model capable of representing
both production and associated land use of multiple agricultural com-
modities that could be subsequently linked to a System Dynamics model
of global trade (see Millington et al., 2017). The telecoupling framework
within which we developed our model emphasises the importance of
agents and flows as drivers of change in coupled human-natural systems
that are linked across long distances. To represent agency in land use
and agricultural production decision-making we use the previously
developed Competition for Resources between Agent Functional Types
(CRAFTY) modelling framework (Murray-Rust et al., 2014), adapting it
to improve representation of spatially explicit (e.g., land access) and
temporally contingent (e.g., agricultural debt) processes of importance
in our Brazilian study area. The CRAFTY framework has been designed
specifically with the intention of simulating broad-scale land use change
over large spatial extents (national to continental). For example, Blanco
et al. (2017) parameterised CRAFTY to examine ecosystem services and
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decision-making under scenarios of climate change for the entire land
area of Sweden over many decades. Brown et al. (2019) used CRAFTY to
simulate land use change across the entire European Union to investi-
gate land manager behaviour at the continental scale. In work similar to
that presented here, investigating the telecoupled effects of global food
commodity trade between China and Brazil on land use, Dou et al.
(2019, 2020) developed a bespoke agent-based model. Whereas the aims
of that approach were to understand land use impacts at a fine scale for a
single municipality, our work aims to understand land use across much
broader extents and hence the use of CRAFTY is more appropriate
(Millington et al., 2017).

In this paper, we present the description and first results from the
application of the CRAFTY framework to simulate land use/cover
change over several decades for ten Brazilian states, an implementation
we call CRAFTY-Brazil. We provide an overview of the endogenous and
exogenous processes represented, the data used to parameterize and
calibrate the model, and results from using CRAFTY-Brazil to simulate
scenarios of future change. Importantly, we developed and tested
CRAFTY-Brazil using empirically-grounded data in a fashion that has
not previously been achieved for other applications of the CRAFTY
framework. This empirically-grounded approach aims to ensure internal
model consistency, but also identify key areas of uncertainty. The model
structure and results presented here are independent of the System
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Dynamics model (based on Warner et al., 2013) we ultimately intend to
couple CRAFTY-Brazil with. However, by examining scenarios of com-
modity demand, agricultural yields, climate change, and policy de-
cisions over land use rights, we are able to both identify important
uncertainties in the model but also shed light on important processes
influencing land use change in Brazil. Subsequently, we reflect on what
we have learned from this initial use of the model and discuss future
directions in which this work should proceed.

2. Methods
2.1. Study area and data

CRAFTY-Brazil was designed with the intention of subsequently
connecting this spatial explicit model of land use/cover change with a
System Dynamics model representing the international trade of three
primary agricultural commodities: soybean, maize and beef. With this
focus, our study area was designated as the 10 states in Brazil that have
been the dominant producers of soybean and maize in recent years and
for which pasture area is widespread (Fig. 1). Our aim to simulate this
region of 3,850,000 km? for several decades required compromises on
model spatial and temporal resolution to ensure feasible execution times
while representing sufficient variation to explore system dynamics.
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Fig. 1. Study area. a) Location of the ten Brazilian states composing the study area and their modal municipality land cover for 2018, b) Study area LUCC through
time for the 2001-2018 calibration period, ¢) Municipality proportion of Cropland, Nature and Pasture for 2018 (scenario results are compared against these
proportions).



J.D.A. Millington et al.

Thus, the model operates on a raster grid at a 5 km spatial resolution (for
a total of 162,026 simulated cells) and we aggregate results to munici-
pality level (for our study area, mean and median municipality areas are
1,040 and 398 km? respectively). These resolutions are appropriate
given the available data needed to calibrate the model, which comes
from a variety of sources and with a range of original resolutions
including many aggregated at municipality level (Table 1). Further-
more, the 5 km resolution is comparable to other applications of
CRAFTY across large spatial extents (e.g., 1 km for Blanco et al., 2017
and 10 arcminute - approx. 18 km at the equator - for Brown et al.,
2019). The model runs with an annual timestep and we calibrate using
data for 2001-2018.

For model initialization and calibration, we use land use/cover
(LUC) data from the MapBiomas project (version 4; MapBiomas 2018).
Original 30 m data were resampled to 5 km (modal pixel class; see
Millington 2019) and LUC classes were reclassified from 27 classes to
four: ‘Cropland’, ‘Pasture’, ‘Nature’ and ‘Other’ (Appendix A). These
LUC classes are associated with the production of ‘services’ by different
agent functional types (as described below, Section 2.2.1). Cropland
represents land used to produce soybean, maize and other crops (e.g.,
rice, sugarcane), while Pasture is assumed to represent all land area used
for beef production. Nature represents vegetation cover not used for
agriculture (i.e., crops or pasture); processes of natural vegetation dy-
namics are not explicitly represented (although see use of Nature capital
in section 2.2.1 below) but simulated land that is no longer needed for
human use reverts to the Nature class (and Nature cells can be converted
to all other classes). Finally, Other represents land covers such as urban
and inland water bodies and is assumed to not change in simulations
that project into the future.

Given uncertainty in the MapBiomas data and the multiple alterna-
tive ways those data might be re-classified, we examined several re-
classifications of the MapBiomas v4.0 data and used commodity plan-
ted area data (from IBGE) to disaggregate ambiguous classes. The
overall accuracy for the MapBiomas v4.0 data for the period 2001-2018
(at the Level 2 classification) is estimated to be 88%, with the Grassland
class consistently the most poorly classified of all classes (high rates of
Natural Forest and Pasture commission error; see MapBiomas 2019b).
On comparing the implied beef pasture yields for LUC classifications
including/excluding Grassland in our Pasture class, we find a closer
match with observed yields when Grassland is included (see Millington
2019). The MapBiomas class ‘Mosaic of Agriculture and Pasture’ is also
problematic given that our focus is on distinguishing between pasture
and cropland. To address this, we used planted-area data (IBGE 2019) to
allocate pixels in the MapBiomas ‘Mosaic of Agriculture and Pasture’
class into either Cropland or Pasture classes (see Millington 2019).

2.2. Model description

2.2.1. Services, agents and capitals
The CRAFTY framework represents the production of land ‘services’
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where 4., is a weighting factor specific to capital ¢ and AFT a, and p; is
the productivity for service s (in abstract ‘production units’, later con-
verted to kg for agricultural commodity services). Competition between
AFTs is represented by calculating ‘competitiveness’ using a utility
function that accounts for production and marginal demand for each
service. In each timestep, the competitiveness of AFTs is calculated for
cells based on current capital values (which CRAFTY assumes are scaled
0 to 1) and service demands (specified in abstract ‘production units’,
which in our case represent demand for agricultural commodities in
domestic and international markets); the AFT with the greatest
competitiveness is allocated to that cell (subject to the ‘giving-in’
threshold of the currently occupying agent). Land may also be aban-
doned from agent use if competitiveness falls below an AFT’s ‘giving-up’
threshold. For full details on the CRAFTY framework, see Murray-Rust
et al. (2014).

Given our focus on soybean, maize and beef, CRAFTY-Brazil repre-
sents provision of the following ‘services’: Soybean, Maize, Beef, Other
Crops (OCrops), Nature and Other. The Nature service represents the
value of land not under human influence, while Other represents all
other land not in other classes (e.g., urban, water). The AFTs represented
are soybean producers, maize producers, soybean-maize double-crop
producers (producing both services), beef producers, other crop pro-
ducers, and other land managers (Table 2). We developed these AFTs

Table 2
Summary of agent functional types.
AFT Representation Capital Dependencies Services
Produced
Soybean Soybean Farmer Moisture-Main, Transport, Soybean
Tech-Soy-Maize, Protection-
Soy, Access-Nature, Access-
Soy-Maize
Maize Maize Farmer Moisture-Main, Transport, Maize
Tech-Soy-Maize, Protection-
Maize, Access-Nature, Access-
Soy-Maize
Double- Soybean-Maize Moisture-Main, Moisture- Soybean,
Crop Double-Cropping Second, Transport, Tech-Soy- Maize
Farmer Maize, Protection-Soy,
Protection-Maize, Access-
Nature, Access-Soy-Maize
Nature Vegetated land not Land Value, Conservation Nature
under management
Other Farmer of crops Moisture-Main, Transport, Other
Crops other than soy or Protection-OCrop, Access- Crops
maize OCrop
Other Urban or non- Other, Protection-Soy, Other

vegetated land Protection-Maize, Protection-

Beef,Protection-OCrop

X R R Pasture Beef Rancher Moisture-Main, Transport, Beef
by Agent Functional Types (AFTs) through production functions for Tech-Pasture, Protection-Beef,
multiple ‘capitals’ available in each cell representing a land unit (Mur- Access-Nature
ray-Rust et al., 2014). Cobb Douglas production functions are used:

Table 1
Data used for model calibration.
Variable Type Spatial Res. Temporal Res. Source Use
Land Cover/Use Raster 30 m Annual MapBiomas (2019) Model initialization and calibration
Climate Raster 0.5° Annual Harris (2020) Moisture Capitals
Transport Network Vector NA Quinquennial Transport Capital
Victoria et al. (2021)
Protected Areas Vector NA Annual MMA (2019) Protection Capitals
Land Price Vector Municipality Annual IEG/FNP (2017) Land Value Capital
Commodity Production Tabular Municipality Annual IBGE (2019) Study area selection, Tech-Soy-Maize and Tech-Pasture Capitals
Commodity Planted Area Tabular Municipality Annual IBGE (2019) Land cover/use map disaggregation
Commodity Exports Tabular Municipality Annual IBGE (2019) Commodity demand estimation
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based on expert judgement and discussion with stakeholders in the study
area based on the key services being simulated in the model and the key
variations in strategies (e.g. single vs double-crop) that currently exist. A
Nature AFT is also required for cells not under control of any other AFT
and representing land not under direct human land use (regardless of
whether that is primary or secondary vegetation). Representing double-
crop farmers as an individual AFT is important as land managers have
implemented the practice of sowing and planting a soybean crop early in
the season followed by a late season crop (usually maize). The double-
cropping system of soybean and maize was initiated in Brazil in the
late 1990s, as raising maize following soybean harvest provides pro-
tective cover for soils and the system eventually improves soil quality
(Silva et al., 2017). Initial yields using this method were low, but since
the early 2000s many improvements have been made in management
practices such as no-tillage agriculture, Nitrogen biological fixation
serviced by soybeans, hybrid and GMO maize varieties, which boosted
yields for the second crop. Consequently, this double-cropping practice
has grown through the 21st century, pushed more by economic demand
than by a desire for improved soil management (Silva et al., 2017).
Although this system provides potential for both agronomic and eco-
nomic gains over single-crop systems, the second crop growth is exposed
to the risk of late-season drought and consequent production losses
(Brunini et al., 2001; Goncalves et al., 2002). For soybean, the
double-cropping system has pushed production into a very short
growing season forcing producers to adopt short-cycle GMO varieties
(about 90 days from planting to harvest) that are impacting soybean
yields (Oliveira Neto, 2017). We represent ‘Other Crops’ and ‘Other’
land managers as grouped AFTs that likely contain multiple manage-
ment strategies because our focus here is on the production of soybean,
maize, and beef.

2.2.2. Exogenous processes

We use multiple CRAFTY ‘capitals’ to represent the numerous in-
fluences on the production of services (Table 3). For example, important
determinants of agricultural production in Brazil have been found to
include human capital, technology generation and dissemination,
climate conditions, and transport networks and land access (Pereira
2012; Rada 2013). All capitals vary spatially across the study area except
for Tech capitals, which are spatially uniform because these represent
improvements in technology that lead to broad-scale yield improve-
ments through time (including due to improved seed varieties, ma-
chinery and fertilisers that are available widely). Values for capitals are
provided exogenously (i.e., from ancillary data sources), except for the
three Access (Nature, Soybean-Maize, Other Crops) capitals and the
Conservation capital, which are calculated endogenously (i.e., during a
simulation run) from the dynamic spatial configuration of AFTs. All
endogenous and many exogenous capitals are updated in each timestep
(i.e., annually), although some are updated less frequently (see Table 3)
either because of data availability (e.g., transport network) or because
the process they represent does not occur on an annual basis (e.g., the
soybean moratorium occurred in a given year, see below). All scripts to
create files for initializing and updating capital values are available
online (Millington 2020a). We discuss exogenous capitals in the
remainder of this section, and endogenous capitals and representation of
other processes in the following section (section 2.2.3).

The Moisture capitals are derived from the monthly mean tempera-
ture and precipitation variables from the CRU TS v. 4.03 high-resolution
gridded datasets (see Harris et al., 2020) and represent the role of
climate on agricultural production. To understand climatic limitations
associated with plant growth and agricultural production, we used the
dryness index to describe the relation between water deficit and po-
tential evapotranspiration (Pereira and Pruitt, 2004), both obtained
from the Thornthwaite and Matter (1955) climatic water balance, as
implemented by Victoria et al. (2007). This index represents the water
deficit in percentage of potential evapotranspiration and is calculated by
the equation:
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Table 3
Capitals influencing modelled Services.

Capital Description Services Update Data Source®
Influenced Years
Moisture- Main growing Soybean, All Climate
Main season (Oct-Mar Maize, Beef,
climate) Other Crops
Moisture- Maize second- Soybean, All Climate
Second crop growing Maize
season (Jan-Jun
climate)
Transport Import and Soybean, 2005,2010,  Transport
export costs due Maize, Beef, 2017 Network
to transportation Other Crops
Land Value Land Soybean, All Land Price
attractiveness for Maize, Beef,
establishing new Other Crops
agriculture
Conservation Conservation Nature All Endogenous
value of natural
land
Tech-Soy- Technology and Soybean, All Commodity
Maize resources Maize Production
influencing yield
Tech-Pasture Technology and Beef All Commodity
resources Production
influencing yield
Other Incentive for Other All Land Cover/
‘Other’ uses Use
Protection- Prevents Soybean  Soybean, 2006 Protected
Soybean production in Other Areas
given cell
Protection- Prevents Maize Maize, 2009 Protected
Maize production in Other Areas
given cell
Protection- Prevents Beef Beef, Other None Protected
Beef production in Areas
given cell
Protection- Prevents OCrops Other Crops, None Protected
OCrops production in Other Areas
given cell
Access- Spatial: Soybean, All Endogenous
Nature proximity to Maize
natural land
Access-Soy- Spatial: Soybean, All Endogenous
Maize proximity to Maize
soybean or maize
cells
Access- Spatial: Other Crops All Endogenous
OCrops proximity to
other crop cells
@ Data Sources correspond to Variables in Table 1.
DI = 100 * DEF / PET 2)

where DI (%) is the dryness index; DEF is the water deficit; and PET is
potential evapotranspiration (see Table 2 in Victoria et al., 2007 and
Millington 2020a for full definition). We calculate mean monthly DI for
two different growing seasons (Oct-Mar and Jan-Jun) to calculate two
sets of moisture capital values to represent climate influence on single-vs
double-crop production. The use of these Moisture capitals also allows
us to investigate the possible influence of climate change on agricultural
productivity in simulations of alternative future scenarios (see section
2.3 below).

Transport infrastructure is a key variable influencing the spatial
distribution and volume of agricultural production, related to land
conversion (e.g., Soares-Filho et al., 2006; Weinhold and Reis 2008) and
both imports of agricultural inputs and exports of commodities to
markets (Rada 2013). The Transport capital uses data on the national
road network (DNIT 2019) with locations (and operating years) of ports
(ANTAQ 2019) to derive a spatial cost surface at a broad scale. This cost
surface weights the quality of transport infrastructure such that paved
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roads present lower cost than unpaved roads for access to land (see
Victoria et al., 2021). The use of the Transport capital allows us to
investigate the possible influence of future alternative infrastructure
development on land use change and agricultural productivity at a
broad scale.

The Land Value capital is used to represent the incentive for agents to
convert Nature land to Agriculture in places where agricultural potential
and infrastructure (as represented by the previous capitals) are poor, but
which have been converted (e.g., based on Mapbiomas LULCC between
1985 and 2018). In these ‘frontier regions’, land prices are lower
compared to other developed regions of Southern Brazil, reflecting the
challenges of making a profit from agricultural production in frontier
lands. These lower land prices provide an incentive to those willing to
take a risk on developing land for grain production, assuming that future
improvements (e.g., logistics, infrastructure) in the region will improve
yields to pay-off the risk. Previous studies have shown that as the agri-
cultural sector develops in a given region, land prices tend to increase
alongside infrastructure and social standards (Rezende, 2002; Ferro and
Castro, 2013; Martinelli et al., 2017). To develop this capital we used
data from IEG/FNP (2017) to represent the relative cost of land for new
development. As noted above, improvement in agricultural productivity
(yields) through time due to advances in technological resources — such
as improved machinery and seed varieties (e.g., Pereira 2012) — are
represented using the Tech capitals. Because these capitals represent the
aggregation of multiple sources of improvements in yield, we calibrate
their values by combining our observed land use/cover data with
commodity production data to calculate yields that are internally
consistent within the model (see Millington 2020b).

The four Protection capitals represent areas of land that cannot be
used for soybean, maize, beef or other crops. This exclusion may be
because an area is designated as National or State Parks, indigenous
lands or because of a policy that excludes production of a given com-
modity (e.g., Soybean Moratorium). For example, the Protection-
Soybean capital is used in calibration runs (section 2.3) to represent
the Soybean Moratorium policy implemented in 2006 to discourage
deforestation and limiting the market for soybean grown on deforested
lands (Gibbs et al., 2015; Dou et al., 2018). These capitals therefore also
allow examination of simulation runs that implement similar policies.
Finally, the ‘Other’ capital is used to drive a high probability of cells
being in the Other land cover category (e.g., urban and water), based on
observed land cover change for calibration and potentially for repre-
sentation of future expansion of this land type.

In the CRAFTY modelling framework, demand for services is pro-
vided exogenously, rather than incorporated as an endogenous process.
Furthermore, this demand is specified in the same abstract units used to
represent services production (section 2.2.1 above). As our focus here is
on soybean, maize and beef we derive the abstract demand for these
services from real production units (kg), while for Other Crops, Other
and Nature we derive demand based on land area (ha; see Millington
2020b).

2.2.3. Endogenous processes

Processes driven by the spatial configuration or historical contin-
gency of land resources and agent actions are represented in the model
endogenously by updating cell- or agent-states dynamically during a
simulation, dependent on their circumstances in each timestep. Specif-
ically, we represent the spatial agglomeration effect of agricultural
economies, the tendency of land conversion to be spatially contagious,
vegetation regeneration processes, and producer debt. Representing
these processes required additions to the CRAFTY source code (see
Millington 2020c).

The importance of spatial proximity for driving land use change due
to efficiencies afforded by agglomeration economies is well known (e.g.,
Fujita and Krugman 1995; Porter 2000) and has been shown to be
important in Brazil (Vera-Diaz et al., 2008; Garrett et al., 2013; Picoli
et al.,, 2020). To represent this in the model at a local level, the
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Access-Soy-Maize and Access-OCrops capitals are updated in each cell in
each timestep during simulation runs based on whether one of these
agent-types is present within the eight neighbouring cells (Moore
neighbourhood; with value 0.05 if the target agent-type is not present,
0.95 if the agent-type is present, and 1.0 if the cell is occupied by the
specified AFT). Similarly, conversion of natural land for agriculture is
known to be well-modelled as a contagious process of spread from
existing cultivated areas at the edge of natural lands (e.g., Rosa et al.,
2013). To represent spatial access to natural land at a local level, the
Access-Nature capital is updated in each cell in each timestep during
simulation runs based on the adjacency of nature and non-nature land
covers. For any given cell, if the Moore neighbourhood is composed
entirely of nature cells, the capital takes a value of 1.0; if between 1 and
7 cells in the Moore neighbourhood are nature cells, the cell takes a
value of 0.75; and finally a Nature Access capital value of 0.0 is taken if
all neighbouring cells are non-nature.

Through time, we represent regeneration of natural vegetation
following land abandonment by modifying Conservation capital cell
values during a simulation based both on the time since last human
disturbance but also the type of disturbance. Several recent studies
support the hypothesis that forest regeneration rate is related to ‘in-
tensity’ of previous land use (Mesquita et al., 2015; Jakovac et al., 2015;
Martines-Ramos et al., 2016), and here we assume that the rate of
regeneration is faster following extensive pasture land-use than inten-
sive crop (soybean, maize) land uses. Hence, for cells in a simulation run
that have never been disturbed (i.e., have always had a Nature land
cover) the Conservation capital will have value 1.0. The Conservation
capital value is reduced to 0.4 if converted from Nature to pasture and to
0.0 if converted to one of the other non-nature land covers. Following
abandonment of a non-nature use, Conservation capital is increased by a
value of 0.01 each timestep. The final endogenous process we represent
is the accrual and repayment of debt by those producers changing land
uses. New producers often need to take out loans to pay for land, new
machinery, seed, and other start-up costs. Producers can be ‘trapped’
into activities needed to earn profits to make repayments (e.g., Silva
et al., 2020) and changes in land use are unlikely during the repayment
period. To represent this inertia following conversion, we prevent new
agricultural agents from changing land use until the debt is repaid. Debt
is measured in years (the number of years to pay off the debt) and is
specified for transitions as shown in Appendix B.

2.3. Calibration, testing and scenarios

Previous implementations of the CRAFTY framework for modelling
real-world regions have calibrated model parameters using methods that
ensure internal consistency and produce expected system trajectories
but without comparing model outputs to empirical observations (e.g.,
Blanco et al., 2017; Brown et al., 2019). In contrast, here we use
empirical data for land cover/use and agricultural commodity produc-
tion (Table 1) to parameterize AFT production functions and capital
conversions (e.g., from climate dryness index to Moisture capitals),
identifying values that reproduce trends and patterns observed over the
period 2001-2018. This approach aims to both ensure internal consis-
tency, but also identify key areas of uncertainty in the model and is one
that has not been employed in previous CRAFTY modelling applications.
Understanding this uncertainty is important and useful for assessing
model outputs for scenarios that project future land cover/use and
agricultural production. Here, we compare simulated land cover/use
and agricultural production to observed data for the same variables,
aggregated for the entire study area. We also compare observed and
simulated municipality-level proportions of land cover/use for
snap-shots in time (5-year intervals). Final calibrated production func-
tion values are shown in Appendix C and capital conversions are shown
in Millington (2020a).

Once calibrated, we test the model to examine how exogenous pro-
cesses influence simulated land use/cover and agricultural production.
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Specifically, we test for changes in commodity demand and capitals
associated with agricultural yields and climate change (Table 4). To
understand the relative importance of these inputs on land use and
production we vary each by the same proportion (+/- 20% of 2018
values over 2019-2035), holding all other values constant at 2018
values. For demand, we also examine tests in which demand for all
services except for the Nature service are varied (to examine the impacts
of changes in non-Nature demand). Comparing outputs from all of these
tests, including to a simulation that holds all values constant, helps us to
better understand the drivers and dynamics in the model and identify
most important drivers of future change.

Finally, we examine future change in land use and production under
alternative scenarios of demand, yield, climate change and protected

Table 4

Specification of tests and scenarios for 2019-2035. Percentage changes are
over the entire period; ‘invariant’ uses values from 2018 for the remainder of the
period.

Description Demand Climate Yield Variations
[label] Conditions Conditions Conditions
Tests
Constant Invariant Invariant Invariant None
[Const]
All Demand Demand for all Invariant Invariant None
Decreases services
[Dem-All- decreases by
Decr] 20%
All Demand Demand for all Invariant Invariant None
Increases services
[Dem-All- increases by
Incr] 20%
Non-Nature Demand for all Invariant Invariant None
Demand services but
Decreases Nature
[Dem-NNat- decreases by
Decr] 20%
Non-Nature Demand for all Invariant Invariant None
Demand services but
Increases Nature
[Dem-NNat- increases by
Incr] 20%
Yield Invariant Invariant Yields for Soy, None
Decreases Maize, Beef
[Yield-Decr] decrease by
20%
Yield Invariant Invariant Yields for Soy, None
Increases Maize, Beef
[Yield-Incr] increase by
20%
Climate Invariant Moisture Invariant None
Decreases capitals
[Climate- decrease
Decr] 20%
Climate Invariant Climate Invariant None
Increases capitals
[Climate- increase
Incr] 20%
Scenarios
Business As Standard MAPA  Moisture Standard None
Usual projections for capitals MAPA
[BAU] Soy, Maize, from RCP45  projections for
Beef, OAgri; Soy, Maize,
otherwise Beef; otherwise
invariant invariant
Future Upper MAPA Moisture Upper MAPA None
Extremes projections for capitals projections for
[EXT] Soy, Maize, from RCP85 Soy, Maize,
Beef, OAgri; Beef; otherwise
otherwise invariant
invariant
Future As for EXT plus  Moisture Upper MAPA Protected
Extremes 10% lower capitals projections for Areas
with No Nature demand from RCP85 Soy, Maize, removed
Protection Beef; otherwise
[EXT-NP] invariant
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land (Table 4). Scenario input values for commodity demand and yields
are derived from projections by the Brazilian Ministério da Agricultura,
Pecudria e Abastecimento (MAPA 2020). As these projections are only to
2030, we use proportional change as indicated in the projections for
2019-2030 then mean proportional change over that period for
2031-2035 (see Appendix D). For climate change scenarios we use
regionally-downscaled projections of temperature and precipitation
from the WCRP Coordinated Regional Downscaling Experiment (COR-
DEX). Our chosen driving model was HAD-GEM2 as this model has been
shown to have better agreement with observed rainfall in Atlantic For-
est, Caatinga and Cerrado biomes than other models, although biases do
remain (Rosolem et al., 2018). We use monthly data for Daily Minimum
Near-Surface Air Temperature (tasmin), Daily Maximum Near-Surface
Air Temperature (tasmax) and Precipitation, (pr) from ensemble
rlilpl and CORDEX region SAM44 (downscaling realisation v3). Pro-
jections were for representative concentration pathways RCP4.5 and
RCP 8.5 and were accessed via the ESGF-CEDA project (CEDA 2019).
Scripts that convert these data to Moisture capitals values are available
in Millington (2020a). Finally, we also examine a scenario that includes
removal of protected area designations (in addition to other changes), a
possibility given the environmental policy direction the current Brazil-
ian Federal government has taken recently (e.g., Abessa et al., 2019).

3. Results
3.1. Calibration

Results from model calibration indicate that CRAFTY-Brazil is able to
reproduce observed time-series of total area and production for the
entire study area, but performs less well in terms of spatial allocation
across the study area. Observed trends of decreasing Pasture and Nature
area combined with increases in cropland area are reproduced well, with
small year-to-year variation (Fig. 2a). The general trends of increases in
production of Soybean and Maize are reproduced, although much of the
large inter-annual variability in production is not captured (Fig. 2b).
Interestingly, there is also a slight lag in the rate of increase in Maize
production 2011-2014, and dramatic decreases in recent years are not
captured. Correspondence between the two sets of time series can also
be noted, for example with the under-estimation of cropland area
2003-2005 linked to under-estimation of Soybean production in these
years.

Although time-series of observed trends are reasonably well repro-
duced, there are some disparities between observed and modelled lo-
cations of land use/cover (Fig. 3). For example, the model tends to locate
more Cropland in the north east of the study area (Bahia state) than has
been observed, with correspondingly less Pasture than observed in this
area. Conversely, in the central part of the study area (Sao Paulo state),
the model produces more Pasture than observed, at the expense of
cropland. Nature is reasonably well modelled across the study area,
although with some over estimation (at the expense of cropland) in the
north west of the study area (Mato Grosso state). While we see generally
consistent variation from observations in the simulated time-series, ac-
curacy in spatial allocation of land use seems to deteriorate through
time. For example, while the modal land use/cover was incorrectly
modelled for 9.8% of municipalities in 2009, this had risen to 16.4% by
2018.

3.2. Testing

Assuming constant 2018 conditions into the future (Const scenario,
Fig. 4), all land covers remain in a steady state, with the exception of
Double-Cropping and Maize; DC replacing Maize as former is more
competitive. Hence, Soybean production continues to rise while Maize
production declines slightly.

Results for tests examining change in commodity demand (Fig. 4a
and b), show that decreases in demand, whether for all services or only
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Fig. 2. Calibration time-series. a) land use/cover and b) commodity production.
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Fig. 3. Municipality proportional difference from observed, by land use/cover. Red shades indicate underprediction and blue shades overprediction relative to

observed data (i.e., Fig. 1c).

for non-Nature services, result in decreases in production of services and
decreases in agricultural area with commensurate increases in Nature
area (all change is either ~ 20% or <20% relative to starting condi-
tions). These changes are generally larger than changes observed in

outputs from tests that examine increases in demand. This can be seen
spatially in maps for tests with decreased demand (Fig. 5), which indi-
cate much less change than increased demand tests (compared to the
constant test) and with greatest differences in the north east and south
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Fig. 5. Spatial variation in outputs for tests. Municipality Differences are calculated from Proportions for the Const scenario (shown at left) for simulated year

2033. Specification and acronyms for names of tests are presented in Table 4.

west of the study area.

Differing trends exist between increased demand scenarios that
consider all services vs non-Nature services. When demand across all
services increases, by 2035 Nature production (and land cover) is
greater than the initial 2018 state and Beef/Pasture are lower. However,
when demand increases only for non-Nature services, the reverse situ-
ation arises by 2035 - Nature production (and land cover) is less than the
initial 2018 state and Beef/Pasture production/land cover are greater.
Although there is a difference in trend, the final % change is less than the
% change in input (i.e. <20%). Regarding the shape of production
timelines in demand scenarios, initial production is below demandand
so rises to meet that demand. In year 2022 demand decreases to a value
similar to that actually being produced. Thereafter, demand continues to
decrease and is at a value that can be met by existing land use. Conse-
quently, agricultural land is abandoned and Nature land area increases
more rapidly.

Yield scenarios (Fig. 4c) have similar sensitivity to Demand, except
for Nature and Other Crops (which don’t have changes in yield inputs).
However, Maize and Soy have greater changes in yield tests than de-
mand tests. For constant demans, production is greater with greater
yields and lower with lower yields . There is minimal change in Nature
area for decreases in yield (as relative pressure on land for all uses is
high), but large increase in Nature area for increased yields (as less land
is needed to meet demands). Production of Soy and Maize in the Yield
increase test rise (until 2025) when greater yields mean demand can be
met. High yields relative to demand from 2023 mean that this is the
point at which the rate of abandonment and growth of Nature land
increases.

Outputs are least sensitive to changes in climate inputs, particularly
for land area. For climate scenarios, all change in land area is <20%
except for Maize, which as for all other scenarios decreases due to
replacement by soy-maize double-cropping. Limited change in land area
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means that there is very little difference between spatial distribution of
LUC in climate tests compared to the constant state. Agricultural service
production increases/decreases for increases/decreases in the Moisture
capital, respectively, as would be expected by the relationships encoded
in the model.

As would be expected, maps of spatial change (Fig. 5) indicate
greatest change for tests in which timeseries (Fig. 4) indicate greatest
aggregate change (i.e., Nature land area increases commensurate with
decreases in agricultural land area). Maps show the location of these
changes are focused in the north east and south west of the study area,
with shifts from Pasture to Nature in the former and from Agriculture to
Nature in the latter.

3.3. Scenarios

The results for scenarios (Figs. 4e and 6) exhibit combinations of the
trends and patterns seen in the other scenarios (varying individual
driving factors). All three scenarios result in increased overall produc-
tion through time, in response to improving yields and increased de-
mand. Greatest increases in production are found in the EXT-NP
scenario, although corresponding increases in Cropland and Pasture
land are not spatially confined to formerly protected areas (e.g., blue/
red shades for Cropland/Nature respectively in Fig. 6 are found across
the entire study area).

However, although inter-annual variation in land area outputs for
scenarios is similar to that for tests (i.e. relatively low, with smooth
transitions), it is much greater for production outputs. Greater inter-

Const BAU
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annual variation in production for scenario simulations is a result of
variation in precipitation and temperature from GCM outputs which
directly influence Moisture capitals, and therefore agricultural service
provision. Of particular note is the large drop in production for EXT and
EXT-NP scenarios (based on GCM output for RCP85) in the final year of
the simulation, the result of a deep and widespread decrease in annual
precipitation in GCM outputs. This drop in production does not produce
a commensurate change in land cover (in the same year) as there is a lag
in agent decision-making (e.g., to abandon land). The lag in decision-
making can be seen in the noticeable decrease in Pasture and increase
in Nature land covers (indicating Pasture abandonment) simulated in
2034 for the BAU scenario. This abandonment of Pasture is the result of
consecutive years of low precipitation which also caused a period of
relatively low Soybean and Maize production for 2030-2033 compared
to 2025-2030, although with no effect on Cropland cover.

4. Discussion and conclusions
4.1. Calibrating CRAFTY

This paper represents one of the first attempts to calibrate the
CRAFTY land use/cover modelling framework against observed data.
Such an approach has not been used in the past, often because
comprehensive data describing Capitals, Demand and spatial distribu-
tion of land use are unavailable at the broad (national to continental)
scales CRAFTY is designed for (Brown et al., 2019). Other approaches to
calibrate CRAFTY have used ‘stability checks’ with baseline inputs to
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Fig. 6. Spatial variation in outputs for scenarios. Municipality Differences are calculated from Proportions for the Const scenario (shown at left) for simulated year

2033. Specification and acronyms for names of scenarios are presented in Table 4.
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ensure outputs do not deviate or oscillate wildly from expected behav-
iour (e.g., Blanco et al., 2017; similar to our Constant conditions sce-
nario) or to ensure ‘sensible’ outputs are produced when starting from a
blank map of null land use (e.g., Brown et al., 2019). As described in
Section 2.1, we have utilised multiple empirical data sets to enable our
approach but have also needed to make assumptions about how data
represent different processes. For example, commodity demands in any
given year are difficult to assess and for our calibration here we have
assumed continuous market clearing such that observed (2001-2018)
production perfectly met demand in each year. The value of such a
strong but simple assumption during calibration is that it enables clear
understanding of the meaning of commodity demand in future sce-
narios, and matches data that can be readily produced by the System
Dynamics model of global trade (based on Warner et al., 2013) that we
plan to link with CRAFTY-Brazil. In the hybrid model produced, demand
will be modelled endogenously by the System Dynamics model, adding
further variation to CRAFTY-Brazil inputs that will need to be appro-
priately assessed (e.g. via sensitivity analyses).

Our calibration of CRAFTY-Brazil was more successful in reproduc-
ing observed aggregate land cover and production values than for the
spatial distribution of variables (Figs. 2 and 3), a situation similar to
previous applications of CRAFTY (Blanco et al., 2017; Brown et al.,
2019). In particular, results from our calibration show Pasture out-
competing Cropland in the centre of the study area and vice versa in the
north east, neither of which were observed historically. This is surprising
as the north east of the study area is relatively marginal for Cropland
uses, while the conditions further south and centrally are better. It seems
that our calibration allows the marginal utility of the Beef service to
increase at a rate faster than Cropland services, pushing the latter to less
productive land. Such issues are likely further exacerbated by uncer-
tainty in the land use/cover maps against which we calibrate our model
(see section 2.1). Although the MapBiomas data are the best available,
the uncertainty in classifying Grassland and ‘Mosaics of Agriculture and
Pasture’ into the classes required for CRAFTY-Brazil may also contribute
some level of error in our calibration (Fig. 3).

4.2. Tests and scenarios

Tests of the model using standard differences in model inputs (+/-
20% of 2018 values) shows that production is insensitive to inputs
(outputs vary by <20% or ~20%), but that land cover change is more
sensitive (some change is >20%). All tests result in large (>20%) de-
creases in maize land area (with smaller, but also often large changes in
Soy) due to large increases in double-cropping area. This shift away from
maize-only land use is to be expected both due to intended model logic
and observed (and expected) empirical shifts to double-cropping sys-
tems. More obvious in the time-series of land cover (Fig. 4) are the large
simulated shifts in Nature in tests that represent decreased demand
(Dem-All-Decr and Dem-NNat-Decr in Fig. 4a and b) or increasing yield
(Yield-Incr in Fig. 4c). These shifts are due to abandonment of agricul-
tural land (crops and pasture), which in our model logic then becomes
Nature. Abandonment in these tests is driven by decreased demand in
agricultural services (in the case of the demand tests), or a decreased
pressure on land for agriculture due to increasing yields which in-turn
means less land needed to meet the same demand (in the case of the
Yield-Incr test). Land cover in other tests is relatively insensitive because
of competition for land between services. In the Dem-NNat-Incr test for
example, constant 2018 yields means that commodity production never
reaches the required demand in these scenarios. Hence, production and
land cover time series differ little from those seen in the Constant test as
production is already at its limit at the start of simulations given the
calibrated yield values. In contrast, when yields increase through time
(Yield-Incr test), less land is needed for Pasture land to meet Beef demand
and much is abandoned (reverting to Nature land cover). Yield increases
in pasture and crops produce what previous studies defined as ‘land
sparing” where the increased volume of production per land unit (i.e.,
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agricultural intensification) leads to a decrease in cropland, or at least
alleviating the pressure for cropland expansion (Angelsen and Kaimo-
witz 2001; Hertel et al., 2014). In this test, production of all products is
able to meet (the constant 2018) demand because of the high yields,
resulting in production timeseries that flatline.

Scenarios were designed to enable examination of both the effects of
variations in multiple input factors and potential alternative futures. For
example, for all three scenarios we see inter-annual variability in Soy-
bean and Maize production (due to climate) but with differing overall
trend (due to variation between scenarios in yield and demand), a
combined pattern we do not see in the tests. The EXT-NP scenario results
in greatest agricultural production (and lowest Nature land area) as the
ability to farm (formerly) protected areas plus decreased demand for
Nature land allow greatest shifts in land from Nature to Cropland and
Pasture. However, increases in Cropland and Pasture land in the EXT-NP
scenario are not spatially confined to formerly protected areas as might
have been expected. This is likely because these protected areas have
relatively limited infrastructure, which is considered invariant through
time in the EXT-NP scenario. With many of the indigenous and park
lands some distance from the ‘core’ agricultural production areas and
much pasture and other non-protected land available for conversion
(processes also represented in the model), even under the scenarios we
examine there is little pressure on the current protected areas. However,
this is a general trend for the entire study area, which may be different in
particular local realities (i.e., conservation areas that already suffer land
use pressure). Furthermore, if restrictions on land use in protected areas
really are relaxed (e.g. Abessa et al., 2019) we might expect improve-
ments in infrastructure (e.g., road building), which may in-turn lead to a
positive feedback and greater exploitation of these areas over the longer
term (e.g., Weinhold and Reis 2008). Furthermore, in our scenarios
demand for Nature is specified as an overall percentage change to reflect
possible trajectories of policy or socio-economic change that value
ecosystem. Demand for ecosystem services as implicitly provided by our
Nature service is difficult to estimate (Carpenter et al., 2009; Hayha
et al., 2015; Brown et al., 2017). This is reflected in the fact that while
projections of future demand for agricultural commodities are regularly
generated by formal government institutions (e.g., MAPA 2020), aligned
projections of demand for ecosystem services are not common. Aligned
projections of agricultural (e.g. soybeans) and non-agricultural (e.g.
carbon sequestration) land benefits would improve our ability to model
future scenarios, particularly with respect to demand for the Nature
service.

Comparing results for scenarios with those for tests highlights
qualitative differences in spatio-temporal variation. Tests used simple,
temporally-uniform and spatially-invariant rates of change based on
observed values, whereas scenarios used precipitation and temperature
outputs from GCMs (to provide Moisture capitals values) which have
much greater inter-annual variability (Fig. 4e). The qualitative differ-
ences in input time-series demonstrates a strong influence of climate
inputs on production outputs, but not on land cover change. The inter-
annual variability in production in our modelling is not sufficient for
land cover change to occur through abandonment (as discussed by Silva
et al., 2020), but many fine details of farm-level financing that may be
vital for individual farm viability are not represented in this model and
so we cannot conclusively argue that land cover change would not occur
under the climate projections we have examined.

Spatially, land change is generally diffuse but with some focused
regions of change. Tests that produce large increases in Nature area
indicate greatest decreases in pasture and cropland in north east and
south west regions, respectively, where these are initially (in 2018)
widespread. These are prone to greatest decreases as Pasture land in the
north east areas are the most marginal (with historically low stocking
rates; e.g. Dias-Filho 2014) whereas the south-west is initially domi-
nated by dense Cropland (and so has most to lose). Furthermore, this is
also the region that was most poorly modelled during calibration and as
above (section 4.1) we suspect land classification challenges (confusion



J.D.A. Millington et al.

between pasture, grassland, and pasture/agriculture mosaic) in the
MapBiomas input data (MapBiomas 2019b) also play a role here. For
similar reasons, spatial change is quite dispersed across the study area
but with intense change in a focused region in the north east of the study
area (in Bahia state), again with switches from Pasture to Nature.

4.3. Agency-based modelling

The tradeoffs necessary in spatial agent-based modelling of land-use
systems have been well identified in the literature, in particular with
respect to a perceived spectrum from empirically-grounded and
complicated models to theoretically-focused and simple models (e.g.,
O’Sullivan et al., 2015; Sun et al., 2016). Here, our approach has been to
build on the theoretical structure provided by the CRAFTY framework
and remain relatively conceptually simple, but also incorporating
empirical data where possible to ground our application for Brazil. In
doing so, this version of CRAFTY-Brazil limited the number of
agent-functional types and services represented (eight services aggre-
gated to four land use/cover types) and yet this still required the rep-
resentation of a greater number of capitals (15) and processes (multiple,
including the accrual of debt) than we had initially expected. A limited
number of AFTs may seem to produce what Sayer (1992, p.138) termed
a ‘chaotic conception’, a group of agent-types that artificially “lump
together the unrelated and the inessential” and inadequately represent
differences between real world actors that are needed to reproduce
empirical events. However, given that our model is implemented at a
spatial resolution of 5 km, CRAFTY-Brazil does not represent individual
actors as individuated agents but instead aggregates actors across space
into grid cells within which human agency is represented by an AFT.
This representation means CRAFTY-Brazil should be thought of as an
agency-based model representing the behaviour of aggregate human
actions rather than an agent-based model representing individual actors’
activities (e.g. such as that developed by Dou et al., 2019). Furthermore,
working with relatively coarse AFT representations aligns with the
relatively coarse spatial representation that inherently lumps multiple
real world actors together. The aggregation of 27 land types defined at
30 m spatial resolution to four types at 5 km (Appendix A) is robust
given that the original classification was hierarchical, that we have
aligned our reclassification on that hierarchy, and that we made further
analyses of variability (see section 2.1 and Millington 2019).

Although appropriate for the scales we are working at, the combi-
nation of this agency approach with constraints of the CRAFTY frame-
work presents challenges to representing some processes that influence
land decision-making of individual actors in our study area. For

Appendix A. MapBiomas v4.0 Reclassification
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example, the design of the CRAFTY framework to ensure computational
efficiency means that the history of simulated agents is not retained and
that agents cannot anticipate change beyond the next time step. We
modified the CRAFTY source code to enable some coarse representation
of temporally contingent processes (i.e. the debt that farmers incur when
setting up a new farm; section 2.2) on the agency of multiple aggregated
actors. However, the agency approach combined with the difficulty of
tracking history and representing planning strategies presents a chal-
lenge for representing the processes that trap producers in cycles of debt
and investment (Silva et al., 2020). This combination also limits our
ability to understand possible vulnerabilities and responses of producers
to temporal (e.g. inter-annual) variability in climate or other exogenous
factors (as highlighted above). Such questions cannot be examined
without incorporating representation of history and planning and/or
working at finer aggregations and scales (such that individual actors are
represented by individuated agents, for example). Readers considering
their own agent-based modelling projects, whether focused on land use
or other environmental issues, might learn from this example about
aligning scale and detail of conceptualisation. In particular, we suggest
readers compare our broad-scale agency-based approach for modelling
soy and maize to the finer scale and explicitly agent-based approached
taken by Dou et al. (2019) to consider for themselves the advantages and
disadvantages of the different approaches at the different scales. Our
modelling will continue to focus on broader-scale issues as we dynam-
ically couple CRAFTY-Brazil to a System Dynamics model to create a
hybrid simulation model for examining the land use impacts of tele-
coupled global trade (Millington et al., 2017; Liu et al., 2018).
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Code and Description are from MapBiomas, Reclassification is used here. Note that Cropland are further disaggregated into Soy, Maize and Other
Crops using planted area data. Scripts used to resample, reclassify and disaggregated the MapBiomas data are available in Millington (2019).

Code Description Reclassification
1 Forest Formations Nature

1.1 Natural Forest Formations Nature

1.1.1 Dense Forest Nature

1.1.2 Open Forest Nature

1.1.3 Mangrove Nature

1.2 Forest Plantations Nature

2 Non-Forest Natural Formations Nature

2.1 Non-Forest Formations in Wetlands Nature

2.2 Grassland Pasture (Nature in protected areas)
2.3 Salt Flat Nature

2.4 Rocky Outcrop Other

2.5 Other non-forest natural formations Other

3 Farming Cropland

(continued on next page)
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(continued)
Code Description Reclassification
3.1 Pasture Pasture
3.2 Agriculture Cropland
3.2.1 Annual and Perennial Crop Cropland
3.2.2 Semi-perennial Crop Cropland
3.3 Mosaic of Agriculture and Pasture Cropland
4 Non-Vegetated Areas Other
4.1 Beaches and Dunes Other
4.2 Urban Infrastructure Other
4.3 Mining Other
4.4 Other Non-Vegetated Area Other
5 Water Bodies Other
5.1 River, Lake and Ocean Other
5.2 Aquaculture Other
6 Not Observed Other

Appendix B. Debt

Debt incurred by agents following land use change. Units are years.

Previous Land Use Cropland Agent Pasture Agent

Nature or Other 5 3

Soybean, Maize or Other Crops 3 3

Double-Cropping 0 3

Pasture 4 NA

Appendix C. Production Functions
Capitals, Agent-Functional Types and their production weighting factors for each Service.
a) Soybean AFT
Soybean Maize Nature OCrops Other Beef
Moisture-Main 0.8 0 0 0 0 0
Moisture-Second 0 0 0 0 0 0
Transport 0.5 0 0 0 0 0
Land Value 0 0 0 0 0 0
Conservation 0 0 0 0 0 0
Tech-Soy-Maize 0.8 0 0 0 0 0
Tech-Pasture 0 0 0 0 0 0
Other 0 0 0 0 0 0
Protection-Soy 1 0 0 0 0 0
Protection-Maize 0 0 0 0 0 0
Protection-Beef 0 0 0 0 0 0
Protection-OCrop 0 0 0 0 0 0
Access-Nature 1 0 0 0 0 0
Access-Soy-Maize 0.4 0 0 0 0 0
Access-OCrop 0 0 0 0 0 0
Production 1 0 0 0 0 0
b) Maize AFT
Soybean Maize Nature OCrops Other Beef

Moisture-Main 0 0.8 0 0 0 0
Moisture-Second 0 0 0 0 0 0
Transport 0 0.5 0 0 0 0
Land Value 0 0 0 0 0 0
Conservation 0 0 0 0 0 0
Tech-Soy-Maize 0 0.8 0 0 0 0
Tech-Pasture 0 0 0 0 0 0
Other 0 0 0 0 0 0
Protection-Soy 0 0 0 0 0 0
Protection-Maize 0 1 0 0 0 0
Protection-Beef 0 0 0 0 0 0
Protection-OCrop 0 0 0 0 0 0
Access-Nature 0 1 0 0 0 0
Access-Soy-Maize 0 0.4 0 0 0 0

(continued on next page)
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(continued)

b) Maize AFT

Soybean Maize Nature OCrops Other Beef
Access-OCrop 0 0 0 0 0 0
Production 0 1 0 0 0 0
¢) Double-Crop AFT

Soybean Maize Nature OCrops Other Beef
Moisture-Main 0.8 0 0 0 0 0
Moisture-Second 0 0.5 0 0 0 0
Transport 0.5 0.5 0 0 0 0
Land Value 0 0 0 0 0 0
Conservation 0 0 0 0 0 0
Tech-Soy-Maize 0.8 0.8 0 0 0 0
Tech-Pasture 0 0 0 0 0 0
Other 0 0 0 0 0 0
Protection-Soy 1 0 0 0 0 0
Protection-Maize 0 1 0 0 0 0
Protection-Beef 0 0 0 0 0 0
Protection-OCrop 0 0 0 0 0 0
Access-Nature 1 1 0 0 0 0
Access-Soy-Maize 0.4 0.4 0 0 0 0
Access-OCrop 0 0 0 0 0 0
Production 0.8 0.75 0 0 0 0
d) Nature AFT

Soybean Maize Nature OCrops Other Beef
Moisture-Main 0 0 0 0 0 0
Moisture-Second 0 0 0 0 0 0
Transport 0 0 0 0 0 0
Land Value 0 0 1 0 0 0
Conservation 0 0 1 0 0 0
Tech-Soy-Maize 0 0 0 0 0 0
Tech-Pasture 0 0 0 0 0 0
Other 0 0 0 0 0 0
Protection-Soy 0 0 0 0 0 0
Protection-Maize 0 0 0 0 0 0
Protection-Beef 0 0 0 0 0 0
Protection-OCrop 0 0 0 0 0 0
Access-Nature 0 0 0 0 0 0
Access-Soy-Maize 0 0 0 0 0 0
Access-OCrop 0 0 0 0 0 0
Production 0 0 1 0 0 0
e) Other Crops AFT

Soybean Maize Nature OCrops Other Beef
Moisture-Main 0 0 0 0.8 0 0
Moisture-Second 0 0 0 0 0 0
Transport 0 0 0 0.5 0 0
Land Value 0 0 0 0 0 0
Conservation 0 0 0 0 0 0
Tech-Soy-Maize 0 0 0 0 0 0
Tech-Pasture 0 0 0 0 0 0
Other 0 0 0 0 0 0
Protection-Soy 0 0 0 0 0 0
Protection-Maize 0 0 0 0 0 0
Protection-Beef 0 0 0 0 0 0
Protection-OCrop 0 0 0 1 0 0
Access-Nature 0 0 0 0 0 0
Access-Soy-Maize 0 0 0 0 0 0
Access-OCrop 0 0 0 1 0 0
Production 0 0 0 1 0 0
f) Other AFT

Soybean Maize Nature OCrops Other Beef
Moisture-Main 0 0 0 0 0 0
Moisture-Second 0 0 0 0 0 0
Transport 0 0 0 0 0 0
Land Value 0 0 0 0 0 0
Conservation 0 0 0 0 0 0
Tech-Soy-Maize 0 0 0 0 0 0
Tech-Pasture 0 0 0 0 0 0
Other 0 0 0 0 1 0
Protection-Soy 0 0 0 0 1 0
Protection-Maize 0 0 0 0 1 0
Protection-Beef 0 0 0 0 1 0

(continued on next page)
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(continued)

f) Other AFT

Soybean Maize Nature OCrops Other Beef
Protection-OCrop 0 0 0 0 1 0
Access-Nature 0 0 0 0 0 0
Access-Soy-Maize 0 0 0 0 0 0
Access-OCrop 0 0 0 0 0 0
Production 0 0 0 0 1 0
g) Pasture AFT

Soybean Maize Nature OCrops Other Beef
Moisture-Main 0 0 0 0 0 0.2
Moisture-Second 0 0 0 0 0 0
Transport 0 0 0 0 0 0.5
Land Value 0 0 0 0 0 0
Conservation 0 0 0 0 0 0
Tech-Soy-Maize 0 0 0 0 0 0
Tech-Pasture 0 0 0 0 0 1
Other 0 0 0 0 0 0
Protection-Soy 0 0 0 0 0 0
Protection-Maize 0 0 0 0 0 0
Protection-Beef 0 0 0 0 0 1
Protection-OCrop 0 0 0 0 0 0
Access-Nature 0 0 0 0 0 0.2
Access-Soy-Maize 0 0 0 0 0 0
Access-OCrop 0 0 0 0 0 0
Production 0 0 0 0 0 0.85

Appendix D. Demand and Yield Projections

Values are % annual change, derived from MAPA (2020), used in scenarios specified in Table 4.

a) Demand

Soy and Maize Beef
Year Standard Upper Standard Upper
2019 2.19 3.67 1.53 3.14
2020 2.19 3.67 1.53 3.14
2021 -1.34 3.67 2.89 7.81
2022 3.15 5.41 —0.30 2.46
2023 2.86 4.43 1.52 3.58
2024 2.68 4.09 5.26 6.50
2025 2.67 3.82 -2.14 —0.69
2026 2.51 3.41 —0.08 0.87
2027 2.44 3.22 3.85 4.26
2028 2.38 3.06 2.07 2.76
2029 2.32 2.89 -1.09 0.01
2030 2.25 2.75 3.37 3.84
2031 2.20 2.65 1.50 3.14
2032 2.15 2.55 1.50 3.14
2033 2.10 2.45 1.50 3.14
2034 2.05 2.35 1.50 3.14
2035 2.00 2.25 1.50 3.14
b) Yield
Year Soy and Maize Beef

Standard Upper Standard Upper
2019 0.78 1.66 1.52 2.67
2020 0.78 1.66 1.52 2.67
2021 -1.51 1.66 1.66 5.50
2022 1.23 2.26 1.52 4.25
2023 1.10 2.14 1.08 3.26
2024 1.10 1.88 3.75 5.12
2025 1.05 1.72 -1.97 —1.22
2026 1.02 1.58 1.68 1.76
2027 0.99 1.47 1.71 1.77
2028 0.96 1.37 1.90 1.90
2029 0.93 1.28 0.53 0.79
2030 0.91 1.21 3.39 3.59
2031 0.89 1.16 1.50 2.67

(continued on next page)
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(continued)
b) Yield
Year Soy and Maize Beef
Standard Upper Standard Upper

2032 0.87 1.11 1.50 2.67
2033 0.85 1.06 1.50 2.67
2034 0.83 1.01 1.50 2.67
2035 0.81 0.96 1.50 2.67

Software and data availability

Code for both the simulation model and our data analysis is freely available online; we refer to the relevant GitHub repositories in the text at the
appropriate points. The model can be deployed via Docker using (Lane and Millington, 2021). Also see (Victoria et al., 2021).
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