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A B S T R A C T   

Increasing global demand for agricultural commodities has driven local land use/cover change (LUCC) and 
agricultural production across Brazil during the 21st century. Modelling tools are needed to help understand the 
range of possible outcomes due to these ‘telecoupled’ global-to-local relationships, given future political, eco
nomic and environmental uncertainties. Here, we present CRAFTY-Brazil, a LUCC model representing production 
of multiple agricultural commodities that accounts for spatially explicit (e.g., land access) and temporally 
contingent (e.g., agricultural debt) processes of importance across our nearly four million km2 Brazilian study 
area. We calibrate the model calibration for 2001–2018, and run tests and scenarios about commodity demand, 
agricultural yields, climate change, and policy decisions for 2019–2035. Results indicate greater confidence in 
modelled time-series than spatial allocation. We discuss how our approach might be best understood to be 
agency-based, rather than agent-based, and highlight questions more and less appropriate for this approach.   

1. Introduction 

It is now well understood that local land use/cover changes in many 
regions of the world are influenced by international demand for agri
cultural commodities and that socio-ecological systems are often ‘tele
coupled’ over great distances (Liu et al. 2013, 2018). For example, 
increased Chinese demand for soybean over the last several decades has 
contributed to increased production in Brazil, making the country a key 
soybean production region in the global food system and driving change 
in local land use (Silva et al., 2017; Sun et al., 2017). Increased pro
duction has been achieved through a combination of expansion of 
agricultural land, increases in yields, and changes in farming practices, 
including the development of a double-crop system with maize (pre
dominantly) as a second crop. Improvements in yields have come 
through improved seed varieties (including genetic modification), in
creases in agricultural inputs (fertilisers, pesticides, machinery) and 
economies of scale (Wesz 2016). These changes have come in tandem 
with significant economic changes in the Brazilian farming system, 
meaning that many farmers are faced by tough economic decisions to 
ensure the future viability of their businesses (Silva et al., 2020). Future 
uncertainty is further exacerbated by the spectre of climate change 

which may bring increased frequency of drought during the second crop 
and other conditions unfavourable to consistent production from 
year-to-year (Heinemann et al., 2017; Hampf et al., 2020). 

To create a tool for examining the range of possible outcomes given 
such a range of drivers and uncertainties, we set out to develop a 
spatially-explicit land use/cover change model capable of representing 
both production and associated land use of multiple agricultural com
modities that could be subsequently linked to a System Dynamics model 
of global trade (see Millington et al., 2017). The telecoupling framework 
within which we developed our model emphasises the importance of 
agents and flows as drivers of change in coupled human-natural systems 
that are linked across long distances. To represent agency in land use 
and agricultural production decision-making we use the previously 
developed Competition for Resources between Agent Functional Types 
(CRAFTY) modelling framework (Murray-Rust et al., 2014), adapting it 
to improve representation of spatially explicit (e.g., land access) and 
temporally contingent (e.g., agricultural debt) processes of importance 
in our Brazilian study area. The CRAFTY framework has been designed 
specifically with the intention of simulating broad-scale land use change 
over large spatial extents (national to continental). For example, Blanco 
et al. (2017) parameterised CRAFTY to examine ecosystem services and 

* Corresponding author. 
E-mail address: james.millington@kcl.ac.uk (J.D.A. Millington).  

Contents lists available at ScienceDirect 

Environmental Modelling and Software 

journal homepage: http://www.elsevier.com/locate/envsoft 

https://doi.org/10.1016/j.envsoft.2021.105024 
Accepted 23 February 2021   



Environmental Modelling and Software 139 (2021) 105024

2

decision-making under scenarios of climate change for the entire land 
area of Sweden over many decades. Brown et al. (2019) used CRAFTY to 
simulate land use change across the entire European Union to investi
gate land manager behaviour at the continental scale. In work similar to 
that presented here, investigating the telecoupled effects of global food 
commodity trade between China and Brazil on land use, Dou et al. 
(2019, 2020) developed a bespoke agent-based model. Whereas the aims 
of that approach were to understand land use impacts at a fine scale for a 
single municipality, our work aims to understand land use across much 
broader extents and hence the use of CRAFTY is more appropriate 
(Millington et al., 2017). 

In this paper, we present the description and first results from the 
application of the CRAFTY framework to simulate land use/cover 
change over several decades for ten Brazilian states, an implementation 
we call CRAFTY-Brazil. We provide an overview of the endogenous and 
exogenous processes represented, the data used to parameterize and 
calibrate the model, and results from using CRAFTY-Brazil to simulate 
scenarios of future change. Importantly, we developed and tested 
CRAFTY-Brazil using empirically-grounded data in a fashion that has 
not previously been achieved for other applications of the CRAFTY 
framework. This empirically-grounded approach aims to ensure internal 
model consistency, but also identify key areas of uncertainty. The model 
structure and results presented here are independent of the System 

Dynamics model (based on Warner et al., 2013) we ultimately intend to 
couple CRAFTY-Brazil with. However, by examining scenarios of com
modity demand, agricultural yields, climate change, and policy de
cisions over land use rights, we are able to both identify important 
uncertainties in the model but also shed light on important processes 
influencing land use change in Brazil. Subsequently, we reflect on what 
we have learned from this initial use of the model and discuss future 
directions in which this work should proceed. 

2. Methods 

2.1. Study area and data 

CRAFTY-Brazil was designed with the intention of subsequently 
connecting this spatial explicit model of land use/cover change with a 
System Dynamics model representing the international trade of three 
primary agricultural commodities: soybean, maize and beef. With this 
focus, our study area was designated as the 10 states in Brazil that have 
been the dominant producers of soybean and maize in recent years and 
for which pasture area is widespread (Fig. 1). Our aim to simulate this 
region of 3,850,000 km2 for several decades required compromises on 
model spatial and temporal resolution to ensure feasible execution times 
while representing sufficient variation to explore system dynamics. 

Fig. 1. Study area. a) Location of the ten Brazilian states composing the study area and their modal municipality land cover for 2018, b) Study area LUCC through 
time for the 2001–2018 calibration period, c) Municipality proportion of Cropland, Nature and Pasture for 2018 (scenario results are compared against these 
proportions). 
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Thus, the model operates on a raster grid at a 5 km spatial resolution (for 
a total of 162,026 simulated cells) and we aggregate results to munici
pality level (for our study area, mean and median municipality areas are 
1,040 and 398 km2 respectively). These resolutions are appropriate 
given the available data needed to calibrate the model, which comes 
from a variety of sources and with a range of original resolutions 
including many aggregated at municipality level (Table 1). Further
more, the 5 km resolution is comparable to other applications of 
CRAFTY across large spatial extents (e.g., 1 km for Blanco et al., 2017 
and 10 arcminute - approx. 18 km at the equator - for Brown et al., 
2019). The model runs with an annual timestep and we calibrate using 
data for 2001–2018. 

For model initialization and calibration, we use land use/cover 
(LUC) data from the MapBiomas project (version 4; MapBiomas 2018). 
Original 30 m data were resampled to 5 km (modal pixel class; see 
Millington 2019) and LUC classes were reclassified from 27 classes to 
four: ‘Cropland’, ‘Pasture’, ‘Nature’ and ‘Other’ (Appendix A). These 
LUC classes are associated with the production of ‘services’ by different 
agent functional types (as described below, Section 2.2.1). Cropland 
represents land used to produce soybean, maize and other crops (e.g., 
rice, sugarcane), while Pasture is assumed to represent all land area used 
for beef production. Nature represents vegetation cover not used for 
agriculture (i.e., crops or pasture); processes of natural vegetation dy
namics are not explicitly represented (although see use of Nature capital 
in section 2.2.1 below) but simulated land that is no longer needed for 
human use reverts to the Nature class (and Nature cells can be converted 
to all other classes). Finally, Other represents land covers such as urban 
and inland water bodies and is assumed to not change in simulations 
that project into the future. 

Given uncertainty in the MapBiomas data and the multiple alterna
tive ways those data might be re-classified, we examined several re- 
classifications of the MapBiomas v4.0 data and used commodity plan
ted area data (from IBGE) to disaggregate ambiguous classes. The 
overall accuracy for the MapBiomas v4.0 data for the period 2001–2018 
(at the Level 2 classification) is estimated to be 88%, with the Grassland 
class consistently the most poorly classified of all classes (high rates of 
Natural Forest and Pasture commission error; see MapBiomas 2019b). 
On comparing the implied beef pasture yields for LUC classifications 
including/excluding Grassland in our Pasture class, we find a closer 
match with observed yields when Grassland is included (see Millington 
2019). The MapBiomas class ‘Mosaic of Agriculture and Pasture’ is also 
problematic given that our focus is on distinguishing between pasture 
and cropland. To address this, we used planted-area data (IBGE 2019) to 
allocate pixels in the MapBiomas ‘Mosaic of Agriculture and Pasture’ 
class into either Cropland or Pasture classes (see Millington 2019). 

2.2. Model description 

2.2.1. Services, agents and capitals 
The CRAFTY framework represents the production of land ‘services’ 

by Agent Functional Types (AFTs) through production functions for 
multiple ‘capitals’ available in each cell representing a land unit (Mur
ray-Rust et al., 2014). Cobb Douglas production functions are used: 

ps =
∏

c
cλc,a

i (1)  

where λc,a is a weighting factor specific to capital c and AFT a, and ps is 
the productivity for service s (in abstract ‘production units’, later con
verted to kg for agricultural commodity services). Competition between 
AFTs is represented by calculating ‘competitiveness’ using a utility 
function that accounts for production and marginal demand for each 
service. In each timestep, the competitiveness of AFTs is calculated for 
cells based on current capital values (which CRAFTY assumes are scaled 
0 to 1) and service demands (specified in abstract ‘production units’, 
which in our case represent demand for agricultural commodities in 
domestic and international markets); the AFT with the greatest 
competitiveness is allocated to that cell (subject to the ‘giving-in’ 
threshold of the currently occupying agent). Land may also be aban
doned from agent use if competitiveness falls below an AFT’s ‘giving-up’ 
threshold. For full details on the CRAFTY framework, see Murray-Rust 
et al. (2014). 

Given our focus on soybean, maize and beef, CRAFTY-Brazil repre
sents provision of the following ‘services’: Soybean, Maize, Beef, Other 
Crops (OCrops), Nature and Other. The Nature service represents the 
value of land not under human influence, while Other represents all 
other land not in other classes (e.g., urban, water). The AFTs represented 
are soybean producers, maize producers, soybean-maize double-crop 
producers (producing both services), beef producers, other crop pro
ducers, and other land managers (Table 2). We developed these AFTs 

Table 1 
Data used for model calibration.  

Variable Type Spatial Res. Temporal Res. Source Use 

Land Cover/Use Raster 30 m Annual MapBiomas (2019) Model initialization and calibration 
Climate Raster 0.5◦ Annual Harris (2020) Moisture Capitals 
Transport Network Vector NA Quinquennial  

Victoria et al. (2021) 
Transport Capital 

Protected Areas Vector NA Annual MMA (2019) Protection Capitals 
Land Price Vector Municipality Annual IEG/FNP (2017) Land Value Capital 
Commodity Production Tabular Municipality Annual IBGE (2019) Study area selection, Tech-Soy-Maize and Tech-Pasture Capitals 
Commodity Planted Area Tabular Municipality Annual IBGE (2019) Land cover/use map disaggregation 
Commodity Exports Tabular Municipality Annual IBGE (2019) Commodity demand estimation  

Table 2 
Summary of agent functional types.  

AFT Representation Capital Dependencies Services 
Produced 

Soybean Soybean Farmer Moisture-Main, Transport, 
Tech-Soy-Maize, Protection- 
Soy, Access-Nature, Access- 
Soy-Maize 

Soybean 

Maize Maize Farmer Moisture-Main, Transport, 
Tech-Soy-Maize, Protection- 
Maize, Access-Nature, Access- 
Soy-Maize 

Maize 

Double- 
Crop 

Soybean-Maize 
Double-Cropping 
Farmer 

Moisture-Main, Moisture- 
Second, Transport, Tech-Soy- 
Maize, Protection-Soy, 
Protection-Maize, Access- 
Nature, Access-Soy-Maize 

Soybean, 
Maize 

Nature Vegetated land not 
under management 

Land Value, Conservation Nature 

Other 
Crops 

Farmer of crops 
other than soy or 
maize 

Moisture-Main, Transport, 
Protection-OCrop, Access- 
OCrop 

Other 
Crops 

Other Urban or non- 
vegetated land 

Other, Protection-Soy, 
Protection-Maize, Protection- 
Beef,Protection-OCrop 

Other 

Pasture Beef Rancher Moisture-Main, Transport, 
Tech-Pasture, Protection-Beef, 
Access-Nature 

Beef  
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based on expert judgement and discussion with stakeholders in the study 
area based on the key services being simulated in the model and the key 
variations in strategies (e.g. single vs double-crop) that currently exist. A 
Nature AFT is also required for cells not under control of any other AFT 
and representing land not under direct human land use (regardless of 
whether that is primary or secondary vegetation). Representing double- 
crop farmers as an individual AFT is important as land managers have 
implemented the practice of sowing and planting a soybean crop early in 
the season followed by a late season crop (usually maize). The double- 
cropping system of soybean and maize was initiated in Brazil in the 
late 1990s, as raising maize following soybean harvest provides pro
tective cover for soils and the system eventually improves soil quality 
(Silva et al., 2017). Initial yields using this method were low, but since 
the early 2000s many improvements have been made in management 
practices such as no-tillage agriculture, Nitrogen biological fixation 
serviced by soybeans, hybrid and GMO maize varieties, which boosted 
yields for the second crop. Consequently, this double-cropping practice 
has grown through the 21st century, pushed more by economic demand 
than by a desire for improved soil management (Silva et al., 2017). 
Although this system provides potential for both agronomic and eco
nomic gains over single-crop systems, the second crop growth is exposed 
to the risk of late-season drought and consequent production losses 
(Brunini et al., 2001; Gonçalves et al., 2002). For soybean, the 
double-cropping system has pushed production into a very short 
growing season forcing producers to adopt short-cycle GMO varieties 
(about 90 days from planting to harvest) that are impacting soybean 
yields (Oliveira Neto, 2017). We represent ‘Other Crops’ and ‘Other’ 
land managers as grouped AFTs that likely contain multiple manage
ment strategies because our focus here is on the production of soybean, 
maize, and beef. 

2.2.2. Exogenous processes 
We use multiple CRAFTY ‘capitals’ to represent the numerous in

fluences on the production of services (Table 3). For example, important 
determinants of agricultural production in Brazil have been found to 
include human capital, technology generation and dissemination, 
climate conditions, and transport networks and land access (Pereira 
2012; Rada 2013). All capitals vary spatially across the study area except 
for Tech capitals, which are spatially uniform because these represent 
improvements in technology that lead to broad-scale yield improve
ments through time (including due to improved seed varieties, ma
chinery and fertilisers that are available widely). Values for capitals are 
provided exogenously (i.e., from ancillary data sources), except for the 
three Access (Nature, Soybean-Maize, Other Crops) capitals and the 
Conservation capital, which are calculated endogenously (i.e., during a 
simulation run) from the dynamic spatial configuration of AFTs. All 
endogenous and many exogenous capitals are updated in each timestep 
(i.e., annually), although some are updated less frequently (see Table 3) 
either because of data availability (e.g., transport network) or because 
the process they represent does not occur on an annual basis (e.g., the 
soybean moratorium occurred in a given year, see below). All scripts to 
create files for initializing and updating capital values are available 
online (Millington 2020a). We discuss exogenous capitals in the 
remainder of this section, and endogenous capitals and representation of 
other processes in the following section (section 2.2.3). 

The Moisture capitals are derived from the monthly mean tempera
ture and precipitation variables from the CRU TS v. 4.03 high-resolution 
gridded datasets (see Harris et al., 2020) and represent the role of 
climate on agricultural production. To understand climatic limitations 
associated with plant growth and agricultural production, we used the 
dryness index to describe the relation between water deficit and po
tential evapotranspiration (Pereira and Pruitt, 2004), both obtained 
from the Thornthwaite and Matter (1955) climatic water balance, as 
implemented by Victoria et al. (2007). This index represents the water 
deficit in percentage of potential evapotranspiration and is calculated by 
the equation:  

DI = 100 * DEF / PET                                                                     (2) 

where DI (%) is the dryness index; DEF is the water deficit; and PET is 
potential evapotranspiration (see Table 2 in Victoria et al., 2007 and 
Millington 2020a for full definition). We calculate mean monthly DI for 
two different growing seasons (Oct–Mar and Jan–Jun) to calculate two 
sets of moisture capital values to represent climate influence on single-vs 
double-crop production. The use of these Moisture capitals also allows 
us to investigate the possible influence of climate change on agricultural 
productivity in simulations of alternative future scenarios (see section 
2.3 below). 

Transport infrastructure is a key variable influencing the spatial 
distribution and volume of agricultural production, related to land 
conversion (e.g., Soares-Filho et al., 2006; Weinhold and Reis 2008) and 
both imports of agricultural inputs and exports of commodities to 
markets (Rada 2013). The Transport capital uses data on the national 
road network (DNIT 2019) with locations (and operating years) of ports 
(ANTAQ 2019) to derive a spatial cost surface at a broad scale. This cost 
surface weights the quality of transport infrastructure such that paved 

Table 3 
Capitals influencing modelled Services.  

Capital Description Services 
Influenced 

Update 
Years 

Data Sourcea 

Moisture- 
Main 

Main growing 
season (Oct–Mar 
climate) 

Soybean, 
Maize, Beef, 
Other Crops 

All Climate 

Moisture- 
Second 

Maize second- 
crop growing 
season (Jan–Jun 
climate) 

Soybean, 
Maize 

All Climate 

Transport Import and 
export costs due 
to transportation 

Soybean, 
Maize, Beef, 
Other Crops 

2005,2010, 
2017 

Transport 
Network 

Land Value Land 
attractiveness for 
establishing new 
agriculture 

Soybean, 
Maize, Beef, 
Other Crops 

All Land Price 

Conservation Conservation 
value of natural 
land 

Nature All Endogenous 

Tech-Soy- 
Maize 

Technology and 
resources 
influencing yield 

Soybean, 
Maize 

All Commodity 
Production 

Tech-Pasture Technology and 
resources 
influencing yield 

Beef All Commodity 
Production 

Other Incentive for 
‘Other’ uses 

Other All Land Cover/ 
Use 

Protection- 
Soybean 

Prevents Soybean 
production in 
given cell 

Soybean, 
Other 

2006 Protected 
Areas 

Protection- 
Maize 

Prevents Maize 
production in 
given cell 

Maize, 
Other 

2009 Protected 
Areas 

Protection- 
Beef 

Prevents Beef 
production in 
given cell 

Beef, Other None Protected 
Areas 

Protection- 
OCrops 

Prevents OCrops 
production in 
given cell 

Other Crops, 
Other 

None Protected 
Areas 

Access- 
Nature 

Spatial: 
proximity to 
natural land 

Soybean, 
Maize 

All Endogenous 

Access-Soy- 
Maize 

Spatial: 
proximity to 
soybean or maize 
cells 

Soybean, 
Maize 

All Endogenous 

Access- 
OCrops 

Spatial: 
proximity to 
other crop cells 

Other Crops All Endogenous  

a Data Sources correspond to Variables in Table 1. 
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roads present lower cost than unpaved roads for access to land (see 
Victoria et al., 2021). The use of the Transport capital allows us to 
investigate the possible influence of future alternative infrastructure 
development on land use change and agricultural productivity at a 
broad scale. 

The Land Value capital is used to represent the incentive for agents to 
convert Nature land to Agriculture in places where agricultural potential 
and infrastructure (as represented by the previous capitals) are poor, but 
which have been converted (e.g., based on Mapbiomas LULCC between 
1985 and 2018). In these ‘frontier regions’, land prices are lower 
compared to other developed regions of Southern Brazil, reflecting the 
challenges of making a profit from agricultural production in frontier 
lands. These lower land prices provide an incentive to those willing to 
take a risk on developing land for grain production, assuming that future 
improvements (e.g., logistics, infrastructure) in the region will improve 
yields to pay-off the risk. Previous studies have shown that as the agri
cultural sector develops in a given region, land prices tend to increase 
alongside infrastructure and social standards (Rezende, 2002; Ferro and 
Castro, 2013; Martinelli et al., 2017). To develop this capital we used 
data from IEG/FNP (2017) to represent the relative cost of land for new 
development. As noted above, improvement in agricultural productivity 
(yields) through time due to advances in technological resources – such 
as improved machinery and seed varieties (e.g., Pereira 2012) – are 
represented using the Tech capitals. Because these capitals represent the 
aggregation of multiple sources of improvements in yield, we calibrate 
their values by combining our observed land use/cover data with 
commodity production data to calculate yields that are internally 
consistent within the model (see Millington 2020b). 

The four Protection capitals represent areas of land that cannot be 
used for soybean, maize, beef or other crops. This exclusion may be 
because an area is designated as National or State Parks, indigenous 
lands or because of a policy that excludes production of a given com
modity (e.g., Soybean Moratorium). For example, the Protection- 
Soybean capital is used in calibration runs (section 2.3) to represent 
the Soybean Moratorium policy implemented in 2006 to discourage 
deforestation and limiting the market for soybean grown on deforested 
lands (Gibbs et al., 2015; Dou et al., 2018). These capitals therefore also 
allow examination of simulation runs that implement similar policies. 
Finally, the ‘Other’ capital is used to drive a high probability of cells 
being in the Other land cover category (e.g., urban and water), based on 
observed land cover change for calibration and potentially for repre
sentation of future expansion of this land type. 

In the CRAFTY modelling framework, demand for services is pro
vided exogenously, rather than incorporated as an endogenous process. 
Furthermore, this demand is specified in the same abstract units used to 
represent services production (section 2.2.1 above). As our focus here is 
on soybean, maize and beef we derive the abstract demand for these 
services from real production units (kg), while for Other Crops, Other 
and Nature we derive demand based on land area (ha; see Millington 
2020b). 

2.2.3. Endogenous processes 
Processes driven by the spatial configuration or historical contin

gency of land resources and agent actions are represented in the model 
endogenously by updating cell- or agent-states dynamically during a 
simulation, dependent on their circumstances in each timestep. Specif
ically, we represent the spatial agglomeration effect of agricultural 
economies, the tendency of land conversion to be spatially contagious, 
vegetation regeneration processes, and producer debt. Representing 
these processes required additions to the CRAFTY source code (see 
Millington 2020c). 

The importance of spatial proximity for driving land use change due 
to efficiencies afforded by agglomeration economies is well known (e.g., 
Fujita and Krugman 1995; Porter 2000) and has been shown to be 
important in Brazil (Vera-Diaz et al., 2008; Garrett et al., 2013; Picoli 
et al., 2020). To represent this in the model at a local level, the 

Access-Soy-Maize and Access-OCrops capitals are updated in each cell in 
each timestep during simulation runs based on whether one of these 
agent-types is present within the eight neighbouring cells (Moore 
neighbourhood; with value 0.05 if the target agent-type is not present, 
0.95 if the agent-type is present, and 1.0 if the cell is occupied by the 
specified AFT). Similarly, conversion of natural land for agriculture is 
known to be well-modelled as a contagious process of spread from 
existing cultivated areas at the edge of natural lands (e.g., Rosa et al., 
2013). To represent spatial access to natural land at a local level, the 
Access-Nature capital is updated in each cell in each timestep during 
simulation runs based on the adjacency of nature and non-nature land 
covers. For any given cell, if the Moore neighbourhood is composed 
entirely of nature cells, the capital takes a value of 1.0; if between 1 and 
7 cells in the Moore neighbourhood are nature cells, the cell takes a 
value of 0.75; and finally a Nature Access capital value of 0.0 is taken if 
all neighbouring cells are non-nature. 

Through time, we represent regeneration of natural vegetation 
following land abandonment by modifying Conservation capital cell 
values during a simulation based both on the time since last human 
disturbance but also the type of disturbance. Several recent studies 
support the hypothesis that forest regeneration rate is related to ‘in
tensity’ of previous land use (Mesquita et al., 2015; Jakovac et al., 2015; 
Martines-Ramos et al., 2016), and here we assume that the rate of 
regeneration is faster following extensive pasture land-use than inten
sive crop (soybean, maize) land uses. Hence, for cells in a simulation run 
that have never been disturbed (i.e., have always had a Nature land 
cover) the Conservation capital will have value 1.0. The Conservation 
capital value is reduced to 0.4 if converted from Nature to pasture and to 
0.0 if converted to one of the other non-nature land covers. Following 
abandonment of a non-nature use, Conservation capital is increased by a 
value of 0.01 each timestep. The final endogenous process we represent 
is the accrual and repayment of debt by those producers changing land 
uses. New producers often need to take out loans to pay for land, new 
machinery, seed, and other start-up costs. Producers can be ‘trapped’ 
into activities needed to earn profits to make repayments (e.g., Silva 
et al., 2020) and changes in land use are unlikely during the repayment 
period. To represent this inertia following conversion, we prevent new 
agricultural agents from changing land use until the debt is repaid. Debt 
is measured in years (the number of years to pay off the debt) and is 
specified for transitions as shown in Appendix B. 

2.3. Calibration, testing and scenarios 

Previous implementations of the CRAFTY framework for modelling 
real-world regions have calibrated model parameters using methods that 
ensure internal consistency and produce expected system trajectories 
but without comparing model outputs to empirical observations (e.g., 
Blanco et al., 2017; Brown et al., 2019). In contrast, here we use 
empirical data for land cover/use and agricultural commodity produc
tion (Table 1) to parameterize AFT production functions and capital 
conversions (e.g., from climate dryness index to Moisture capitals), 
identifying values that reproduce trends and patterns observed over the 
period 2001–2018. This approach aims to both ensure internal consis
tency, but also identify key areas of uncertainty in the model and is one 
that has not been employed in previous CRAFTY modelling applications. 
Understanding this uncertainty is important and useful for assessing 
model outputs for scenarios that project future land cover/use and 
agricultural production. Here, we compare simulated land cover/use 
and agricultural production to observed data for the same variables, 
aggregated for the entire study area. We also compare observed and 
simulated municipality-level proportions of land cover/use for 
snap-shots in time (5-year intervals). Final calibrated production func
tion values are shown in Appendix C and capital conversions are shown 
in Millington (2020a). 

Once calibrated, we test the model to examine how exogenous pro
cesses influence simulated land use/cover and agricultural production. 
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Specifically, we test for changes in commodity demand and capitals 
associated with agricultural yields and climate change (Table 4). To 
understand the relative importance of these inputs on land use and 
production we vary each by the same proportion (+/- 20% of 2018 
values over 2019–2035), holding all other values constant at 2018 
values. For demand, we also examine tests in which demand for all 
services except for the Nature service are varied (to examine the impacts 
of changes in non-Nature demand). Comparing outputs from all of these 
tests, including to a simulation that holds all values constant, helps us to 
better understand the drivers and dynamics in the model and identify 
most important drivers of future change. 

Finally, we examine future change in land use and production under 
alternative scenarios of demand, yield, climate change and protected 

land (Table 4). Scenario input values for commodity demand and yields 
are derived from projections by the Brazilian Ministério da Agricultura, 
Pecuária e Abastecimento (MAPA 2020). As these projections are only to 
2030, we use proportional change as indicated in the projections for 
2019–2030 then mean proportional change over that period for 
2031–2035 (see Appendix D). For climate change scenarios we use 
regionally-downscaled projections of temperature and precipitation 
from the WCRP Coordinated Regional Downscaling Experiment (COR
DEX). Our chosen driving model was HAD-GEM2 as this model has been 
shown to have better agreement with observed rainfall in Atlantic For
est, Caatinga and Cerrado biomes than other models, although biases do 
remain (Rosolem et al., 2018). We use monthly data for Daily Minimum 
Near-Surface Air Temperature (tasmin), Daily Maximum Near-Surface 
Air Temperature (tasmax) and Precipitation, (pr) from ensemble 
r1i1p1 and CORDEX region SAM44 (downscaling realisation v3). Pro
jections were for representative concentration pathways RCP4.5 and 
RCP 8.5 and were accessed via the ESGF-CEDA project (CEDA 2019). 
Scripts that convert these data to Moisture capitals values are available 
in Millington (2020a). Finally, we also examine a scenario that includes 
removal of protected area designations (in addition to other changes), a 
possibility given the environmental policy direction the current Brazil
ian Federal government has taken recently (e.g., Abessa et al., 2019). 

3. Results 

3.1. Calibration 

Results from model calibration indicate that CRAFTY-Brazil is able to 
reproduce observed time-series of total area and production for the 
entire study area, but performs less well in terms of spatial allocation 
across the study area. Observed trends of decreasing Pasture and Nature 
area combined with increases in cropland area are reproduced well, with 
small year-to-year variation (Fig. 2a). The general trends of increases in 
production of Soybean and Maize are reproduced, although much of the 
large inter-annual variability in production is not captured (Fig. 2b). 
Interestingly, there is also a slight lag in the rate of increase in Maize 
production 2011–2014, and dramatic decreases in recent years are not 
captured. Correspondence between the two sets of time series can also 
be noted, for example with the under-estimation of cropland area 
2003–2005 linked to under-estimation of Soybean production in these 
years. 

Although time-series of observed trends are reasonably well repro
duced, there are some disparities between observed and modelled lo
cations of land use/cover (Fig. 3). For example, the model tends to locate 
more Cropland in the north east of the study area (Bahia state) than has 
been observed, with correspondingly less Pasture than observed in this 
area. Conversely, in the central part of the study area (São Paulo state), 
the model produces more Pasture than observed, at the expense of 
cropland. Nature is reasonably well modelled across the study area, 
although with some over estimation (at the expense of cropland) in the 
north west of the study area (Mato Grosso state). While we see generally 
consistent variation from observations in the simulated time-series, ac
curacy in spatial allocation of land use seems to deteriorate through 
time. For example, while the modal land use/cover was incorrectly 
modelled for 9.8% of municipalities in 2009, this had risen to 16.4% by 
2018. 

3.2. Testing 

Assuming constant 2018 conditions into the future (Const scenario, 
Fig. 4), all land covers remain in a steady state, with the exception of 
Double-Cropping and Maize; DC replacing Maize as former is more 
competitive. Hence, Soybean production continues to rise while Maize 
production declines slightly. 

Results for tests examining change in commodity demand (Fig. 4a 
and b), show that decreases in demand, whether for all services or only 

Table 4 
Specification of tests and scenarios for 2019–2035. Percentage changes are 
over the entire period; ‘invariant’ uses values from 2018 for the remainder of the 
period.  

Description 
[label] 

Demand 
Conditions 

Climate 
Conditions 

Yield 
Conditions 

Variations 

Tests 
Constant 

[Const] 
Invariant Invariant Invariant None 

All Demand 
Decreases 
[Dem-All- 
Decr] 

Demand for all 
services 
decreases by 
20% 

Invariant Invariant None 

All Demand 
Increases 
[Dem-All- 
Incr] 

Demand for all 
services 
increases by 
20% 

Invariant Invariant None 

Non-Nature 
Demand 
Decreases 
[Dem-NNat- 
Decr] 

Demand for all 
services but 
Nature 
decreases by 
20% 

Invariant Invariant None 

Non-Nature 
Demand 
Increases 
[Dem-NNat- 
Incr] 

Demand for all 
services but 
Nature 
increases by 
20% 

Invariant Invariant None 

Yield 
Decreases 
[Yield-Decr] 

Invariant Invariant Yields for Soy, 
Maize, Beef 
decrease by 
20% 

None 

Yield 
Increases 
[Yield-Incr] 

Invariant Invariant Yields for Soy, 
Maize, Beef 
increase by 
20% 

None 

Climate 
Decreases 
[Climate- 
Decr] 

Invariant Moisture 
capitals 
decrease 
20% 

Invariant None 

Climate 
Increases 
[Climate- 
Incr] 

Invariant Climate 
capitals 
increase 
20% 

Invariant None 

Scenarios 
Business As 

Usual 
[BAU] 

Standard MAPA 
projections for 
Soy, Maize, 
Beef, OAgri; 
otherwise 
invariant 

Moisture 
capitals 
from RCP45 

Standard 
MAPA 
projections for 
Soy, Maize, 
Beef; otherwise 
invariant 

None 

Future 
Extremes 
[EXT] 

Upper MAPA 
projections for 
Soy, Maize, 
Beef, OAgri; 
otherwise 
invariant 

Moisture 
capitals 
from RCP85 

Upper MAPA 
projections for 
Soy, Maize, 
Beef; otherwise 
invariant 

None 

Future 
Extremes 
with No 
Protection 
[EXT-NP] 

As for EXT plus 
10% lower 
Nature demand 

Moisture 
capitals 
from RCP85 

Upper MAPA 
projections for 
Soy, Maize, 
Beef; otherwise 
invariant 

Protected 
Areas 
removed  
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for non-Nature services, result in decreases in production of services and 
decreases in agricultural area with commensurate increases in Nature 
area (all change is either ~ 20% or <20% relative to starting condi
tions). These changes are generally larger than changes observed in 

outputs from tests that examine increases in demand. This can be seen 
spatially in maps for tests with decreased demand (Fig. 5), which indi
cate much less change than increased demand tests (compared to the 
constant test) and with greatest differences in the north east and south 

Fig. 2. Calibration time-series. a) land use/cover and b) commodity production.  

Fig. 3. Municipality proportional difference from observed, by land use/cover. Red shades indicate underprediction and blue shades overprediction relative to 
observed data (i.e., Fig. 1c). 
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west of the study area. 
Differing trends exist between increased demand scenarios that 

consider all services vs non-Nature services. When demand across all 
services increases, by 2035 Nature production (and land cover) is 
greater than the initial 2018 state and Beef/Pasture are lower. However, 
when demand increases only for non-Nature services, the reverse situ
ation arises by 2035 - Nature production (and land cover) is less than the 
initial 2018 state and Beef/Pasture production/land cover are greater. 
Although there is a difference in trend, the final % change is less than the 
% change in input (i.e. <20%). Regarding the shape of production 
timelines in demand scenarios, initial production is below demandand 
so rises to meet that demand. In year 2022 demand decreases to a value 
similar to that actually being produced. Thereafter, demand continues to 
decrease and is at a value that can be met by existing land use. Conse
quently, agricultural land is abandoned and Nature land area increases 
more rapidly. 

Yield scenarios (Fig. 4c) have similar sensitivity to Demand, except 
for Nature and Other Crops (which don’t have changes in yield inputs). 
However, Maize and Soy have greater changes in yield tests than de
mand tests. For constant demans, production is greater with greater 
yields and lower with lower yields . There is minimal change in Nature 
area for decreases in yield (as relative pressure on land for all uses is 
high), but large increase in Nature area for increased yields (as less land 
is needed to meet demands). Production of Soy and Maize in the Yield 
increase test rise (until 2025) when greater yields mean demand can be 
met. High yields relative to demand from 2023 mean that this is the 
point at which the rate of abandonment and growth of Nature land 
increases. 

Outputs are least sensitive to changes in climate inputs, particularly 
for land area. For climate scenarios, all change in land area is <20% 
except for Maize, which as for all other scenarios decreases due to 
replacement by soy-maize double-cropping. Limited change in land area 

Fig. 4. Time series of land use and production for tests and scenarios. Specification and acronyms for names of tests and scenarios are presented in Table 4.  

Fig. 5. Spatial variation in outputs for tests. Municipality Differences are calculated from Proportions for the Const scenario (shown at left) for simulated year 
2033. Specification and acronyms for names of tests are presented in Table 4. 
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means that there is very little difference between spatial distribution of 
LUC in climate tests compared to the constant state. Agricultural service 
production increases/decreases for increases/decreases in the Moisture 
capital, respectively, as would be expected by the relationships encoded 
in the model. 

As would be expected, maps of spatial change (Fig. 5) indicate 
greatest change for tests in which timeseries (Fig. 4) indicate greatest 
aggregate change (i.e., Nature land area increases commensurate with 
decreases in agricultural land area). Maps show the location of these 
changes are focused in the north east and south west of the study area, 
with shifts from Pasture to Nature in the former and from Agriculture to 
Nature in the latter. 

3.3. Scenarios 

The results for scenarios (Figs. 4e and 6) exhibit combinations of the 
trends and patterns seen in the other scenarios (varying individual 
driving factors). All three scenarios result in increased overall produc
tion through time, in response to improving yields and increased de
mand. Greatest increases in production are found in the EXT-NP 
scenario, although corresponding increases in Cropland and Pasture 
land are not spatially confined to formerly protected areas (e.g., blue/ 
red shades for Cropland/Nature respectively in Fig. 6 are found across 
the entire study area). 

However, although inter-annual variation in land area outputs for 
scenarios is similar to that for tests (i.e. relatively low, with smooth 
transitions), it is much greater for production outputs. Greater inter- 

annual variation in production for scenario simulations is a result of 
variation in precipitation and temperature from GCM outputs which 
directly influence Moisture capitals, and therefore agricultural service 
provision. Of particular note is the large drop in production for EXT and 
EXT-NP scenarios (based on GCM output for RCP85) in the final year of 
the simulation, the result of a deep and widespread decrease in annual 
precipitation in GCM outputs. This drop in production does not produce 
a commensurate change in land cover (in the same year) as there is a lag 
in agent decision-making (e.g., to abandon land). The lag in decision- 
making can be seen in the noticeable decrease in Pasture and increase 
in Nature land covers (indicating Pasture abandonment) simulated in 
2034 for the BAU scenario. This abandonment of Pasture is the result of 
consecutive years of low precipitation which also caused a period of 
relatively low Soybean and Maize production for 2030–2033 compared 
to 2025–2030, although with no effect on Cropland cover. 

4. Discussion and conclusions 

4.1. Calibrating CRAFTY 

This paper represents one of the first attempts to calibrate the 
CRAFTY land use/cover modelling framework against observed data. 
Such an approach has not been used in the past, often because 
comprehensive data describing Capitals, Demand and spatial distribu
tion of land use are unavailable at the broad (national to continental) 
scales CRAFTY is designed for (Brown et al., 2019). Other approaches to 
calibrate CRAFTY have used ‘stability checks’ with baseline inputs to 

Fig. 6. Spatial variation in outputs for scenarios. Municipality Differences are calculated from Proportions for the Const scenario (shown at left) for simulated year 
2033. Specification and acronyms for names of scenarios are presented in Table 4. 
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ensure outputs do not deviate or oscillate wildly from expected behav
iour (e.g., Blanco et al., 2017; similar to our Constant conditions sce
nario) or to ensure ‘sensible’ outputs are produced when starting from a 
blank map of null land use (e.g., Brown et al., 2019). As described in 
Section 2.1, we have utilised multiple empirical data sets to enable our 
approach but have also needed to make assumptions about how data 
represent different processes. For example, commodity demands in any 
given year are difficult to assess and for our calibration here we have 
assumed continuous market clearing such that observed (2001–2018) 
production perfectly met demand in each year. The value of such a 
strong but simple assumption during calibration is that it enables clear 
understanding of the meaning of commodity demand in future sce
narios, and matches data that can be readily produced by the System 
Dynamics model of global trade (based on Warner et al., 2013) that we 
plan to link with CRAFTY-Brazil. In the hybrid model produced, demand 
will be modelled endogenously by the System Dynamics model, adding 
further variation to CRAFTY-Brazil inputs that will need to be appro
priately assessed (e.g. via sensitivity analyses). 

Our calibration of CRAFTY-Brazil was more successful in reproduc
ing observed aggregate land cover and production values than for the 
spatial distribution of variables (Figs. 2 and 3), a situation similar to 
previous applications of CRAFTY (Blanco et al., 2017; Brown et al., 
2019). In particular, results from our calibration show Pasture out
competing Cropland in the centre of the study area and vice versa in the 
north east, neither of which were observed historically. This is surprising 
as the north east of the study area is relatively marginal for Cropland 
uses, while the conditions further south and centrally are better. It seems 
that our calibration allows the marginal utility of the Beef service to 
increase at a rate faster than Cropland services, pushing the latter to less 
productive land. Such issues are likely further exacerbated by uncer
tainty in the land use/cover maps against which we calibrate our model 
(see section 2.1). Although the MapBiomas data are the best available, 
the uncertainty in classifying Grassland and ‘Mosaics of Agriculture and 
Pasture’ into the classes required for CRAFTY-Brazil may also contribute 
some level of error in our calibration (Fig. 3). 

4.2. Tests and scenarios 

Tests of the model using standard differences in model inputs (+/- 
20% of 2018 values) shows that production is insensitive to inputs 
(outputs vary by <20% or ~20%), but that land cover change is more 
sensitive (some change is >20%). All tests result in large (>20%) de
creases in maize land area (with smaller, but also often large changes in 
Soy) due to large increases in double-cropping area. This shift away from 
maize-only land use is to be expected both due to intended model logic 
and observed (and expected) empirical shifts to double-cropping sys
tems. More obvious in the time-series of land cover (Fig. 4) are the large 
simulated shifts in Nature in tests that represent decreased demand 
(Dem-All-Decr and Dem-NNat-Decr in Fig. 4a and b) or increasing yield 
(Yield-Incr in Fig. 4c). These shifts are due to abandonment of agricul
tural land (crops and pasture), which in our model logic then becomes 
Nature. Abandonment in these tests is driven by decreased demand in 
agricultural services (in the case of the demand tests), or a decreased 
pressure on land for agriculture due to increasing yields which in-turn 
means less land needed to meet the same demand (in the case of the 
Yield-Incr test). Land cover in other tests is relatively insensitive because 
of competition for land between services. In the Dem-NNat-Incr test for 
example, constant 2018 yields means that commodity production never 
reaches the required demand in these scenarios. Hence, production and 
land cover time series differ little from those seen in the Constant test as 
production is already at its limit at the start of simulations given the 
calibrated yield values. In contrast, when yields increase through time 
(Yield-Incr test), less land is needed for Pasture land to meet Beef demand 
and much is abandoned (reverting to Nature land cover). Yield increases 
in pasture and crops produce what previous studies defined as ‘land 
sparing’ where the increased volume of production per land unit (i.e., 

agricultural intensification) leads to a decrease in cropland, or at least 
alleviating the pressure for cropland expansion (Angelsen and Kaimo
witz 2001; Hertel et al., 2014). In this test, production of all products is 
able to meet (the constant 2018) demand because of the high yields, 
resulting in production timeseries that flatline. 

Scenarios were designed to enable examination of both the effects of 
variations in multiple input factors and potential alternative futures. For 
example, for all three scenarios we see inter-annual variability in Soy
bean and Maize production (due to climate) but with differing overall 
trend (due to variation between scenarios in yield and demand), a 
combined pattern we do not see in the tests. The EXT-NP scenario results 
in greatest agricultural production (and lowest Nature land area) as the 
ability to farm (formerly) protected areas plus decreased demand for 
Nature land allow greatest shifts in land from Nature to Cropland and 
Pasture. However, increases in Cropland and Pasture land in the EXT-NP 
scenario are not spatially confined to formerly protected areas as might 
have been expected. This is likely because these protected areas have 
relatively limited infrastructure, which is considered invariant through 
time in the EXT-NP scenario. With many of the indigenous and park 
lands some distance from the ‘core’ agricultural production areas and 
much pasture and other non-protected land available for conversion 
(processes also represented in the model), even under the scenarios we 
examine there is little pressure on the current protected areas. However, 
this is a general trend for the entire study area, which may be different in 
particular local realities (i.e., conservation areas that already suffer land 
use pressure). Furthermore, if restrictions on land use in protected areas 
really are relaxed (e.g. Abessa et al., 2019) we might expect improve
ments in infrastructure (e.g., road building), which may in-turn lead to a 
positive feedback and greater exploitation of these areas over the longer 
term (e.g., Weinhold and Reis 2008). Furthermore, in our scenarios 
demand for Nature is specified as an overall percentage change to reflect 
possible trajectories of policy or socio-economic change that value 
ecosystem. Demand for ecosystem services as implicitly provided by our 
Nature service is difficult to estimate (Carpenter et al., 2009; Hayha 
et al., 2015; Brown et al., 2017). This is reflected in the fact that while 
projections of future demand for agricultural commodities are regularly 
generated by formal government institutions (e.g., MAPA 2020), aligned 
projections of demand for ecosystem services are not common. Aligned 
projections of agricultural (e.g. soybeans) and non-agricultural (e.g. 
carbon sequestration) land benefits would improve our ability to model 
future scenarios, particularly with respect to demand for the Nature 
service. 

Comparing results for scenarios with those for tests highlights 
qualitative differences in spatio-temporal variation. Tests used simple, 
temporally-uniform and spatially-invariant rates of change based on 
observed values, whereas scenarios used precipitation and temperature 
outputs from GCMs (to provide Moisture capitals values) which have 
much greater inter-annual variability (Fig. 4e). The qualitative differ
ences in input time-series demonstrates a strong influence of climate 
inputs on production outputs, but not on land cover change. The inter- 
annual variability in production in our modelling is not sufficient for 
land cover change to occur through abandonment (as discussed by Silva 
et al., 2020), but many fine details of farm-level financing that may be 
vital for individual farm viability are not represented in this model and 
so we cannot conclusively argue that land cover change would not occur 
under the climate projections we have examined. 

Spatially, land change is generally diffuse but with some focused 
regions of change. Tests that produce large increases in Nature area 
indicate greatest decreases in pasture and cropland in north east and 
south west regions, respectively, where these are initially (in 2018) 
widespread. These are prone to greatest decreases as Pasture land in the 
north east areas are the most marginal (with historically low stocking 
rates; e.g. Dias-Filho 2014) whereas the south-west is initially domi
nated by dense Cropland (and so has most to lose). Furthermore, this is 
also the region that was most poorly modelled during calibration and as 
above (section 4.1) we suspect land classification challenges (confusion 
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between pasture, grassland, and pasture/agriculture mosaic) in the 
MapBiomas input data (MapBiomas 2019b) also play a role here. For 
similar reasons, spatial change is quite dispersed across the study area 
but with intense change in a focused region in the north east of the study 
area (in Bahia state), again with switches from Pasture to Nature. 

4.3. Agency-based modelling 

The tradeoffs necessary in spatial agent-based modelling of land-use 
systems have been well identified in the literature, in particular with 
respect to a perceived spectrum from empirically-grounded and 
complicated models to theoretically-focused and simple models (e.g., 
O’Sullivan et al., 2015; Sun et al., 2016). Here, our approach has been to 
build on the theoretical structure provided by the CRAFTY framework 
and remain relatively conceptually simple, but also incorporating 
empirical data where possible to ground our application for Brazil. In 
doing so, this version of CRAFTY-Brazil limited the number of 
agent-functional types and services represented (eight services aggre
gated to four land use/cover types) and yet this still required the rep
resentation of a greater number of capitals (15) and processes (multiple, 
including the accrual of debt) than we had initially expected. A limited 
number of AFTs may seem to produce what Sayer (1992, p.138) termed 
a ‘chaotic conception’, a group of agent-types that artificially “lump 
together the unrelated and the inessential” and inadequately represent 
differences between real world actors that are needed to reproduce 
empirical events. However, given that our model is implemented at a 
spatial resolution of 5 km, CRAFTY-Brazil does not represent individual 
actors as individuated agents but instead aggregates actors across space 
into grid cells within which human agency is represented by an AFT. 
This representation means CRAFTY-Brazil should be thought of as an 
agency-based model representing the behaviour of aggregate human 
actions rather than an agent-based model representing individual actors’ 
activities (e.g. such as that developed by Dou et al., 2019). Furthermore, 
working with relatively coarse AFT representations aligns with the 
relatively coarse spatial representation that inherently lumps multiple 
real world actors together. The aggregation of 27 land types defined at 
30 m spatial resolution to four types at 5 km (Appendix A) is robust 
given that the original classification was hierarchical, that we have 
aligned our reclassification on that hierarchy, and that we made further 
analyses of variability (see section 2.1 and Millington 2019). 

Although appropriate for the scales we are working at, the combi
nation of this agency approach with constraints of the CRAFTY frame
work presents challenges to representing some processes that influence 
land decision-making of individual actors in our study area. For 

example, the design of the CRAFTY framework to ensure computational 
efficiency means that the history of simulated agents is not retained and 
that agents cannot anticipate change beyond the next time step. We 
modified the CRAFTY source code to enable some coarse representation 
of temporally contingent processes (i.e. the debt that farmers incur when 
setting up a new farm; section 2.2) on the agency of multiple aggregated 
actors. However, the agency approach combined with the difficulty of 
tracking history and representing planning strategies presents a chal
lenge for representing the processes that trap producers in cycles of debt 
and investment (Silva et al., 2020). This combination also limits our 
ability to understand possible vulnerabilities and responses of producers 
to temporal (e.g. inter-annual) variability in climate or other exogenous 
factors (as highlighted above). Such questions cannot be examined 
without incorporating representation of history and planning and/or 
working at finer aggregations and scales (such that individual actors are 
represented by individuated agents, for example). Readers considering 
their own agent-based modelling projects, whether focused on land use 
or other environmental issues, might learn from this example about 
aligning scale and detail of conceptualisation. In particular, we suggest 
readers compare our broad-scale agency-based approach for modelling 
soy and maize to the finer scale and explicitly agent-based approached 
taken by Dou et al. (2019) to consider for themselves the advantages and 
disadvantages of the different approaches at the different scales. Our 
modelling will continue to focus on broader-scale issues as we dynam
ically couple CRAFTY-Brazil to a System Dynamics model to create a 
hybrid simulation model for examining the land use impacts of tele
coupled global trade (Millington et al., 2017; Liu et al., 2018). 
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Appendix A. MapBiomas v4.0 Reclassification 

Code and Description are from MapBiomas, Reclassification is used here. Note that Cropland are further disaggregated into Soy, Maize and Other 
Crops using planted area data. Scripts used to resample, reclassify and disaggregated the MapBiomas data are available in Millington (2019).   

Code Description Reclassification 

1 Forest Formations Nature 
1.1 Natural Forest Formations Nature 
1.1.1 Dense Forest Nature 
1.1.2 Open Forest Nature 
1.1.3 Mangrove Nature 
1.2 Forest Plantations Nature 
2 Non-Forest Natural Formations Nature 
2.1 Non-Forest Formations in Wetlands Nature 
2.2 Grassland Pasture (Nature in protected areas) 
2.3 Salt Flat Nature 
2.4 Rocky Outcrop Other 
2.5 Other non-forest natural formations Other 
3 Farming Cropland 

(continued on next page) 
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(continued ) 

Code Description Reclassification 

3.1 Pasture Pasture 
3.2 Agriculture Cropland 
3.2.1 Annual and Perennial Crop Cropland 
3.2.2 Semi-perennial Crop Cropland 
3.3 Mosaic of Agriculture and Pasture Cropland 
4 Non-Vegetated Areas Other 
4.1 Beaches and Dunes Other 
4.2 Urban Infrastructure Other 
4.3 Mining Other 
4.4 Other Non-Vegetated Area Other 
5 Water Bodies Other 
5.1 River, Lake and Ocean Other 
5.2 Aquaculture Other 
6 Not Observed Other  

Appendix B. Debt 

Debt incurred by agents following land use change. Units are years.   

Previous Land Use Cropland Agent Pasture Agent 

Nature or Other 5 3 
Soybean, Maize or Other Crops 3 3 
Double-Cropping 0 3 
Pasture 4 NA  

Appendix C. Production Functions 

Capitals, Agent-Functional Types and their production weighting factors for each Service.   

a) Soybean AFT  

Soybean Maize Nature OCrops Other Beef 

Moisture-Main 0.8 0 0 0 0 0 
Moisture-Second 0 0 0 0 0 0 
Transport 0.5 0 0 0 0 0 
Land Value 0 0 0 0 0 0 
Conservation 0 0 0 0 0 0 
Tech-Soy-Maize 0.8 0 0 0 0 0 
Tech-Pasture 0 0 0 0 0 0 
Other 0 0 0 0 0 0 
Protection-Soy 1 0 0 0 0 0 
Protection-Maize 0 0 0 0 0 0 
Protection-Beef 0 0 0 0 0 0 
Protection-OCrop 0 0 0 0 0 0 
Access-Nature 1 0 0 0 0 0 
Access-Soy-Maize 0.4 0 0 0 0 0 
Access-OCrop 0 0 0 0 0 0 
Production 1 0 0 0 0 0  

b) Maize AFT  

Soybean Maize Nature OCrops Other Beef 

Moisture-Main 0 0.8 0 0 0 0 
Moisture-Second 0 0 0 0 0 0 
Transport 0 0.5 0 0 0 0 
Land Value 0 0 0 0 0 0 
Conservation 0 0 0 0 0 0 
Tech-Soy-Maize 0 0.8 0 0 0 0 
Tech-Pasture 0 0 0 0 0 0 
Other 0 0 0 0 0 0 
Protection-Soy 0 0 0 0 0 0 
Protection-Maize 0 1 0 0 0 0 
Protection-Beef 0 0 0 0 0 0 
Protection-OCrop 0 0 0 0 0 0 
Access-Nature 0 1 0 0 0 0 
Access-Soy-Maize 0 0.4 0 0 0 0 

(continued on next page) 
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(continued ) 

b) Maize AFT  

Soybean Maize Nature OCrops Other Beef 

Access-OCrop 0 0 0 0 0 0 
Production 0 1 0 0 0 0  

c) Double-Crop AFT  

Soybean Maize Nature OCrops Other Beef 

Moisture-Main 0.8 0 0 0 0 0 
Moisture-Second 0 0.5 0 0 0 0 
Transport 0.5 0.5 0 0 0 0 
Land Value 0 0 0 0 0 0 
Conservation 0 0 0 0 0 0 
Tech-Soy-Maize 0.8 0.8 0 0 0 0 
Tech-Pasture 0 0 0 0 0 0 
Other 0 0 0 0 0 0 
Protection-Soy 1 0 0 0 0 0 
Protection-Maize 0 1 0 0 0 0 
Protection-Beef 0 0 0 0 0 0 
Protection-OCrop 0 0 0 0 0 0 
Access-Nature 1 1 0 0 0 0 
Access-Soy-Maize 0.4 0.4 0 0 0 0 
Access-OCrop 0 0 0 0 0 0 
Production 0.8 0.75 0 0 0 0  

d) Nature AFT  

Soybean Maize Nature OCrops Other Beef 

Moisture-Main 0 0 0 0 0 0 
Moisture-Second 0 0 0 0 0 0 
Transport 0 0 0 0 0 0 
Land Value 0 0 1 0 0 0 
Conservation 0 0 1 0 0 0 
Tech-Soy-Maize 0 0 0 0 0 0 
Tech-Pasture 0 0 0 0 0 0 
Other 0 0 0 0 0 0 
Protection-Soy 0 0 0 0 0 0 
Protection-Maize 0 0 0 0 0 0 
Protection-Beef 0 0 0 0 0 0 
Protection-OCrop 0 0 0 0 0 0 
Access-Nature 0 0 0 0 0 0 
Access-Soy-Maize 0 0 0 0 0 0 
Access-OCrop 0 0 0 0 0 0 
Production 0 0 1 0 0 0  

e) Other Crops AFT  

Soybean Maize Nature OCrops Other Beef 

Moisture-Main 0 0 0 0.8 0 0 
Moisture-Second 0 0 0 0 0 0 
Transport 0 0 0 0.5 0 0 
Land Value 0 0 0 0 0 0 
Conservation 0 0 0 0 0 0 
Tech-Soy-Maize 0 0 0 0 0 0 
Tech-Pasture 0 0 0 0 0 0 
Other 0 0 0 0 0 0 
Protection-Soy 0 0 0 0 0 0 
Protection-Maize 0 0 0 0 0 0 
Protection-Beef 0 0 0 0 0 0 
Protection-OCrop 0 0 0 1 0 0 
Access-Nature 0 0 0 0 0 0 
Access-Soy-Maize 0 0 0 0 0 0 
Access-OCrop 0 0 0 1 0 0 
Production 0 0 0 1 0 0  

f) Other AFT  

Soybean Maize Nature OCrops Other Beef 

Moisture-Main 0 0 0 0 0 0 
Moisture-Second 0 0 0 0 0 0 
Transport 0 0 0 0 0 0 
Land Value 0 0 0 0 0 0 
Conservation 0 0 0 0 0 0 
Tech-Soy-Maize 0 0 0 0 0 0 
Tech-Pasture 0 0 0 0 0 0 
Other 0 0 0 0 1 0 
Protection-Soy 0 0 0 0 1 0 
Protection-Maize 0 0 0 0 1 0 
Protection-Beef 0 0 0 0 1 0 

(continued on next page) 
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(continued ) 

f) Other AFT  

Soybean Maize Nature OCrops Other Beef 

Protection-OCrop 0 0 0 0 1 0 
Access-Nature 0 0 0 0 0 0 
Access-Soy-Maize 0 0 0 0 0 0 
Access-OCrop 0 0 0 0 0 0 
Production 0 0 0 0 1 0  

g) Pasture AFT  

Soybean Maize Nature OCrops Other Beef 

Moisture-Main 0 0 0 0 0 0.2 
Moisture-Second 0 0 0 0 0 0 
Transport 0 0 0 0 0 0.5 
Land Value 0 0 0 0 0 0 
Conservation 0 0 0 0 0 0 
Tech-Soy-Maize 0 0 0 0 0 0 
Tech-Pasture 0 0 0 0 0 1 
Other 0 0 0 0 0 0 
Protection-Soy 0 0 0 0 0 0 
Protection-Maize 0 0 0 0 0 0 
Protection-Beef 0 0 0 0 0 1 
Protection-OCrop 0 0 0 0 0 0 
Access-Nature 0 0 0 0 0 0.2 
Access-Soy-Maize 0 0 0 0 0 0 
Access-OCrop 0 0 0 0 0 0 
Production 0 0 0 0 0 0.85  

Appendix D. Demand and Yield Projections 

Values are % annual change, derived from MAPA (2020), used in scenarios specified in Table 4.   

a) Demand  

Soy and Maize Beef 

Year Standard Upper Standard Upper 

2019 2.19 3.67 1.53 3.14 
2020 2.19 3.67 1.53 3.14 
2021 −1.34 3.67 2.89 7.81 
2022 3.15 5.41 −0.30 2.46 
2023 2.86 4.43 1.52 3.58 
2024 2.68 4.09 5.26 6.50 
2025 2.67 3.82 −2.14 −0.69 
2026 2.51 3.41 −0.08 0.87 
2027 2.44 3.22 3.85 4.26 
2028 2.38 3.06 2.07 2.76 
2029 2.32 2.89 −1.09 0.01 
2030 2.25 2.75 3.37 3.84 
2031 2.20 2.65 1.50 3.14 
2032 2.15 2.55 1.50 3.14 
2033 2.10 2.45 1.50 3.14 
2034 2.05 2.35 1.50 3.14 
2035 2.00 2.25 1.50 3.14  

b) Yield 

Year Soy and Maize Beef 

Standard Upper Standard Upper 

2019 0.78 1.66 1.52 2.67 
2020 0.78 1.66 1.52 2.67 
2021 −1.51 1.66 1.66 5.50 
2022 1.23 2.26 1.52 4.25 
2023 1.10 2.14 1.08 3.26 
2024 1.10 1.88 3.75 5.12 
2025 1.05 1.72 −1.97 −1.22 
2026 1.02 1.58 1.68 1.76 
2027 0.99 1.47 1.71 1.77 
2028 0.96 1.37 1.90 1.90 
2029 0.93 1.28 0.53 0.79 
2030 0.91 1.21 3.39 3.59 
2031 0.89 1.16 1.50 2.67 

(continued on next page) 
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(continued ) 

b) Yield 

Year Soy and Maize Beef 

Standard Upper Standard Upper 

2032 0.87 1.11 1.50 2.67 
2033 0.85 1.06 1.50 2.67 
2034 0.83 1.01 1.50 2.67 
2035 0.81 0.96 1.50 2.67  

Software and data availability 

Code for both the simulation model and our data analysis is freely available online; we refer to the relevant GitHub repositories in the text at the 
appropriate points. The model can be deployed via Docker using (Lane and Millington, 2021). Also see (Victoria et al., 2021). 
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Abessa, D., Famá, A., Buruaem, L., 2019. The systematic dismantling of Brazilian 
environmental laws risks losses on all fronts. Nature Ecology & Evolution 3 (4), 
510–511. 

Angelsen, A., Kaimowitz, D., 2001. Agricultural Technologies and Tropical 
Deforestation. CABi, New York, NY.  

ANTAQ, 2019. Portos Brasileiros - Agência Nacional de Transportes Aquaviários 
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