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Abstract

Broad scale remote sensing promises to build forest inventories at unprecedented scales. A
crucial step in this process is to associate sensor data into individual crowns. While dozens of

crown detection algorithms have been proposed, their performance is typically not compared



based on standard data or evaluation metrics. There is a need for a benchmark dataset to
minimize differences in reported results as well as support evaluation of algorithms across a
broad range of forest types. Combining RGB, LiDAR and hyperspectral sensor data from the USA
National Ecological Observatory Network’s Airborne Observation Platform with multiple types
of evaluation data, we created a benchmark dataset to assess crown detection and delineation
methods for canopy trees covering dominant forest types in the United States. This benchmark
dataset includes an R package to standardize evaluation metrics and simplify comparisons
between methods. The benchmark dataset contains over 6,000 image-annotated crowns, 400
field-annotated crowns, and 3,000 canopy stem points from a wide range of forest types. In
addition, we include over 10,000 training crowns for optional use. We discuss the different
evaluation data sources and assess the accuracy of the image-annotated crowns by comparing
annotations among multiple annotators as well as overlapping field-annotated crowns. We
provide an example submission and score for an open-source algorithm that can serve as a

baseline for future methods.

Introduction

Quantifying individual trees is a central task for ecology and management of forested
landscapes. Compared to traditional field surveys, airborne remote sensing allows forest
monitoring at broad scales. A central task in remote sensing of forests is converting raw sensor
data into information on individual trees [1]. While there are dozens of proposed algorithms,

they are often designed and evaluated using a range of different data inputs [2—4], sensor
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resolutions, forest structures, evaluation protocols [5-8], and output formats [9]. For example,
[10] proposed a pixel-based algorithm for 50 cm pan-sharpened satellite RGB data from a
tropical forest in Brazil evaluated against field-collected tree stem locations, and [11] proposed
a vector-based algorithm for 10 cm fixed-winged aircraft RGB data from oak forests in California
evaluated against image-annotated crowns. Given these differences, a comparison among
algorithms is difficult to make based on reported statistics to interpret the relative accuracy,
generality and cost effectiveness.

One solution to these challenges is a benchmark dataset that can be used to evaluate a
wide variety of algorithms and data types [12,13]. We believe a useful benchmark dataset has
at least three features [13-16]: 1) well-curated and open-source data, 2) reasonable evaluation
criteria, 3) reproducible and transparent scoring. We developed a benchmark dataset of
individual canopy crowns derived from multi-sensor imagery in the National Ecological
Observatory Network (Table 1) that provides: 1) co-registered remote sensing data from
multiple sensors (LiDAR, RGB imagery, and hyperspectral imagery) to allow comparisons of
methods based on any single sensor (e.g., for LiDAR based methods), or any combination of
sensors (e.g., combining RGB and hyperspectral), and 2) three types of evaluation data to allow
assessing both ‘tree detection’, defined as the identifying the location of individual trees using
evaluation data with a point at the crown center [5,17], and ‘crown delineation’ defined as
identifying the boundary edge of crowns [9,11-13] across a broad range of forest types. The

benchmark is designed to allow flexibility in both workflow and sensor selection. Users of the
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benchmark can use any combination of algorithms and sensors so long as the final product is a

2-dimensional shape with geographic coordinates representing the boundaries of individual

canopy tree crowns.

Table 1. Summary of datasets included in the benchmark dataset. All sensor data has been

cropped to the extent of NEON field sampling plots.

ltem (format)

Type

Description (NEON ID)

10cm RGB data (.tif)

Sensor data

DP3.30010.001

LiDAR point cloud (~5 pts/m)
(.laz)

Sensor data

DP1.30003.001

1m gridded raster of canopy
height model (.tif)

Sensor data

DP3.30015.001

1m 426 band hyperspectral
data

Sensor data

DP1.30006.001

Image-annotated crowns
(.xml)

Evaluation data (6490 trees)

Bounding box annotations
made by visually assessing
the sensor data

Field-annotated crowns (.shp)

Evaluation data (562 trees)

Polygon annotations by
visually assessing the
hyperspectral data while
physically in the field next to
target tree

Field-collected stems (.csv)

Evaluation data (4365 trees)

NEON collected stem points
for each individual tree.
Filtered from the Woody

Vegetation Structure data
product (NEON ID:
DP1.10098.001)




Remote sensing data

The National Ecological Observatory Network (NEON) is a large initiative to coordinate data
collection across the United States at over 80 geographic sites. Annual data collection includes
surveys by the airborne observation platform (AOP) using RGB, LiDAR and hyperspectral

sensors (http://data.neonscience.org/), as well as standardized 40m vegetation surveys at fixed

sampling plots throughout each site. The NEON AOP uses fixed-wing aircraft, flown around

1000m above ground, to survey sites during leaf-on-conditions from May-October. Sensor data

chosen for this benchmark were collected during flights from 2018 and 2019. For the purposes

of the benchmark dataset, we cropped sensor products to the bounds of each 40m NEON field

sampling plot. For example, the RGB image ‘SJER_052_2019’ corresponds to NEON field plot 52

at NEON site SJER (San Joaquin, California see Table 1 for abbreviations) with sensor data from

the 2019 airborne survey. For additional detail on NEON design and planning, see NEON’s

extensive technical documents for detailed site information and sampling strategy

(neonscience.org).

Orthorectified Camera Mosaic

The RGB data were acquired with a D8900 camera with a format of 8,984 x 6,732 pixels.

Individual images were color rectified, orthorectified and mosaiced to create a single raster

image with a pixel size of 0.1 m”2. Mosaic tiles are provided as 1000m x 1000m geoTIFF files

and are named based on the UTM coordinate at the northwest origin. RGB data have high


http://data.neonscience.org/

spatial resolution and individual canopy trees are often visible based on the crown boundary, as
well as color differences among individuals due to taxonomy and health status (Figure 1). For
more details on NEON camera orthomosaic products see NEON technical document

NEON.DOC.005052 [18].

Figure 1. A 40m x 40m evaluation plot of RGB data from the Teakettle Canyon (TEAK) NEON site (left)

and Bartlett Experimental Forest, New Hampshire (BART) (right).

One challenge in creating a multi-sensor dataset is the joint georectification of data types. To
ensure spatial overlap between the LiDAR and RGB data, NEON staff overlaid the 0.1m spatial
resolution RGB tile on a 1m spatial resolution LiDAR derived surface height model. The
difference in spatial resolution can cause some distortion in rectified RGB images. These
artifacts are most pronounced at the image edge and were minimized by selecting the
centermost portion of each image when creating the RGB mosaic. Some distortion remains and
can cause a swirling effect as the image pixels are stretched to match the corresponding LiDAR

raster cell. For more information see NEON technical document NEON.DOC.001211vA [18]. We
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did not include images with large enough distortions to interfere with canopy crown detection,
but kept images with minor distortions to represent the kind of challenging conditions present

in applied settings.

Classified LiDAR Point Cloud

The LiDAR data are 3D coordinates (~5 points/m?) that provide high resolution information
about canopy crown shape and height. LiDAR data are stored as 1000m x 1000m .laz files
(Figure 2). These files contain the x,y,z coordinates for each return, as well as metadata on
return intensity and point classification. Boundaries of individual canopy crowns are often
apparent due to gaps among neighboring trees or differences in height among overlapping
canopy crowns. For more information on NEON LiDAR data processing see NEON technical
document NEON.DOC.001292 [19]. Due to the large spatial coverage of the collection effort,

the point density of the NEON LiDAR clouds is much lower than the point density used for most

studies of crown detection models ([20,21]; point densities of 20-1000 pt/m?).
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Figure 2. Normalized LIDAR point cloud for evaluation plot SJIER_064 from the San Joaquin
Experimental Range, California (left) and MLBS_071 from Mountain Lake Biological Station,

Virginia. Points are colored by height above ground.

Hyperspectral surface reflectance

NEON’s hyperspectral sensor collects reflected light in the visible and infrared spectrum
between approximately 420-2500 nm with a spectral sampling interval of 5nm for a total of 426
bands. NEON provides the orthorectified images with a pixel size of 1 m? in 1 km? tiles that align
with the RGB and LiDAR file naming convention. Hyperspectral data, especially in the infrared
spectrum, is often used for differentiating tree species based on spectral differences among
species in leaf chemistry and canopy structure (e.g. [22]). Hyperspectral data is particularly
useful in forests with high species diversity where neighboring trees are likely to be different
species and thus spectrally distinct (Figure 3)[23]. All hyperspectral data were collected during
the same field collection campaign as the RGB data, with the exception of the UNDE site, in
which the 2019 RGB data was not available at the time of publication and therefore the 2017
flight data was used instead. For more information on hyperspectral data processing and

calibration see NEON technical document NEON.DOC.001288 [24].
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Figure 3. Composite hyperspectral image (left) and corresponding RGB image (right) for the
MLBS site. The composite image contains near infrared (940nm), red (650nm), and blue
(430nm) channels. Trees that are difficult to segment in RGB imagery may be more separable in
hyperspectral imagery due to the differing foliar chemical and structural properties of co-

occurring trees.

Ecosystem Structure

NEON’s ‘Ecosystem Structure’ data product is a LiDAR derived height raster at 1m spatial
resolution. Often known as a ‘canopy height model’ (CHM), the raster values are the
normalized height above ground for each grid cell. This data is useful for differentiating crowns
in three dimensions, as well as eliminating crowns that are under the 3m threshold used in this
benchmark for minimum tree height. For more information on normalization and interpolation

to create the raster product see NEON technical document NEON.DOC.002387 [25].

Woody Plant Vegetation Structure


https://www.zotero.org/google-docs/?dNnEpM

Along with sensor data, NEON collects information on trees in fixed plots at each NEON site.
Data from two types of plots are included in this dataset: ‘distributed’ plots, which are 20m x
20m fully sampled plots, and ‘Tower’ plots, which are 40m x 40m plots with two sampled 20m x
20m quadrants. The distinction between distributed and tower plots may be useful for users
familiar with NEON’s sampling regime, but is not necessary for most uses of the benchmark
data set. All trees in sampled areas with a stem diameter of > 10cm are mapped and recorded.
For the purposes of this benchmark dataset, the key tree metadata are the stem position, size,
and estimated tree height. For extensive information on NEON field sampling see NEON

technical document NEON.DOC.000987 [26].

Evaluation Data

Table 2. Annotations for each data type for each of the NEON sites.

Image-annotated
Evaluation Field-collected | Additional data or
sitelD Site Name State Crowns Stems notes
ABBY Abby Road WA 160 14
Bartlett 369 image-
Experimental annotated training
BART Forest NH 93 535 crowns
Blandy
BLAN [Experimental Farm VA 73 0
Caribou-Poker
BONA | Creeks Research AK 225 0



https://www.zotero.org/google-docs/?fhMB6e

Watershed

Lyndon B. Johnson

CLBJ |National Grassland X 116 0
DEJU Delta Junction AK 0 60
295 image-
annotated training
DELA Dead Lake AL 87 240 crowns
888 image-
Disney Wilderness annotated training
DSNY Preserve FL 87 0 crowns
329 image-
annotated training
HARV | Harvard Forest MA 171 622 crowns
The Jones Center
JERC At Ichauway GA 294 159
554 image-
annotated training
LENO | Lenoir Landing AL 75 103 crowns
1921 image-
annotated training
Mountain Lake crowns, 106 field-
MLBS | Biological Station VA 481 668 annotated crowns
MOAB Moab uTt 0 11
10,022 image-
annotated training
NIWO Niwot Ridge co 1485 500 crowns
244 image-
annotated training
ONAQ Onaqui uT 32 0 crowns




OSBS

Ordway-Swisher
Biological Station

FL

497

346

2126 image-
annotated training
crowns, 458 field-
annotated crowns

SCBI

Smithsonian
Conservation
Biology Institute

VA

73

193

SERC

Smithsonian
Environmental
Research Center

MD

94

369

SJIER

San Joaquin
Experimental
Range

CA

473

57

2545 image-
annotated training
crowns

SOAP

Soaproot Saddle

CA

114

TALL

Talladega National
Forest

AL

157

220

TEAK

Lower Teakettle

CA

1471

1471 image-
annotated training
crowns

UKFS

University of
Kansas Field
Station

KS

127

UNDE

University of Notre
Dame
Environmental
Research Center

Ml

186

66

WREF

Wind River
Experimental
Forest

WA

178

YELL

Yellowstone
National Park

WYy

873 image-
annotated training
crowns




The goal of this benchmark is to evaluate algorithms for canopy tree detection and delineation.
We adopt the term ‘canopy crown detection’ to differentiate between the tasks of ‘tree
detection’, defined as identifying the location of the crown center of individual trees [5,17] and
‘crown delineation’ or ‘crown segmentation’, often defined as identifying the boundary edge of
individual crowns [9,27-29]. The term ‘canopy’ is often implicitly assumed in most studies,
since optical data and low density LiDAR data, can only reflect the structure in the upper
canopy ([30] but see [31,32]). Evaluation of detection methods in this benchmark dataset is
done by assessing detections using three types of evaluation data: 1) image-annotated crown
bounding boxes for 22 sites in the NEON network, 2) field-annotated crown polygons for two
sites in the NEON network (Table 2), and 3) field-collected stem points from 14 sites from the
NEON Woody Vegetation Structure dataset. For each of these data we outline how the data
were collected and the evaluation procedure for canopy crown detection.

Image-annotated Crowns

We selected airborne imagery from 22 sites surveyed by the NEON AOP. The evaluation sites
were chosen based on the availability of the three types of sensor data, as well as
representation of forest conditions across the US including the diversity of species composition,
stand age, and canopy openness. The selected sites range from Florida to Alaska, include forest
types sites dominated by conifers, broadleaves or a mixture of the two, and varying in density
from open oak woodlands (3.5 trees per 20m plot at the SJER site) to dense deciduous forests

(34.38 trees per plot at the HARV site). Images were annotated using the program RectLabel
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(Table 1). For each visible tree, we created a bounding box (xmin, ymin, xmax, ymax) that
covered the tree crown (Figure 4). We prefer bounding boxes over polygons for image-
annotated crowns for speed of annotation, which is needed to cover the large number of

images and sites to make a benchmark on geographic generalization possible.

Figure 4. Screenshot of the program RectlLabel used for tree annotation for the image-

annotated crowns for NEON plot MLBS_071. For each visible tree crown, we created a four

point bounding box.

We carefully annotated the evaluation images by comparing the RGB, LiDAR and

hyperspectral data. Using all three products made it possible to more accurately distinguish

neighboring trees in images by simultaneously assessing visual patterns (RGB), using variation in

spectral signatures to distinguish different species (hyperspectral), and looking at the three

dimensional structure of the tree (LiDAR). For some sites, such as OSBS, the crowns were most

visible in the LiDAR height model, whereas for closed canopy sites such as MLBS, the

hyperspectral and RGB data were most useful. When working with the hyperspectral data we

primarily used a composite three-band hyperspectral image containing near infrared (940nm),

red (650nm), and blue (430nm) channels, which showed contrasts between neighboring trees



of different types (Figure 5d, h). We also augmented the RGB data to view subtle changes in
pixel values using a decorrelation stretch (Figure 5b, f). The decorrelation stretch is useful in
highlighting small differences within the image color space that are not apparent in the visual
RGB color spectrum. Each evaluation plot overlaps with a NEON 40m x 40m plot. Within each of
these plots, NEON field crews survey a 20x20 subplot; therefore, while field data are available
for most plots in the dataset, they do not cover every tree in the image. The woody vegetation
structure data contains information on field estimated height and maximum crown diameter
for the majority of field collected stems. We annotated all trees in the 40x40 m plot, regardless

of health status, provided they were visible in the image.

Figure 5. Image-annotated tree crowns for the evaluation data set for two sites in the National
Ecological Observation Network. Using the RGB, LiDAR and hyperspectral products together
contributes to more careful crown annotation. For some sites, such as MLBS (top row), the RGB
and hyperspectral data are useful for differentiating overlapping crowns. For other sites, such

as OSBS (bottom row) the LiDAR point cloud, shown as a rasterized height image, is most useful



in capturing crown extent. The RGB-stretch image was produced by transforming the RGB data
in the three principal components space. To create a three-band hyperspectral image, we used
channels from the red, blue and infrared spectrum to capture changes in reflectance not

apparent in the RGB imagery.

Field-annotated Crowns

Individual trees were annotated by visiting two NEON sites and mapping the tree crown
boundaries as polygons in the remote sensing images using a field tablet and GIS software while
looking at each tree from the ground [33]. False-color composites from the hyperspectral data,
RGB, and LiDAR canopy height model were loaded onto tablet computers that were equipped
with GPS receivers. While in the field, researchers digitized crown boundaries based on the
location, size, and shape of the crown. Only alive trees with leaf-on vegetation were selected.
Trees were mapped in 2014 and 2015, and all polygons were manually checked against the
most recent NEON imagery. All crowns that were no longer apparent in the RGB or LiDAR data
due to tree fall or overgrowth were removed from the dataset, and minor adjustments to
crown shape and position were refined after examining multiple years of RGB imagery. No

adjustments to the polygons were made due to crown expansion.

Evaluation for image-annotated and field-annotated crowns

The evaluation procedure in this benchmark is identical for image-annotated and field

annotated crowns, since the final data format for both is a geospatial file with either bounding
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boxes (image-annotated) or polygons (field-annotated) for each canopy crown. To measure
accuracy and precision of predicted detections, the most common approach is to compare the
overlap between predicted crowns and evaluation crowns using the intersection-over-union
metric (loU; e.g.[34]) and a minimum matching threshold. loU is the area of the overlap
between the predicted crown and the evaluation crown divided by the area of the combined
region. Any comparisons with a loU score above the minimum threshold are true positives. The
metric ranges between 0 (no overlap) to 1 (perfect overlap) (Figure 6). In the wider computer
vision literature, the conventional threshold value for true positive overlap is 0.5 (e.g.[34]), but
this value is arbitrary and does not ultimately relate to any particular ecological question. We
tested a range of overlap thresholds from 0.3 (less overlap among matching crowns) to 0.6
(more overlap among matching crowns) and found that 0.4 balanced a rigorous cutoff without
spuriously removing trees that would be useful for downstream analysis. Using this overlap
threshold, the benchmark code calculates recall, defined as the proportion of crowns correctly
predicted, and precision, defined as the proportion of predictions that matched a ground truth
crown. If multiple predictions overlap a single ground truth crown, we match the prediction
with the highest loU to the ground truth. Predictions that do not overlap with any ground truth
are considered false positives. To create a single summary statistic for the entire benchmark,
we calculate the mean precision and recall per image rather than pooling results across sites.

We chose this statistic to emphasize the wide geographic variance in forest types.
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Figure 6. Example evaluation from the NeonTreeEvaluation R package. Predicted boxes (see
below) in red and ground truth boxes are in black. In this image there are 10 image-annotated
boxes, and 9 predictions. Each prediction matches an image-annotated box with an
intersection-over-union score of greater than 0.4. This leads to a recall score of 0.9 and a

precision score of 1.

Field-collected stems

NEON field crews sample all trees within a plot that are greater than 10cm DBH, regardless of
whether the tree crown can be seen in the remote sensing image data. While understory tree
detection is an important area of future work, the scope of this benchmark is focused on
crowns in the canopy that are visible from above. It is important to separate the computer
vision tasks from a particular ecological goal, such as tree enumeration, to maximize
transparency in evaluation and build towards general models that can be used for a variety of
ecological applications. Once algorithm performance is adequate for canopy crowns, additional

sources of information will be needed to estimate understory density [20].


https://www.zotero.org/google-docs/?vkNxBj

We cleaned the raw stem plot data and filtered the data set to contain only stems
estimated to be canopy crowns using field-measured height, NEON’s crown position field
measurement of sun exposure, and visual interpretation. A stem had to meet the following
criteria: 1) had valid spatial coordinates, 2) had a unique height measurement within each
sampling period (some trees were recorded twice with different heights and were discarded),

3) was sampled in more than one year and have height changes between years of less than 6m,
4) was classified as alive, 5) when a NEON field record did have a recorded canopy position, that
position was not ‘shaded’, 6) had a minimum height of 3m (to match the threshold in the
remote sensing workflow), and 7) was no more than 5m shorter than the canopy height model
extracted at the stem location to prevent matching including understory trees.

Methods that perform optimally on the field-collected stems evaluation data will predict
a single bounding box that contains a single field-collected stem. For each field plot we score
the proportion of field stems that fall within a single predicted crown. Field stems can only be
assigned to one crown prediction, such that if two crown predictions overlap a single field stem,
only one crown prediction is considered a positive match. The resulting proportion of stems
with a positive match can be used to estimate the stem recall rate, ranging from 0 (no correctly

matched stems) to 1 (all stems are matched).

Training Annotations

During our research on canopy crown detection algorithms [11,35], we annotated many

geographic tiles separate from the evaluation data [36]. The training sites were selected to
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capture a range of forest conditions including oak woodland (NEON site: SIER), mixed pine
(TEAK), alpine forest (NIWO), riparian woodlands (LENO), southern pinelands (OSBS), and
eastern deciduous forest (MLBS). The training tiles were chosen at random from the NEON data
portal, with the requirement that they did not contain a large amount of missing data and they
did not overlap with any evaluation plots. Depending on the tree density at the site, we either
annotated the entire 1 km? tile or cropped it to a smaller size to create more tractable sizes for
annotation. This data is released alongside the benchmark dataset; however, our goal is to
promote the best possible crown-delineation algorithm regardless of training data, and it is not
necessary to use this training data to generate predictions. Given the large size of training tiles,
the training annotations were less thoroughly reviewed and were only based on the RGB

imagery.

Uncertainty 1n annotations

Differences between image-only annotators

Since the image-annotated crowns were done by visually inspecting the images, the exact
position and number of bounding boxes in an image depends on the annotators’ interpretation
of the image and identification of crowns. Image interpretation is a standard practice for
creating validation sets in remote sensing (e.g.[37]), but depends on the skill of the annotator

and always introduces uncertainty to validation [38]. In many computer vision tasks, class
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boundaries are clear and definitive. However, the combination of image quality, spatially
overlapping crowns and the two-dimensional view of a complex three-dimensional canopy
makes it difficult to identify where one crown ends and another begins. To assess this
uncertainty between image annotators, a second annotator annotated 71 evaluation plots
using the same data as the primary annotator. We then compared these annotations using a
range of intersection-over-union (loU) thresholds to indicate crowns that matched between
annotators (Figure 7). We found that crown matches (recall) among annotators ranged from
approximately 70% at lower loU thresholds to 90% at higher loU thresholds. This variance
indicates that differences between annotators reflect differences in crown extent, rather than
differences in whether or not a tree is present. If tree detection was the primary area of
disagreement changing the loU threshold would have minimal effect on the recall and precision
rates. This was also supported at the plot level, where the number of trees and mean tree
height determined from the LiDAR cloud were very similar across multiple annotators, but

there was more variation in the mean crown area (Figure 7).
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Figure 7. Intersection-over-union scores (top left), as well as plot-level inferences, between the
primary annotator and a 2nd annotator. For the loU scores, we plotted precision and recall for
7 different intersection-over-union thresholds. As the overlap threshold decreases, the two
annotators tend to agree on ground truth tree crowns. Analysis is based on 71 evaluation

images (n=1172 trees) that were separately annotated by two different annotators.

Comparison among image-annotated and field-annotated crowns

To assess the ability for image-annotated crowns to represent field validated data, we
compared image-annotation made by the primary annotator (BW) with the field-annotated
crowns (SG) at two sites for which there was overlapping remote sensing imagery (Figure 8).
We compared image annotations and field crowns using the crown recall rate, defined as the
proportion of field-annotated crowns that overlap an image-annotated crown (loU threshold >

0.4), and the stem recall rate, defined as the proportion of field-annotated crown centroids that



are within a single image-annotated bounding box. The primary annotator independently
annotated 1553 crowns in images that overlapped with 91 field collected crowns at Mountain
Lake Biological Station (MLBS) and 27 crowns at Ordway-Swisher Biological Station (OSBS). To
prevent the annotator identifying the obvious location of the field crown, the test image
encompassed a large area. Using field-annotated crowns as ground truth, the image
annotations had a stem recall rate of 96.7% indicating that image annotation can identify the
presence of trees in all but rare cases. There was more disagreement in the extent of crown
boundaries. The image-annotated crowns had a crown recall of 78.0% with the field-annotated
crown polygons. While we anticipated greater accuracy for large field-annotated crowns, we
found only a modest relationship between crown area of field-annotated crowns and correct
image-annotated match. In general, errors tend to be marginally biased towards
oversegmentation, where large crowns are divided into smaller sets of branches, but both types

of errors occur in relatively similar frequencies.




Figure 8. Comparison of field-annotated crowns made by one author (SG) in blue (n=16) and
image-annotated crowns made by another author (BW) in red at Mountain Lake Biological
Station, Virginia. Intersection-over-union scores are shown in white. Only the image-annotated
crowns associated with the field crowns are shown (out of the 206 image-annotated crowns in
this image). From this and similar visualizations we determined that a threshold of 0.4 was a
reasonable choice for eliminating crowns that are not sufficiently overlapping to be used for
ecological analysis.

NeonTreeEvaluation R Package

To maximize the value of the benchmark dataset and standardize evaluation procedures, we

developed an R package (https://github.com/weecology/NeonTreeEvaluation package) for

downloading the evaluation data and running the evaluation workflows. This package takes a
standard submission format of predicted crowns in either bounding box or polygons as input
and returns the evaluation scores of the detections for each of the three evaluation datasets.
This reproducible workflow will facilitate creating a transparent process for future comparisons
among crown detection algorithms.

To demonstrate the performance of a detection method on the benchmark dataset and
allow for users to gauge their performance against published methods, we used the DeepForest
Python package to generate crown detections in the benchmark sensor data [35]. DeepForest is
a RGB deep learning model that predicts canopy crown bounding boxes[11,11,23,35]. The

prebuilt model in DeepForest was trained with the training data described above, but did not


https://github.com/weecology/NeonTreeEvaluation_package
https://www.zotero.org/google-docs/?9xax0W
https://www.zotero.org/google-docs/?W6QSMX

use or overlap spatially with any evaluation data in this benchmark. Following the best practices
for computational biology benchmarking described in [13], we emphasize that the DeepForest
algorithm was designed in conjunction with these evaluation data and it is therefore not
surprising that it performs well, with image-annotated boxes and field-annotated crown
polygons both at approximately 70% accuracy (Table 3, Figure 9). It is also notable that despite
the uncertainty with the crown area of the image-annotated crowns, the overall score is similar

among evaluation data types.


https://www.zotero.org/google-docs/?HDdaln

Table 3. Benchmark evaluation scores for the DeepForest python package.

Image-annotated Field-annotated  Field-collected
Crowns Crowns Stems
Recall Precision Recall Recall
79.0 65.9 72.2 74.0

Figure 9. Example predictions using the DeepForest algorithm. Left) DeepForest predictions in
red and compared to image-annotated crowns in black from Teakettle Canyon, California.
Middle) DeepForest predictions in red are compared to field-collected stems, with matching
stems in yellow and missing stems in blue, from Jones Ecological Research Center, Georgia.
Right) DeepForest predictions in red with the field-annotated crown in black from Mountain
Lake Biological Station, Virginia. The matching prediction is shown in bold while the other

predictions are faded for visibility.



Discussion

This benchmark provides annotations, data and evaluation procedures for canopy crown
detection using multiple sensor types across a broad range of forest ecosystems. The inclusion
of multiple evaluation types is critical because each type of evaluation data has strengths and
limitations in evaluating model performance. Field collected stems are the most common
evaluation data used in crown detection work due to high confidence that each stem
represents a location of a single tree [1,6,17,39]. However, the position of a tree stem can fail
to accurately represent the position of the crown as viewed from above due to a combination
of spatial errors in alignment with the image data and the tendency for trees to grow at acute
angles (tree lean is not measured in the NEON data), such that the center of the crown and
position of the stem can be offset by several meters. A second limitation of field-collected stem
point locations as evaluation data is that they are typically collected for only a portion of the
trees in the landscape covered by a remote sensing image. This makes it difficult to calculate
model precision, since it is not possible to differentiate a non-matching prediction of a tree
crown from a correct prediction of a tree crown that lacks stem data. Therefore, evaluating tree
crown algorithms without evaluating precision has the potential to reward algorithms that
include many spurious crowns. In contrast, image-annotated crowns are relatively easy to scale,
allowing the collection of data for a wide range of forest types and for annotation of every

visible crown in the image. Using image-annotated crowns supports the evaluation of methods


https://www.zotero.org/google-docs/?vz0dUh

across a broad range of forest types and allows both recall and precision to be calculated.
However, since these annotations are not generated by an observer in the field there can be
errors due to interpreting the images [40]. This problem is solved using field-annotated crowns
in which an observer annotates the remote-sensing imagery on a tablet while in the field [33].
The main limitation to this approach is that it is labor intensive, meaning that only a relatively
small amount of validation data can be collected, making it difficult to obtain a large number of
crowns across broad scales or assess model precision. Given the tradeoffs in each evaluation
type, providing multiple criteria is a useful way of balancing the need for broad scale model
verification with rigorous evaluation of field-based measurements.

While they are often analyzed separately, this benchmark dataset includes aligned data
from RGB, LiDAR and hyperspectral sensors for a range of geographic areas because each of
these data types may be useful for canopy crown detection. Three-dimensional LiDAR data has
high spatial resolution, but lack of spectral information makes it difficult to identify tree
boundaries. RGB data has spectral information and high spatial resolution but lacks context on
vertical shape and height. Hyperspectral data is useful for differentiating individual crowns
based on differences in foliar properties driving by differences in tree species or structure, but
generally has a coarser spatial resolution. Combining sensor data may lead to more robust and
generalizable models of tree detection at broad scales, which makes having all three data types
aligned an important component of a forward-looking benchmark dataset. While the NEON

dataset differs from other airborne collected data products in image resolution and details of
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data acquisition, it offers a large range of forest types and standardization of evaluation
metrics. However, the benchmark notably lacks examples from forests outside of the United
States, including tropical forests that are of high conservation concern. Researchers interested
in generalizing to areas outside of the NEON sites can use this data to first validate algorithms
on a known benchmark before applying it to novel landscapes.

This benchmark is focused on the task of canopy tree detection. This is only one step in
the broader ecological task of inferring total tree counts or functional characteristics of forests
from airborne data. There remain significant hurdles to convert canopy tree crowns into total
tree counts that include understory stems, especially across forest types. For example, NEON
uses a 10cm DBH cutoff for field stems. This size cutoff corresponds to different ecological roles
in different ecosystems and should itself not be seen as a total count. To make this benchmark
applicable to a wide variety of applications, we have not included understory ecological
measures in the evaluation metrics since none of the sensor data directly detect understory
trees, but encourage the development of future benchmarks in this area that are designed to
facilitate applications requiring understory information. For example, simulating latent tree size
distributions from observed data is a promising avenue to interpolate canopy trees visible in
airborne images to full tree size class distributions [25]. Given the current performance of
available algorithms, we believe substantial improvement is needed in canopy detection before
moving to the more difficult understory detection task.

While the annotations in this dataset are all two dimensional and some are represented

only by bounding boxes (the image-annotated crowns), there are opportunities to extend the


https://www.zotero.org/google-docs/?niGQsO

benchmark dataset into new formats and dimensions. For example, there has been recent
interest in object detection using input rasters, both as a replacement for traditional bounding
boxes, and as an additional step in refining pixel-based contours of object boundaries [41]. By
rasterizing the annotated bounding boxes, the dataset can be used to compare segmentation
strategies such as raster-based versus regional proposal networks [42] and matches more
directly with polygon based approaches to annotating crowns. Furthermore, combining 2D
optical data and 3D point cloud annotations remains an active area of model development [43].
Trees have complex 3D and 2D representations and the data provided in this benchmark could
be used to develop new evaluation procedures across dimensions.

By providing a repeatable evaluation workflow, we hope to reduce the uncertainty in
novel algorithm development and promote model and data sharing among researchers. Initial
work in [44] showed that deep learning algorithms can learn from multiple geographies
simultaneously, without losing accuracy on the local forest type. This means that data sharing
among researchers can provide mutual benefit to all applications, even from disparate forest
types. By standardizing evaluation criteria, we hope to foster collaboration and comparative

studies to improve the accuracy, generalization, and transparency of canopy crown detection.
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