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Abstract 

Broad scale remote sensing promises to build forest inventories at unprecedented scales. A 

crucial step in this process is to associate sensor data into individual crowns. While dozens of 

crown detection algorithms have been proposed, their performance is typically not compared 



based on standard data or evaluation metrics. There is a need for a benchmark dataset to 

minimize differences in reported results as well as support evaluation of algorithms across a 

broad range of forest types. Combining RGB, LiDAR and hyperspectral sensor data from the USA 

National Ecological Observatory Network’s Airborne Observation Platform with multiple types 

of evaluation data, we created a benchmark dataset to assess crown detection and delineation 

methods for canopy trees covering dominant forest types in the United States. This benchmark 

dataset includes an R package to standardize evaluation metrics and simplify comparisons 

between methods. The benchmark dataset contains over 6,000 image-annotated crowns, 400 

field-annotated crowns, and 3,000 canopy stem points from a wide range of forest types. In 

addition, we include over 10,000 training crowns for optional use. We discuss the different 

evaluation data sources and assess the accuracy of the image-annotated crowns by comparing 

annotations among multiple annotators as well as overlapping field-annotated crowns. We 

provide an example submission and score for an open-source algorithm that can serve as a 

baseline for future methods. 

Introduction 

Quantifying individual trees is a central task for ecology and management of forested 

landscapes. Compared to traditional field surveys, airborne remote sensing allows forest 

monitoring at broad scales. A central task in remote sensing of forests is converting raw sensor 

data into information on individual trees [1]. While there are dozens of proposed algorithms, 

they are often designed and evaluated using a range of different data inputs [2–4], sensor 

https://www.zotero.org/google-docs/?syWEn4
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resolutions, forest structures, evaluation protocols [5–8], and output formats [9]. For example, 

[10] proposed a pixel-based algorithm for 50 cm pan-sharpened satellite RGB data from a 

tropical forest in Brazil evaluated against field-collected tree stem locations, and [11] proposed 

a vector-based algorithm for 10 cm fixed-winged aircraft RGB data from oak forests in California 

evaluated against image-annotated crowns. Given these differences, a comparison among 

algorithms is difficult to make based on reported statistics to interpret the relative accuracy, 

generality and cost effectiveness.  

      One solution to these challenges is a benchmark dataset that can be used to evaluate a 

wide variety of algorithms and data types [12,13]. We believe a useful benchmark dataset has 

at least three features [13–16]: 1) well-curated and open-source data, 2) reasonable evaluation 

criteria, 3) reproducible and transparent scoring. We developed a benchmark dataset of 

individual canopy crowns derived from multi-sensor imagery in the National Ecological 

Observatory Network (Table 1) that provides: 1) co-registered remote sensing data from 

multiple sensors (LiDAR, RGB imagery, and hyperspectral imagery) to allow comparisons of 

methods based on any single sensor (e.g., for LiDAR based methods), or any combination of 

sensors (e.g., combining RGB and hyperspectral), and 2) three types of evaluation data to allow 

assessing both ‘tree detection’, defined as the identifying the location of individual trees using 

evaluation data with a point at the crown center [5,17], and ‘crown delineation’ defined as 

identifying the boundary edge of crowns [9,11–13] across a broad range of forest types. The 

benchmark is designed to allow flexibility in both workflow and sensor selection. Users of the 

https://www.zotero.org/google-docs/?9DDcqE
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benchmark can use any combination of algorithms and sensors so long as the final product is a 

2-dimensional shape with geographic coordinates representing the boundaries of individual 

canopy tree crowns. 

Table 1. Summary of datasets included in the benchmark dataset. All sensor data has been 

cropped to the extent of NEON field sampling plots.  

Item (format) Type Description (NEON ID) 

10cm RGB data (.tif) Sensor data 
DP3.30010.001 

LiDAR point cloud (~5 pts/m) 
(.laz) 

Sensor data 
DP1.30003.001 

1m gridded raster of canopy 
height model (.tif) 

Sensor data  
DP3.30015.001 

1m 426 band hyperspectral 
data  

Sensor data DP1.30006.001 

Image-annotated crowns 
(.xml) 

Evaluation data (6490 trees) Bounding box annotations 
made by visually assessing 

the sensor data 

Field-annotated crowns (.shp) Evaluation data (562 trees) Polygon annotations by 
visually assessing the 

hyperspectral data while 
physically in the field next to 

target tree 

Field-collected stems (.csv) Evaluation data (4365 trees) NEON collected stem points 
for each individual tree. 
Filtered from the Woody 

Vegetation Structure data 
product (NEON ID: 

DP1.10098.001) 



 

Remote sensing data 

The National Ecological Observatory Network (NEON) is a large initiative to coordinate data 

collection across the United States at over 80 geographic sites. Annual data collection includes 

surveys by the airborne observation platform (AOP) using RGB, LiDAR and hyperspectral 

sensors (http://data.neonscience.org/), as well as standardized 40m vegetation surveys at fixed 

sampling plots throughout each site. The NEON AOP uses fixed-wing aircraft, flown around 

1000m above ground, to survey sites during leaf-on-conditions from May-October. Sensor data 

chosen for this benchmark were collected during flights from 2018 and 2019. For the purposes 

of the benchmark dataset, we cropped sensor products to the bounds of each 40m NEON field 

sampling plot. For example, the RGB image ‘SJER_052_2019’ corresponds to NEON field plot 52 

at NEON site SJER (San Joaquin, California see Table 1 for abbreviations) with sensor data from 

the 2019 airborne survey. For additional detail on NEON design and planning, see NEON’s 

extensive technical documents for detailed site information and sampling strategy 

(neonscience.org). 

Orthorectified Camera Mosaic 

The RGB data were acquired with a D8900 camera with a format of 8,984 x 6,732 pixels. 

Individual images were color rectified, orthorectified and mosaiced to create a single raster 

image with a pixel size of 0.1 m^2. Mosaic tiles are provided as 1000m x 1000m geoTIFF files 

and are named based on the UTM coordinate at the northwest origin. RGB data have high 

http://data.neonscience.org/


spatial resolution and individual canopy trees are often visible based on the crown boundary, as 

well as color differences among individuals due to taxonomy and health status (Figure 1). For 

more details on NEON camera orthomosaic products see NEON technical document 

NEON.DOC.005052 [18].  

         

Figure 1. A 40m x 40m evaluation plot of RGB data from the Teakettle Canyon (TEAK) NEON site (left) 

and Bartlett Experimental Forest, New Hampshire (BART) (right).  

One challenge in creating a multi-sensor dataset is the joint georectification of data types. To 

ensure spatial overlap between the LiDAR and RGB data, NEON staff overlaid the 0.1m spatial 

resolution RGB tile on a 1m spatial resolution LiDAR derived surface height model. The 

difference in spatial resolution can cause some distortion in rectified RGB images. These 

artifacts are most pronounced at the image edge and were minimized by selecting the 

centermost portion of each image when creating the RGB mosaic. Some distortion remains and 

can cause a swirling effect as the image pixels are stretched to match the corresponding LiDAR 

raster cell. For more information see NEON technical document NEON.DOC.001211vA [18]. We 

https://www.zotero.org/google-docs/?vdpJTb
https://www.zotero.org/google-docs/?voBeE1


did not include images with large enough distortions to interfere with canopy crown detection, 

but kept images with minor distortions to represent the kind of challenging conditions present 

in applied settings.  

Classified LiDAR Point Cloud  

The LiDAR data are 3D coordinates (~5 points/m2) that provide high resolution information 

about canopy crown shape and height. LiDAR data are stored as 1000m x 1000m .laz files 

(Figure 2). These files contain the x,y,z coordinates for each return, as well as metadata on 

return intensity and point classification. Boundaries of individual canopy crowns are often 

apparent due to gaps among neighboring trees or differences in height among overlapping 

canopy crowns. For more information on NEON LiDAR data processing see NEON technical 

document NEON.DOC.001292 [19]. Due to the large spatial coverage of the collection effort, 

the point density of the NEON LiDAR clouds is much lower than the point density used for most 

studies of crown detection models ([20,21]; point densities of 20-1000 pt/m2). 

 

https://www.zotero.org/google-docs/?eWq8iv
https://www.zotero.org/google-docs/?vgbP8O


Figure 2. Normalized LIDAR point cloud for evaluation plot SJER_064 from the San Joaquin 

Experimental Range, California (left) and MLBS_071 from Mountain Lake Biological Station, 

Virginia. Points are colored by height above ground.  

Hyperspectral surface reflectance 

NEON’s hyperspectral sensor collects reflected light in the visible and infrared spectrum 

between approximately 420-2500 nm with a spectral sampling interval of 5nm for a total of 426 

bands. NEON provides the orthorectified images with a pixel size of 1 m2 in 1 km2 tiles that align 

with the RGB and LiDAR file naming convention. Hyperspectral data, especially in the infrared 

spectrum, is often used for differentiating tree species based on spectral differences among 

species in leaf chemistry and canopy structure (e.g. [22]). Hyperspectral data is particularly 

useful in forests with high species diversity where neighboring trees are likely to be different 

species and thus spectrally distinct (Figure 3)[23]. All hyperspectral data were collected during 

the same field collection campaign as the RGB data, with the exception of the UNDE site, in 

which the 2019 RGB data was not available at the time of publication and therefore the 2017 

flight data was used instead. For more information on hyperspectral data processing and 

calibration see NEON technical document NEON.DOC.001288 [24]. 

https://www.zotero.org/google-docs/?3wc0vg
https://www.zotero.org/google-docs/?B1vVFj
https://www.zotero.org/google-docs/?abdcdB


 

Figure 3. Composite hyperspectral image (left) and corresponding RGB image (right) for the 

MLBS site. The composite image contains near infrared (940nm), red (650nm), and blue 

(430nm) channels. Trees that are difficult to segment in RGB imagery may be more separable in 

hyperspectral imagery due to the differing foliar chemical and structural properties of co-

occurring trees.  

Ecosystem Structure 

NEON’s ‘Ecosystem Structure’ data product is a LiDAR derived height raster at 1m spatial 

resolution. Often known as a ‘canopy height model’ (CHM), the raster values are the 

normalized height above ground for each grid cell. This data is useful for differentiating crowns 

in three dimensions, as well as eliminating crowns that are under the 3m threshold used in this 

benchmark for minimum tree height. For more information on normalization and interpolation 

to create the raster product see NEON technical document NEON.DOC.002387 [25]. 

Woody Plant Vegetation Structure 

https://www.zotero.org/google-docs/?dNnEpM


Along with sensor data, NEON collects information on trees in fixed plots at each NEON site. 

Data from two types of plots are included in this dataset: ‘distributed’ plots, which are 20m x 

20m fully sampled plots, and ‘Tower’ plots, which are 40m x 40m plots with two sampled 20m x 

20m quadrants. The distinction between distributed and tower plots may be useful for users 

familiar with NEON’s sampling regime, but is not necessary for most uses of the benchmark 

data set. All trees in sampled areas with a stem diameter of > 10cm are mapped and recorded. 

For the purposes of this benchmark dataset, the key tree metadata are the stem position, size, 

and estimated tree height. For extensive information on NEON field sampling see NEON 

technical document NEON.DOC.000987 [26].  

Evaluation Data 

Table 2. Annotations for each data type for each of the NEON sites.  

siteID Site Name State 

Image-annotated 

Evaluation 

Crowns 

Field-collected 

Stems 

Additional data or 

notes 

ABBY Abby Road WA 160 14  

BART 

Bartlett 

Experimental 

Forest NH 93 535 

369 image-

annotated training 

crowns 

BLAN 

Blandy 

Experimental Farm VA 73 0  

BONA 

Caribou-Poker 

Creeks Research AK 225 0  

https://www.zotero.org/google-docs/?fhMB6e


Watershed 

CLBJ 

Lyndon B. Johnson 

National Grassland TX 116 0  

DEJU Delta Junction AK 0 60  

DELA Dead Lake  AL 87 240 

295 image-

annotated training 

crowns 

DSNY 

Disney Wilderness 

Preserve  FL 87 0 

888 image-

annotated training 

crowns 

HARV Harvard Forest  MA 171 622 

329 image-

annotated training 

crowns 

JERC 

The Jones Center 

At Ichauway  GA 294 159  

LENO Lenoir Landing  AL 75 103 

554 image-

annotated training 

crowns 

MLBS 

Mountain Lake 

Biological Station  VA 481 668 

1921 image-

annotated training 

crowns, 106 field-

annotated crowns 

MOAB Moab  UT 0 11  

NIWO Niwot Ridge  CO 1485 500 

10,022 image-

annotated training 

crowns 

ONAQ Onaqui  UT 32 0 

244 image-

annotated training 

crowns 



OSBS 

Ordway-Swisher 

Biological Station  FL 497 346 

2126 image-

annotated training 

crowns, 458 field-

annotated crowns 

SCBI 

Smithsonian 

Conservation 

Biology Institute  VA 73 193  

SERC 

Smithsonian 

Environmental 

Research Center  MD 94 369  

SJER 

San Joaquin 

Experimental 

Range  CA 473 57 

2545 image-

annotated training 

crowns 

SOAP Soaproot Saddle  CA 114 0  

TALL 

Talladega National 

Forest  AL 157 220  

TEAK Lower Teakettle  CA 1471 0 

1471 image-

annotated training 

crowns 

UKFS 

University of 

Kansas Field 

Station  KS 0 127  

UNDE 

University of Notre 

Dame 

Environmental 

Research Center  MI 186 66  

WREF 

Wind River 

Experimental 

Forest  WA 178 0  

YELL 

Yellowstone 

National Park  WY 0 0 

873 image-

annotated training 

crowns 

 



 

 The goal of this benchmark is to evaluate algorithms for canopy tree detection and delineation. 

We adopt the term ‘canopy crown detection’ to differentiate between the tasks of ‘tree 

detection’, defined as identifying the location of the crown center of individual trees [5,17] and 

‘crown delineation’ or ‘crown segmentation’, often defined as identifying the boundary edge of 

individual crowns [9,27–29]. The term ‘canopy’ is often implicitly assumed in most studies, 

since optical data and low density LiDAR data, can only reflect the structure in the upper 

canopy ([30] but see [31,32]). Evaluation of detection methods in this benchmark dataset is 

done by assessing detections using three types of evaluation data: 1) image-annotated crown 

bounding boxes for 22 sites in the NEON network, 2) field-annotated crown polygons for two 

sites in the NEON network (Table 2), and 3) field-collected stem points from 14 sites from the 

NEON Woody Vegetation Structure dataset. For each of these data we outline how the data 

were collected and the evaluation procedure for canopy crown detection. 

Image-annotated Crowns 

We selected airborne imagery from 22 sites surveyed by the NEON AOP. The evaluation sites 

were chosen based on the availability of the three types of sensor data, as well as 

representation of forest conditions across the US including the diversity of species composition, 

stand age, and canopy openness. The selected sites range from Florida to Alaska, include forest 

types sites dominated by conifers, broadleaves or a mixture of the two, and varying in density 

from open oak woodlands (3.5 trees per 20m plot at the SJER site) to dense deciduous forests 

(34.38 trees per plot at the HARV site). Images were annotated using the program RectLabel 

https://www.zotero.org/google-docs/?tnR0fQ
https://www.zotero.org/google-docs/?fL31nJ
https://www.zotero.org/google-docs/?TGbhRp
https://www.zotero.org/google-docs/?4f0ObU


(Table 1). For each visible tree, we created a bounding box (xmin, ymin, xmax, ymax) that 

covered the tree crown (Figure 4). We prefer bounding boxes over polygons for image-

annotated crowns for speed of annotation, which is needed to cover the large number of 

images and sites to make a benchmark on geographic generalization possible.   

 

Figure 4. Screenshot of the program RectLabel used for tree annotation for the image-

annotated crowns for NEON plot MLBS_071. For each visible tree crown, we created a four 

point bounding box. 

      We carefully annotated the evaluation images by comparing the RGB, LiDAR and 

hyperspectral data. Using all three products made it possible to more accurately distinguish 

neighboring trees in images by simultaneously assessing visual patterns (RGB), using variation in 

spectral signatures to distinguish different species (hyperspectral), and looking at the three 

dimensional structure of the tree (LiDAR). For some sites, such as OSBS, the crowns were most 

visible in the LiDAR height model, whereas for closed canopy sites such as MLBS, the 

hyperspectral and RGB data were most useful. When working with the hyperspectral data we 

primarily used a composite three-band hyperspectral image containing near infrared (940nm), 

red (650nm), and blue (430nm) channels, which showed contrasts between neighboring trees 



of different types (Figure 5d, h). We also augmented the RGB data to view subtle changes in 

pixel values using a decorrelation stretch (Figure 5b, f). The decorrelation stretch is useful in 

highlighting small differences within the image color space that are not apparent in the visual 

RGB color spectrum. Each evaluation plot overlaps with a NEON 40m x 40m plot. Within each of 

these plots, NEON field crews survey a 20x20 subplot; therefore, while field data are available 

for most plots in the dataset, they do not cover every tree in the image. The woody vegetation 

structure data contains information on field estimated height and maximum crown diameter 

for the majority of field collected stems. We annotated all trees in the 40x40 m plot, regardless 

of health status, provided they were visible in the image.  

  

Figure 5. Image-annotated  tree crowns for the evaluation data set for two sites in the National 

Ecological Observation Network. Using the RGB, LiDAR and hyperspectral products together 

contributes to more careful crown annotation. For some sites, such as MLBS (top row), the RGB 

and hyperspectral data are useful for differentiating overlapping crowns. For other sites, such 

as OSBS (bottom row) the LiDAR point cloud, shown as a rasterized height image, is most useful 



in capturing crown extent. The RGB-stretch image was produced by transforming the RGB data 

in the three principal components space. To create a three-band hyperspectral image, we used 

channels from the red, blue and infrared spectrum to capture changes in reflectance not 

apparent in the RGB imagery. 

Field-annotated Crowns 

Individual trees were annotated by visiting two NEON sites and mapping the tree crown 

boundaries as polygons in the remote sensing images using a field tablet and GIS software while 

looking at each tree from the ground [33]. False-color composites from the hyperspectral data, 

RGB, and LiDAR canopy height model were loaded onto tablet computers that were equipped 

with GPS receivers. While in the field, researchers digitized crown boundaries based on the 

location, size, and shape of the crown. Only alive trees with leaf-on vegetation were selected. 

Trees were mapped in 2014 and 2015, and all polygons were manually checked against the 

most recent NEON imagery. All crowns that were no longer apparent in the RGB or LiDAR data 

due to tree fall or overgrowth were removed from the dataset, and minor adjustments to 

crown shape and position were refined after examining multiple years of RGB imagery. No 

adjustments to the polygons were made due to crown expansion.  

Evaluation for image-annotated and field-annotated crowns 

The evaluation procedure in this benchmark is identical for image-annotated and field 

annotated crowns, since the final data format for both is a geospatial file with either bounding 

https://www.zotero.org/google-docs/?1z1Lyn


boxes (image-annotated) or polygons (field-annotated) for each canopy crown. To measure 

accuracy and precision of predicted detections, the most common approach is to compare the 

overlap between predicted crowns and evaluation crowns using the intersection-over-union 

metric (IoU; e.g.[34]) and a minimum matching threshold. IoU is the area of the overlap 

between the predicted crown and the evaluation crown divided by the area of the combined 

region. Any comparisons with a IoU score above the minimum threshold are true positives. The 

metric ranges between 0 (no overlap) to 1 (perfect overlap) (Figure 6). In the wider computer 

vision literature, the conventional threshold value for true positive overlap is 0.5 (e.g.[34]), but 

this value is arbitrary and does not ultimately relate to any particular ecological question. We 

tested a range of overlap thresholds from 0.3 (less overlap among matching crowns) to 0.6 

(more overlap among matching crowns) and found that 0.4 balanced a rigorous cutoff without 

spuriously removing trees that would be useful for downstream analysis. Using this overlap 

threshold, the benchmark code calculates recall, defined as the proportion of crowns correctly 

predicted, and precision, defined as the proportion of predictions that matched a ground truth 

crown. If multiple predictions overlap a single ground truth crown, we match the prediction 

with the highest IoU to the ground truth. Predictions that do not overlap with any ground truth 

are considered false positives. To create a single summary statistic for the entire benchmark, 

we calculate the mean precision and recall per image rather than pooling results across sites. 

We chose this statistic to emphasize the wide geographic variance in forest types.  

https://www.zotero.org/google-docs/?rzv9kK
https://www.zotero.org/google-docs/?w1W7Rd


 

Figure 6. Example evaluation from the NeonTreeEvaluation R package. Predicted boxes (see 

below) in red and ground truth boxes are in black. In this image there are 10 image-annotated 

boxes, and 9 predictions. Each prediction matches an image-annotated box with an 

intersection-over-union score of greater than 0.4. This leads to a recall score of 0.9 and a 

precision score of 1.  

Field-collected stems 

NEON field crews sample all trees within a plot that are greater than 10cm DBH, regardless of 

whether the tree crown can be seen in the remote sensing image data. While understory tree 

detection is an important area of future work, the scope of this benchmark is focused on 

crowns in the canopy that are visible from above. It is important to separate the computer 

vision tasks from a particular ecological goal, such as tree enumeration, to maximize 

transparency in evaluation and build towards general models that can be used for a variety of 

ecological applications. Once algorithm performance is adequate for canopy crowns, additional 

sources of information will be needed to estimate understory density [20].  

https://www.zotero.org/google-docs/?vkNxBj


We cleaned the raw stem plot data and filtered the data set to contain only stems 

estimated to be canopy crowns using field-measured height, NEON’s crown position field 

measurement of sun exposure, and visual interpretation.  A stem had to meet the following 

criteria: 1) had valid spatial coordinates, 2) had a unique height measurement within each 

sampling period (some trees were recorded twice with different heights and were discarded), 

3) was sampled in more than one year and have height changes between years of less than 6m, 

4) was classified as alive, 5) when a NEON field record did have a recorded canopy position, that 

position was not ‘shaded’, 6) had a minimum height of 3m (to match the threshold in the 

remote sensing workflow), and 7) was no more than 5m shorter than the canopy height model 

extracted at the stem location to prevent matching including understory trees.  

Methods that perform optimally on the field-collected stems evaluation data will predict 

a single bounding box that contains a single field-collected stem. For each field plot we score 

the proportion of field stems that fall within a single predicted crown. Field stems can only be 

assigned to one crown prediction, such that if two crown predictions overlap a single field stem, 

only one crown prediction is considered a positive match. The resulting proportion of stems 

with a positive match can be used to estimate the stem recall rate, ranging from 0 (no correctly 

matched stems) to 1 (all stems are matched). 

Training Annotations 

During our research on canopy crown detection algorithms [11,35], we annotated many 

geographic tiles separate from the evaluation data [36]. The training sites were selected to 

https://www.zotero.org/google-docs/?jDIvBV
https://www.zotero.org/google-docs/?05ADFC


capture a range of forest conditions including oak woodland (NEON site: SJER), mixed pine 

(TEAK), alpine forest (NIWO), riparian woodlands (LENO), southern pinelands (OSBS), and 

eastern deciduous forest (MLBS). The training tiles were chosen at random from the NEON data 

portal, with the requirement that they did not contain a large amount of missing data and they 

did not overlap with any evaluation plots. Depending on the tree density at the site, we either 

annotated the entire 1 km2 tile or cropped it to a smaller size to create more tractable sizes for 

annotation. This data is released alongside the benchmark dataset;  however, our goal is to 

promote the best possible crown-delineation algorithm regardless of training data, and it is not 

necessary to use this training data to generate predictions. Given the large size of training tiles, 

the training annotations were less thoroughly reviewed and were only based on the RGB 

imagery. 

Uncertainty in annotations 

Differences between image-only annotators 

Since the image-annotated crowns were done by visually inspecting the images, the exact 

position and number of bounding boxes in an image depends on the annotators’ interpretation 

of the image and identification of crowns. Image interpretation is a standard practice for 

creating validation sets in remote sensing (e.g.[37]), but depends on the skill of the annotator 

and always introduces uncertainty to validation [38]. In many computer vision tasks, class 

https://www.zotero.org/google-docs/?q6LTNI
https://www.zotero.org/google-docs/?zTX8Lg


boundaries are clear and definitive. However, the combination of image quality, spatially 

overlapping crowns and the two-dimensional view of a complex three-dimensional canopy 

makes it difficult to identify where one crown ends and another begins. To assess this 

uncertainty between image annotators, a second annotator annotated 71 evaluation plots 

using the same data as the primary annotator. We then compared these annotations using a 

range of intersection-over-union (IoU) thresholds to indicate crowns that matched between 

annotators (Figure 7). We found that crown matches (recall) among annotators ranged from 

approximately 70% at lower IoU thresholds to 90% at higher IoU thresholds. This variance 

indicates that differences between annotators reflect differences in crown extent, rather than 

differences in whether or not a tree is present. If tree detection was the primary area of 

disagreement changing the IoU threshold would have minimal effect on the recall and precision 

rates. This was also supported at the plot level, where the number of trees and mean tree 

height determined from the LiDAR cloud were very similar across multiple annotators, but 

there was more variation in the mean crown area (Figure 7). 



 

Figure 7. Intersection-over-union scores (top left), as well as plot-level inferences, between the 

primary annotator and a 2nd annotator. For the IoU scores, we plotted precision and recall for 

7 different intersection-over-union thresholds. As the overlap threshold decreases, the two 

annotators tend to agree on ground truth tree crowns. Analysis is based on 71 evaluation 

images (n=1172 trees) that were separately annotated by two different annotators. 

Comparison among image-annotated and field-annotated crowns 

To assess the ability for image-annotated crowns to represent field validated data, we 

compared image-annotation made by the primary annotator (BW) with the field-annotated 

crowns (SG) at two sites for which there was overlapping remote sensing imagery (Figure 8). 

We compared image annotations and field crowns using the crown recall rate, defined as the 

proportion of field-annotated crowns that overlap an image-annotated crown (IoU threshold > 

0.4), and the stem recall rate, defined as the proportion of field-annotated crown centroids that 



are within a single image-annotated bounding box. The primary annotator independently 

annotated 1553 crowns in images that overlapped with 91 field collected crowns at Mountain 

Lake Biological Station (MLBS) and 27 crowns at Ordway-Swisher Biological Station (OSBS). To 

prevent the annotator identifying the obvious location of the field crown, the test image 

encompassed a large area. Using field-annotated crowns as ground truth, the image 

annotations had a stem recall rate of 96.7% indicating that image annotation can identify the 

presence of trees in all but rare cases. There was more disagreement in the extent of crown 

boundaries. The image-annotated crowns had a crown recall of 78.0% with the field-annotated 

crown polygons. While we anticipated greater accuracy for large field-annotated crowns, we 

found only a modest relationship between crown area of field-annotated crowns and correct 

image-annotated match. In general, errors tend to be marginally biased towards 

oversegmentation, where large crowns are divided into smaller sets of branches, but both types 

of errors occur in relatively similar frequencies. 

  



Figure 8. Comparison of field-annotated crowns made by one author (SG) in blue (n=16) and 

image-annotated crowns made by another author (BW) in red at Mountain Lake Biological 

Station, Virginia. Intersection-over-union scores are shown in white. Only the image-annotated 

crowns associated with the field crowns are shown (out of the 206 image-annotated crowns in 

this image). From this and similar visualizations we determined that a threshold of 0.4 was a 

reasonable choice for eliminating crowns that are not sufficiently overlapping to be used for 

ecological analysis. 

NeonTreeEvaluation R Package 

To maximize the value of the benchmark dataset and standardize evaluation procedures, we  

developed an R package (https://github.com/weecology/NeonTreeEvaluation_package) for 

downloading the evaluation data and running the evaluation workflows. This package takes a 

standard submission format of predicted crowns in either bounding box or polygons as input 

and returns the evaluation scores of the detections for each of the three evaluation datasets. 

This reproducible workflow will facilitate creating a transparent process for future comparisons 

among crown detection algorithms.   

To demonstrate the performance of a detection method on the benchmark dataset and 

allow for users to gauge their performance against published methods, we used the DeepForest 

Python package to generate crown detections in the benchmark sensor data [35]. DeepForest is 

a RGB deep learning model that predicts canopy crown bounding boxes[11,11,23,35]. The 

prebuilt model in DeepForest was trained with the training data described above, but did not 

https://github.com/weecology/NeonTreeEvaluation_package
https://www.zotero.org/google-docs/?9xax0W
https://www.zotero.org/google-docs/?W6QSMX


use or overlap spatially with any evaluation data in this benchmark. Following the best practices 

for computational biology benchmarking described in [13], we emphasize that the DeepForest 

algorithm was designed in conjunction with these evaluation data and it is therefore not 

surprising that it performs well, with image-annotated boxes and field-annotated crown 

polygons both at approximately 70% accuracy (Table 3, Figure 9). It is also notable that despite 

the uncertainty with the crown area of the image-annotated crowns, the overall score is similar 

among evaluation data types. 

  

https://www.zotero.org/google-docs/?HDdaln


Table 3. Benchmark evaluation scores for the DeepForest python package.  

Image-annotated 

 Crowns 

Field-annotated 

Crowns 

Field-collected 

Stems 

  

Recall Precision Recall Recall   

79.0 65.9 72.2 74.0   

 

 

Figure 9. Example predictions using the DeepForest algorithm. Left) DeepForest predictions in 

red and compared to image-annotated crowns in black from Teakettle Canyon, California. 

Middle) DeepForest predictions in red are compared to field-collected stems, with matching 

stems in yellow and missing stems in blue, from Jones Ecological Research Center, Georgia. 

Right) DeepForest predictions in red with the field-annotated crown in black from Mountain 

Lake Biological Station, Virginia. The matching prediction is shown in bold while the other 

predictions are faded for visibility. 



Discussion 

This benchmark provides annotations, data and evaluation procedures for canopy crown 

detection using multiple sensor types across a broad range of forest ecosystems. The inclusion 

of multiple evaluation types is critical because each type of evaluation data has strengths and 

limitations in evaluating model performance. Field collected stems are the most common 

evaluation data used in crown detection work due to high confidence that each stem 

represents a location of a single tree [1,6,17,39]. However, the position of a tree stem can fail 

to accurately represent the position of the crown as viewed from above due to a combination 

of spatial errors in alignment with the image data and the tendency for trees to grow at acute 

angles (tree lean is not measured in the NEON data), such that the center of the crown and 

position of the stem can be offset by several meters. A second limitation of field-collected stem 

point locations as evaluation data is that they are typically collected for only a portion of the 

trees in the landscape covered by a remote sensing image. This makes it difficult to calculate 

model precision, since it is not possible to differentiate a non-matching prediction of a tree 

crown from a correct prediction of a tree crown that lacks stem data. Therefore, evaluating tree 

crown algorithms without evaluating precision has the potential to reward algorithms that 

include many spurious crowns. In contrast, image-annotated crowns are relatively easy to scale, 

allowing the collection of data for a wide range of forest types and for annotation of every 

visible crown in the image. Using image-annotated crowns supports the evaluation of methods 

https://www.zotero.org/google-docs/?vz0dUh


across a broad range of forest types and allows both recall and precision to be calculated. 

However, since these annotations are not generated by an observer in the field there can be 

errors due to interpreting the images [40]. This problem is solved using field-annotated crowns 

in which an observer annotates the remote-sensing imagery on a tablet while in the field [33]. 

The main limitation to this approach is that it is labor intensive, meaning that only a relatively 

small amount of validation data can be collected, making it difficult to obtain a large number of 

crowns across broad scales or assess model precision. Given the tradeoffs in each evaluation 

type, providing multiple criteria is a useful way of balancing the need for broad scale model 

verification with rigorous evaluation of field-based measurements. 

While they are often analyzed separately, this benchmark dataset includes aligned data 

from RGB, LiDAR and hyperspectral sensors for a range of geographic areas because each of 

these data types may be useful for canopy crown detection. Three-dimensional LiDAR data has 

high spatial resolution, but lack of spectral information makes it difficult to identify tree 

boundaries. RGB data has spectral information and high spatial resolution but lacks context on 

vertical shape and height. Hyperspectral data is useful for differentiating individual crowns 

based on differences in foliar properties driving by differences in tree species or structure, but 

generally has a coarser spatial resolution. Combining sensor data may lead to more robust and 

generalizable models of tree detection at broad scales, which makes having all three data types 

aligned an important component of a forward-looking benchmark dataset. While the NEON 

dataset differs from other airborne collected data products in image resolution and details of 

https://www.zotero.org/google-docs/?SvJ5AD
https://www.zotero.org/google-docs/?6bbhAe


data acquisition, it offers a large range of forest types and standardization of evaluation 

metrics. However, the benchmark notably lacks examples from forests outside of the United 

States, including tropical forests that are of high conservation concern. Researchers interested 

in generalizing to areas outside of the NEON sites can use this data to first validate algorithms 

on a known benchmark before applying it to novel landscapes.  

This benchmark is focused on the task of canopy tree detection. This is only one step in 

the broader ecological task of inferring total tree counts or functional characteristics of forests 

from airborne data. There remain significant hurdles to convert canopy tree crowns into total 

tree counts that include understory stems, especially across forest types. For example, NEON 

uses a 10cm DBH cutoff for field stems. This size cutoff corresponds to different ecological roles 

in different ecosystems and should itself not be seen as a total count. To make this benchmark 

applicable to a wide variety of applications, we have not included understory ecological 

measures in the evaluation metrics since none of the sensor data directly detect understory 

trees, but encourage the development of future benchmarks in this area that are designed to 

facilitate applications requiring understory information. For example, simulating latent tree size 

distributions from observed data is a promising avenue to interpolate canopy trees visible in 

airborne images to full tree size class distributions [25]. Given the current performance of 

available algorithms, we believe substantial improvement is needed in canopy detection before 

moving to the more difficult understory detection task. 

While the annotations in this dataset are all two dimensional and some are represented 

only by bounding boxes (the image-annotated crowns), there are opportunities to extend the 

https://www.zotero.org/google-docs/?niGQsO


benchmark dataset into new formats and dimensions. For example, there has been recent 

interest in object detection using input rasters, both as a replacement for traditional bounding 

boxes, and as an additional step in refining pixel-based contours of object boundaries [41]. By 

rasterizing the annotated bounding boxes, the dataset can be used to compare segmentation 

strategies such as raster-based versus regional proposal networks [42] and matches more 

directly with polygon based approaches to annotating crowns. Furthermore, combining 2D 

optical data and 3D point cloud annotations remains an active area of model development [43]. 

Trees have complex 3D and 2D representations and the data provided in this benchmark could 

be used to develop new evaluation procedures across dimensions. 

      By providing a repeatable evaluation workflow, we hope to reduce the uncertainty in 

novel algorithm development and promote model and data sharing among researchers. Initial 

work in [44] showed that deep learning algorithms can learn from multiple geographies 

simultaneously, without losing accuracy on the local forest type. This means that data sharing 

among researchers can provide mutual benefit to all applications, even from disparate forest 

types. By standardizing evaluation criteria, we hope to foster collaboration and comparative 

studies to improve the accuracy, generalization, and transparency of canopy crown detection.  
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