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Abstract. Just-in-time (JIT) compilers are used by many modern pro-
gramming systems in order to improve performance. Bugs in JIT com-
pilers provide exploitable security vulnerabilities and debugging them is
difficult as they are large, complex, and dynamic. Current debugging and
visualization tools deal with static code and are not suitable in this do-
main. We describe a new approach for simplifying the large and complex
intermediate representation, generated by a JIT compiler and visualize
it with a metro map metaphor to aid developers in debugging.

1 Introduction

Many modern programming systems, such as JavaScript engines that are run-
ning our web browsers, use just-in-time (JIT) compilers to improve performance.
Examples include Google Chrome, Microsoft Edge, Apple Safari, and Mozilla
Firefox, which are used by 2.65 billion, 600 million, 446 million, and 220 mil-
lion, respectively [4]. JIT compiler bugs can lead to exploitable security vulner-
abilities [1,6-9]. Such a bug in Google Chrome could be used to hijack passwords
and to navigate to other sites and execute malicious programs, as reported by
the Microsoft Offensive Security Research team (CVE-2017-5121 [1]). Thus, the
ability to quickly analyze, localize and fix JIT compiler problems is important.
However, existing work and available tools focus on static code [15,16,23], and so
they are not suitable for developers in debugging JIT compilers, which generates
code at run-time. Additionally, the size and complexity of JIT-based systems [12]
combined with the dynamic nature of JIT compiler optimizations, make it chal-
lenging to analyze and locate bugs quickly. For example, Google V8 has more
than 2,000 source files and more than 1 million lines of code.

Traditional debuggers rely on text even though the main feature of a JIT
compiler is building a graph-like structure to translate bytecode into optimized
machine code. With this in mind, we propose a new debugging tool, which vi-
sualizes the JIT compiler’s intermediate representation (IR). Our approach uses
IR identification and generation techniques described by Lim and Debray [26],
where the compiler-related half of the visualization tool’s pipeline are described
in detail. In this paper we focus on the visualization half, which includes: merging
multiple IR graphs into a single graph, simplifying the merged graph, converting
the simplified graph into a hypergraph, simplifying the hypergraph, and visualiz-
ing the hypergraph using a metro map metaphor. Visualizing the JIT compiler’s
IR allows us to answer questions such as:

1. What optimizations took place to generate the machine code?



2. What is the relationship among the optimization phases?
3. Which optimization phase was most active?

4. What optimizations affected a specific node?

5. Which optimization phases are likely to be buggy?

Related Work: There are many methods and tools for debugging static code
compilers and optimized code, but little on using the intermediate representa-
tion and visualizing it to show the explicit information about the compilation
and optimization processes. Google V8’s Turbolizer [5,13] is one of very few IR
visualization tools. It shows the final IR graph after each optimization process
and provides interactive features to view the control-flow graphs for each opti-
mization phase. Although Turbolizer provides some information about the IR
nodes and their relationships, it does not provide enough information about the
optimization process and cannot answer several of our initial set of questions.

Dux et al. [21] visualize dynamically modified code at run-time with call
graphs and control-flow graphs by showing the graph changes with animation,
allowing end-to-end play, pause, and forward/backward step-by-step animation.
CFGExplorer [20] visualizes the control-flow graph of a program to represent the
program structure for dynamic binary analysis. It provides interactive features
allowing developers to find specific memory addresses, loops, and functions to
analyze the system. CcNav [19] analyzes and visualizes a C++ compiler’s opti-
mization process with a call graph, control-flow graph, and loop hierarchies.

Control-flow graphs and call graphs are popular in program analysis, espe-
cially for analyzing static code. However, they are different from dynamically
generated IR graphs. Tools for visualizing and interacting with control-flow
graphs and call graphs (such as those above) are not sufficient for visualizing
the IR graph as, e.g., they cannot capture the optimization phases.

Background: We briefly introduce several concepts relevant to JIT compilers.

Interpreter: a computer program that converts input source code into byte-
code and executes it without compiling it into a machine code [22].

Bytecode: instructions generated from input source code by an interpreter;
bytecode is portable, unlike compiled programs, and used in many modern lan-
guages and systems, such as JavaScript, Python, and Java [17].

Instruction-level Trace: a file that holds all the instructions that a pro-
gramming system, such as a JIT compiler, has generated and executed at run-
time. The instructions are in a machine-level code with symbol information (e.g.,
function names) and are used for performance analysis and debugging.

Just-in-Time (JIT) compiler: a program that turns bytecode into instruc-
tions that are sent to a computer’s processor, to improve performance [24]; see
Fig. 1(a) for an example of JIT compiler in Google’s V8 pipeline.

Optimized code: machine code generated from bytecode by a JIT compiler
that can be directly executed by a processor.

Intermediate Representation (IR): a type of graph also known as sea-of-
nodes [11,14,18]. Unlike other graphs used in program analysis, such as control-
flow or data-flow graphs which have specific types of nodes, nodes in the sea-
of-nodes graph represent different types: from scalar values and arithmetic op-
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Fig. 1. (a) V8 Pipeline [12] (b) Example of constant folding optimization.

erators to variables and control-flow nodes and function entry nodes. Similarly,
edges represent different relationships (e.g., semantic and syntax relationships).

Optimization: adding, removing, and merging nodes and edges in the graph
during execution. In a single JIT compilation, the compiler executes several
different optimization phases (inlining, loop peeling, constant propagation) to
generate efficient machine code, which modify the IR graph and correspond to
new hyperedges (the set of all nodes generated or optimized in this phase); see
Fig. 1(b) for an example of constant propagation.

Proof-of-Concept Program: an input program that is used to trigger the
buggy behavior in the JIT compiler, i.e., a valid program (without any bugs)
which when run can reveal bugs in the JIT compiler. In our experiment, we are
targeting JavaScript engine V8, so the PoC is a JavaScript program.

2 Visualizing the Intermediate Representation

Our approach for capturing and visualizing the IR of a JIT compiler below uses
compiler-related steps 1-4 [26], and steps 5-9 are described in brief below.

1. Modify the input program, Py, to create similar programs, {Py,...Py}, by
generating the abstract syntax tree for P, and then randomly modifying
nodes in the tree with allowable edits (passing semantic/syntactic checks).
The newly created programs either still contain the code that triggers a bug
in the JIT compiler, or the buggy code is replaced and no bug is triggered.
In the first case, the execution output of the optimized code is different from
the interpreted code (as with Py).

2. Run each program P; and collect the instruction-level traces.

3. Analyze traces to check if P; triggers a bug in the JIT compiler and to
identify P;’s IR and the optimization phases executed while optimizing P;.



4. Select candidate hyperedges, suspected to be buggy, from the information
gathered in step 3.

5. Merge all selected candidate hyperedges into the original IR from Py.

6. Simplify the merged IR by reducing the number of nodes and edges.

7. Convert the simplified graph into a hypergraph by extracting the hyperedges
from step 4 and analyzing each node’s optimization status.

8. Simplify the hypergraph by reducing the number of hyperedges and nodes.

9. Visualize the simplified hypergraph with MetroSets [25].

2.1 Intermediate Representation

Recall that the intermediate representation (IR) of a JIT compiler is a sea-
of-nodes graph that the compiler generates at the beginning of its execution
by parsing the bytecode and optimizing it with several optimization phases.
Formally, the IR is a simple, undirected graph G = (V, E), where V represents
the nodes optimized by the JIT compiler and E contains pairs of nodes connected
by different relationships (e.g., semantic and syntax relationships, such as math
expressions). By keeping track of the optimization information for each node we
construct the hypergraph H = (V, S) from G, where V is a set of nodes optimized
by the JIT compiler and each hyperedge in S represents an optimization phase.

Two important node features are phases and opcodes. Phases are the opti-
mization phases where a node was generated and optimized (and which later
correspond to hyperedges). Opcodes represent node operations (e.g., add, sub,
return). A node also has two different attribute groups: (1) basic, such as a node
id, address, list of neighbors, opcode, and IR ID; and (2) optimization, such
as hyperedge (phase) ID, generated hyperedge name, and optimized hyperedge
names. Note that a node is generated at one hyperedge, but can be present in
multiple different hyperedges, due to different optimization phases.

Recall that given one JavaScript code we generate N similar versions to see if
any of them trigger bugs. We generate the IRs for all of these versions (typically
about 20). In the real-world examples we work with, each such IR graph has
about 300-500 nodes and 30-40 optimization phase executions.

2.2 Merging Intermediate Representation Hyperedges

We now merge the N similar but different intermediate representations into
one single graph. There are two main reasons to do this. First, we want to
see the differences among the graphs in one single view. Second, by comparing
hyperedges from a buggy program IR to hyperedges from a non-buggy program
IR, we can find differences in some hyperedges due to different optimizations,
and thus find the bug. Consider, for example, a hyperedge o in both buggy
and non-buggy program IRs and suppose that an additional node (the result
of incorrect optimization) makes a buggy program’s « different from the non-
buggy program’s a.. A merged hyperedge will show this additional node, and its
attributes will identify the buggy IR. A developer can now see that there was
an optimization difference in « and find the bug.
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Fig. 2. (a) Example of an IR graph; (b) example of hypergraph simplification.

Let Ry be the IR from the original program and { R}, ..., Ry} the IRs from
the modified programs. Let {r],...,r/,} be sub-IRs, where 7} is a subgraph of
R when R] # Ry, ie., } C R., and n is the number of IRs different from
Ry (n < N). Each r holds buggy candidate hyperedges: R} hyperedges are
different from Ry’s hyperedges. We traverse all sub-IRs, comparing each to Ry,
and update the merged IR; see Algorithm 1 in [27] for detail.

2.3 Intermediate Representation Simplification

Although the resulting merged graph may be useful for debugging, its complexity
makes it difficult for developers to use; see Fig. 2(a). Therefore, we simplify the
graph, convert it into a hypergraph, and simplify the hypergraph (hopefully
without losing much information in these simplifications). The main goal is to
end up with an interactive visualization that allows developers to debug.

Reducing the IR Graph: We remove dead nodes (nodes with no adjacent
edges) as they are not translated into machine code and do not affect other
nodes. We then identify nodes that can be merged without losing important
information. A pair of nodes is merged if they have the same opcode, the same
optimization information, belong to the same IR (which can be identified by the
IR id attribute), and share the same neighbors; see Algorithm 2 in [27] for detail.

Reducing the IR Hypergraph: We convert the simplified graph G = (V, E)
into a hypergraph H = (V,S), by extracting hyperedges based on the opti-
mization phases; see Algorithm 3 in [27]. Recall that a node v generated in
phase/hyperedge o and optimized in phases/hyperedges ¢ and v now belongs
to all three hyperedges. We reduce hypergraph H by merging suitable pairs of
hyperedges. Different nodes can have the same hyperedge names as attributes,
but different hyperedge IDs, as IDs are assigned based on the execution order.
Therefore, we merge hyperedges with the same name into a single hyperedge
while assigning a new unique identifier generated from the original IDs. We use
ID concatenation to obtain unique identifiers. Consider two hyperedges A and



B executed twice in the order shown in Fig. 2(b). We use the order to create
unique IDs by merging the 4 hyperedges into 2 hyperedges and assigning new
IDs, generated by concatenating two IDs delimited with a special character ‘Q’;
see Algorithm 4 in [27].

This reduces the number of hyperedges but increases the number of nodes
in each hyperedge. Next, we traverse each hyperedge s € S, and we use node
opcodes to see if they can be merged; see Algorithm 5 and Table 1 in [27] for
more details and results.

2.4 Visualizing the Hypergraph with MetroSets

MetroSets [25] uses the metro map metaphor to visualize medium-size hyper-
graphs. It clearly shows the relationships between hyperedges, which in our case
captures the relationships among the optimizations. MetroSets provides simple
and intuitive interactions that make it possible to quickly identify hyperedges
(metro lines) that contain suspicious nodes (metro stations), or hyperedges that
intersect with a particular suspicious hyperedge. Each node in the MetroSet map
is labeled with its unique ID (representing the node generation timeline). The
attributes shown when hovering over a node are phase, opcode, address, graph
ID, and phase ID. A phase attribute tells the user where the node was generated
and it is useful when nodes belong to multiple sets. A developer can distinguish
the phase that generated a node and phases where it was optimized.

3 Evaluation

We work with Google’s JavaScript engine and its JIT compiler, using a dynamic
analysis tool built on top of Intel’s Pin software [28] to collect instruction-level
traces, XED [3] for instruction decoding [3], esprima-python [10] to generate the
syntax-tree from JavaScript code, and escodegen [2] to regenerate JavaScript
from the syntax-tree. Our data comes from the Chromium bug report site;
see [26] for details. We can identify the bugs in all listed bug reports, includ-
ing Chromium bug report 5129. This version of the compiler has a bug in the
EarlyOptimization phase. We generate 19 additional modified JavaScript pro-
grams from the original and run all 20. The instruction traces are used to gen-
erate the IR graph shown in Fig. 2(a) and our visualization is shown in Fig. 3.
We can now attempt to answer some of the questions from Sec. 1.

“What optimizations took place to generate the machine code?” The map and
the “Key to Lines” legend show all optimization phases.

“What is the relationship among the optimization phases?” We can examine
the corresponding lines and use the interactive exploration modes (intersection,
union, complement, etc.) to see the relationships among the phases.

“Which optimization phase was most active?” We can visually identify the
longest line, or hover over each line and see the number of nodes in it; see Figure 9
in [27] for an example of the most active optimization phase.
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Fig. 3. Metro map of the IR graph from bug report 5129.

“What optimizations affected a specific node” We can hover over the node of
interest, which grays out the lines that don’t contain the node. We can then ex-
amine each of the corresponding lines and look at the displayed node attributes.

“Which optimization phases are likely to be buggy?” One natural way to do
this is to find parts that differ in the IR graphs with the bug and those without.
In other words, a program is buggy because either it has additional optimizations
or missing optimizations, and this information is captured in the IRs. Any line
that has many non-original IRs represents a significant difference between buggy
and non-buggy programs. In this case study, the majority of nodes (9 out of 11)
in the EarlyOptimization line are from different IRs, indicating a difference in
optimization between buggy and non-buggy programs; see the full paper [27] for
more examples.

Our prototype is available at https://hliml.github.io/JITCompilerIRViz/.
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