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Abstract 

Forests provide essential biodiversity, ecosystem and economic services. Information on 

individual trees is important for understanding the state of forest ecosystems, but obtaining 

individual-level data at broad scales is challenging due to the costs and logistics of data 

collection. While advances in remote sensing techniques allow surveys of individual trees at 

unprecedented extents, there remain significant technical and computational challenges in 

turning sensor data into tangible information. Using deep learning methods, we produced an 

open-source dataset of individual-level crown estimates for 100 million trees at 37 sites across 

the United States surveyed by the National Ecological Observatory Network’s Airborne 

Observation Platform. Each canopy tree crown is represented by a rectangular bounding box 

and includes information on the height, crown area, and spatial location of the tree. Tree crowns 

identified using this technique correspond well with hand-labeled crowns, exhibiting both high 

levels of overlap and good correspondence in height estimates. These data have the potential 

to drive significant expansion of individual-level research on trees by facilitating both regional 

analyses at scales of ~10,000 ha and cross-region comparisons encompassing forest types 

from most of the United States. 



 

 

 

Introduction 

Trees are central organisms in maintaining the ecological function, biodiversity and the health of 

the planet. There are estimated to be over three trillion individual trees on earth [1] covering a 

broad range of environments and geography [2]. Counting and measuring trees is central to 

developing an understanding of key environmental and economic issues and has implications 

for global climate, land management and wood production. Field-based surveys of trees are 

generally conducted at local scales (~0.1-100 ha) with measurements of attributes for individual 

trees within plots collected manually. Connecting these local scale measurements at the plot 

level to broad scale patterns is challenging because of spatial heterogeneity in forests. Many of 

the key processes in forests, including change in forest structure and function in response to 

disturbances such as hurricanes and pest outbreaks, and human modification through forest 

management and fire, occur at scales beyond those feasible for direct field measurement.  

 Satellite data with continuous global coverage have been used to quantify important 

patterns in forest ecology and management such as global tree cover dynamics and 

disturbances in temperate forests (e.g. [3]). However, the spatial resolution of satellite data 

makes it difficult to detect and monitor individual trees that underlie large scale patterns. These 

shortcomings can however be overcome by utilizing higher resolution remotely sensed data 

from low Earth orbit satellites, aircraft or drones to capture individual-level changes in forest 

structure and composition [4,5]. These high resolution data have become increasingly 

accessible, but converting the data into information on individual trees requires significant 

technical expertise and access to high-performance computing environments. This prevents 

most ecologists, foresters, and managers from engaging with large scale data on individual 

trees, despite the availability of the underlying data products and broad importance for forest 

ecology and management. 

In response to the growing need for publicly-available and standardized airborne remote 

sensing data over forested ecosystems, the National Ecological Observatory Network (NEON) 

is collecting multi-sensor data for more than 40 forested sites across the US. In this research, 

we combine this data with a semi-supervised deep learning approach [6,7] to produce a dataset 

on the location, height and crown area of over 100 million individual canopy trees at 37 sites 

distributed across the United States. To make these data readily accessible, we are releasing 

easy to access data files to spur biological analyses and to facilitate model development for 

tasks that rely on individual tree prediction. We describe the components of this open-source 

dataset, compare predicted crowns with hand-labeled crowns for a range of forest types, and 

discuss how this dataset can be used to address key questions in forest research.  

The NEON Crowns dataset 

The NEON Crowns dataset contains tree crowns for all canopy trees (those visible from 

airborne remote sensing) at 37 NEON sites. Since subcanopy trees are not visible from above, 

they are not included in this dataset. We operationally define “trees” as plants over 3m tall. The 

37 NEON sites represent all NEON sites containing trees with coregistered RGB and LiDAR 

data from 2018 or 2019 (see S3 for a list of sites and their locations). Predictions were made 

using the most recent year for which images were available for each site. 

https://www.zotero.org/google-docs/?DX0L7Y
https://www.zotero.org/google-docs/?BI7BIX
https://www.zotero.org/google-docs/?ae0z8V
https://www.zotero.org/google-docs/?NYUdh7
https://www.zotero.org/google-docs/?YJonF4


 

 

 

The dataset includes a total of 104,675,304 million crowns. Each predicted crown 

includes data on the spatial position of the crown bounding box, the area of the bounding box 

(an approximation of crown area), the 99th quantile of the height of LiDAR returns within the 

bounding box above ground level (an estimate of tree height), the year of sampling, the site 

where the tree is located, and a confidence score indicating the model confidence that the box 

represents a tree. The confidence score can vary from 0-1, but based on results from [6], boxes 

with less than 0.15 confidence were not included in the dataset. 

The dataset is provided in two formats: 1) as 11,000 individual polygons (geospatial 

‘shapefiles’ in standard ESRITM format) each covering a single 1km^2 tile; and 2) as 37 csv files, 

each covering an entire NEON site. Geospatial tiles have embedded spatial projection 

information and can be read in commonly available GIS software (e.g., ArcGIS, QGIS) and 

geospatial packages for most common programming languages used in data analysis (e.g., R, 

Python). All data are publicly available, openly licensed (CC-BY), and permanently archived on 

Zenodo (https://zenodo.org/deposit/3765872). 

 

 

Figure 1. Locations of 37 NEON sites included in the NEON Crowns Dataset and examples of 

tree predictions shown with RGB imagery for six sites. Clockwise from bottom right: 1) OSBS: 

Ordway-Swisher Biological Station, Florida 2) DELA: Dead Lake, Alabama, 3) SJER: San 

Joaquin Experimental Range, California, 4) WREF: Wind River Experimental Forest, 

https://www.zotero.org/google-docs/?iDoz6q
https://zenodo.org/deposit/3765872


 

 

 

Washington, 5) BONA: Caribou Creek, Alaska and 6) BART: Bartlett Experimental Forest, New 

Hampshire. Each predicted crown is associated with the spatial position, crown area, maximum 

height estimate from co-registered LiDAR data, and a predicted confidence score. 

To support the visualization of the dataset have developed a web visualization tool using 

the ViSUS WebViewer (www.visus.org) to allow users to view all of the trees at the full site scale 

with the ability to zoom and pan to examine individual groups of trees down to a scale of 20m 

(see http://visualize.idtrees.org, Figure 2). This tool will allow the ecological community to assist 

in identifying areas in need of further refinement within the over 500,000 ha of area covered by 

the 37 sites. 

 
Figure 2. The Neon Crowns Dataset provides individual-level tree predictions at broad scales. 

An example from Bartlett Forest, NH shows the ability to continuously zoom from landscape 

level to stand level views. 

Crown Delineation Methods 

The location of individual tree crowns was estimated using a semi-supervised deep learning 

workflow (Figure 3; [6,7]). This workflow uses a one-shot object detector with a convolutional 

neural network backbone to identify trees in RGB imagery. The model was pre-trained using 

weak labels generated from a previous published LiDAR tree detection algorithm using NEON 

data from 30 sites [8]. The model was then trained on 10,000 hand-annotated crowns from 7 

http://visualize.idtrees.org/
https://www.zotero.org/google-docs/?MfqbXs
https://www.zotero.org/google-docs/?jAsN3n


 

 

 

NEON sites (Figure 1). This phase of the workflow was performed using the DeepForest python 

package [9]. We extend the workflow by filtering trees using the LiDAR-derived canopy height 

model to remove objects identified by the model with heights of <3m (Supplementary Material). 

This addition was important in sparsely vegetated landscapes, such as oak savannah and 

deserts where it was difficult for the model to distinguish between trees and low shrubs in the 

RGB imagery.  

 

 

Figure 3. Workflow diagram adapted from [9]. The workflow for model training and development 

are identical to [9] with the exception of extracting heights from the canopy height model for 

each bounding box prediction. 

Evaluation and Validation 

Building on evaluation methods from [6,7,9], we validated the dataset using hand-annotated 

bounding boxes drawn by an observer looking directly at the sensor data. We refer to this type 

of evaluation data as ‘image-annotated crowns’. This approach allows the performance of the 

crown-delineation algorithm to be evaluated across the full range of forest types represented in 

the continental-scale dataset. However, note that these image-annotated crowns will not be as 

accurate as field-annotated crowns [10], and therefore may overestimate the performance of the 

algorithm relative to true ground truth.  

We compared predicted tree crowns to image-annotated crowns from 21 NEON sites 

(n=207 images, 6926 trees) that were withheld from model training. These sites were selected 

to cover a wide range of forest types and geographies. Using a 50% intersection over union 

threshold, our workflow yielded a bounding box recall of 72.4% with a precision of 70.5%. Recall 

is the proportion of image-annotated crowns matched to a crown prediction and precision is the 

https://www.zotero.org/google-docs/?hupJvJ
https://www.zotero.org/google-docs/?pgiwqF
https://www.zotero.org/google-docs/?Qrx6kr
https://www.zotero.org/google-docs/?euDfUA
https://www.zotero.org/google-docs/?b4hN9P


 

 

 

proportion of predictions that match image-annotated crowns. Precision and recall are equally 

important for developing a tree crown dataset, because it is important to both successfully 

identify trees and ignore non-tree objects. Tests indicate that the model generalizes well across 

geographic sites and forest conditions (Figure 4; [6,9]), but there is a general bias towards 

undersegmenting trees in dense stands where multiple individual trees with similar optical 

characteristics are grouped into a single delineation. Additional training data and the LiDAR 

threshold added in this implementation resulted in predictions that were 4.1% more precise, but 

2.8% less accurate than [9] (Figure 4). The decrease in recall likely occurs because the NEON 

field plots that were used for evaluation occur mostly in forested areas of the NEON sites, rather 

than in less dense areas of the sites. Areas with less dense forest (e.g., agriculture, suburban 

areas, and bare ground) are not as common within the NEON field plots used for evaluation and 

are likely the areas with improved precision from the use of the new LiDAR threshold 

(Supplementary Material). The 4% increase in precision is therefore likely a lower bound and is 

worth the trade-off in the minimal drop in recall.  

 

Figure 4. Precision and recall scores for the algorithm used to create the NEON Crowns Dataset 

(red points), as well as the DeepForest model from [9] (blue points). Evaluation is performed on 

207 image-annotated images (6926 trees) in the NEONTreeEvaluation dataset 

(https://github.com/weecology/NeonTreeEvaluation).  

 

We also compared crowns delineated by the algorithm to field-collected stems from 

NEON’s Woody Vegetation Structure dataset. This data product contains a single point for each 

tree with a stem diameter ≥ 10cm. We filtered the raw data to only include trees likely to be 

visible in the canopy (see Appendix S1). These overstory tree field data help us analyze the 

performance of our workflow in matching crown predictions to individual trees by scoring the 

proportion of field stems that fall within a prediction. Field stems can only be applied to one 

https://www.zotero.org/google-docs/?NSNhWJ
https://www.zotero.org/google-docs/?I5V0ka
https://www.zotero.org/google-docs/?4KpiXn
https://github.com/weecology/NeonTreeEvaluation


 

 

 

prediction, so if two predictions overlap over a field stem, only one is considered a positive 

match. This test produces an overall stem recall rate at  69.4%, similar to the bounding box 

recall rate from the image-annotated data (Figure 5). The analysis of stem recall rate is 

conservative due to the challenge of aligning the field-collected spatial data with the remote 

sensing data (Appendix S1). We found several examples of good predictions that were counted 

as false positives due to errors in the position of the ground samples within the imagery. 

 
Figure 5. Overstory stem recall rate for NEON sites with available field data. Each data point is 

the recall rate for a field-collected plot. NEON plots are either 40mx40m ‘tower’ plots with two 

20x20m subplots, or a single 20mx20m ‘distributed’ plot. See NEON sampling protocols for 

details. For site abbreviations see S3.  

 

To assess the utility of our approach for mapping forest structure, we compared remotely 

sensed predictions of maximum tree height to field measurements of tree height of overstory 

trees using NEON’s Woody Plant Vegetation Structure Data. We used the same workflow 

described in Appendix S1 for determining overstory status for both the stem recall and height 

verification analysis. Predicted heights showed good correspondence with field-measured 

heights of reference trees. Using a linear-mixed model with a site-level random effect, the 

predicted crown height had a Root Mean Squared Error of 1.73m (Figure 6). The relationship is 

stronger in forests with more open canopies (SJER, OSBS) and predictably more prone to error 

in forests with denser canopies (BART, MLBS). Given the challenges of measuring tree heights, 

including the difficulty of measuring tree height in the field, the potential for tree growth between 

the time of field measurement and image acquisition (often several years), and the automated 



 

 

 

workflow to designate whether field-collected trees were visible in the canopy, these results 

suggest that overstory height measures are reasonably accurate across the dataset. 

 

 
Figure 6. Comparison of field and remote sensing measurements of tree heights for 11 sites in 

the National Ecological Observatory Network. Each point is an individual tree. See text and S1 

for selection criteria and matching scheme for the field data. The RMSE of a mixed-effects 

model with a site level random effect is 1.73m. 

Using the NEON Crowns dataset for individual, landscape and 

biogeographic scale applications 

This dataset supports individual-level cross-scale ecological research that has not been 

previously possible. It provides the unique combination of information spanning the entire United 

States, with sites ranging from Puerto Rico to Alaska, with continuous individual-level data 

within sites at scales hundreds of times larger than what is possible using field-based survey 

methods. At the individual level, high-resolution airborne imagery can inform analysis of critical 

forest properties, such as  tree growth and mortality [11], foliar biochemistry [12], and 

landscape-scale carbon storage [13]. Because field data on these properties are measured on 

individual trees, individual level tree detection allows connecting field data directly to image 

data.  In addition, growth, mortality and changes in carbon storage occur on the scale of 

individual trees such that detection of individual crowns allows direct tracking of these properties 

https://www.zotero.org/google-docs/?gS8nbt
https://www.zotero.org/google-docs/?9EFZtY
https://www.zotero.org/google-docs/?qt4pXj


 

 

 

across space and time.  While it is possible to aggregate information at the stand level, we 

believe that individual level data opens new possibilities in large scale forest monitoring and 

provides richer insights into the underlying mechanisms that drive these patterns. 

At landscape scales, research is often focused on the effect of environmental and 

anthropogenic factors on forest structure and biodiversity. For example, understanding why tree 

abundance and biomass vary across landscapes has direct applications to numerous ecological 

questions and economic implications(e.g. [14]). Often, this requires sampling at a number of 

disparate locations and either extrapolation to continuous patterns at landscape scales, or 

assumptions that the range of possible states of the system are captured by the samples. Using 

the individual level data from this dataset, we can now  produce continuous high resolution 

maps across entire NEON sites for enabling landscape scale studies of multiple ecological 

phenomena (Figure 7). These landscape scale responses can then be combined with high 

resolution data on natural and anthropogenic drivers (e.g., topography, soils, fire management) 

to model forest dynamics at broad scales.  

 

 
Figure 7. Tree density maps for Teakettle Canyon, California (left) and Ordway Swisher 

Biological Station, Florida (right). For each 100m^2 pixel, the total number of predicted crowns 

were counted. The location of NEON Woody Plant Vegetation sampling plots are shown in black 

circles. 

 

By focusing on detecting individual trees, this approach to landscape scale forest 

analysis does not require assumptions about spatial similarity, sufficiently extensive sampling, 

or consistent responses of the ecosystem to drivers across spatial gradients. This is important 

because the heterogeneity of forest landscapes makes it difficult to use field plot data on 

quantities such as tree density and biomass to extrapolate inference to broad scales [15]. To 

illustrate this challenge, we compared field-measured tree densities of NEON field plots to 

estimated densities of 10,000 remotely sensed plots of the same size placed randomly 

https://www.zotero.org/google-docs/?2k8oav
https://www.zotero.org/google-docs/?FmQP5S


 

 

 

throughout the landscapes across footprints of the airborne data. We attempted to change the 

Woody Vegetation data as little as possible (i.e. compared to the more refined filtered data in 

previous analyses) in order to obtain estimates of tree cover in a plot from the field data. To be 

included in this analysis, trees needed to have valid spatial coordinates and a minimum height 

of 3m. Some older data lacked height estimates, in which case we used a minimum dbh 

threshold of 15cm for inclusion. In each simulated plot, we then counted the total number of 

predicted tree crowns to create a distribution of tree densities at the site level (Figure 8). 

Comparing the field plot tree densities with the distribution from the full site shows deviations for 

most sites, with NEON field plots exhibiting higher tree densities than encountered on average 

in the airborne data for some sites (e.g.,Teakettle Canyon, CA) and lower tree densities than 

from remote sensing in others (e.g., Ordway-Swisher Biological Station). While this kind of 

comparison is inherently difficult due to differing thresholds and filters for data inclusion in field 

versus remotely sensed data, but highlights that even well stratified sampling of large 

landscapes as was done with NEON plots (see NEON technical documents for 

NEON.DP1.10098) can produce differing tree attribute estimates than continuous sampling from 

remote sensing data. Combining representative field sampling with remote sensing to produce 

data products like the NEON Crowns dataset provides an approach to addressing this challenge 

to improve estimations of the abundance, biomass, and size distributions across large 

geographic areas. 

 

 
Figure 8. Comparison of tree counts between the field-collected NEON plots and the predicted 

plots from the crowns dataset. For the remote sensing data, 10000 simulated 40m2 plots were 

calculated for each site for the full AOP footprint for each year. To mimic NEON sampling, 2 

quadrants were randomly sampled in each simulated plot. No plots on water, bare ground, or 

herbaceous land classes were included in the comparison. We selected three sites from three 



 

 

 

NEON domains to show a sample of sites across the continental US. Both distributed and tower 

NEON plots were used for these analyses. 

 

The NEON Crowns dataset supports the assessment of cross-site patterns to help 

understand the influence of large scale processes on forest structure at biogeographic scales. 

For example, ecologists are interested in how and why forest characteristics such as 

abundance, biomass, and allometric relationships vary among forest types (e.g. [16]) and how 

these patterns covary across environmental gradients [17]. Understanding these relationships is 

important for inferring controls over forest stand structure, understanding individual tree biology, 

and assessing stand productivity. By providing standardized data that span near-continental 

scales, this dataset can help inform the fundamental mechanisms that shape forest structure 

and dynamics. For example, we can calculate tree allometries (e.g., the ratio of tree height to 

crown area) on a large number of individual trees across NEON sites and explore how allometry 

varies with stand density and vegetation type (Figure 9). This example analysis shows a 

continental-scale relationship, with denser forests exhibiting trees with narrower crowns for the 

same tree height compared to less dense forests, but also clustering and variation in the 

relationship within vegetation types. For example, subalpine forests illustrate relationships 

between tree density and allometry that are distinct from other forest types. By defining both 

general biogeographic patterns, and deviations therein, this dataset will allow the investigation 

of factors shaping forest structure at macroecological scales. 

 
Figure 9. Individual crown attributes for predictions made at each NEON site. For site 

abbreviations see S1. Crown area is calculated by multiplying the width and height of the 

predicted crown bounding box. Crown height is the 99th quantile of the LiDAR returns that fall 

inside the predicted crown bounding box. Sites are colored by the dominant forest type to 

illustrate the general macroecological relationship among sites in similar biomes. 

https://www.zotero.org/google-docs/?QBzDrj
https://www.zotero.org/google-docs/?C6WRlY


 

 

 

In addition to these ecological applications, the NEON Crowns dataset can also act as a 

foundation for other machine learning and computer vision applications in forest informatics, 

such as tree health assessments, species classification, or foliar trait estimation. In each of 

these tasks, individual tree delineation is the first step to associate sensor data with ground 

measurements. However, delineation requires a distinct set of technical background and 

computational approaches and thus many ecological applications either skip an explicit 

delineation step entirely [18] or apply existing software without detailed exploration of 

segmentation performance (e.g. [19]). Ignoring these factors can hamper accurate assessments 

due to mismatches between sensor data and individuals. While our crown annotations are not 

perfect, they are specifically tailored to one of the largest and openly accessible datasets that 

allows pairing individual tree detections with information on species identity, tree health, and leaf 

traits through NEONs field sampling, and we believe they are sufficiently robust to serve as the 

basis for broad scale analysis.  

Limitations and Further Technical Developments 

An important  limitation for this dataset is that it only provides information on sun-exposed tree 

crowns. It is therefore not appropriate for ecological analyses that depend on accurate 

characterization of subcanopy trees and the three-dimensional structure of forest stands. 

Fortunately, a number of the major questions and applications in ecology are primarily 

influenced by large individuals [20]. For example, biomass estimation is largely driven by the 

canopy in most ecosystems, rather than mid or understory trees that are likely to be missed by 

aerial surveys. Similarly, habitat classification and species abundance curves can depend on 

the dominant forest structure that can be inferred from coarse resolution airborne data [21] and 

could be improved using this dataset. It may be possible to establish relationships between 

understory and canopy measures using field data that could allow this dataset to be used as 

part of a broader analysis [22]. However, this would require significant additional research to 

validate the potential for this type of approach. 

An additional limitation is the uncertainty inherent in the algorithmic detection of crowns. 

While we found good correspondence between image-based crown annotations and those 

produced by the model for many sites, there remained substantial uncertainty across all sites 

and reasonable levels of error in some sites. It is important to consider how this uncertainty will 

influence the inference from research using this and similar datasets. The model is biased 

towards undersegmentation, meaning that multiple trees are prone to being grouped as a single 

crown. It is also somewhat conservative in estimating crown extent wherein it tends to ignore 

small extensions of branches from the main crown. These biases could impact studies of tree 

allometry and biomass if the analysis is particularly sensitive to crown area. When making 

predictions for ecosystem features such as biomass, it will be important to propagate the 

uncertainty in individual crowns into downstream analyses. While confidence scores for 

individual detections are provided to aid uncertainty propagation, the use of additional ground 

truth data may also be necessary to infer reliability.  

 One aspect of individual crown uncertainty that we have not addressed is the uncertainty 

related to image-based crown annotations and measurement of trees in the field [10]. To allow 

https://www.zotero.org/google-docs/?m6QLVd
https://www.zotero.org/google-docs/?amegiq
https://www.zotero.org/google-docs/?OmDkmw
https://www.zotero.org/google-docs/?p9Ay3B
https://www.zotero.org/google-docs/?yvJapJ
https://www.zotero.org/google-docs/?F1PsP7


 

 

 

training and evaluating the model across a broad range of forest types, we used image-based 

crown annotations. This approach assumes that crowns identifiable in remotely sensed imagery 

accurately reflect trees on the ground. This will not always be the case, as what appears to be a 

single crown from above may constitute multiple neighboring trees, and conversely, what 

appears to be two distinct crowns in an image may be two branches of a single large tree [10]. 

Targeted field surveys will be always needed to validate these predictions and community 

annotation efforts will allow for assessment of this component of uncertainty. 

The machine learning workflow used to generate this dataset also has several areas that 

could be improved for greater accuracy, transferability and robustness. The current model 

contains a single class ‘Tree’ with an associated confidence score. This binary representation 

prevents the model from differentiating between objects that are not trees and objects for which 

sufficient training information is not available. For example, the model has been trained to 

ignore buildings and other vertical structures that may look like trees. However, when 

confronted by objects data that has never been encountered, it often produces unintuitive 

results. Examples of objects that did not appear in the training data, and as a result were 

erroneously predicted as trees, include weather stations, floating buoys, and oil wells. Designing 

models that can identify outliers, anomalies, and ‘unknown’ objects is an active area of research 

in machine learning [] and will be useful in increasing accuracy in novel environments. Also, 

NEON data can sometimes be afflicted by imaging artifacts due to co-registration issues with 

LiDAR and raw RGB imagery (Appendix S2). This effect can lead to distorted imagery that 

appears fuzzy and swirled and lead to poor segmentation. An ideal model would detect these 

areas of poor quality and label them as ‘unknown’ rather than attempting to detect trees in these 

regions.  

Given these limitations, we view this version of the dataset as the first step in an iterative 

process to improve cross-scale individual level data on trees. Ongoing assessment of these 

predictions using both our visualization tool and field-based surveys will be crucial to continually 

identify areas for improvements in both training data and modeling approaches. While iterative 

improvements are important, the accuracy of the current predictions illustrates that this dataset 

is sufficiently precise for addressing many cross-scale questions related to forest structure. By 

providing broad scale crown data we hope to highlight the promising integration between deep 

learning, remote sensing, and forest informatics, and provide access to the results of this next 

key step in ecological research to the broad range of stakeholders who can benefit from these 

data.  
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Supplemental Materials 

S1. Evaluation of the workflow on NEON collected field stems 

Raw NEON tree stem data was processed from the NEON data portal to provide a data set to 

compare image derived heights to field measured heights.  The following filters were applied to 

the raw NEON field data (ID: DP1.10098.001) after download. A reference tree must have 

● Valid spatial coordinates 

● A unique height measurement per sampling period. Individuals double recorded but with 

different heights were discarded 

● Height measurements in more than one year to verify height measurement 

● Changes in between-year field heights of less than 6m  

● A classification as alive  

● A minimum height of 3m to match the threshold in the remote sensing workflow. 

● Be at least within 5m of the canopy as measured by the LiDAR height model extracted at 

the stem location. This was used to prevent matching with understory trees in the event 

that overstory trees were eliminated due to failing in one of the above conditions, or not 

sampled by NEON. 

 

To match trees in the field and the NEON Crowns dataset, we took the closest height when two 

predictions and field stems overlapped. We also dropped CLBJ since only 3 points met this 

criteria. All other NEON sites did not have any data that met this criteria.  
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Figure S5. Example stem recall for evaluation plot JERC_048 from Jones Ecological Resource 

Center, Georgia. Predicted tree bounding boxes in black. Filtered NEON field stems (see above 

for filtering criteria) in red.  

 
S6. Example from NEON plot BART_050 from Bartlett Forest, New Hampshire. In dense 

forests, multiple field stems can fall within a single predicted bounding box. This is due to both 

under-segmentation of visible crowns (pink arrows), as well as potentially incomplete filtering of 

field stems to identify overstory trees visible in the image (orange arrows).  

 

Figure S5 and Figure S6 highlight some of the challenges of matching remote sensing crown 

predictions and field collected stem data. In Figure S5, the green arrow shows the simplest 

scenario, a single prediction unambiguously overlaps a single collected stem. The black arrow 

shows a moderately challenging scenario in which a visually unambiguous crown only barely 

matches the field collected stem. This could occur due 1) the stem growing at an angle leading 



 

 

 

to a spatial mismatch between crown and stem, 2) spatial error in measuring the crown location, 

3) spatial error in the georeferencing of the RGB image. The blue arrow shows a stem point that 

does not overlap with a prediction crown. We have written the stem recall evaluation to be 

conservative, allowing no tolerance for points outside of the prediction box. Therefore, the stem 

recall for this image was 4/6 = 66.66%, which we believe is a conservative representation of the 

performance of the algorithm given the uncertainty in the field data and matching process. 

  

  



 

 

 

S2. Qualitative Assessment of Broad Scale Predictions 

 
Figure 4. Illustration of the LiDAR threshold for minimum predicted tree height using NEON plot 

ID OSBS_023 from Ordway Swisher Biological Station, Florida. Using the DeepForest algorithm 

[9], in blue, several boxes were removed based on no LiDAR returns above 3m (dotted orange). 

This step was key in open-ground areas in which the algorithm can confuse short vegetation 

with standing trees.  

 

With over 7,000 1km2 tiles, it is not possible to do a systematic check of predicted 

crowns. Our aim is to provide users with a broad scale description of areas of concern. There 

are two main types of failure modes, data quality and algorithm quality. Data quality errors can 

occur in either the RGB data or LiDAR products. RGB errors include incomplete site coverage, 
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image artifacts due to georectification, errors in orthomosaic stitching and lighting changes 

among data collection events (Figure S6).   

Figure S6. Errors in data quality leading to inaccurate predictions or inappropriate use cases. 

Top left) Patchy coverage at the site level can prevent broad scale analysis with large gaps in 

RGB data availability (NEON site GRSM). Top right) RGB artifacts at the edge of images stem 

from the challenge of georectification of the RGB and LiDAR tiles leading to swirling in the RGB 

pixels (NEON site OSBS). Bottom left) Seams in the flightlines in the RGB images leads to gaps 

in local predictions (NEON site DELA). Bottom right) Changes in illumination among data 

acquisition collections lead to stark changes in pixel values. 

S3. NEON Site Abbreviations 

Site Name siteID 

Domain 

Number State Latitude Longitude 



 

 

 

Abby Road ABBY D16 WA 45.76243 -122.33033 

Bartlett Experimental Forest BART D01 NH 44.06388 -71.28731 

Blandy Experimental Farm BLAN D02 VA 39.06026 -78.07164 

Caribou-Poker Creeks Research 

Watershed BONA D19 AK 65.15401 -147.50258 

LBJ National Grassland  CLBJ D11 TX 33.40123 -97.57 

Rio Cupeyes CUPE D04 PR 18.11352 -66.98676 

Delta Junction DEJU D19 AK 63.88112 -145.75136 

Dead Lake DELA D08 AL 32.54172 -87.80389 

Disney Wilderness Preserve DSNY D03 FL 28.12504 -81.4362 

Guanica Forest GUAN D04 PR 17.96955 -66.8687 

Harvard Forest HARV D01 MA 42.5369 -72.17266 

Healy HEAL D19 AK 63.87569 -149.21334 



 

 

 

Lower Hop Brook HOPB D01 MA 42.47179 -72.32963 

Jones Ecological Research Center JERC D03 GA 31.19484 -84.46861 

Jornada LTER JORN D14 NM 32.59068 -106.84254 

Konza Prairie Biological Station KONZ D06 KS 39.10077 -96.56309 

Lajas Experimental Station LAJA D04 PR 18.02125 -67.0769 

Lenoir Landing LENO D08 AL 31.85388 -88.16122 

Mountain Lake Biological Station MLBS D07 VA 37.37828 -80.52484 

Moab MOAB D13 UT 38.24833 -109.38827 

Niwot Ridge Mountain Research 

Station NIWO D13 CO 40.05425 -105.58237 

Northern Great Plains Research 

Laboratory NOGP D09 ND 46.76972 -100.91535 

Klemme Range Research Station OAES D11 OK 35.41059 -99.05879 

Ordway-Swisher Biological Station OSBS D03 FL 29.68927 -81.99343 



 

 

 

Red Butte Creek REDB D15 UT 40.78374 -111.79765 

Rocky Mountain National Park, 

CASTNET RMNP D10 CO 40.27591 -105.54592 

Smithsonian Conservation Biology 

Institute SCBI D02 VA 38.89292 -78.1395 

Smithsonian Environmental 

Research Center SERC D02 MD 38.89008 -76.56001 

San Joaquin Experimental Range SJER D17 CA 37.10878 -119.73228 

Soaproot Saddle SOAP D17 CA 37.03337 -119.26219 

Santa Rita Experimental Range SRER D14 AZ 31.91068 -110.83549 

Talladega National Forest TALL D08 AL 32.95046 -87.39327 

Lower Teakettle TEAK D17 CA 37.00583 -119.00602 

West St Louis Creek WLOU D13 CO 39.89137 -105.9154 

Woodworth WOOD D09 ND 47.12823 -99.24136 

Wind River Experimental Forest WREF D16 WA 45.82049 -121.95191 



 

 

 

Yellowstone Northern Range (Frog 

Rock) YELL D12 WY 44.95348 -110.53914 

 

 


