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Abstract

Forests provide essential biodiversity, ecosystem and economic services. Information on
individual trees is important for understanding the state of forest ecosystems, but obtaining
individual-level data at broad scales is challenging due to the costs and logistics of data
collection. While advances in remote sensing techniques allow surveys of individual trees at
unprecedented extents, there remain significant technical and computational challenges in
turning sensor data into tangible information. Using deep learning methods, we produced an
open-source dataset of individual-level crown estimates for 100 million trees at 37 sites across
the United States surveyed by the National Ecological Observatory Network’s Airborne
Observation Platform. Each canopy tree crown is represented by a rectangular bounding box
and includes information on the height, crown area, and spatial location of the tree. Tree crowns
identified using this technique correspond well with hand-labeled crowns, exhibiting both high
levels of overlap and good correspondence in height estimates. These data have the potential
to drive significant expansion of individual-level research on trees by facilitating both regional
analyses at scales of ~10,000 ha and cross-region comparisons encompassing forest types
from most of the United States.



Introduction

Trees are central organisms in maintaining the ecological function, biodiversity and the health of
the planet. There are estimated to be over three ftrillion individual trees on earth [1] covering a
broad range of environments and geography [2]. Counting and measuring trees is central to
developing an understanding of key environmental and economic issues and has implications
for global climate, land management and wood production. Field-based surveys of trees are
generally conducted at local scales (~0.1-100 ha) with measurements of attributes for individual
trees within plots collected manually. Connecting these local scale measurements at the plot
level to broad scale patterns is challenging because of spatial heterogeneity in forests. Many of
the key processes in forests, including change in forest structure and function in response to
disturbances such as hurricanes and pest outbreaks, and human modification through forest
management and fire, occur at scales beyond those feasible for direct field measurement.

Satellite data with continuous global coverage have been used to quantify important
patterns in forest ecology and management such as global tree cover dynamics and
disturbances in temperate forests (e.g. [3]). However, the spatial resolution of satellite data
makes it difficult to detect and monitor individual trees that underlie large scale patterns. These
shortcomings can however be overcome by utilizing higher resolution remotely sensed data
from low Earth orbit satellites, aircraft or drones to capture individual-level changes in forest
structure and composition [4,5]. These high resolution data have become increasingly
accessible, but converting the data into information on individual trees requires significant
technical expertise and access to high-performance computing environments. This prevents
most ecologists, foresters, and managers from engaging with large scale data on individual
trees, despite the availability of the underlying data products and broad importance for forest
ecology and management.

In response to the growing need for publicly-available and standardized airborne remote
sensing data over forested ecosystems, the National Ecological Observatory Network (NEON)
is collecting multi-sensor data for more than 40 forested sites across the US. In this research,
we combine this data with a semi-supervised deep learning approach [6,7] to produce a dataset
on the location, height and crown area of over 100 million individual canopy trees at 37 sites
distributed across the United States. To make these data readily accessible, we are releasing
easy to access data files to spur biological analyses and to facilitate model development for
tasks that rely on individual tree prediction. We describe the components of this open-source
dataset, compare predicted crowns with hand-labeled crowns for a range of forest types, and
discuss how this dataset can be used to address key questions in forest research.

The NEON Crowns dataset

The NEON Crowns dataset contains tree crowns for all canopy trees (those visible from
airborne remote sensing) at 37 NEON sites. Since subcanopy trees are not visible from above,
they are not included in this dataset. We operationally define “trees” as plants over 3m tall. The
37 NEON sites represent all NEON sites containing trees with coregistered RGB and LiDAR
data from 2018 or 2019 (see S3 for a list of sites and their locations). Predictions were made
using the most recent year for which images were available for each site.
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The dataset includes a total of 104,675,304 million crowns. Each predicted crown
includes data on the spatial position of the crown bounding box, the area of the bounding box
(an approximation of crown area), the 99th quantile of the height of LiDAR returns within the
bounding box above ground level (an estimate of tree height), the year of sampling, the site
where the tree is located, and a confidence score indicating the model confidence that the box
represents a tree. The confidence score can vary from 0-1, but based on results from [6], boxes
with less than 0.15 confidence were not included in the dataset.

The dataset is provided in two formats: 1) as 11,000 individual polygons (geospatial
‘shapefiles’ in standard ESRI™ format) each covering a single 1km”2 tile; and 2) as 37 csv files,
each covering an entire NEON site. Geospatial tiles have embedded spatial projection
information and can be read in commonly available GIS software (e.g., ArcGIS, QGIS) and
geospatial packages for most common programming languages used in data analysis (e.g., R,
Python). All data are publicly available, openly licensed (CC-BY), and permanently archived on
Zenodo (https://zenodo.org/deposit/3765872).
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Figure 1. Locations of 37 NEON sites included in the NEON Crowns Dataset and examples of
tree predictions shown with RGB imagery for six sites. Clockwise from bottom right: 1) OSBS:
Ordway-Swisher Biological Station, Florida 2) DELA: Dead Lake, Alabama, 3) SJER: San
Joaquin Experimental Range, California, 4) WREF: Wind River Experimental Forest,
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Washington, 5) BONA: Caribou Creek, Alaska and 6) BART: Bartlett Experimental Forest, New
Hampshire. Each predicted crown is associated with the spatial position, crown area, maximum
height estimate from co-registered LiDAR data, and a predicted confidence score.

To support the visualization of the dataset have developed a web visualization tool using
the ViSUS WebViewer (www.visus.org) to allow users to view all of the trees at the full site scale
with the ability to zoom and pan to examine individual groups of trees down to a scale of 20m
(see http://visualize.idtrees.org, Figure 2). This tool will allow the ecological community to assist
in identifying areas in need of further refinement within the over 500,000 ha of area covered by
the 37 sites.
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Figure 2. The Neon Crowns Dataset provides individual-level tree predictions at broad scales.
An example from Bartlett Forest, NH shows the ability to continuously zoom from landscape
level to stand level views.

Crown Delineation Methods

The location of individual tree crowns was estimated using a semi-supervised deep learning
workflow (Figure 3; [6,7]). This workflow uses a one-shot object detector with a convolutional
neural network backbone to identify trees in RGB imagery. The model was pre-trained using
weak labels generated from a previous published LIDAR tree detection algorithm using NEON
data from 30 sites [8]. The model was then trained on 10,000 hand-annotated crowns from 7
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NEON sites (Figure 1). This phase of the workflow was performed using the DeepForest python
package [9]. We extend the workflow by filtering trees using the LiDAR-derived canopy height
model to remove objects identified by the model with heights of <3m (Supplementary Material).
This addition was important in sparsely vegetated landscapes, such as oak savannah and
deserts where it was difficult for the model to distinguish between trees and low shrubs in the
RGB imagery.
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Figure 3. Workflow diagram adapted from [9]. The workflow for model training and development
are identical to [9] with the exception of extracting heights from the canopy height model for
each bounding box prediction.

Evaluation and Validation

Building on evaluation methods from [6,7,9], we validated the dataset using hand-annotated
bounding boxes drawn by an observer looking directly at the sensor data. We refer to this type
of evaluation data as ‘image-annotated crowns’. This approach allows the performance of the
crown-delineation algorithm to be evaluated across the full range of forest types represented in
the continental-scale dataset. However, note that these image-annotated crowns will not be as
accurate as field-annotated crowns [10], and therefore may overestimate the performance of the
algorithm relative to true ground truth.

We compared predicted tree crowns to image-annotated crowns from 21 NEON sites
(n=207 images, 6926 trees) that were withheld from model training. These sites were selected
to cover a wide range of forest types and geographies. Using a 50% intersection over union
threshold, our workflow yielded a bounding box recall of 72.4% with a precision of 70.5%. Recall
is the proportion of image-annotated crowns matched to a crown prediction and precision is the
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proportion of predictions that match image-annotated crowns. Precision and recall are equally
important for developing a tree crown dataset, because it is important to both successfully
identify trees and ignore non-tree objects. Tests indicate that the model generalizes well across
geographic sites and forest conditions (Figure 4; [6,9]), but there is a general bias towards
undersegmenting trees in dense stands where multiple individual trees with similar optical
characteristics are grouped into a single delineation. Additional training data and the LiDAR
threshold added in this implementation resulted in predictions that were 4.1% more precise, but
2.8% less accurate than [9] (Figure 4). The decrease in recall likely occurs because the NEON
field plots that were used for evaluation occur mostly in forested areas of the NEON sites, rather
than in less dense areas of the sites. Areas with less dense forest (e.g., agriculture, suburban
areas, and bare ground) are not as common within the NEON field plots used for evaluation and
are likely the areas with improved precision from the use of the new LiDAR threshold
(Supplementary Material). The 4% increase in precision is therefore likely a lower bound and is
worth the trade-off in the minimal drop in recall.
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Figure 4. Precision and recall scores for the algorithm used to create the NEON Crowns Dataset
(red points), as well as the DeepForest model from [9] (blue points). Evaluation is performed on
207 image-annotated images (6926 trees) in the NEONTreeEvaluation dataset
(https://qgithub.com/weecology/NeonTreeEvaluation).

We also compared crowns delineated by the algorithm to field-collected stems from
NEON’s Woody Vegetation Structure dataset. This data product contains a single point for each
tree with a stem diameter = 10cm. We filtered the raw data to only include trees likely to be
visible in the canopy (see Appendix S1). These overstory tree field data help us analyze the
performance of our workflow in matching crown predictions to individual trees by scoring the
proportion of field stems that fall within a prediction. Field stems can only be applied to one
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prediction, so if two predictions overlap over a field stem, only one is considered a positive
match. This test produces an overall stem recall rate at 69.4%, similar to the bounding box
recall rate from the image-annotated data (Figure 5). The analysis of stem recall rate is
conservative due to the challenge of aligning the field-collected spatial data with the remote
sensing data (Appendix S1). We found several examples of good predictions that were counted
as false positives due to errors in the position of the ground samples within the imagery.
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Figure 5. Overstory stem recall rate for NEON sites with available field data. Each data point is
the recall rate for a field-collected plot. NEON plots are either 40mx40m ‘tower’ plots with two
20x20m subplots, or a single 20mx20m ‘distributed’ plot. See NEON sampling protocols for
details. For site abbreviations see S3.

To assess the utility of our approach for mapping forest structure, we compared remotely
sensed predictions of maximum tree height to field measurements of tree height of overstory
trees using NEON’s Woody Plant Vegetation Structure Data. We used the same workflow
described in Appendix S1 for determining overstory status for both the stem recall and height
verification analysis. Predicted heights showed good correspondence with field-measured
heights of reference trees. Using a linear-mixed model with a site-level random effect, the
predicted crown height had a Root Mean Squared Error of 1.73m (Figure 6). The relationship is
stronger in forests with more open canopies (SJER, OSBS) and predictably more prone to error
in forests with denser canopies (BART, MLBS). Given the challenges of measuring tree heights,
including the difficulty of measuring tree height in the field, the potential for tree growth between
the time of field measurement and image acquisition (often several years), and the automated



workflow to designate whether field-collected trees were visible in the canopy, these results
suggest that overstory height measures are reasonably accurate across the dataset.
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Figure 6. Comparison of field and remote sensing measurements of tree heights for 11 sites in
the National Ecological Observatory Network. Each point is an individual tree. See text and S1
for selection criteria and matching scheme for the field data. The RMSE of a mixed-effects
model with a site level random effect is 1.73m.

Using the NEON Crowns dataset for individual, landscape and
biogeographic scale applications

This dataset supports individual-level cross-scale ecological research that has not been
previously possible. It provides the unique combination of information spanning the entire United
States, with sites ranging from Puerto Rico to Alaska, with continuous individual-level data
within sites at scales hundreds of times larger than what is possible using field-based survey
methods. At the individual level, high-resolution airborne imagery can inform analysis of critical
forest properties, such as tree growth and mortality [11], foliar biochemistry [12], and
landscape-scale carbon storage [13]. Because field data on these properties are measured on
individual trees, individual level tree detection allows connecting field data directly to image
data. In addition, growth, mortality and changes in carbon storage occur on the scale of
individual trees such that detection of individual crowns allows direct tracking of these properties
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across space and time. While it is possible to aggregate information at the stand level, we
believe that individual level data opens new possibilities in large scale forest monitoring and
provides richer insights into the underlying mechanisms that drive these patterns.

At landscape scales, research is often focused on the effect of environmental and
anthropogenic factors on forest structure and biodiversity. For example, understanding why tree
abundance and biomass vary across landscapes has direct applications to numerous ecological
questions and economic implications(e.g. [14]). Often, this requires sampling at a number of
disparate locations and either extrapolation to continuous patterns at landscape scales, or
assumptions that the range of possible states of the system are captured by the samples. Using
the individual level data from this dataset, we can now produce continuous high resolution
maps across entire NEON sites for enabling landscape scale studies of multiple ecological
phenomena (Figure 7). These landscape scale responses can then be combined with high
resolution data on natural and anthropogenic drivers (e.g., topography, soils, fire management)
to model forest dynamics at broad scales.
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Figure 7. Tree density maps for Teakettle Canyon, California (left) and Ordway Swisher
Biological Station, Florida (right). For each 100m”2 pixel, the total number of predicted crowns
were counted. The location of NEON Woody Plant Vegetation sampling plots are shown in black
circles.

By focusing on detecting individual trees, this approach to landscape scale forest
analysis does not require assumptions about spatial similarity, sufficiently extensive sampling,
or consistent responses of the ecosystem to drivers across spatial gradients. This is important
because the heterogeneity of forest landscapes makes it difficult to use field plot data on
quantities such as tree density and biomass to extrapolate inference to broad scales [15]. To
illustrate this challenge, we compared field-measured tree densities of NEON field plots to
estimated densities of 10,000 remotely sensed plots of the same size placed randomly
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throughout the landscapes across footprints of the airborne data. We attempted to change the
Woody Vegetation data as little as possible (i.e. compared to the more refined filtered data in
previous analyses) in order to obtain estimates of tree cover in a plot from the field data. To be
included in this analysis, trees needed to have valid spatial coordinates and a minimum height
of 3m. Some older data lacked height estimates, in which case we used a minimum dbh
threshold of 15cm for inclusion. In each simulated plot, we then counted the total number of
predicted tree crowns to create a distribution of tree densities at the site level (Figure 8).
Comparing the field plot tree densities with the distribution from the full site shows deviations for
most sites, with NEON field plots exhibiting higher tree densities than encountered on average
in the airborne data for some sites (e.g., Teakettle Canyon, CA) and lower tree densities than
from remote sensing in others (e.g., Ordway-Swisher Biological Station). While this kind of
comparison is inherently difficult due to differing thresholds and filters for data inclusion in field
versus remotely sensed data, but highlights that even well stratified sampling of large
landscapes as was done with NEON plots (see NEON technical documents for
NEON.DP1.10098) can produce differing tree attribute estimates than continuous sampling from
remote sensing data. Combining representative field sampling with remote sensing to produce
data products like the NEON Crowns dataset provides an approach to addressing this challenge
to improve estimations of the abundance, biomass, and size distributions across large
geographic areas.
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Figure 8. Comparison of tree counts between the field-collected NEON plots and the predicted
plots from the crowns dataset. For the remote sensing data, 10000 simulated 40m? plots were
calculated for each site for the full AOP footprint for each year. To mimic NEON sampling, 2
quadrants were randomly sampled in each simulated plot. No plots on water, bare ground, or
herbaceous land classes were included in the comparison. We selected three sites from three



NEON domains to show a sample of sites across the continental US. Both distributed and tower
NEON plots were used for these analyses.

The NEON Crowns dataset supports the assessment of cross-site patterns to help
understand the influence of large scale processes on forest structure at biogeographic scales.
For example, ecologists are interested in how and why forest characteristics such as
abundance, biomass, and allometric relationships vary among forest types (e.g. [16]) and how
these patterns covary across environmental gradients [17]. Understanding these relationships is
important for inferring controls over forest stand structure, understanding individual tree biology,
and assessing stand productivity. By providing standardized data that span near-continental
scales, this dataset can help inform the fundamental mechanisms that shape forest structure
and dynamics. For example, we can calculate tree allometries (e.g., the ratio of tree height to
crown area) on a large number of individual trees across NEON sites and explore how allometry
varies with stand density and vegetation type (Figure 9). This example analysis shows a
continental-scale relationship, with denser forests exhibiting trees with narrower crowns for the
same tree height compared to less dense forests, but also clustering and variation in the
relationship within vegetation types. For example, subalpine forests illustrate relationships
between tree density and allometry that are distinct from other forest types. By defining both
general biogeographic patterns, and deviations therein, this dataset will allow the investigation
of factors shaping forest structure at macroecological scales.
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Figure 9. Individual crown attributes for predictions made at each NEON site. For site
abbreviations see S1. Crown area is calculated by multiplying the width and height of the
predicted crown bounding box. Crown height is the 99th quantile of the LiDAR returns that fall
inside the predicted crown bounding box. Sites are colored by the dominant forest type to
illustrate the general macroecological relationship among sites in similar biomes.
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In addition to these ecological applications, the NEON Crowns dataset can also act as a
foundation for other machine learning and computer vision applications in forest informatics,
such as tree health assessments, species classification, or foliar trait estimation. In each of
these tasks, individual tree delineation is the first step to associate sensor data with ground
measurements. However, delineation requires a distinct set of technical background and
computational approaches and thus many ecological applications either skip an explicit
delineation step entirely [18] or apply existing software without detailed exploration of
segmentation performance (e.g. [19]). Ignoring these factors can hamper accurate assessments
due to mismatches between sensor data and individuals. While our crown annotations are not
perfect, they are specifically tailored to one of the largest and openly accessible datasets that
allows pairing individual tree detections with information on species identity, tree health, and leaf
traits through NEONSs field sampling, and we believe they are sufficiently robust to serve as the
basis for broad scale analysis.

Limitations and Further Technical Developments

An important limitation for this dataset is that it only provides information on sun-exposed tree
crowns. It is therefore not appropriate for ecological analyses that depend on accurate
characterization of subcanopy trees and the three-dimensional structure of forest stands.
Fortunately, a number of the major questions and applications in ecology are primarily
influenced by large individuals [20]. For example, biomass estimation is largely driven by the
canopy in most ecosystems, rather than mid or understory trees that are likely to be missed by
aerial surveys. Similarly, habitat classification and species abundance curves can depend on
the dominant forest structure that can be inferred from coarse resolution airborne data [21] and
could be improved using this dataset. It may be possible to establish relationships between
understory and canopy measures using field data that could allow this dataset to be used as
part of a broader analysis [22]. However, this would require significant additional research to
validate the potential for this type of approach.

An additional limitation is the uncertainty inherent in the algorithmic detection of crowns.
While we found good correspondence between image-based crown annotations and those
produced by the model for many sites, there remained substantial uncertainty across all sites
and reasonable levels of error in some sites. It is important to consider how this uncertainty will
influence the inference from research using this and similar datasets. The model is biased
towards undersegmentation, meaning that multiple trees are prone to being grouped as a single
crown. It is also somewhat conservative in estimating crown extent wherein it tends to ignore
small extensions of branches from the main crown. These biases could impact studies of tree
allometry and biomass if the analysis is particularly sensitive to crown area. When making
predictions for ecosystem features such as biomass, it will be important to propagate the
uncertainty in individual crowns into downstream analyses. While confidence scores for
individual detections are provided to aid uncertainty propagation, the use of additional ground
truth data may also be necessary to infer reliability.

One aspect of individual crown uncertainty that we have not addressed is the uncertainty
related to image-based crown annotations and measurement of trees in the field [10]. To allow
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training and evaluating the model across a broad range of forest types, we used image-based
crown annotations. This approach assumes that crowns identifiable in remotely sensed imagery
accurately reflect trees on the ground. This will not always be the case, as what appears to be a
single crown from above may constitute multiple neighboring trees, and conversely, what
appears to be two distinct crowns in an image may be two branches of a single large tree [10].
Targeted field surveys will be always needed to validate these predictions and community
annotation efforts will allow for assessment of this component of uncertainty.

The machine learning workflow used to generate this dataset also has several areas that
could be improved for greater accuracy, transferability and robustness. The current model
contains a single class ‘Tree’ with an associated confidence score. This binary representation
prevents the model from differentiating between objects that are not trees and objects for which
sufficient training information is not available. For example, the model has been trained to
ignore buildings and other vertical structures that may look like trees. However, when
confronted by objects data that has never been encountered, it often produces unintuitive
results. Examples of objects that did not appear in the training data, and as a result were
erroneously predicted as trees, include weather stations, floating buoys, and oil wells. Designing
models that can identify outliers, anomalies, and ‘unknown’ objects is an active area of research
in machine learning [] and will be useful in increasing accuracy in novel environments. Also,
NEON data can sometimes be afflicted by imaging artifacts due to co-registration issues with
LiDAR and raw RGB imagery (Appendix S2). This effect can lead to distorted imagery that
appears fuzzy and swirled and lead to poor segmentation. An ideal model would detect these
areas of poor quality and label them as ‘unknown’ rather than attempting to detect trees in these
regions.

Given these limitations, we view this version of the dataset as the first step in an iterative
process to improve cross-scale individual level data on trees. Ongoing assessment of these
predictions using both our visualization tool and field-based surveys will be crucial to continually
identify areas for improvements in both training data and modeling approaches. While iterative
improvements are important, the accuracy of the current predictions illustrates that this dataset
is sufficiently precise for addressing many cross-scale questions related to forest structure. By
providing broad scale crown data we hope to highlight the promising integration between deep
learning, remote sensing, and forest informatics, and provide access to the results of this next
key step in ecological research to the broad range of stakeholders who can benefit from these
data.
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Supplemental Materials

S1. Evaluation of the workflow on NEON collected field stems

Raw NEON tree stem data was processed from the NEON data portal to provide a data set to
compare image derived heights to field measured heights. The following filters were applied to
the raw NEON field data (ID: DP1.10098.001) after download. A reference tree must have

e Valid spatial coordinates

e A unique height measurement per sampling period. Individuals double recorded but with
different heights were discarded
Height measurements in more than one year to verify height measurement
Changes in between-year field heights of less than 6m
A classification as alive
A minimum height of 3m to match the threshold in the remote sensing workflow.
Be at least within 5m of the canopy as measured by the LiDAR height model extracted at
the stem location. This was used to prevent matching with understory trees in the event
that overstory trees were eliminated due to failing in one of the above conditions, or not
sampled by NEON.

To match trees in the field and the NEON Crowns dataset, we took the closest height when two
predictions and field stems overlapped. We also dropped CLBJ since only 3 points met this
criteria. All other NEON sites did not have any data that met this criteria.
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Figure S5. Example stem recall for evaluation plot JERC_048 fro Jones Ecological Resource

Center, Georgia. Predicted tree bounding boxes in black. Filtered NEON field stems (see above
for filtering criteria) in red.

S6. Example from NEON plot BART_050 from Bartlett Forest, New Hampshire. In dense
forests, multiple field stems can fall within a single predicted bounding box. This is due to both
under-segmentation of visible crowns (pink arrows), as well as potentially incomplete filtering of
field stems to identify overstory trees visible in the image (orange arrows).

Figure S5 and Figure S6 highlight some of the challenges of matching remote sensing crown
predictions and field collected stem data. In Figure S5, the green arrow shows the simplest
scenario, a single prediction unambiguously overlaps a single collected stem. The black arrow
shows a moderately challenging scenario in which a visually unambiguous crown only barely
matches the field collected stem. This could occur due 1) the stem growing at an angle leading



to a spatial mismatch between crown and stem, 2) spatial error in measuring the crown location,
3) spatial error in the georeferencing of the RGB image. The blue arrow shows a stem point that
does not overlap with a prediction crown. We have written the stem recall evaluation to be
conservative, allowing no tolerance for points outside of the prediction box. Therefore, the stem
recall for this image was 4/6 = 66.66%, which we believe is a conservative representation of the
performance of the algorithm given the uncertainty in the field data and matching process.



S2. Qualitative Assessment of Broad Scale Predictions
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Figure 4. lllustration of the LIiDAR threshold for minimum predicted tree height using NEON plot
ID OSBS_023 from Ordway Swisher Biological Station, Florida. Using the DeepForest algorithm
[9], in blue, several boxes were removed based on no LiDAR returns above 3m (dotted orange).
This step was key in open-ground areas in which the algorithm can confuse short vegetation
with standing trees.

With over 7,000 1km?2 tiles, it is not possible to do a systematic check of predicted
crowns. Our aim is to provide users with a broad scale description of areas of concern. There
are two main types of failure modes, data quality and algorithm quality. Data quality errors can
occur in either the RGB data or LiDAR products. RGB errors include incomplete site coverage,
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image artifacts due to georectification, errors in orthomosaic stitching and lighting changes
among data collection events (Figure S6).

Figure S6. Errors in data quality leading to inaccurate predictions or inappropriate use cases.
Top left) Patchy coverage at the site level can prevent broad scale analysis with large gaps in
RGB data availability (NEON site GRSM). Top right) RGB artifacts at the edge of images stem
from the challenge of georectification of the RGB and LiDAR tiles leading to swirling in the RGB
pixels (NEON site OSBS). Bottom left) Seams in the flightlines in the RGB images leads to gaps
in local predictions (NEON site DELA). Bottom right) Changes in illumination among data
acquisition collections lead to stark changes in pixel values.

S3. NEON Site Abbreviations

Domain
Site Name sitelD |Number| State Latitude Longitude




Abby Road ABBY D16 WA 45.76243 | -122.33033

Bartlett Experimental Forest BART D01 NH 44.06388 -71.28731
Blandy Experimental Farm BLAN D02 VA 39.06026 -78.07164

Caribou-Poker Creeks Research
Watershed BONA D19 AK 65.15401 | -147.50258
LBJ National Grassland CLBJ D11 TX 33.40123 -97.57

Rio Cupeyes CUPE D04 PR 18.11352 | -66.98676
Delta Junction DEJU D19 AK 63.88112 | -145.75136

Dead Lake DELA D08 AL 32.54172 ( -87.80389

Disney Wilderness Preserve DSNY D03 FL 28.12504 -81.4362

Guanica Forest GUAN D04 PR 17.96955 -66.8687
Harvard Forest HARV D01 MA 42.5369 -72.17266
Healy HEAL D19 AK 63.87569 | -149.21334




Lower Hop Brook HOPB D01 MA 42.47179 | -72.32963
Jones Ecological Research Center | JERC D03 GA 31.19484 | -84.46861
Jornada LTER JORN D14 NM 32.59068 | -106.84254
Konza Prairie Biological Station KONZ D06 KS 39.10077 -96.56309
Lajas Experimental Station LAJA D04 PR 18.02125 -67.0769

Lenoir Landing LENO D08 AL 31.85388 | -88.16122
Mountain Lake Biological Station | MLBS D07 VA 37.37828 -80.52484
Moab MOAB D13 uT 38.24833 | -109.38827

Niwot Ridge Mountain Research
Station NIWO D13 co 40.05425 | -105.58237

Northern Great Plains Research
Laboratory NOGP D09 ND 46.76972 | -100.91535
Klemme Range Research Station OAES D11 OK 35.41059 -99.05879
Ordway-Swisher Biological Station [ OSBS D03 FL 29.68927 -81.99343




Red Butte Creek REDB D15 uT 40.78374 | -111.79765
Rocky Mountain National Park,
CASTNET RMNP D10 co 40.27591 | -105.54592
Smithsonian Conservation Biology
Institute SCBI D02 VA 38.89292 -78.1395
Smithsonian Environmental
Research Center SERC D02 MD 38.89008 -76.56001
San Joaquin Experimental Range SJER D17 CA 37.10878 | -119.73228
Soaproot Saddle SOAP D17 CA 37.03337 ( -119.26219
Santa Rita Experimental Range SRER D14 AZ 31.91068 | -110.83549
Talladega National Forest TALL D08 AL 32.95046 -87.39327
Lower Teakettle TEAK D17 CA 37.00583 [ -119.00602
West St Louis Creek WLOU D13 co 39.89137 ( -105.9154
Woodworth WOOD | D09 ND 47.12823 -99.24136
Wind River Experimental Forest WREF D16 WA 45.82049 | -121.95191




Yellowstone Northern Range (Frog
Rock)

YELL

D12

wy

44.95348

-110.53914




