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Abstract— Data-driven gait prediction can provide a refer-
ence trajectory for a wide variety of simple and complex move-
ments captured in the training data. Coordinated Movement
(CM) is a data-driven approach that maps movements of the
body to movements of target joints, such as the ankle and
knee. We have previously shown that the performance of CM
for complex activities can be improved by adding more training
data. In this paper we demonstrate that performance can also
be improved by 1) including a history of the target joint angles
as inputs to the model and 2) dynamic reallocation of the
importance of the inputs over time using a neural network
technique called Attention. These modifications are applicable
when additional training data is limited. We also observe that
Attention can follow important events in gait over time, adding
interpretability to the system.

I. INTRODUCTION

Powered prostheses are constantly improving, becoming
lighter, more rugged, and more capable with each iteration [1,
2], but controlling the devices remains a significant challenge
[3, 4]. Most powered prosthetic lower limbs have modes
of operation corresponding to terrain types, such as flat-
ground walking or stair ascent. Data from sensors measuring
motion or forces, or body signals such as those from elec-
tromyography (EMG) can be used to estimate user intent.
Threshold-based rules were used in earlier implementations
to trigger transitions from one mode to another [5]. More
recently, machine learning has become an integral part of this
approach and has demonstrated improved performance and
more robust detection of the current mode and transitions [6,
7]. These advancements in control have enabled people with
limb-loss to experience increased ease in mobility through
various everyday environments.

However, powered lower limb users still experience chal-
lenges performing difficult non-periodic movements [8].
Sports, getting in and out of cars or restaurant booths,
obstacle avoidance, and uneven terrain are examples of
challenging activities of daily living that do not cleanly
correspond to commonly-used control modes.

In [9, 10] we showed that a data-driven method inspired
by the continuous and coordinated movement of the human
body can address a range of challenging movements. Our
Coordinated Movement (CM) controller is a neural network
model, which uses the history of movements of the rest of
the body to estimate the kinematics of a target joint omitted
from the input set of joints. For example, in the case of a
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trans-tibial prosthetic application this target joint would be
the ankle joint. The body motion of the person with the
amputation would serve as the inputs and the predictions
generated by the network could be used for the control of
the prosthesis.

Our CM approach produces high-quality reference tra-
jectories that resemble the movements chosen by able-
bodied individuals in the training set for activities such as
ambulation of flat ground and stairs [10], and more complex
movements such as weaving around cones, side stepping and
backwards walking [9].

Previously we observed that the type of activity and
the complexity of the movements involved can impact per-
formance. For example, certain sections of the obstacle
crossing activity, which contained punctuated and infrequent
movements, were not well anticipated [9]. One way to
improve performance is to increase the training set size to
include more variation of movements [10]. In this study, we
present two alternative modifications of our CM network:
1) augmentation of the input data to the network and 2)
modification of the network architecture.

A. Data augmentation: Including the history of target joints

In the previous implementations of CM, estimates for
target joints (e.g. right ankle angles) were generated using
current and previous movements of the intact joints as inputs,
but not the previous movements of the target joints. In
other words, the output of the network was a function of
body coordination, but was not strongly constrained to be
continuous over time.

We hypothesized that augmenting the inputs with the
history of target joint angles provides context and would
encourage continuity in the outputs. This approach has
been widely used in the field of multivariate time series
forecasting to predict temporal patterns of a time-series with
dependencies on multiple variables [11, 12].

Such models predict the current value of a time series
using past values of the same series as well as current and
past values of an external (exogenous) driving series. For
our application, the target joint (ankle) trajectory is the time
series of interest and the trajectories of the other intact joints
of the body are the exogenous driving time series.

Time-series data vary greatly based on the the underlying
phenomenon they represent. Seasonal processes such as
the weather patterns exhibit more stationarity compared to
economic forecasting with less distinct trends. Consequently,
models are often chosen specific to the domain. Several lin-
ear, non-linear [13], and hybrid [14] models have been used
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— each with their own benefits and trade-offs. Linear models
such as Auto-Regressive Moving Average (ARMA) are fast
and interpret-able but often fail to capture complex, non-
stationary, and nonlinear characteristics of the time-series.
Non-linear models, such as Non-linear Auto Regressive with
Exogenous (NARX) or artificial neural networks (ANN),
are more complex, time consuming, and come at a higher
computational cost, but often perform better for domains
with complex dependencies [13]. We have previously shown
that this applies to human movement data as well, with
the non-linear recurrent neural network model significantly
improving performance compared to linear regression model
[10]. Here, we compare the performance of two recurrent
neural networks against a simple linear ARIMAX regression
model.

B. Attention models for temporal dynamics of gait

For time-series prediction, we expect performance to ben-
efit with longer time-histories comprising more temporal in-
formation. Recurrent neural networks are particularly suited
for this purpose[15, 16]. We observed this to be true [10] but
the improvements plateaued after a gait time-history of about
160 ms. However, studies on human gait have shown that
changes in movement related to execution of a complex task
occur within 1-2 preceding steps [17, 18], suggesting that a
time history of joint angles at least 500-1000 ms long should
contain useful information for predicting current target joint
angles.

Our previous results, showing that prediction performance
saturated for shorter time histories than 500ms, suggests that
the models we chose were unable to take advantage of the
cues present during the long time histories. The immense
data present in the longer histories could be beyond the
capability of the relatively simple RNN structures we used
to learn the relevant movement cues. A common approach
in machine learning to overcome this sort of problem is to
increase the depth, or the number of layers of the network
[19]. However, this adds to the complexity, training time,
required amount of training data, and further reduces the
interpretability of the model. This difficulty in interpreting
how the decisions are made, and what inputs contribute to
the outputs, is a common critique of neural network and deep
learning methods.

To increase the efficiency in learning long term dependen-
cies and to introduce better interpretability of the outputs,
we borrow the Attention technique [20] from the field of
Natural Language Processing (NLP). Attention models are
the state-of-the-art in speech-to-speech translation research
[21]. They have demonstrated improved efficiency in learning
long term dependencies in long input sentences by computing
the correlation of targets with other parts of the sentence and
selectively focusing on the most useful parts.

We hypothesize that this ability to dynamically place
unequal “attention weights” on different parts of the input
series will allow the system to emphasize the informative
events in the time history and improve performance. Another
advantage of Attention models is that the attention weights

corresponding to different points in time allow for visualiza-
tion of the relative importance of these inputs in generating
target values.

II. METHODS

A. Participants

Ambulation data was collected for 10 healthy participants
(5 males, median age of 25) with no amputation or other
mobility impairments. The experiment was completed in a
single session which lasted less than 2 hours. Recruitment
and human subject protocols were performed in accordance
with the University of Washington Institutional Review
Board approval and each subject provided informed consent.
De-identified data can be made available, via a data use
agreement, upon request to the authors.

B. Experiments

The subject’s anthropometric details were recorded and 17
wearable Xsens Awinda (Xsens Technologies B.V.) sensors
were placed on locations according to [22], followed by a
calibration procedure. The subjects then performed 10-15
minute trials of traversing through an obstacle course at a
self selected speed, as described in [9]. The experiment was
completed in a single session which lasted less than 2 hours.
In total, 180 minutes of data were collected from all subjects
combined.

Obstacle Course: The obstacle course was designed to
require the participants to perform a large number of heading
changes, discrete events of stepping over obstacles, and ad-
justments of foot placement. Participants were not instructed
on the path they should take, but simply to “traverse the
course to the end and come back, weaving around the cones
on your way out, and stepping over the obstacles on your way
back.” The cones were arranged in a single line separated by
1.2 meters, and 3-cone “figure eights” [23] were placed at
the ends. The other side of the course consisted of three
rectangular obstacles of varying height. The dimensions of
the obstacles were (L × W × H) 0.7 m × 1.7 m × 0.2 m,
0.6 m × 0.6 m × 0.1 m, and 0.5 m × 0.6 m × 0.5 m, and
is also pictured in [9].

C. Instrumentation

We collected locomotion data using the Xsens Awinda suit
[22], consisting of 17 body-worn sensors placed at key loca-
tions. Each sensor has a tri-axial gyroscope, accelerometer,
magnetometer, and barometer. Xsens MVN Analyze software
integrates these individual sensors and renders a full-body
avatar. After a system specified calibration, the software
provides position and joint kinematics in a 3D environment.
Although other data such as limb-segment position, orien-
tation, acceleration are available, we used only joint angles
for this study. All angles are in Euler representation of the
joint angle vector (x, y, z) in degrees, calculated using the
Euler sequence ZXY following the International Society of
Biomechanics standard joint angle coordinate system [24].
Data, sampled at 60 Hz, from a total of 22 joints in 3
anatomical planes (sagittal, frontal, transverse) were captured

940

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 31,2021 at 20:13:02 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Xsens Motion Wearable Motion Capture system consisting of 17
IMU sensors placed at key locations on the body

for each trial, which results in 66 total possible features for
our machine learning methods.

D. Data Processing

Sensor data was visually inspected to see any aberrant
errors. During data collection, some sensors might get dis-
placed from their original calibrated location. If this was de-
tected during the experiment, sensor placement was corrected
followed by recalibration and reinitialization of the suit.

The Xsens software features a real-time engine that pro-
cesses raw sensor data for each frame, fits the human body
model to estimate anthropomorphic joint and segment data.
A post processing engine includes information from the
past, present, and future of each timestep to get an optimal
estimate of the position and orientation of each segment.
This High-Definition or ‘HD’ processing increases the joint
data quality by extracting more information from larger time
windows and modeling for skin artifacts. Given that most
human movement data information is contained within 15Hz
[25], we sub-sampled the data to 30 Hz, which reduces the
training time without loss of performance.

E. Machine Learning Model and Architecture

In [9] we show that a variant of Recurrent Neural Net-
works, the Long Short-Term Memory (LSTM), using a short
history of gait movements provided the best prediction of
the right ankle joint. In this study, we analyzed performance
on our dataset using the same network as well as a slightly
modified version to also include the history of target joints
as inputs. We also analyse the performance of the attention
based networks with and without target ankle joint history.

Given a time series trajectory of M intact joints x ∈
<M×T−1 , and a history of target joint angles yhist ∈ <T−1,
we employ the following network models to estimate current
target joint values ŷT at time instant T.

• LSTM : Single layer LSTM network that maps intact
joint trajectories to current target joint angles.

ŷT = f(x) (1)

where f is the LSTM network.

• LSTM+H : Single layer LSTM network with the target
joint angle history included in the input features. The
most straightforward way to implement this is to simply
concatenate the target time series history with the intact
joint history.

ŷT = f([x : yhist]) (2)

where [x : yhist] ∈ <M+1×T−1 is a concatenated matrix
of intact joints and target joint history.

• ATTN: Attention network [26] consists of a single
layer LSTM encoder followed by a single layer LSTM
decoder. Using only intact joints trajectory as input, this
model predicts current ankle value at time T as:

ŷT = f(x) (3)

where f is the Attention based encoder-decoder net-
work.

• ATTN+H: Attention network that includes the target
ankle joint history as one of the inputs along with the
intact joint history. However, the implementation relies
on concatenation with a context vector that is computed
based on temporal attention weights. For more details,
see [26]

yT = f(x, yhist) (4)

where f is the Attention based encoder-decoder net-
work.

The neural networks were implemented on the PyTorch
framework [27]. All experiments were run on a system with
an Intel Core i7-6850K 3.6 GHz 6-Core Desktop Processor
× 12 core CPU, 4 × GeForce GTX 1080 Ti 11GB VRAM.

In a real-time prosthetic controller, the trained network
would be applied to predict joint trajectories for a user
whose movements would not have been captured in the
training dataset. To analyze performance for this use case,
our evaluations were performed on a random test subject who
was omitted from the training set cohort. A random trial from
this test subject used as the validation set, and different trial
from same test subject was used as the test set.

a) Data Normalization and Reshaping: Each of the
joint angles exhibits a different Range of Motion (ROM).
In order to prevent high-ROM joints from dominating pre-
dictions, it is common practice to normalize all features
(generally 0 to 1). We normalized all joint angles for every
trial and saved the average scaling factor of the training
samples for de-normalizing the predicted joint angles.

b) Rolling Time Window: During training, LSTMs
backpropagate errors a specific number of time steps back.
The length of this history parameter, known as the sequence
length, affects the time scale that the LSTM cell state
reasons about. Choosing a longer sequence length increases
the number of parameters that need to be trained, increas-
ing computational load and requiring more training data.
Choosing a shorter sequence length increases the difficulty
of learning time dependencies in the data. In practice, choos-
ing a sequence length appropriate to the inherent temporal
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Fig. 2. System diagram. A time history of full-body joint angles (orange)
are concatenated with a history of target joint angles (green) in the +H
networks. The neural networks, two of which includes Attention, are trained
to predict the current target joint angle.

Hyperparameter Range/Values Optimal
Learning Rate [10−5 : 10−2] 5× 10−4

Batch Size [50,100,300] 100
Number of Epochs [20,50,100] 60
Input Sequence Length [1,2,5,10,15,20,30] 10
Number of LSTM Layers [1,2,4] 2
Number of Hidden Units [4,16,32,64,128] 128
Regularization Rate [0.5,0.05] 0.05
Standard Deviation of Random Noise [0.01:0.02] 0.015

TABLE I
HYPERPARAMETER VALUES TESTED FOR OPTIMAL PERFORMANCE OF

THE LSTM NETWORK ON THE OBSTACLE COURSE DATASET.

dynamics of the problem greatly simplifies training and
performance of the network [28]. Training input samples
were prepared as a overlapping rolling window of time series
data of desired sequence length. The optimal sequence length
was a hyperparamter we tuned for.

c) Loss Function and Neural Network Hyperparameter
Optimization: We used the mean squared error (MSE) be-
tween the predicted and measured joint angle as loss function
to be optimized. This is common metric used for regression
tasks in machine learning. Apart from the sequence length,
the network also has several hyperparameters that need to be
optimized for different application domains.

Hyperparameter Optimization: A combination of ran-
dom and grid search was applied to optimize LSTM network
hyperparameters. Each minibatch was shuffled and random
Gaussian noise was added to each sample to reduce over-
fitting.

Optimized hyperparameters included batch size, number
of epochs, number of layers (L), number of units in each
layer (HU), the standard deviation of the injected noise, the
regularization parameter for L2 loss (λ), and learning rate.

Every 5 epochs, the performance of the model was eval-
uated on a validation set. The best performing model was
saved and used to generate predictions and metrics on a test
set. 30 trials were evaluated for each parameter set and the
average RMSE was recorded. The optimal parameter value
selection was based not just on the absolute best performance
but also considering the overhead in time and computation
needed to reach that performance. The range of parameter
values tested is shown in Table I. The optimal hyperparam-
eter set was used to compare and evaluate performance.

d) Denormalization: To report results in their origi-
nal scale, all predictions were denormalized using avarage
minimum and maximum scaling factors extracted from the
training set. This is common practice in machine learning as
test set scaling factors are not known a priori.

III. ANALYSIS

We use Root Mean Squared Error (RMSE) as our outcome
measure to assess performance.

A. Inclusion of target joint history:

We assess the change in performance with inclusion of
the target joint’s history for two recurrent neural network
models with and without the Attention mechanism, totalling
4 models: LSTM, LSTM+H, ATTN and ATTN+H. An
ARIMAX model is used as baseline comparison for linear
models.

B. Input sequence duration

We assess the benefit of longer time history for the two
recurrent models. Both models (LSTM+H, ATTN+H) factor
the target joint history as an input and hence the input
sequence here refers to trajectories of both, intact joints as
well as the target joint. The input sequence duration is varied
from 160 ms to 1000 ms.

C. Temporal Dynamics of Attention

A significant gait event would be ‘attended’ to by the
network and will be reflected as a higher attention weight
corresponding to that instant in time. To show the dynamics
of the attention weights progress through time, we use a 2D
heat map. Input at each timestep contained an gait history of
1 second. Inputs were fed as overlapping rolling time widows
with step size 30 ms. (See Section II-E.b). Hence an event
would propagate diagonally along the next 30 timesteps.
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Fig. 3. Bar plot comparing the RMSE of ankle angle predictions in the
sagittal plane using input sequences of lengths 160 ms, 330 ms, and 1
second for the LSTM+H and ATTN+H models. Performance improved for
both models with longer time history but not beyond 330 ms
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Fig. 4. Bar plot comparing the RMSE of ankle angle predictions in the
sagittal plane between different models. Adding ankle angle history to both
LSTM-based models show a significant reduction of error.

IV. RESULTS

A. Including the history of target joints

Fig. 4 shows that factoring the target joint’s past move-
ments can drastically improve performance for estimating
current position. Of the 3 models that do consider target
joint history, the linear ARIMAX model had the highest
RMS error and the attention based model had the least.
Interestingly, the attention based model without target joint
history had the worst performance amongst all models.

Fig. 5 compares predictions of the model from our previ-
ous study [9] with the attention based model (ATTN+H).

B. Input sequence duration

Including a longer time history generally improved per-
formance up to a certain point. This improvement was
more pronounced for models with attention than without,
indicating better emphasis on important aspects of data.
But the trend of diminishing return was applicable to both
networks with error increasing with very long time history.
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Fig. 5. Ankle angle predictions from our previously reported LSTM [9]
and the ATTN+H models in the sagittal plane for the obstacle task.
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Fig. 6. Attention weights shown for a time window during a subject
performing an obstacle crossing. The x-axis denotes the constant input
history of 1 second for each timestep and the y-axis denotes progress of
input timesteps. The Attention model placed larger weights on an event at
the beginning of timestep 30. This event propagated along the history in
subsequent timesteps and was maintained up to timestep 60, denoting high
importance of that particular event.

C. Temporal Dynamics of Attention

Fig. 6 depicts an example of the evolving Attention
weights. Each row depicts the Attention weights for a
particular input timestep and each timestep contains about 1
sec of gait time history. The weights express the importance
of information contained at that time. Columns on the right
of the heatmap correspond to the most recent data. The
procession of time corresponds to the positive direction on
the y axis.

In this example, an important event occurs at approxi-
mately timestep 30 to 40. Attention places a high salience on
the data generated then, depicted as “hotter” on the heatmap.
As time continues, that event is maintained in high Attention
weights, as can be seen by the sliding diagonal high values
up to timestep 60. After that event exits the time window,
attention is redirected to new movements at the beginning of
the history window.
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V. DISCUSSION

This line of research is motivated by the goal of relying on
data to its maximum potential, and to hand-design as little
as possible. Applying limited computational resources to the
correct portions of that data is critical. The factors considered
here have to do with time: continuity of predictions over
time, and the appropriate time scale to pay attention to. In
previous studies we have considered the role of different
sensors, on the upper body or lower, or the contralateral limb.
In the future we expect that Attention models can lend insight
into the relative importance of input joints and sensors.

A. Inclusion of the time history of the target joints

This method produces dramatically superior results than
those we have previously reported. For the challenging
obstacle course data, we observed a drop from 6 degrees
RMS error to about 1 degree RMS error with inclusion of
target joint history. In practice, there could be complications
that arise from including the target joint time history. At
training time, the network learns to estimate the target joint
angles of able-bodied individuals. However, at run time,
the CM controller is used to generate reference trajectories
for the prosthesis. The time history of target joint angles,
then, is a time history of prosthetic joint angles. These data
could differ in fundamental ways from those appearing in
the training set, potentially causing unpredictable behavior.
This issue will become more clear as we are in the process
of conducting real usage tests using CM on a powered knee-
ankle prosthesis.

B. Input sequence duration

Spatio-temporal behaviour patterns of human locomotion
indicate that changes in movements needed for navigating
a complex target occur within 1-2 steps prior [17, 18].
This would indicate that data comprising gait trajectory
history of about 1 second would contain useful information
for better joint angle prediction. However, we observed a
diminishing return before that duration [10]. The useful
cues from past movements present in the history could be
lost in the volume of uninformative data. The improved
performance of attention networks in this case indicates that
efficient extraction of information could allow better use
of the contained information. Compared to the single layer
LSTM network, the attention model was more capable of
taking advantage of additional information (Fig. 3). Even
though the performance degraded slightly with very long
input history (1 sec), it was still better than too short of
a time history (160 ms).

C. Attention and temporal prioritization

Fig. 6 provides an example of how Attention, in addition
to providing improved performance, can potentially provide
insight. High Attention weightings correspond to data that
are important for prediction. This provides an empirical
measure of what data are actually being used by the network,
which can help in hyperparameter design. For instance, in
this study we observe high attention weights that occur even

all the way at the “back” of the longest history we used
(1 sec). This suggests that in some contexts, useful clues
for predicting future movements appear a full second before
those movements.

D. Limitations

The data used in this study to evaluate our novel ap-
proach is limited in size and the type of activities. We
have previously shown that adding more data can improve
network performance. This improvement was more pro-
nounced with an increase in variability in data from including
more subjects than with the addition of more data from the
same subjects [10]. Although this analysis was performed
on stair ambulation data, we expect this to apply to the
obstacle avoidance data as well. This suggests that the small
number of subjects (n=10) used is a limitation of this study.
Moreover, the performance was evaluated on only one type
of activity. However, the objective of this study was to
show the relative improvement of prediction performance
by augmenting the input data with the time history of the
target prosthetic joint and the Attention-based network. We
expect the results to hold with more subject data and for
other activities as well.

The results we report here are limited to offline perfor-
mance only and use RMS error as the outcome measure
which is commonly used for regression tasks. It is unclear if
the magnitude of the errors reported in this and our previous
studies are within an acceptable threshold for a load-bearing
prosthetic application. A more suitable outcome measure or
a Minimal Clinically Important Difference (MCID) of error
has not been established for gait and prosthetic control [29].
Live powered prosthesis experiments with human subjects
would be needed to truly assess this control strategy.

VI. CONCLUSIONS

This study aims to address the challenges faced by pow-
ered lower limb users during unstructured activities such
as side shuffling and weaving around obstacles. We have
previously demonstrated that a data driven approach could
be applicable to realize continuous control of powered pros-
thesis without explicit categorization of such movements. In
this study, we improve performance at predicting target joint
angles by including a time history of those target joint angles,
and by using Attention models that modulate the importance
of the data through time.
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