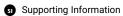
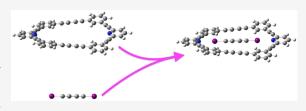


pubs.acs.org/joc Article

Building Shape-Persistent Arylene Ethynylene Macrocycles as Scaffolds for 1,4-Diiodobutadiyne

Bin Sun, Daniel M. Lux, Eric V. Patterson, and Nancy S. Goroff*


Cite This: J. Org. Chem. 2020, 85, 7641-7647


ACCESS

Metrics & More

ABSTRACT: Two shape-persistent arylene ethynylene macrocycles have been designed and synthesized as scaffolds to bind the nonpolar molecule 1,4-diiodobutadiyne. Binding via halogen bonding interactions between the pyridine moieties of the macrocycle and 1,4-diiodobutadiyne is predicted by density functional theory calculations and has been demonstrated in solution by 13 C NMR titrations. The binding constant for the macrocycle-monomer complex $(K = 10.5 \text{ L mol}^{-1})$ is much larger

than for other comparable halogen bonds, strongly supporting cooperative binding of both ends of the diyne. These results demonstrate a fully inserted geometry of 1,4-diiodobutadiyne in the complex.

INTRODUCTION

Halogen bonding, as a highly directional interaction between a Lewis base and the "sigma hole" of an electron-deficient halogen atom, has attracted increasing attention for both crystal engineering and solution-phase molecular recognition. $^{1-6}$ Halogen bonding has been used to create self-assembling materials $^{7-9}$ and to drive solid-state reactions with high regiospecificity, such as [2+2] additions 10 and topochemical polymerizations. 11,12 We have used halogen bonding in the solid state to prepare polymers such as polydiiododiacetylene (PIDA) from monomers such as 1,4-diiodobutadiyne, preorganized with the help of a self-assembling scaffold host (Figure 1). 13,14 The pyridyl or nitrile groups of the host align the diyne monomers by halogen bonding with the iodine atoms.

In solution, halogen bonding has garnered attention as a molecular recognition tool that is often orthogonal in selectivity to hydrogen bonding of host and guest. For example, researchers have examined halogen bonding for anion recognition and transport 15-17 and for catalysis. Willizing the high directionality of halogen bonding, anion receptors incorporating multidentate binding sites give high anion binding constants. Halogen bonding organocatalysts, suited to coordinate "soft" substrates, have been designed for Michael addition, halide abstraction, and reduction reactions. Neutral—neutral halogen bonding has been exploited for molecular recognition, and it can be increased by multipoint interactions. The binding gets stronger as more binding sites are involved, with binding constants varying from 0.9 to 100 L mol⁻¹.

In our studies of the polymer PIDA, which contains only a carbon backbone and iodine atom substituents, we discovered that the iodine atoms of the polymer are extremely labile, opening up the possibility of using PIDA as a precursor to the linear carbon allotrope carbyne. ^{24,25} We have attempted to

prepare carbyne via the deiodination of PIDA, by suspending the polymer in solvent in the presence of soft Lewis bases. ²⁶ However, aggregation of the PIDA polymer strands occurs before full deiodination takes place.

Anderson and co-workers have demonstrated that a rotaxane can be used to stabilize polyyne strands. ²⁷ We have therefore developed a new strategy to make carbyne, by first synthesizing PIDA as a polyrotaxane structure, using macrocyclic hosts to prepare and surround each chain. The shape-persistent macrocycles will serve as scaffolds to bind 1,4-diiodobutadiyne and align the monomers in the appropriate geometry for polymerization, and then will protect the chain from aggregation during the formation of carbyne. As progress toward this goal, here we describe the synthesis, structure, and halogen-bonding properties of two shape-persistent arylene ethynylene macrocycles, $\mathbf{M_a}$ and $\mathbf{M_b}$ (Figure 2), that can bind 1,4-diiodobutadiyne in solution by halogen bonding.

■ RESULTS AND DISCUSSIONS

The preorganized bond angles of shape-persistent macrocycles make the synthesis of these compounds more straightforward than other large rings, $^{28-31}$ as shown in Scheme 1. To prepare macrocycles $\mathbf{M_a}$ and $\mathbf{M_b}$, we first synthesized "half-ring" precursors $\mathbf{6a}$ and $\mathbf{6b}$. Dibromopyridyl amine $\mathbf{1}^{32}$ is coupled to carboxylic acid $\mathbf{2a}$ or $\mathbf{2b}$ to yield amides $\mathbf{3a}$ and $\mathbf{3b}$. 33 Double Sonogashira coupling of dibromopyridine $\mathbf{3a}$ or $\mathbf{3b}$ with

Received: October 21, 2019 Published: May 29, 2020

Figure 1. Polydiiododiacetylene prepared from 1,4-diiodobutadiyne.

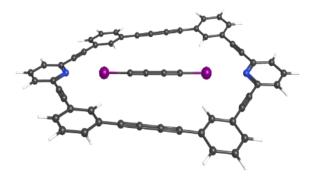
Figure 2. Arylene ethynylene macrocyclic hosts for diiodobutadiyne.

monoprotected dialkynyl benzene 4³⁴ gives the TIPS-protected half-rings 5a and 5b, which are then treated with tetrabuty-lammonium fluoride to give the deprotected half-rings 6a and 6b, respectively.

Several different homocoupling reactions, including Hay³⁵ and Eglinton³⁰ coupling, have been explored for the ring-closure reaction. The Hay coupling reaction gave a very low yield of the desired product, while the Eglinton coupling suffered from the challenge of removing pyridine. Reaction under Rossi's conditions, using bis(triphenylphosphine) palladium(II) chloride and copper iodide as cocatalysts,³⁶ gave the best results, as

shown in Scheme 2. A syringe pump has been used to control the addition rate, and the concentration of macrocycle half-ring 6a/6b was kept as low as 0.5 mmol/L to minimize oligomerization side reactions. Monitoring the reaction by TLC, an intermediate species with lower $R_{\rm f}$ value can be seen forming and then disappearing during the course of the reaction, while the desired product first appears after 8 h, as the spot with the lowest $R_{\rm f}$ value. The reaction was continued until neither the starting material or the intermediate were visible by TLC.

To test the appropriateness of this macrocyclic scaffold, density functional theory (DFT) studies have been conducted, investigating the binding of the macrocyclewith 1,4-diiodobutadiyne in solution. Geometries of four potential complexes between the parent macrocycle and 1,4-diiodobutadiyne were explored at the MN15/def2-SVP level of theory, using the SMD implicit chloroform solvent model.³⁷⁻⁴⁰ The calculations indicate that the most stable geometry for the host-guest complex has the guest fully inserted into the host cavity, as designed, with two halogen bonds, one between each iodine atom of the guest and a pyridine of the host (Figure 3). The geometry was further optimized at the MN15/def2-TZVP level, again in the presence of SMD chloroform. The calculated N···I distance is 2.96 Å, close to the N···I distance of 2.98 Å in the Xray crystal structure of a similar diiodobutadiyne-pyridine complex. 41 The computed Gibbs free energy of binding is -2 kcal mol⁻¹, a modest but favorable interaction.

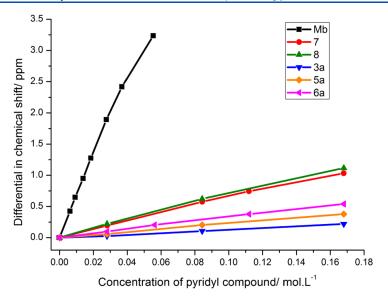

A modification to the SMD solvation model, SMD18,⁴² has recently been introduced, employing a more appropriate atomic radius for iodine. To ascertain the effect of SMD18 on this complex, the system was reoptimized at the MN15/def2-TZVP + SMD18 level of theory. The free energy of binding becomes more favorable, calculated at -4 kcal mol⁻¹. It is interesting to note that the N···I distance is essentially the same with both solvation models (2.93 Å with SMD18).

NMR titration has been widely used to quantify and determine the energetics of noncovalent interactions in solution, in a variety of supramolecular chemistry systems. 43-47 Iodoalkynes exhibit a significant change in ${}^{13}\dot{\rm C}$ NMR chemical shifts in the presence of Lewis base, 48,49 providing an effective tool for measuring the interactions between 1,4-diiodobutadiyne and our macrocyclic hosts. We therefore conducted ¹³C NMR titration experiments to investigate the binding activity between 1,4-diiodobutadiyne and macrocycle M_b , the more soluble of the two macrocycles in CDCl₃. The concentration of 1,4diiodobutadiyne in CDCl3 was held constant, while a solution of M_b was added. As the concentration of macrocycle M_b increases, the chemical shift of the α -carbon on 1,4diiodobutadiyne shifts to higher frequency. Other pyridyl compounds (compounds 7, 8, 3a, 5a, and 6a) were tested for comparison, as shown in Figure 4. As can be seen, the chemical shift change observed with the macrocycle is significantly larger than for any of the other pyridyl compounds, consistent with cooperative binding to both pyridine moieties of the host. Note that half-ring 6b has significantly weaker binding than less sterically blocked pyridyl compounds 7 and 8. Thus, the steric hindrance of the macrocycle may negatively affect the strength of binding, although the greater rigidity of the M_h structure likely reduces this effect. As shown in Table 1, the resulting binding constant for M_b and 1,4-diiodobutadiyne at room temperature (10.5 L mol⁻¹) is much greater than for any of the other pyridyl compounds tested. It is also much larger than the previously reported binding constant of pyridine and 1-(2-iodoethynyl)-4nitrobenzene ($K = 0.8 \text{ L mol}^{-1}$), 45 and for a two-point binding

Scheme 1. Synthesis of Macrocycle Precursors

"Reagents and conditions: (i) EDC·HCl, benzotriazol-1-ol, DMAP; (ii) PdCl₂(PPh₃)₂, CuI, THF/triethylamine; (iii) TBAF, THF.

Scheme 2. Synthesis of Macrocycles M_a and M_b by Palladium-Catalyzed Homo-Coupling


Figure 3. Calculated geometry of the macrocycle skeleton and 1,4-diiodobutadiyne.

complex between a perfluoroiodobenzene donor and an oxadiazole acceptor $(K=2 \text{ L mol}^{-1})$. The relative strength of the binding constant in our system strongly supports a cooperative binding model, in which both ends of the monomer are simultaneously halogen-bonded to the host.

To investigate the thermodynamics of the binding between the macrocycle and 1,4-diiodobutadiyne, NMR titrations were conducted at temperatures ranging from 295 to 310 K. The change in chemical shift $(\Delta\delta)$ was fitted against pyridyl host concentration, using a 1:1 binding isotherm model (Figure S2). The maximum $\Delta\delta$ has been estimated to be 9.8 ppm, using the chemical shift of (iodoethynyl)benzene in concentrated pyridine solution.⁵¹ This fitting provides the binding constant K, and additional thermodynamic parameters of the binding interaction were obtained from the Van't Hoff and Gibbs free energy equations (Table 2), in excellent agreement with the calculation results. The plot of $\ln K$ versus 1/T (Figure S4) yields $\Delta H = -4.0 \text{ kcal mol}^{-1} \text{ and } T\Delta S = -2.6 \text{ kcal mol}^{-1} \text{ at } 295 \text{ K. In}$ comparison, Dumele and co-workers prepared and studied halogen-bonding molecular capsules with four-point binding, and measured a greater enthalpy ($\Delta H = -12.6 \text{ kcal mol}^{-1}$), but it was compensated by higher entropy cost ($T\Delta S = -7.8$ kcal mol⁻¹ at 283 K).⁵²

CONCLUSIONS

In conclusion, two shape-persistent arylene ethynylene macrocycles have been synthesized in good yield by Pd-catalyzed homocoupling. Computational study supports binding of 1,4-diiodobutadiyne to these macrocycles in a fully inserted geometry. NMR titration experiments have further demonstrated to the support of the sup

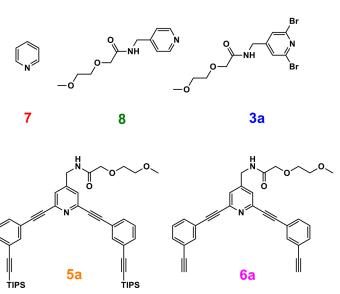


Figure 4. NMR titration of pyridyl hosts and 1,4-diiodobutadiyne at 298 K in CDCl₃. See the SI for full details.

Table 1. Thermodynamic Parameters for Binding of 1,4-Diiodobutadiyne with Pyridyl Hosts in CDCl₃ at 298 K

compound	7	8	3a	5a	6a	M_b
K^a / L mol ⁻¹	0.54	0.80	0.15	0.26	0.46	10.5
ΔG^b / kcal mol ⁻¹	0.36	0.14	1.12	0.81	0.46	-1.39

^aDetermined at 298 K in $CDCl_3$ by nonlinear curve fitting of ^{13}C NMR binding titration data to 1:1 binding isotherm; errors of 20% are generally assumed. bC alculated from averaged K at 298 K.

strated cooperative halogen bonding between the macrocycle and 1,4-diiodobutadiyne, leading to much stronger binding than for comparable monodentate halogen-bond complexes. The shape-persistent arylene ethynylene structure of macrocycles M_a and M_b provides a promising template for aligning 1,4-

Table 2. Thermodynamic Parameters for Binding of M_b and 1,4-Diiodobutadiyne in CDCl $_3$, from 295 to 310 K

T/K	295	298	301	304	307	310			
K^a / L mol ⁻¹	11.4	10.5	9.88	9.23	8.70	8.13			
ΔG / kcal mol ⁻¹	-1.43	-1.39	-1.37	-1.34	-1.32	-1.29			
^a Determined in CDCl ₃ by nonlinear curve fitting of ¹³ C-NMR									
binding titration data to 1:1 binding isotherm; errors of 20% are									
generally assumed									

diiodobutadiyne, but new derivatives that are more crystalline will be needed to prepare PIDA as a polyrotaxane.

■ EXPERIMENTAL SECTION

Reagents were purchased from Sigma-Aldrich, TCI, and Alfa Aesar and used as received. Dry THF was obtained by distillation from Na/

benzophenone. All reactions were performed under Ar unless otherwise stated. CuI catalyst was freshly purified for use. ^1H NMR (500 MHz/700 MHz) and $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz/175 MHz) spectra were measured on either a Bruker Ascend 700 spectrometer or a Bruker 500 Advance spectrometer and are provided with all chemical shifts quoted on the ∂ scale [ppm], and all coupling constants (*J*) expressed in Hz. HRMS (ESI) tests were performed on a Waters Q-TOF Ultima ESI at the School of Chemical Sciences, UIUC.

Compound 3a, N-((2,6-Dibromopyridin-4-yl)methyl)-2-(2methoxyethoxy)acetamide. Compound 1, (2,6-dibromopyridin-4-yl)methanamine (3.35 g, 12.6 mmol), prepared from 2,6dibromopyridine-4-carboxylic acid by the reported method, 32,53 was dissolved in 100 mL DCM in an ice-bath. Compound 2a (1.69 g, 12.6 mmol), EDC·HCl (2.41 g, 12.6 mmol), benzotriazol-1-ol•H₂O (1.93 g, 12.6 mmol) and DMAP (138 mg, 1.13 mmol) were added into the mixture sequentially. The mixture was stirred overnight, then diluted with 200 mL of DCM, washed with aq. NaHCO3 and brine, concentrated under vacuum, and separated by column chromatography $(Hex/EA = 1:1/SiO_2)$ to give compound 3a as a white solid (2.73 g, 57.4%, mp 138–139 °C). HRMS (ESI): calcd for $C_{11}H_{15}N_2O_3Br_2[M+$ H]⁺ 380.9449, found 380.9456. 1 H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.35 (s, 2H), 4.39 (d, J = 6.5 Hz, 2H), 4.05 (s, 2H), 3.68-3.69 (m, 2H), 3.53-3.54 (m, 2H), 3.33(s, 3H). ¹³C(¹H) NMR (125 MHz, CDCl₃) δ 170.4, 152.6, 140.8, 125.5, 71.3, 71.1, 70.1, 58.9, 40.6.

Compound 3b, *N*-((2,6-Dibromopyridin-4-yl)methyl)-2-(2-(2-methoxyethoxy)ethoxy)acetamide. White solid (60.2%, mp 137–138 °C). HR-MS (ESI): calcd for $C_{13}H_{19}N_2O_4Br_2$ [M + H]⁺ 424.9712, found 424.9722 ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.39 (s, 2H), 4.40 (d, J = 6.5 Hz, 2H), 4.06 (s, 2H), 3.70–3.71 (m, 2H), 3.62–3.66 (m, 4H), 3.48–3.49 (m, 2H), 3.25 (s, 3H). $^{13}C_4^{1}$ H} NMR (125 MHz, CDCl₃) δ 170.8, 153.2, 140.8, 125.6, 71.6, 71.2, 70.2, 69.9, 58.7, 40.6

Compound 5a, N-((2,6-Bis((3-((triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridin-4-yl)methyl)-2-(2-methoxyethoxy)acetamide. Benzene, 1-ethynyl-3-[2-[tris(1- methylethyl) silyl] ethynyl]³⁴ (4,1.52 g, 5.40 mmol) was added to a mixture of compound 3a (344 mg, 0.90 mmol), PhCl₂(PPh₃)₂ (63.0 mg, 0.09 mmol), and CuI (17 mg, 0.09 mmol) in 120 mL of NEt_3/THF (1:1). The mixture was heated to reflux overnight, filtered through Celite, concentrated under vacuum, and purified by column chromatography (ethyl acetate/SiO₂), to give compound 5a as a yellow oil (318 mg, 45.8%). HR-MS (ESI): calcd for C₄₉H₆₅N₂O₃Si₂ [M + H]⁺ 785.4534, found 785.4528. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (s, 2H), 7.53 (d, J = 7.5 Hz, 2H), 7.47 (d, J = 7.5 Hz, 2H), 7.42 (s, 2H), 7.31 (t, J = 7.5 Hz, 2H), 4.51 (d, J = 6.0)Hz, 2H), 4.12 (s, 2H), 3.72-3.74 (m, 2H), 3.56-3.58 (m, 2H), 3.35 (s, 3H), 1.14 (s, 42H). 13 C{ 1 H} NMR (125 MHz, CDCl₃) δ 170.5, 148.1, 143.9, 135.7, 132.5, 131.7, 128.4, 125.1, 123.9, 122.2, 105.8, 91.7, 88.8, 88.6, 71.5, 71.2, 70.3, 59.0, 41.3, 18.6, 11.3.

Compound 5b, *N*-{(2,6-Bis((3-((triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridin-4-yl)methyl)-2-(2-(2-methoxyethoxy)ethoxy)acetamide. Yellow oil (48.3%). HR-MS (ESI): calcd for $C_{51}H_{69}N_2O_4Si_2$ [M + H]+ 829.4796, found 829.4781. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (*J* = 6.5 Hz, 1H), 7.71 (s, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.42 (s, 2H), 7.30 (t, *J* = 8.0 Hz, 2H), 4.50 (d, *J* = 6.5 Hz, 2H), 4.11 (s, 2H), 3.73–3.74 (m, 2H), 3.66–3.68 (m, 2H), 3.62–3.64 (m, 2H), 3.46–3.48 (m, 2H), 3.26 (s, 3H), 1.13(s, 42H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 170.7, 148.7, 143.6 135.6, 132.4, 131.7, 128.4, 125.0, 123.9, 122.2, 105.8, 91.7, 88.8, 88.6, 71.7, 71.2, 70.3, 70.0, 60.1, 58.8, 41.1, 18.6, 11.2.

Compound 6a, *N*-((2,6-Bis((3-ethynylphenyl)ethynyl)pyridin-4-yl)methyl)-2-(2-methoxyethoxy)acetamide. Macrocycle half ring 5a (322 mg, 0.41 mmol) was dissolved in 50 mL of wet THF. Then, 3 equiv of TBAF (1.23 mmol) in THF solution was added into the solution dropwise. The mixture was stirred for 2 h, then concentrated in vacuo, and purified by column chromatography (Hex/EA = 1:1), to give compound 6a a pale-yellow powder. (163 mg, 84.7%, mp 156–157 °C). HR-MS (ESI): calcd for $C_{31}H_{25}N_2O_3$ [M + H] 473.1865, found 473.1860. ¹H NMR (700 MHz, CDCl₃) δ 7.71 (s, 2H), 7.61(s, 1H), 7.56 (d, J = 7.7 Hz, 2H), 7.48 (d, J = 7.7 Hz, 2H), 7.41 (s, 2H), 7.32 (t, J = 7.7 Hz, 2H), 4.50 (d, J = 6.3 Hz, 2H), 4.11 (s, 2H),

3.71–3.72 (m, 2H), 3.55–3.57 (m, 2H), 3.34 (s, 3H), 3.11 (s, 2H). 13 C 1 H 13 NMR (175 MHz, CDCl₃) δ 170.4, 148.2, 143.7, 135.5, 132.6, 132.3, 128.5, 125.1, 122.6, 122.3, 88.7, 88.6, 82.5, 78.0, 71.4, 71.2, 70.3, 59.0, 41.3.

Compound 6b, *N*-((2,6-Bis((3-ethynylphenyl)ethynyl)pyridin-4-yl)methyl)-2-(2-(2-methoxyethoxy)ethoxy)-acetamide. Pale yellow powder (86.2%, mp 155–156 °C). HR-MS (ESI): calcd for $C_{33}H_{29}N_2O_4$ [M + H]+517.2127, found 517.2128. 1 H NMR (500 MHz, CDCl₃) δ 7.84 (t, J = 6.1 Hz, 1H), 7.71 (s, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H), 7.41 (s, 2H), 7.32 (t, J = 7.8 Hz, 2H), 4.51 (d, J = 6.2 Hz, 2H), 4.11 (s, 2H), 3.71–3.72 (m, 2H), 3.54–3.56 (m, 2H), 3.50–3.52 (m, 2H), 3.45–3.47 (m, 2H), 3.34 (s, 3H), 3.11 (s, 2H). 13 C[1 H} NMR (125 MHz, CDCl₃) δ 170.4, 148.5, 143.1, 135.0, 132.2, 131.8, 128.2, 124.7, 122.2, 122.0, 88.4, 88.0, 82.1, 78.0, 71.2, 70.8, 69.9, 69.8, 69.6, 58.3, 40.7.

Macrocycle M_a. Compound **6a** (60.0 mg, 0.127 mmol) was dissolved in 30 mL of THF and added dropwise into a mixture of PhCl₂(PPh₃)₂ (8.4 mg, 0.012 mmol) and CuI (4.8 mg, 0.025 mmol) in a solution of 40 mL of NEt₃ and 130 mL of THF. The whole addition took approximately 3 h, controlled by syringe pump, and the mixture was stirred for 12 h in total. Then the solvent was removed in vacuo, and the solid mixture was washed with MeOH and purified by prep TLC in CHCl₃ with 4% MeOH to give macrocycle **M**_a as a white solid (35.8 mg, 30.3%, mp 161–162 °C). HR-MS (ESI): calcd for $C_{62}H_{45}N_4O_6$ [M + H]⁺ 941.3339, found 941.3328. ¹H NMR (700 MHz, CDCl₃) δ 7.91 (s, 4H), 7.61 (s, 2H), 7.56 (d, J = 7.0 Hz, 4H), 7.20 (d, J = 7.0 Hz, 4H), 7.43 (s, 4H), 7.36 (t, J = 7.0 Hz, 4H), 4.51 (d, J = 6.3 Hz, 4H), 4.12 (s, 4H), 3.72–3.73 (m, 4H), 3.57–3.58 (m, 4H), 3.35 (s, 6H). ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 170.5, 148.0, 143.8, 136.7, 132.7, 132.4, 128.6, 125.0, 122.6, 122.3, 89.1, 88.3, 80.5, 74.5, 71.4, 71.2, 70.3, 59.0, 41.3.

Macrocycle M_b. White solid (32.1%, mp 160–161 °C). HR-MS (ESI): calcd for $C_{66}H_{53}N_4O_8$ [M + H]⁺ 1029.3863, found 1029.3854.
¹H NMR (700 MHz, CDCl₃) δ 7.91 (s, 4H), 7.57 (d, J = 7.7 Hz, 4H), 7.52 (d, J = 7.7 Hz, 4H), 7.44 (s, 4H), 7.36 (t, J = 7.7 Hz, 4H), 4.52 (d, J = 6.3 Hz, 4H), 4.13 (s, 4H), 3.74–3.76 (m, 4H), 3.68–3.69 (m, 4H), 3.63–3.65 (m, 4H), 3.49–3.50 (m, 4H), 3.27 (s, 6H).
¹³C{¹H} NMR (175 MHz, CDCl₃) δ 170.8, 148.9, 143.4, 136.5, 133.0, 132.4, 128.6, 124.9, 122.6, 122.4, 89.0, 88.9, 80.6, 79.5, 74.7, 71.7, 71.3, 70.3, 70.1, 58.9, 41.2.

ASSOCIATED CONTENT

Solution Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.9b02859.

Experimental details for NMR titrations; computational details for study of host—guest complexes, including structural coordinates and energies; NMR spectra for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Nancy S. Goroff — Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States; orcid.org/0000-0003-0785-5864; Email: nancy.goroff@stonybrook.edu

Authors

Bin Sun — Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States

Daniel M. Lux — Department of Chemistry, Stony Brook
University, Stony Brook, New York 11794-3400, United States

Eric V. Patterson — Department of Chemistry, Stony Brook
University, Stony Brook, New York 11794-3400, United States;

orcid.org/0000-0002-0310-7626

Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.joc.9b02859

Author Contributions

All the authors have given approval to the final version of the manuscript

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to Xianzhi Liu, Ce Chen, and Matthew Hannigan for their contributions in the early stages of this project and to Emily Chen for help in preparation of this manuscript. We thank the National Science Foundation for support of this research through grant CHE-1308970. Computational modeling was made possible through the Mercury consortium (CHE-1229354 and CHE-16620301229354) and was supported by Grant CHE-1609669 to EVP.

REFERENCES

- (1) Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen Bonding in Supramolecular Chemistry. *Angew. Chem., Int. Ed.* **2008**, *47*, 6114–6127.
- (2) Erdelyi, M. Halogen Bonding in Solution. Chem. Soc. Rev. 2012, 41, 3547–3557.
- (3) Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Halogen Bonding in Solution: Thermodynamics and Applications. *Chem. Soc. Rev.* **2013**, 42, 1667–1680.
- (4) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. *Chem. Rev.* **2016**, *116*, 2478–2601.
- (5) Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen Bonding in Supramolecular Chemistry. *Chem. Rev.* **2015**, *115*, 7118–7195.
- (6) Berger, G.; Soubhye, J.; Meyer, F. Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. *Polym. Chem.* **2015**, *6*, 3559–3580.
- (7) Wang, F.; Ma, N.; Chen, Q.; Wang, W.; Wang, L. Halogen Bonding as a New Driving Force for Layer-by-Layer Assembly. *Langmuir* **2007**, 23, 9540–9542.
- (8) Vanderkooy, A.; Pfefferkorn, P.; Taylor, M. S. Self-Assembly of Polymer Nanostructures through Halogen Bonding Interactions of an Iodoperfluoroarene-Functionalized Polystyrene Derivative. *Macromolecules* **2017**, *50*, 3807–3817.
- (9) Priimagi, A.; Cavallo, G.; Forni, A.; Gorynsztejn-Leben, M.; Kaivola, M.; Metrangolo, P.; Milani, R.; Shishido, A.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen Bonding versus Hydrogen Bonding in Driving Self-Assembly and Performance of Light-Responsive Supramolecular Polymers. *Adv. Funct. Mater.* **2012**, *22*, 2572–2579.
- (10) Nagarathinam, M.; Peedikakkal, A. M. P.; Vittal, J. J. Stacking of double bonds for photochemical [2 + 2] cycloaddition reactions in the solid state. *Chem. Commun.* **2008**, 5277–5288.
- (11) Lauher, J. W.; Fowler, F. W.; Goroff, N. S. Single-Crystal-to-Single-Crystal Topochemical Polymerizations by Design. *Acc. Chem. Res.* **2008**, *41*, 1215–1229.
- (12) Sun, A.; Lauher, J. W.; Goroff, N. S. Preparation of Poly(diiododiacetylene), an Ordered Conjugated Polymer of Carbon and Iodine. *Science* **2006**, *312*, 1030–1034.
- (13) Luo, L.; Wilhelm, C.; Sun, A.; Grey, C. P.; Lauher, J. W.; Goroff, N. S. Poly(diiododiacetylene): Preparation, Isolation, and Full Characterization of a Very Simple Poly(diacetylene). *J. Am. Chem. Soc.* **2008**, *130*, 7702–7709.
- (14) DeCicco, R. C.; Luo, L.; Goroff, N. S. Exploiting Unsaturated Carbon-Iodine Compounds for the Preparation of Carbon-Rich Materials. *Acc. Chem. Res.* **2019**, *52*, 2080–2089.
- (15) Kilah, N. L.; Wise, M. D.; Serpell, C. J.; Thompson, A. L.; White, N. G.; Christensen, K. E.; Beer, P. D. Enhancement of Anion

- Recognition Exhibited by a Halogen-Bonding Rotaxane Host System. *J. Am. Chem. Soc.* **2010**, *132*, 11893–11895.
- (16) Vargas Jentzsch, A.; Emery, D.; Mareda, J.; Metrangolo, P.; Resnati, G.; Matile, S. Ditopic Ion Transport Systems: Anion-π Interactions and Halogen Bonds at Work. *Angew. Chem., Int. Ed.* **2011**, 50, 11675–11678.
- (17) Maugeri, L.; Lébl, T.; Cordes, D. B.; Slawin, A. M. Z.; Philp, D. Cooperative Binding in a Phosphine Oxide-Based Halogen Bonded Dimer Drives Supramolecular Oligomerization. *J. Org. Chem.* **2017**, *82*, 1986—1995.
- (18) Bulfield, D.; Huber, S. M. Halogen Bonding in Organic Synthesis and Organocatalysis. *Chem. Eur. J.* **2016**, 22, 14434—14450.
- (19) Sarwar, M. G.; Dragisic, B.; Sagoo, S.; Taylor, M. S. A Tridentate Halogen-Bonding Receptor for Tight Binding of Halide Anions. *Angew. Chem., Int. Ed.* **2010**, 49, 1674–1677.
- (20) Dimitrijević, E.; Kvak, O.; Taylor, M. S. Measurements of weak halogen bond donor abilities with tridentate anion receptors. *Chem. Commun.* **2010**, 46, 9025–9027.
- (21) Gliese, J.-P.; Jungbauer, S. H.; Huber, S. M. A halogen-bonding-catalyzed Michael addition reaction. *Chem. Commun.* **2017**, *53*, 12052–12055.
- (22) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. Halogen-Bond-Induced Activation of a Carbon-Heteroatom Bond. *Angew. Chem., Int. Ed.* **2011**, *50*, 7187–7191.
- (23) Bruckmann, A.; Pena, M. A.; Bolm, C. Organocatalysis through Halogen-Bond Activation. *Synlett* **2008**, *2008*, 900–902.
- (24) Luo, L.; Resch, D.; Wilhelm, C.; Young, C. N.; Halada, G. P.; Gambino, R. J.; Grey, C. P.; Goroff, N. S. Room-Temperature Carbonization of Poly(diiododiacetylene) by Reaction with Lewis Bases. J. Am. Chem. Soc. 2011, 133, 19274–19277.
- (25) Chalifoux, W. A.; Tykwinski, R. R. Synthesis of Polyynes to Model the sp-Carbon Allotrope Carbyne. *Nat. Chem.* **2010**, *2*, 967.
- (26) Resch, D.; Lee, C. H.; Tan, S. Y.; Luo, L.; Goroff, N. S. Mechanism and Scope of the Base-Induced Dehalogenation of (E)-Diiodoalkenes. *Eur. J. Org. Chem.* **2015**, 2015, 730–737.
- (27) Movsisyan, L. D.; Kondratuk, D. V.; Franz, M.; Thompson, A. L.; Tykwinski, R. R.; Anderson, H. L. Synthesis of Polyyne Rotaxanes. *Org. Lett.* **2012**, *14*, 3424–3426.
- (28) Zhang, W.; Moore, J. S. Shape-Persistent Macrocycles: Structures and Synthetic Approaches from Arylene and Ethynylene Building Blocks. *Angew. Chem., Int. Ed.* **2006**, *45*, 4416–4439.
- (29) Campbell, K.; Kuehl, C. J.; Ferguson, M. J.; Stang, P. J.; Tykwinski, R. R. Coordination-Driven Self-Assembly: Solids with Bidirectional Porosity. *J. Am. Chem. Soc.* **2002**, *124*, 7266–7267.
- (30) Rondeau-Gagné, S.; Néabo, J. R.; Desroches, M.; Larouche, J.; Brisson, J.; Morin, J.-F. Topochemical Polymerization of Phenylacetylene Macrocycles: A New Strategy for the Preparation of Organic Nanorods. *J. Am. Chem. Soc.* **2013**, *135*, 110–113.
- (31) Dawn, S.; Dewal, M. B.; Sobransingh, D.; Paderes, M. C.; Wibowo, A. C.; Smith, M. D.; Krause, J. A.; Pellechia, P. J.; Shimizu, L. S. Self-Assembled Phenylethynylene Bis-urea Macrocycles Facilitate the Selective Photodimerization of Coumarin. *J. Am. Chem. Soc.* **2011**, 133, 7025–7032.
- (32) Amb, C. M.; Rasmussen, S. C. 6,6'-Dibromo-4,4'-di-(hexoxymethyl)-2,2'- bipyridine: A New Solubilizing Building Block for Macromolecular and Supramolecular Applications. *J. Org. Chem.* **2006**, 71, 4696–4699.
- (33) Gurak, J. A.; Yang, K. S.; Liu, Z.; Engle, K. M. Directed, Regiocontrolled Hydroamination of Unactivated Alkenes via Proto-depalladation. *J. Am. Chem. Soc.* **2016**, *138*, 5805–5808.
- (34) Leung, S. Y.-L.; Tam, A. Y.-Y.; Tao, C.-H.; Chow, H. S.; Yam, V. W.-W. Single-Turn Helix-Coil Strands Stabilized by Metal···Metal and π - π Interactions of the Alkynylplatinum(II) Terpyridyl Moieties in meta-Phenylene Ethynylene Foldamers. *J. Am. Chem. Soc.* **2012**, *134*, 1047–1056.
- (35) Campbell, K.; McDonald, R.; Tykwinski, R. R. Functionalized Macrocyclic Ligands for Use in Supramolecular Chemistry. *J. Org. Chem.* **2002**, *67*, 1133–1140.

- (36) Rossi, R.; Carpita, A.; Bigelli, C. A Palladium-Promoted Route to 3-Alkyl-4-(1-alkynyl)-hexa-1,5-dyn-3-enes and/or 1,3-Diynes. *Tetrahedron Lett.* **1985**, 26, 523–526.
- (37) Four stationary points were yielded at the MN15/def2-SVP level of theory in the gas phase, as shown in Figure S5.
- (38) Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and non-covalent interactions. *Chem. Sci.* **2016**, *7*, 5032–5051.
- (39) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- (40) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378–6396.
- (41) Wilhelm, C.; Boyd, S. A.; Chawda, S.; Fowler, F. W.; Goroff, N. S.; Halada, G. P.; Grey, C. P.; Lauher, J. W.; Luo, L.; Martin, C. D.; Parise, J. B.; Tarabrella, C.; Webb, J. A. Pressure-Induced Polymerization of Diiodobutadiyne in Assembled Cocrystals. *J. Am. Chem. Soc.* **2008**, *130*, 4415–4420.
- (42) Engelage, E.; Schulz, N.; Heinen, F.; Huber, S. M.; Truhlar, D. G.; Cramer, C. J. Refined SMD Parameters for Bromine and Iodine Accurately Model Halogen-Bonding Interactions in Solution. *Chem. Eur. J.* **2018**, 24, 15983–15987.
- (43) Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. *Chem. Soc. Rev.* **2011**, *40*, 1305–1323.
- (44) Sarwar, M. G.; Dragisic, B.; Salsberg, L. J.; Gouliaras, C.; Taylor, M. S. Thermodynamics of Halogen Bonding in Solution: Substituent, Structural, and Solvent Effects. *J. Am. Chem. Soc.* **2010**, *132*, 1646–1653.
- (45) Dumele, O.; Wu, D.; Trapp, N.; Goroff, N.; Diederich, F. Halogen Bonding of (Iodoethynyl)benzene Derivatives in Solution. *Org. Lett.* **2014**, *16*, 4722–4725.
- (46) Lim, J. Y. C.; Marques, I.; Félix, V.; Beer, P. D. Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes. *J. Am. Chem. Soc.* **2017**, *139*, 12228–12239.
- (47) Wonner, P.; Vogel, L.; Düser, M.; Gomes, L.; Kniep, F.; Mallick, B.; Werz, D. B.; Huber, S. M. Carbon-Halogen Bond Activation by Selenium-Based Chalcogen Bonding. *Angew. Chem., Int. Ed.* **2017**, 56, 12009–12012.
- (48) Webb, J. A.; Klijn, J. E.; Hill, P. A.; Bennett, J. L.; Goroff, N. S. Experimental Studies of the ¹³C NMR of Iodoalkynes in Lewis-Basic Solvents. *J. Org. Chem.* **2004**, *69*, *660*–*664*.
- (49) Rege, P. D.; Malkina, O. L.; Goroff, N. S. The Effect of Lewis Bases on the ¹³C NMR of Iodoalkynes. *J. Am. Chem. Soc.* **2002**, *124*, 370–371.
- (50) Stoesser, J.; Rojas, G.; Bulfield, D.; Hidalgo, P. I.; Pasán, J.; Ruiz-Pérez, C.; Jiménez, C. A.; Huber, S. M. Halogen bonding two-point recognition with terphenyl derivatives. *New J. Chem.* **2018**, *42*, 10476–10480.
- (51) The estimation is based on the hypothesis assumption that the chemical shifts of the alkynyl carbons bonded with iodine in various iodoalkynes show similar response to halogen bonding with pyridyl nitrogen.
- (\$2) Dumele, O.; Trapp, N.; Diederich, F. Halogen Bonding Molecular Capsules. *Angew. Chem., Int. Ed.* **2015**, *54*, 12339–12344.
- (53) Barrow, R. A.; Hemscheidt, T.; Liang, J.; Paik, S.; Moore, R. E.; Tius, M. A. Total Synthesis of Cryptophycins. Revision of the Structures of Cryptophycins A and C. J. Am. Chem. Soc. 1995, 117, 2479–2490.