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Abstract— Transitioning from one activity to another is one
of the key challenges of prosthetic control. Vision sensors
provide a glance into the environment’s desired and future
movements, unlike body sensors (EMG, mechanical). This could
be employed to anticipate and trigger transitions in prosthesis
to provide a smooth user experience.

A significant bottleneck in using vision sensors has been
the acquisition of large labeled training data. Labeling the
terrain in thousands of images is labor-intensive; it would be
ideal to simply collect visual data for long periods without
needing to label each frame. Toward that goal, we apply an
unsupervised learning method to generate mode labels for
kinematic gait cycles in training data. We use these labels with
images from the same training data to train a vision classifier.
The classifier predicts the target mode an average of 2.2 seconds
before the kinematic changes. We report 96.6% overall and
99.5% steady-state mode classification accuracy. These results
are comparable to studies using manually labeled data. This
method, however, has the potential to dramatically scale without
requiring additional labeling.

I. INTRODUCTION

Successful prosthesis control has two important require-
ments: 1) Understanding user intent, 2) Understanding the
dynamic demands of the environment and movement activity.
Neuromuscular-mechanical data gathered from electromyo-
gram (EMG) and mechanical sensors are ideally suited for
the first requirement as they provide a direct window into
the user state. To explicitly sense the environment, vision as
a sensing modality has recently garnered interest [1, 2, 3, 4].

Current powered prosthesis control is generally based on
the categorization of the environment into finite classes or
“modes”, such as flat ground or stair ascent. Sensor data is
used as inputs to a trained classifier to predict the right mode
to match the environmental demands at any given time.

EMG implicitly senses the environment by relying on
user actions, which are modulated by the user in response
to the environment. EMG is also a user-dependent sensor
requiring subject-specific calibration and training. Its ability
to provide a window into the future actions of the user
and the upcoming environment changes is limited by the
timing of the user’s actions. This has posed a challenge for
anticipating the right locomotion mode, especially during
transitions [5, 6]. However, [7] have shown that augment-
ing neuromuscular-mechanical data with direct environment
information improves performance.

A. Vision for Explicitly Sensing the Environment
Humans use vision to sense the environment and fluidly

adapt to upcoming changes. Even with a wide variability of
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terrains, humans consistently look about 1.5 seconds ahead
of their current location [8]. This is similar to look ahead
timing seen in research on other motor actions, such as stair
climbing [9]. This means that the environmental information
present in vision data will generally precede kinematics data.
This look-ahead window, known as lead-time, is the main
benefit of using vision to anticipate transitions.

Computer Vision is a user-independent sensor that could
improve classification accuracy by directly sensing the en-
vironment [10]. It can anticipate transitions in advance to
trigger a change in controls at the right moment. It would also
improve the overall robustness of the system by not relying
purely on user-dependent sensing modalities [11, 12].

In the neuromuscular-mechanical sensing-based approach,
machine learning is employed for pattern recognition of data
for mode classification. Likewise, machine learning is also
used in state-of-the-art image classification tasks, as well as
vision-based locomotion mode research. Support Vector Ma-
chines [13] and Finite State Machines [2] have been used for
mode classification from depth camera data. These methods
have the advantage of being computationally efficient. At
the expense of greater computation, more accurate results
have been obtained using variants of deep learning models.
This approach e.g. [1, 3], has yielded an overall classification
accuracy (OCA) of 95% but transitions were relatively worse
with about 89% CA. The training data for all studies were
manually labeled which has presumably led to a low sample
size of subjects and training data.

B. Issues with Using Vision for Control

These promising successes suggest that vision can play a
valuable role in prosthetic control. One of the key bottle-
necks for realizing this promise is the difficulty of manually
labeling large quantities of training data. Here, we explore
the use of unsupervised techniques to automatically create
pseudo-labels of modes, solely learned from the kinematic
regularities that appear simultaneously with the captured
images.

To train a vision-based mode classifier requires images
with corresponding prosthetic activity mode labels as targets.
Studies currently employ manual methods of labeling, based
on physical location (kinematics) or visible features in image
data. One challenge with this approach is that there is human
labeling subjectivity, especially about when a transition ac-
tually occurs[4]. Consider an image as the user approaches
the stairs. Exactly when does the transition occur? These
choices can yield variability and inter-rater discrepancies
in the labels. Overall, this process is time and resource-
consuming, even for a modest number of modes. For ex-



ample, Laschowski et al. [4] manually labeled 37000 vision
frames for data from a single subject with 3 mode classes.
This is a titanic effort and the challenge for proceeding with
this strategy is clear.

Practical industrial application of deep learning requires
a large training dataset. Comparing other domains that use
vision for robotic control [14], the size of training data in the
recent prosthetic control studies have been far fewer. This
can limit generalization as the deep learning models learn
only the features of the limited training data used in that
study. This also prevents comparisons between classification
algorithms from different researchers [15]. Exonet [16] is
currently the only publicly available data pertaining to the
field of prostheses and exoskeletons, where approximately
923,000 images were manually labeled and organized into
12 locomotion mode classes.

We apply two techniques from the field of machine
learning to mitigate these issues. We use an unsupervised
learning strategy to automatically acquire labels for the
training images. To improve generalization and accuracy, we
transfer knowledge learned from bigger, publicly available
image dataset by a technique known as Transfer Learning.

C. Unsupervised Labelling and Transfer Learning

An unsupervised machine learning algorithm is used to
draw inferences from datasets consisting of data without
labeled responses. We employ a technique known as cluster
analysis. Cluster analysis in general is a longstanding and
mature field. For analysis of human movement, it has been
successfully applied to identify patterns of gait deviations
in children with cerebral palsy [17], and to distinguish the
walking parameters of young from elderly subjects [18].

We use time-normalized knee gait cycles as input features.
Knee gait cycles are clustered, or grouped into similar
classes, on a similarity-based distance metric. These cluster
labels constitute ”modes” by virtue of their similarity in the
data. The regularities present in natural movements dictate
the grouping of images of the environment. This allows
for modes to arise naturally and with minimal bias from
human interpretation. The auto-generated labels are then
used to train a vision classifier to detect upcoming modes
and transitions.

To demonstrate the benefits of using vision, we calculate
the lead time of vision-based predictions relative to those
based only on mechanical sensors. Since the visual features
of new terrain are visible before the body mechanically
responds to it, we hypothesize that we can achieve lead times
similar to typical human look-ahead duration [8]. We report
the overall and steady-state classification accuracy of the
vision classifier for a test set with manually labeled terrain
labels.

To summarize, the contributions described in this
manuscript are:

1) Demonstration of an unsupervised model to automati-
cally label gait data.

2) Application of those labels as targets to train a vision
classifier.

3) Quantification of accuracy and lead time using the
vision classifier compared to mechanical sensor (kine-
matic) data.

II. METHODS

A. Data Collection and Experiments

Ambulation data was collected for a total of 10 healthy
participants with no amputation or other mobility impair-
ments. Recruitment and human subject protocols were per-
formed in accordance with the local University of Wash-
ington Institutional Review Board approval and each subject
provided informed consent.

The subjects’ anthropometric details, such as height, body
segment lengths, etc.) were recorded and 17 wearable motion
capture sensors (see Instrumentation below) were placed on
their body. This was followed by a calibration procedure
and a brief test to see the quality of data being recorded. A
head-mounted ego-centric camera from Pupil Labs [19] was
calibrated and used to collect visual data.

Subjects performed 10-15 minute trials of ambulation
tasks, including transitions between them. The subjects were
instructed to walk naturally at a self-selected pace. The data
for these activities was collected in public spaces during ac-
tive business hours, with the intent that normal gait dynamics
and corrections would appear in the example data.

Each trial started with participants performing flatground
walking in a cluttered classroom environment with chairs,
followed by sections of flatground walking in open corridors.
The participants were then instructed to ascend a flight of
stairs to reach the next level, which involved flatground
walking in corridors. Participants returned to the original
level by descending the flight of stairs. There were brief
sections of atypical movements such as opening the class-
room door to enter the corridor section, short sections (2-3
steps) of flatground in between flight of stairs. There were
also instances in which the participants needed to navigate
around other people walking in the spaces.

B. Instrumentation

We collected locomotion data using the Xsens Awinda
suit [20], consisting of 17 body-worn sensors placed at key
locations. Each sensor has a tri-axial gyroscope, accelerom-
eter, magnetometer, and barometer. Xsens Analyse software
integrates these individual sensors and renders a full-body
avatar. After a system specified calibration, the software
provides position and joint kinematics in a 3D environment.
Although other data such as limb segment position, orien-
tation, acceleration are available, we used only joint angles
for this study. All angles are in 1x3 Euler representation of
the joint angle vector (x, y, z) in degrees, calculated using
the Euler sequence ZXY using the International Society of
Biomechanics standard joint angle coordinate system [21].
Data, sampled at 60 Hz, from a total of 22 joints in 3
anatomical planes (sagittal, frontal, transverse) were captured
for each trial, which results in 66 total possible features for
our machine learning methods.



A head-mounted ego-centric camera from Pupil Labs [19]
was used to collect visual data at 30fps and a resolution of
640x480 pixels.

Fig. 1: Examples of images captured by the head-mounted
pupil camera. 4 types of terrain were part of the environment
- flatground walking with and without obstacles, stair ascent
and descent.

C. Clustering for Unsupervised Labeling of Training Data

We apply Hierarchical Agglomerative Clustering (HAC) to
cluster knee gait cycles based on relative similarity measured
using euclidean distance.

Lack of ‘correct’ labels or responses makes objective
validation of cluster results challenging. However, quanti-
tative and qualitative methods, including visual analysis of
resulting clusters have been used to successful ends in prior
studies [17, 18, 22]. We verified the optimal number of
clusters using several metrics such as R-ratio, Dunn Index,
Silhouette score.The number of resulting clusters dictate the
locomotion mode labels available to the vision classifier (See
Section II-D). For brevity, we report only R-ratio results.

1) Data-processing: Lower-limb joints as input features
have consistently shown the most predictive power in gait-
related applications of clustering algorithms[17]. The input
to our clustering models was the right knee joint kinematics.
Segmented gait cycles were temporally normalized to 100
percent. Each gait cycle was considered a single sample, in
total yielding 6766 gait cycles in the training data from 9
subjects. Relative euclidean distance between each sample
was used to measure similarity for the clustering process.

Due to the lack of insole data, knee gait cycles were
segmented by using the contralateral knee peak flexion as
cutoffs (Fig.2). Similar methods have been used in other
studies to segment gait data without using force plate data
[23]. Although this method lacks the moment-to-moment
precision afforded by force-plate data, it is sufficient for
clustering entire gait cycles. MATLAB command findpeaks
was used for determining the peaks. A threshold value of 15
degrees was used for this data.

Fig. 2: Knee gait cycles were segmented using the peak
flexion angle of the contralateral knee joint as beginning and
end of the cycle. Although an imperfect method, it yields
qualitatively consistency results amenable for automatic gait
categorization via clustering.

2) Unsupervised Machine Learning: Clustering algo-
rithms can be broadly classified as hierarchical methods
or non-hierarchical methods such as K-Means. The HAC
algorithm we use is a type of hierarchical procedure in cluster
analysis which are characterized by the rule-based devel-
opment of a tree-like structure known as dendrogram. The
dendrogram aids in visualizing and interpreting the resulting
cluster groups. Going from the top, the dendrogram allows
informed decisions about the similarity of the occurring
patterns or cluster groups in the data. Leaves represent the
final clusters. Leaves in the same branch are similar in terms
of linkage distance between the clusters.

3) Analysis: We use the R Ratio and within-cluster sum
of squared error as a means to select the optimal number of
cluster groups in the training data.

R-ratio is used by prior studies as a computational metric
to determine the optimal number of clusters [24, 22]. This is
a measure of the reduction of the within-cluster variability.

R =

[
e(N,K)

e(N,K + 1)
− 1

]
(N −K + 1)

where e(N, K) is defined as the summation of within-
cluster square distances for N patterns and K clusters. The
algorithm is stopped when the R ratio peaks, corresponding
to a large reduction in the within-cluster variability. This
indicates that the clusters are quite homogeneous.

Along with computation methods like R-ratio, a final
visual inspection is generally considered crucial [17]. We
use the mean kinematic pattern of each of the resulting
clusters for visual analysis. These represent the different
environments evidenced by differing knee kinematics. In the
next section, we show these mean kinematic patterns and
the dendrogram of the clustering process to elucidate relative
similarity between groups.



Fig. 3: Each gait cycle was assigned a label using clustering.
All images corresponding to the duration of the gait cycle
were tagged with the same label for the purposes of training
the vision classifier.

D. Vision Classification

An 18-layer Residual Convolutional Network pre-trained
on ImageNet data [25] is fine-tuned to predict 3 locomotion
mode classes based on image data.

1) Data Processing:
Image labeling: Image data were collected using the

head-mounted camera and down-sampled to 5Hz. An un-
supervised cluster model was used to generate mode labels
for every gait cycle (See Section II-C). An average human
gait cycle duration is about 1-second [26]. At a sample rate
of 5Hz for image data, a single gait cycle contains about 5
images. All images corresponding to the duration of the gait
cycle are tagged with the same label as shown in Fig 3.

2) Data: A multi-modal sensor data brings in challenges
in training and evaluation.

a) Kinematic and Vision Labels: Current research on
vision for prosthesis control distinguishes between 2 types
of labels or ground truth for the data. Terrain labels can be
based on

i Current kinematic behavior using foot position.
ii Visible features of the terrain in image data.

Since visible features of the new terrain can be in the
image from a long distance, vision-based labeling is prone
to subjective bias [13, 4]. For example, while approaching
a flight of stairs in the distance, the exact vision frame
to switch the mode from flatground to stair ascent can be
unclear. More importantly, for our purpose, this also means
that vision-based labels will generally precede kinematics-
based labels. This lead-time is the main benefit of using
vision to anticipate transitions.

b) Steady-State and Transition Data: For training and
performance evaluation a common trend in prosthetic control
research is to separate steady-state and transition sections
[27, 13]. Steady-state comprises sections of data without
any terrain or activity changes, where a periodic gait cycle
is repeated. Transitions consist of sections with locomotion

mode changes. For e.g [3] consider 5 seconds of data before
terrain change as transition data. Other studies use gait events
such as mid-swing for stair ascent or heel strike for flat
ground transitions as deadlines to assess performance[2].
We use a shorter section of 3 seconds before mode label
change as the transition section. The performance evaluation
of transition, however, is less clearly established, which we
discuss below.

3) Machine Learning: We train a ResNet-18 a convolu-
tional neural network that is 18 layers deep[28] with image
data to classify terrains into 3 classes(flatground, stair-ascent,
and stair descent). However, the initial weights of this Base
Model is randomly initialized as is common practice.

To improve generalization and to offset a relatively small
training data size, we apply a technique called Transfer
Learning. This is achieved by training a model on a large
dataset (eg. ImageNet) and then transferring the learned
knowledge (features, weights) by fine-tuning the model to a
different dataset. The features learned from the large dataset
usually carries over to the new dataset and improves accuracy
compared to a randomly initialized model[29].

The pre-trained model is adapted or ‘fine-tuned’ to the new
dataset by training only the last layer, known as the head,
responsible for generating the class labels. The rest of the
model, known as the body or backbone, is frozen to retain
the learning from the large dataset.

The network is pre-trained on more than a million images
from the ImageNet database [25] with images from 1000
object categories, such as a keyboard, mouse, pencil, and
many animals. As a result, the network has learned rich
feature representations for a wide range of images. We
fine-tune this network by further retraining on our data to
classify terrains into 3 classes(flatground, stair-ascent, and
stair descent). The network has an image input size of 224-
by-224.

4) Training and Inference Process:
a) Training: The training process uses labels generated

by the unsupervised model to train the vision classifier.
1) Knee gait cycles in the training dataset are clustered into

an optimal number of clusters using an unsupervised
clustering algorithm. Each group is assigned a kinematic
mode label.

2) Each gait cycle has several corresponding images (Fig
3). The label associated with a gait cycle is used to tag
all the corresponding images.

3) Vision Classifier is trained with images as inputs and
corresponding labels.
Training with Steady-State Data Only: The approach

described above relies on the transference of kinematic-based
labels to vision data. Kinematic sensor data are inherently
delayed and hence the labels acquired by the clustering
method represent the mode class after transitioning to a new
terrain type. As such, this labeling scheme is only valid for
steady-state data.

The vision classifier predicts labels based on the visible
features of current or upcoming terrain in the image data.
To induce clear binary distinctions between terrains during



training, only steady-state data is used. About 3 seconds of
data before transitions are considered ’transition’ data and
omitted from training.

For an unseen test subject approaching a stair ascent
terrain, the image data will be classified as stair ascent
mode based on visible features of stairs. The predicted label
will lead the kinematic-based actions and is one of the key
benefits of vision sensors.

b) Inference:: Since a new terrain will be visible before
body kinematics adapt, the predicted vision label (Vt) will
lead the kinematic based K̂t. We define the lead time as

∆t =| V̂t − K̂t |

1) During inference, images are forwarded to the CNN
classifier to predict vision labelsV̂t

2) For steady-state gait, the predicted V̂t will match the K̂t

mode label.
3) For an upcoming transition, new terrain will be visi-

ble before the kinematics change to adapt. Hence the
mode labels predicted by the CNN classifier precede
kinematic-based labels by a lead-time of ∆t. That is V̂t

will match the mode class of K̂t+∆t

5) Performance Evaluation and Analysis: Vision-based
prosthesis studies employ 3 evaluation metrics to evalu-
ate various characteristics of resulting performance. Overall
classification accuracy (CA) is the percentage of accurately
labeled images relative to all images in the test data. Steady-
state classification accuracy is similar but omits transition
sections of the data.

Evaluation of performance for transitions is not clearly
defined, and several methods are observed in studies In EMG
studies [30], specific gait events such as toe-off from the
level ground to upstairs and heel contact from downstairs
to the level ground are used to estimate the deadline of
locomotion transition. Prediction lead time with respect to
this deadline is used to quantify the anticipatory response
of the systems. [2] use a similar approach by segmenting
gait and use the mid-swing as the critical deadline. However,
they report the percentage of transitions detected before the
foot lift of the leading limb. [1] report lead time for a CNN-
based vision classifier with respect to kinematic based labels.
[3] defined the transition period as the 5 second period
before a transition and report terrain classification accuracy
percentage during these periods. [13] report percentage of
total transitions detected.

We report overall CA, steady-state CA, and the lead time
of the vision-based label with respect to the kinematic labels
for every terrain type.

III. RESULTS

The system noted 99% steady-state and 96% overall
accuracy of mode classification using the vision sensor.
Transitions were detected with a best-case average of 2.2
secs before kinematics changed to adapt to the new terrain.

A. Unsupervised Labeling using Clustering

R ratio peaked at K=3 number of clusters indicating 3
dominant kinematic patterns.

The parameter K, the number of desired clusters decides
the truncation of the clustering process shown as the tree-
like dendrogram (Fig4). This decision can be based on prior
knowledge of the terrain types in the training data. Analyzing
the dendrogram and the resultant cluster groups could also
lend insight.

Fig. 4: The dendrogram is a graphical representation of the
cluster groups and their relationships. E.g., with group labels
starting with 0 from the left, cluster groups 0 and 1 belong
to the same branch. Cluster groups 2 and 3 are distinct from
groups 0 and 1. Visual analysis of the patterns in each of the
groups reveals that groups 0 and 1 correspond to flatground
in two different scenarios. Group 2 cluster contains all the
stair ascent samples and group 3 was determined to contain
stair descent samples.

In our case, the desired level of resolution of the environ-
ment was constrained to flatground, stair-ascent, and stair
descent activities. This matched the peak R-ratio. Hence,
the clustering process was halted when 3 cluster groups
remained. The average kinematic patterns extracted in the
3 groups are shown in Fig 5. These patterns correspond to
flatground, stair-ascent, and stair descent respectively.

If the dendrogram is truncated at a higher level, the process
is halted earlier, to result in 4 clusters as shown in Fig 4.
The fourth cluster, in this case, corresponding to a variant of
flatground walking that included avoiding obstacles (Fig 7).

B. Vision Classification

The performance of the vision classifier was evaluated on
a test set with manually labeled ground truth. Fig 6 shows
the predicted and actual mode labels for unseen test subject
data. Transitions and lead times are also shown.

The transfer learning classifier pre-trained on the Ima-
geNet data achieved an overall CA of 96.6% and steady-state
CA of 99.5%. In comparison, the classifier initialized with
random weights had an overall CA of 95.7% and a steady-
state accuracy of 99.14%.



Fig. 5: Mean patterns and 25% percentile of samples when
the number of clusters is chosen to be K=3

Transition Base
Model

Tranfer-Learning
Model

a FG - SA 0.8s 1.1s
b SA - FG 2.5s 2.6s
c FG -SD 1.5s 1.0s
d SD -FG 4.5s 2.5s
e FG -SA 1.1s 1.0s
f SA -FG 3.1s 2.8s
g FG - SD 1.8s 1.8s

TABLE I: Transition lead-times for the base model (with
randomly initialized weights) and the transfer-learning model
(with pre-trained weights). Base model had a better average
lead time of 2.2 seconds compared to 1.8 seconds achieved
by the transfer-learning model. Certain particular transitions
such as stair-ascent (SA) to flat ground (FG) and stair-descent
(SD) to flatground had relatively much lead time with the
base model.

The base model (randomly initialized) had a better average
lead time of 2.2 seconds than the transfer learning classifier
with an average lead time of 1.8 seconds. The lead-times
for some of the transitions such as transitioning to flat-
ground from stair ascent (f in Fig 6) and stair descent (d)
was markedly better for the base model (Table I). These
results were contrary to our hypothesis. We discuss the small
variability in the test set as a limitation below.

IV. DISCUSSION

Vision sensors are a great way to explicitly sense the
environment. It allows looking ahead at upcoming transitions
to anticipate change in control and improve prosthetic per-
formance. However, for robust deployment, training requires
labeling examples which can be a laborious process. We
show here that a vision classifier can be trained using
machine-generated labels and achieve similar performance
compared to manually labeled data.

While training, neural networks learn general features of
images to classify data. We train a CNN classifier on pure ex-
amples of the terrain types by eliminating transition sections
from training data. This helps build a clearer understanding
of the corresponding terrain type e.g. stairs in the network.
While approaching a flight of stairs, the vision data shows
features of stairs (albeit mingled with other segments of

flatground in the image) almost 5 - 7 seconds before the user
takes the first step. The visual features of the new terrain get
gradually more distinct as the distance to the stairs reduces.
This eventually triggers a label change in the vision classifier
predictions, well before the bio-mechanical changes in the
user. We noted best-case lead-time of +4.5 secs before a
terrain transition and worst case lead-time of +0.8 seconds
(Table I). In all cases the vision classifier detected terrain
change before the actual transition.

EMG activity precedes a change in physical behavior
with less than 100ms lead time [31]. This precludes its
usage to detect the environment and predict locomotion
modes of amputees in advance. EMG is also limited in
its ability to recover from errors as the system is relying
solely on the user state to indirectly gauge the demands
of the current environment [32]. Explicit sensing of the
environment to anticipate changes will improve robustness
and overall performance [11]. This is achievable using vision
sensors. It is also a user-independent sensor and would allow
off-the-shelf usage in locomotion mode recognition systems
[13].

The unsupervised clustering of gait cycles was shown
to be a viable method to derive terrain labels for images
with minimal human intervention. The categorization of data
is dictated by the uniqueness of the movements thereby
eliminating subjective bias.

The dendrogram (Fig 4) shows the last 4 clusters of
gait patterns present in the data. The clustering algorithm
differentiates between flat ground walking in long corridor
sections versus flat ground walking inside classrooms (See
top row of Fig 1). The latter which involved avoiding chairs
(shown as Group 3 in Fig 7) could be considered a different
‘mode’ for prosthetic control. Most manual labeling schemes
would generalize these into a single flat ground mode de-
spite their slight differences. With unsupervised labeling, the
choice rests upon the researcher/clinician. When this level of
distinction is not desired, the group will be merged into a
single ’flatground’ group, still distinct from stair ascent and
descent.

We hypothesized that transfer learning will be able to
improve performance and generalization. The transferred
model was pre-trained on a million images of the ImageNet
dataset. Our results showed that transfer learning improved
classification accuracy from 95.6% to 96.7% for 3 modes.
This OCA is comparable to the best results from studies with
manually labeled training data (95% [1] and 98% [3]). But as
authors of [4] noted individual mode accuracy matters. Most
datasets, including ours, are unbalanced consisting mostly
(80%+) of flatground.

The average lead time for transitions was better for the ran-
domly initialized model (2.2 secs vs 1.8 secs). Transition to
flatground from both SA and SD had much larger lead times
which contributed to a larger average lead time (Table I). This
could be due to the classifier over-fitting to the training set.
The size and terrain classes of the test set were limited and
were very similar to the training set, especially for flatground
examples. Data with a wider range of environments will be



Fig. 6: Predicted and actual mode labels for an unseen test subject data. Transfer learning based model showed overall
classification accuracy of 96% and an average transition lead-time of 1.8 seconds. In contrast, the base model with randomly
initialized weights had an OCA of 95% and 2.2 seconds. Lead-time is defined as the time elapsed between the vision system
detecting a change in terrain and the body kinematics of the user changing to adapt to the new terrain.

Fig. 7: Mean patterns and 25% percentile of samples when
the number of clusters is chosen to be K=4

better to evaluate the transfer learning benefits. As future
work, the classifiers will be evaluated on ExoNet [15] with
12 classes.

This study improves current methods for obtaining envi-
ronment information using vision. However, relying solely
on vision data for control is not a recommended option
since the user gaze data can shift unexpectedly to glance
and inspect the environment. Vision information would sup-
plement, rather than replace, the control decisions from
neuromuscular-mechanical data. When integrated with con-
trol hardware of lower-limb prostheses, it could be useful
to minimize the search space of possible movements well
ahead of the actual transition. This lead-time would allow
controllers to provide a smoother experience for the end-
user.

V. CONCLUSIONS

Advances in computer vision and artificial intelligence are
allowing prostheses to adapt more intuitively to dynamic
environments. However, small-scale training datasets have

hindered the widespread development and deployment. We
show here that kinematic data can be used to acquire
machine-generated labels to train vision classifiers with
minimal human intervention. Performance can be improved
by transferring learned features from publicly available large-
scale datasets.
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