
Super-Cloudlet: Rethinking Edge Computing in the

Era of Open Optical Networks

Behzad Mirkhanzadeh∗, Tianliang Zhang∗, Miguel Razo-Razo∗, Marco Tacca∗, and Andrea Fumagalli∗

∗Open Networking Advanced Research (OpNeAR) Lab, UT Dallas, TX, USA

{behzad, tianliang.zhang, mrazo, mtacca, andreaf}@utdallas.edu

Abstract—Edge computing is an attractive architecture to
efficiently provide compute resources to many applications that
demand specific QoS requirements. The edge compute resources
are in close geographical proximity to where the applications’
data originate from and/or are being supplied to, thus avoiding
unnecessary back and forth data transmission with a data
center far away. This paper describes a federated edge com-
puting system in which compute resources at multiple edge
sites are dynamically aggregated together to form distributed
super-cloudlets and best respond to varying application-driven
loads. In its simplest form a super-cloudlet consists of compute
resources available at two edge computing sites or cloudlets that
are (temporarily) interconnected by dedicated optical circuits
deployed to enable low-latency and high-rate data exchanges. A
super-cloudlet architecture is experimentally demonstrated over
the largest public OpenROADM optical network testbed up to
date consisting of commercial equipment from six suppliers.
The software defined networking (SDN) PROnet Orchestrator is
upgraded to both concurrently manage the resources offered by
the optical network equipment, compute nodes, and associated
Ethernet switches and achieve three key functionalities of the
proposed super-cloudlet architecture, i.e., service placement,
auto-scaling, and offloading.

I. INTRODUCTION

The continuous growth of Internet of Things (IoT), con-

nected devices and vehicles, cloud robotics, and 5G wireless

communications has led to a pervasive computing infrastruc-

ture with a variety of peripheral devices that act as a set

of heterogeneous data sources and offer a wide range of

services [1] [2]. Cloud computing — a term generally used to

describe data centers — is a key enabler for such services as it

provides a straightforward way to enhance the computational

capabilities of said peripheral devices by offering a centralized

data center that is rich of compute resources. As cloud-based

services evolve, Quality of Service (QoS) requirements, e.g.,

network latency and data rate, needed by such services tend

to become more stringent. For example, real-time cloud ser-

vices in industry 4.0 [3], patient monitoring, and self-driving

vehicles often require low-latency and in some cases high-

data rate network solutions. The traditional cloud computing

infrastructures, i.e., a centralized (and usually remote) data

center, cannot always fulfill these QoS requirements due to the

inherent latency of the wide area network (WAN) connection

needed to access the data center [4]. Furthermore, hosting the

computing resources in smaller sites that are in close proximity

to the user-data has the additional advantage of reducing the

data traffic in WANs and the potential to lower the service

cost charged to the end-users [1] [5].

These considerations have led to the formulation of decen-

tralized computing systems — like Mobile Cloud Computing

(MCC) [6], Cloudlet [7], fog computing [8], and edge com-

puting [9] — which are designed to best address both QoS

requirements and cost of computational-intensive services at

the edge. Applications, often referred to as tenants, can request

resources to be reserved at nearby edge computing sites in

addition to what centralized cloud computing already offers.

While edge computing has the potential to meet the tenants’

tightest QoS constraints, the resulting distributed architec-

ture presents new challenges. Edge sites (also referred to as

cloudlets) host considerably fewer computational resources

compared to conventional cloud data centers [1]. Even when

carefully planned, cloudlet compute resources may not always

suffice to meet an unexpected spike of application-driven load.

Offloading part of the load spike to a centralized data center

may not always be viable as it could violate the tight QoS

requirements of some applications. An alternative solution

is to offload part of the load spike to another cloudlet. For

example, a nearby cloudlet could share some of its unused

computational resources with the cloudlet experiencing the

load spike in a seamless manner, provided that the two

cloudlets are interconnected by means of a low-latency and

high-rate data network connection.

This paper describes and experimentally showcases a feder-

ated edge computing architecture in which compute resources

at multiple physical cloudlets are dynamically aggregated

together to form distributed super-cloudlets. The objective

of creating super-cloudlets dynamically is to best respond

to time-variant loads offered by edge-supported applications

without having to resort to permanently over-provisioned

cloudlets. In its simplest definition a super-cloudlet comprises

compute resources that are available at two physically distinct

cloudlets1. These resources are temporarily and seamlessly

combined together to form a larger and distributed super-

cluster of compute nodes. The newly formed distributed super-

cluster is more likely able to successfully cope with peaks

of offered load while still fulfilling the QoS requirements

that the edge-supported applications demand. To this end the

cloudlets that are chosen to form the super-cloudlet must be

interconnected with a low-latency and high-data rate network

connection, which may be either statically or dynamically

1Extension of the super-cloudlet concept to three of more cloudlets is
outside the scope of this study.

1

provisioned in the metro area network (MAN). Optical circuits

are best suited for this type of connectivity [10].

For example, this low-latency and high-data rate network

connectivity is achievable through dense wavelength division

multiplexing (DWDM) equipment that is compliant with the

public OpenROADM Multi Source Agreement (MSA) stan-

dard [11].

Such an open solution offers cloudlet operators the ability to

independently choose their own preferred supplier, yet permit-

ting cloudlets of different operators to be directly connected

by optical circuits when required.

To showcase the proposed concept, an OpenROADM

testbed is programmed to implement super-cloudlets that sup-

port a machine learning training tenant application whose

performance is sensitive to architectural constraints.

II. STATE OF THE ART

The concept of forming federations of multiple cloudlets has

been theoretically investigated in a number of papers [12]–

[14]. Ref. [12] focuses on optimal planning of the optical

access network that interconnects the attached cloudlets. A

non-linear programming model is proposed to identify optimal

placement locations of cloudlet servers subjected to capacity

and latency constraints in urban, suburban, and rural sce-

narios. Ref. [13] describes an economic and non-cooperative

continuous-kernel game theoretic model to analyze compu-

tation offloading strategies between cloudlets of competing

service providers, interconnected by a TDM optical access

networks.

Ref. [14] describes a small cell base station (SBS) coalition

formation algorithm that is based on the coalitional game

theory to cope with various challenges in small-cell-based

edge systems, including the co-provisioning of radio access

and computing services, cooperation incentives, and potential

security risks. This simulation-based study shows that signifi-

cant edge computing performance improvement is achievable

by allowing cooperation among SBSs. Other studies in the

literature look into load balancing and auto-scaling schemes

in compute infrastructures [15]–[17] without paying particular

attention to the required optical network infrastructures.

Published studies on federated cloudlets are mostly theo-

retical and focus on optical access networks. In contrast, the

study described in this paper focuses on the first experimental

work on federated cloudlets interconnected by a programmable

(SDN) DWDM optical network testbed.

III. SYSTEM DESCRIPTION

In this section, we describe a possible implementation of

the super-cloudlet architecture along with a related testbed

that is used to conduct a number of experiments to validate

the key required functionalities. The described implementation

is a compromise between proving these functionalities and

making use of a number of open software packages that

are available at the time of this publication. Over time, this

specific implementation may be further improved based on

future upgrades of these software packages.

As previously mentioned, besides offering a decentralized

and close-to-the-application service, edge computing must

also represent a cost effective alternative to centralized cloud

computing. More specifically, edge computing must address:

• High quality of service: the solution must support service

to applications with low latency requirement by assigning

compute resources that are geographically close (in a

cloudlet) to the applications [5].

• Low WAN cost: the solution must reduces congestion

in the WAN by minimizing the data exchange required

between decentralized cloudlets and centralized cloud

computing sites — e.g., offloading services to a central-

ized cloud should be avoided whenever possible [1].

• Real time scaling: similar to conventional cloud comput-

ing a cloudlet also needs to provide elasticity to scale up

and down operation based on the number of active users

and applications running [1].

• Service diversity: cloudlets must be able to offer a set

of diverse multi-tenant compute services in the form of

virtual machine, container, and bare metal [5].

Fig. 1. (a) Two cloudlets operating independently, each hosting a single
cluster of workers. (b) A super-cloudlet consisting of two cloudlets connected
by low-latency and high-data rate optical circuits. Worker cluster Ci makes
use of compute resources that are provided by cloudlet Sj to cope with a
sudden surge of its applications’ load.

Consisting of two neighboring cloudlets interconnected by

low-latency and high-dat rate optical circuits the super-cloudlet

is designed and implemented to concurrently fulfill all of the

above edge computing requirements. Fig. 1(a) depicts two

cloudlets (Si and Sj) that work independently, each hosting

one cluster of workers (Ci and Cj , respectively). Fig. 1(b)

shows how the creation of a super-cloudlet (Si,j) enables

cluster Ci to scale up above its hosting cloudlet (Si) capacity

by resorting to the additional compute resources that are

available at the nearby cloudlet (Sj). This procedure enables

real-time scale up of cloudlet compute resources while keeping

them close to the applications, does not increase traffic in the

WAN, and supports service diversity as described next.

Our testbed implements a federated edge computing system

with four cloudlets interconnected by a packet SDN over a

full mesh OpenROADM [11] transport network. The topology

schematic is shown in Fig. 2a and the actual equipment is

shown in Fig. 2b. A total of forty re-purposed Stampede

compute nodes [18] are divided among the four cloudlets and

controlled through OpenStack [19]. Four OpenFlow-enabled

2

(a) Testbed block diagram. (b) Photo of testbed equipment as displayed at OFC’20.

Fig. 2. Live demonstration of the OpenROADM testbed with four nodes.

Juniper QFX2 and four Dell3 Ethernet switches provide con-

nectivity between the compute nodes and the optical transpon-

ders and switchponders. The switches are controlled by an

OpenDaylight (ODL) controller. The optical transport network

consists of four ROADM nodes, one for each cloudlet [20].

Length of the fibers connecting the ROADMs can be manually

modified to investigate the effect of signal propagation on the

system performance. Data packets from the Ethernet switches

are transmitted over the optical transport network in the form

of client signals using eight 100Gbps transponder blades (for

a total of 20 wavelengths), and five switchponders (aggregate

line rate of 100Gbps and client rates of 1Gbps and 10Gbps).

Additional details about the three domains in the testbed are

provided next.

A. Compute Domain

In its most general definition edge computing should offer

services on various platforms such as virtual machine, con-

tainers, and bare metal. Virtual machines and bare metal both

provide more mature and isolated compute environments for

cloud-driven applications. Containers are increasingly being

considered for computationally-intensive and distributed tasks

because they offer more agile software platforms to developers

like DevOps and microservices [21]. Due to this growing

interest our study focuses on containerized applications.

In order to run containerized applications in a feder-

ated computing edge system a container orchestration engine

(COE) [22] is required, which enlists compute resources to

form a cluster of workers and assigns users’ tasks (in contain-

ers) to the available workers in the cluster. The COE usually

manages key functionalities like task placement, auto-scaling,

and load balancing for the cluster and keeps administration of

the system simple. Examples of COE include Kubernetes [23],

Docker Swarm [24] and Apache Meso [25], which all support

these key functionalities [22]. A COE cluster typically consists

of at least one master node and one worker. The master node

performs all the administrative and controlling functions, while

the workers host tasks running as containers. COEs do not

typically have awareness of the cloudlets locations, network

topology and equipment configuration, and do not natively

2Juniper QFX5100 Series 10/25/40/100GbE Switches.
3Dell PowerConnect 3048P Switches.

support super-cloudlets. These functionalities — missing in

existing COEs — must be implemented at a higher level

of control, like a comprehensive platform for orchestration,

management, and automation of network and edge computing

services. This orchestration platform — e.g., ONAP [26] and

the PROnet Orchestrator [27] — has the necessary visibility

across both network and compute domains and is therefore

most suitable for implementing the key functionalities that are

required in the super-cloudlet architecture, like setting up and

taking down super-cloudlets.

In our testbed, OpenStack 4 is chosen to provide infras-

tructure as a service platform (IaaS), which includes enlisting

of the compute nodes and maintenance of networking and

multi-tenancy across cloudlets. OpenStack firstly supports

multiple COEs to host containerized applications through

the Magnum API service. Secondly, OpenStack offers both

virtual machine and bare-metal service in the cloudlets, thus

achieving the service diversity discussed in III. Each COE

is implemented using Kubernetes5 . For ease of description

only one cluster of workers (Ci) is created in each cloudlet

(Si), where i = 1, 2, 3, 4. Two options exist in OpenStack

two host Kubernetes workers: 1) bare-metal using Ironic and

2) virtual machine using KVM. These two options have their

pros and cons. While the bare metal option provides hosting

with reduced overhead and improved performance, the virtual

machine option offers more flexibility for workers to be live

migrated for load balancing and offloading purposes. Being

live migration a required key functionality to support super-

cloudlets, the latter option is chosen in this study. Fig. 3 depicts

an individual cloudlet and how the Kubernetes cluster is hosted

inside OpenStack. Network connectivity is described next.

B. Network Domain

A typical edge computing infrastructure requires two sepa-

rate main networks.

• The management network is required for administrative

services such as load balancing of compute nodes and

exchange of control messages for various services and

API access.

4OpenStack Stein release.
5Kubernetes version 1.17

3

Fig. 3. Kubernetes cluster in federated cloudlet.

• The tenant network is commonly known as production

network for West/East traffic in cloud and edge, and

usually provides dedicated communication for computing

instances that belong to a specific tenant. Tenant networks

are usually overlay networks such as generic routing

encapsulation (GRE) [28] and VxLAN [29].

It is worth mentioning that a third network type referred to

as external network carries North/South traffic, i.e., the traffic

between the compute resources and the peripheral devices that

belong to the tenant. The tenant devices are connected to one

or more external networks and the compute instances must

be able to connect to these networks so tenants can have

data exchanges between their devices and assigned compute

instances.

When a super-cloudlet is created both management and

tenant networks must be upgraded to account for the dis-

tributed nature of the compute resources hosted by the two

cloudlets that are being aggregated. For best performance, cost

effectiveness, and solution modularity dedicated optical cir-

cuits are (dynamically and temporarily) provisioned (through

wavelength and/or time division multiplexing) between these

cloudlets, as shown in Fig. 1(b). Optical circuits provide the

low-latency and high-data rate connectivity between the two

cloudlets which is advantageous for two reasons: first, a high-

performing tenant network between the cloudlets maintains the

high quality of service that is expected from edge computing

even when compute resources are allocated in the nearby

cloudlet; second, a high-performing administrative network be-

tween the cloudlets facilitates and expedites critical procedures

like task offloading and load balancing between the cloudlets.

Both packet and optical domains in the testbed are described

next.

1) Packet Domain: OpenFlow-enabled packet-switching

fabrics are used to commission both management and tenant

networks in every cloudlet. The Juniper switches are config-

ured to support the permanent management network, with the

temporary upgrades provided by the 100G transponders when

operating a super-cloudlet. The Dell switch are configured to

support the permanent tenant network, with the temporary

upgrades provided by the switchponders 10G client signals

when operating a super-cloudlet.

The higher bandwidth of the Juniper switch enables the

management network to expedite worker offload procedures,

in response to disaster occurrence or real-time changes in the

super-cloudlet design. Concerning tenant networks, isolation

(slicing) of network resources is achieved through VXLAN

which offers ease of deployment and scalability.

The VXLAN header contains a 24-bit network identifier

called VNI, which enables a large number of isolated tenant

networks to be established. In addition, since VXLAN is an

overlay network based on UDP, tenant networks can be created

on top of any layer (2 or 3) network infrastructure. Fig. 4

shows an example of VXLAN overlay network for two distinct

tenants created on top of a physical network.

Fig. 4. Two VXLAN overlay tenant networks.

2) Optical Domain: While optical circuits between

cloudlets may be permanently provisioned in special situa-

tions, a more general and flexible architecture makes use of

on-demand and dynamically provisioned optical circuits. In

the latter case optical circuits are provisioned only when the

super-cloudlet is needed, thus yielding a significant network

cost reduction. In addition, each cloudlet can be equipped

with one or just a few optical transponders, and yet that

cloudlet could be paired with any of the nearby cloudlets

that are equipped with compatible transponders. Till recently

this requirement of having compatible transponders deployed

across heterogeneous cloudlets would have required a group of

cloudlet providers to agree to use the same optical equipment

supplier. However, thanks to the recent progress made by the

OpenROADM MSA initiative it is now possible to achieve full

interoperability between equipment from multiple suppliers,

along with full SDN programmability of said equipment as

discussed later in the paper. With this significant advantage

of being able to create optical circuits on demand and be-

tween many possible cloudlet pairs, the operators have an

unprecedented number of options to scale up their cloudlet

capacity while taking into account geographical proximity of

cloudlets, compute resource type and availability, and existing

commercial agreements with other operators for the mutual

exchange of resource usage.

In our testbed, ROADM nodes, transponders, and switch-

ponders from six suppliers are interconnected as shown in

Fig. 2a.

The resulting multi-supplier optical transport network is

4

Fig. 5. PROnet Orchestrator in federated edge computing.

controlled by the open source TransportPCE plugin6 [30],

which makes use of a common set of NETCONF/YANG

APIs published by the OpenROADM MSA7. [11]. The

OpenROADM MSA specifications ensure interoperability of

ROADM, transponders, OTN switches, and pluggable optics.

This OpenROADM MSA compliance is a very critical element

to achieve a multi-operator federation of cloudlets in which

each operator is free to select its own equipment supplier, and

yet optical end-to-end dynamic connectivity between cloudlets

remains feasible.

As already mentioned, while operating a super-cloudlet

transponders with 100G client ports are used to provide tempo-

rary extension of the management network and switchponders

with 1G and 10G client ports are used to provide temporary

extension of the tenant networks. This is an arbitrary choice

made in our study, driven by two observations: a high data

rate (e.g., 100G) management network expedites migration

of workers between cloudlets, and switchponders make use

of time division multiplexing (OTN [20]) to create multiple

isolated client circuits with relatively low rates (e.g., 1G and

10G) over a single (e.g., 100G) optical circuit, which enable

guaranteed bandwidth separation among multiple tenant net-

works. With that noted, thanks to the software programma-

bility of OpenROADM networks the operator can choose to

assign other transport circuit rates to interconnect cloudlets.

For example 400G transponders compliant with OpenROADM

are expected to become available soon, and demanding tenant

applications may be assigned data rates in excess of 10G when

necessary.

6TransportPCE plugin version 2.0.0
7OpenROADM MSA version 2.2.1

C. Orchestration architecture

The resources in the three domains (compute, electronic

packet switching, and optical circuit switching) are managed

and orchestrated by a single software module — whose block

diagram is shown in Fig. 5 — referred to as the PROnet

(SDN) Orchestrator [27]. Interfaced with four controllers —

the TransportPCE and OpenFlow ODL controllers for man-

aging network resources, and the OpenStack and Kubernetes

controllers for managing compute resources — the PROnet

Orchestrator is configured to execute three key functionalities

of the super-cloudlet architecture, i.e., service placement, auto-

scaling, and service offloading. In order to do that, the PROnet

Orchestrator performs resource discovery and imports resource

states from the four controllers by means of the RESTCONF

protocol. Based on its internal combined abstraction of the

three domains and their resources — which also keeps track of

every super-cloudlet that is created and its current state — the

PROnet Orchestrator is then able to implement the schedulers

that activate the three key functionalities and, when necessary,

trigger the creation or removal of super-cloudlets.

The creation of a specific super-cloudlet should be driven

by algorithms that make use of equations which are based on

the following parameters and variables8. Let Si represent a

cloudlet. Let Ci be the COE cluster hosted by cloudlet Si.

The following notation is defined:

• σ(Si)={n(Si), c(Si),m(Si), s(Si)}: Resource

provisioned at cloudlet Si defined as the number

of compute nodes, vCPUs per node, memory per node,

and storage per node,

8The set defined in this study only provides a simple example to help
illustrate the concept. This minimal set can be expanded to account for many
more factors that play key roles in practical deployments.

5

• γ(Ci)={c(Ci),m(Ci), s(Ci)}: Worker flavor for cluster

Ci defining the number of vCPUs, memory, and storage

requirements per worker,

• w(Ci): Number of workers reserved for Ci,

• cuj (Ci) ≤ cj(Ci): Number of actively used vCPUs in

worker wj in Ci,

• mu
j (Ci) ≤ mj(Ci): Memory actively used in worker wj

in Ci,

• suj (Ci) ≤ sj(Ci): Storage actively used in worker wj in

Ci,

• ρj(Ci)=max
(

cuj (Ci)

cj(Ci)
,
mu

j (Ci)

mj(Ci)
,
suj (Ci)

sj(Ci)

)

: Utilization factor

of worker wj in Ci,

• ρ(Ci)=
∑w(Ci)

j=1 ρj(Ci)/w(Ci): Average utilization factor

of all workers in Ci, assuming all workers have identical

flavors,

• σ(Si,j)={σ(Si), σ(Sj)}: Resource provisioned in super-

cloudlet Si,j , defined as the resources that have been built

in the two cloudlets comprising the super-cloudlet, i.e.,

Si and Sj ,

• ωl={c(ωl),m(ωl), s(ωl)}: Flavor for container of type l,
defining number of vCPUs, memory size, and storage size

requirements, i = 1, 2, 3, 4, . . .,
• Ωm={k,ωl}: Task request type, consisting of k containers

of type m.

Building on these parameters and variables scheduling algo-

rithms can be designed to assist both the COE and orches-

tration platform to carry out service placement, auto-scaling,

and service offloading. Implementation of these three key

functionalities in the PROnet Orchestrator is discussed next.

(a) Load Balance (b) First Fit

(c) Hybrid (d) Proposed approach

Fig. 6. Scheduling and placement strategies.

1) Service Placement and Scheduling: Service placement

is the action of assigning application tasks to run on specific

workers in each cluster. This scheduling decision is typically

made by the COE, which accounts for the available workers

in the cluster, their flavors, current and forecast load. The

cloudlet administrator may also drive the COE decision based

on specific preferences and strategies, e.g., achieving balanced

loading of the available workers, or turning off as many

workers as possible. These are conflicting strategies that must

be resolved by the cloudlet administrator. Typically, incoming

task request Ωl={k,ωl} is hosted in cluster Ci as long as a

service placement can be found such that ρj(Ci) ≤ T for every

worker wj , j = 1, 2, . . ., where T is a chosen threshold. To

meet the condition imposed by T it may be necessary to place

the k containers in multiple workers. When multiple solutions

exist for an incoming task request that satisfy the condition

imposed by T , the scheduler may rank said solutions according

to the administrator’s preference, e.g., load balancing or first

fit. For instance, the administrator might prefer a uniform

load balancing among all the workers or switch to the first

fit approach to minimize the cluster size within the cloudlet

and in some cases avoid creating a super-cloudlet.

To account for these two conflicting conventional strategies

— i.e., uniform load balance shown in Fig. 6(a) or first fit

shown in Fig. 6(b) — and possible hybrid options in between

— as shown in Fig. 6(c) — a simple model is described

next, which is tunable through a single parameter ρ̂. (Note

that both full load balance and first fit are special cases of the

hybrid option.) This model is easy to use when running various

experiments as it permits to modify the service placement

strategy by varying the value of ρ̂.

Let ρT be a threshold assigned to workers in cluster Ci

that are expected to operate at utilization levels below said

threshold, i.e., ρj(Ci) = ρj ≤ ρT . Let 0 ≤ ρ̂ ≤ ρT be an

adjustable parameter that is set by the cloudlet administrator

to shape the load distribution across its cluster workers.

Parameter ρ̂ is used to compute the utility function yj(ρj) for

each worker wj in cluster Ci as illustrated in Fig. 6(d). The

utility function for the first worker y1(ρ1) grows linearly with

the worker load ρ1. The utility of the second worker y2(ρ2) is

a piecewise function with two segments as shown in Fig. 6(d).

The offset and slope of the left segment is determined by the

value assigned to ρ̂ using the following equations, which for

the generic worker wj is:

yj(ρj(Ci)) =
yj−1(ρT)− yj−1(ρ̂)

ρT
∗ ρj(Ci) + yj−1(ρ̂). (1)

Using the utility functions in (1) the ordered list L(Ci) is

created by sorting the workers in Ci from the lowest to

the highest value. The utility function of each worker wj is

computed at the load that would result from assigning the

container request to that worker, referred to as ρ+j . The lowest

cost worker in the list is chosen to host the container. Note

that when ρ̂ is set to approach 0, all workers tend to have

the same utility function and the resulting average load of the

workers approaches the distribution in Fig. 6(a). When ρ̂ is

set to approach ρT , workers are loaded in a first fit manner as

shown in Fig. 6(b). Intermediate hybrid distributions can be

obtained by choosing ρ̂ to be somewhere between 0 and ρT ,

obtaining average loads like those in Fig. 6(c).

2) Auto-scaling: Auto-scaling is the action of either in-

creasing or decreasing w(Ci), which is the size of cluster

Ci. Auto-scaling is required to adjust the cluster resources to

best meet the applications’ aggregate offered load when that

varies over time. Auto-scaling within an individual cloudlet

is straightforward and can be performed by the orchestrator

platform based on specific conditions. A typical condition for

increasing w(Ci) is ρ(Ci) approaching threshold T . A simple

6

Algorithm 1 Simple scheduler algorithm.

1: procedure SCHEDULETASK(Ωk,ωl
)

2: for k in Ω do

3: if scheduleContainer(k) is Flase then

4: remove all containers of this task

5: put task request in waiting queue

6: scaleup()

7: return False
8: end if

9: end for

10: return True
11: end procedure

12: procedure SCHEDULECONTAINER(kωl
)

13: for each wj in Ci do

14: ρ+j (Ci) ← MAX(
cuj (Ci)+c(ωl)

cj(Ci)
,
mu

j (Ci)+m(ωl)

mj(Ci)
,

suj (Ci)+s(ωl)

sj(Ci)
)

15: if ρ+j (Ci) <= 1 then

16: add wj to list of potential candidates LCi

17: end if

18: end for

19: if LCi
is Empty then

20: return False
21: end if

22: wm ← min cost(LCi
)

23: assign container kωl
to worker wm

24: return True
25: end procedure

26: procedure SCALEUP()

27: if resources exist in cloudlet Si then

28: create and add worker to Ci

29: else

30: select best auxiliary cloudlet Sj for super-cloudlet

31: create lightpath betweeen Si and Sj cloudlets

32: create and add worker to Ci

33: end if

34: return True
35: end procedure

reactive method can be defined in a way that when an incoming

task cannot be scheduled in the cluster due to the lack of

resources a scale up request is triggered. A proactive method

monitors the state of each cluster periodically and triggers a

scale up or scale down action based on the workers’ utilization

factors and predefined thresholds.

Auto-scaling of a cluster (Ci) size beyond its cloudlet (Si)

capacity requires the creation of a super-cloudlet. The auxiliary

cloudlet (Sj) needed for creating the super-cloudlet must be

selected by the orchestrator while taking into consideration

the following factors at Sj : availability of compute resources,

availability of optical transponders, and transport network

round trip time with respect to cloudlet Si. Other factors

that may affect the selection of the auxiliary cloudlet include

past history of application load distribution, future load pre-

diction tools and collaborative agreements between cloudlets’

providers. The super-cloudlet is formally set up once cloudlet

Si and Sj are connected by a dedicated optical circuit(s),

which minimizes the transport latency of both management

and tenant networks connecting the workers in the two sites.

In the testbed, auto-scaling is invoked when an application

task request cannot be fulfilled with the workers that are

currently assigned to the cluster (Ci). A task Ωk,ωl
is fulfilled

when k containers of flavor ωl can be hosted by the workers

available in the cluster. Algorithm 1 shows the pseudocode of

a reactive auto-scaling scheduler implemented in the PROnet

Orchestrator. The scheduler first attempts to scale up cluster

Ci with a new worker created in the home cloudlet (Si). When

that is not possible the PROnet Orchestrator selects a nearby

cloudlet to serve as auxiliary cloudlet (Sj), establishes two

optical circuits (a 100G for the management network and a

10G for the tenant network), and finally scales up Ci with

a new worker created in the auxiliary cloudlet. It is worth

noting that the two optical circuits of the super-cloudlet are

created by the TransportPCE controller while concurrently the

cluster is scaled up by the OpenStack controller. These two

tasks can proceed concurrently, since the OpenStack compute

node needs mostly internet (or a local docker registry) access

to download the software packages needed to deploy the new

worker and does not require dedicated optical circuits with the

other cloudlet to carry out this task. A proactive auto-scaling

scheduler is also implemented in the PROnet Orchestrator. In

this second implementation the scheduler i) checks the state

of each cluster at regular intervals of tcluster, and ii) evaluates

whether the two optical circuits in the super-cloudlet should

remain in place or be removed at regular intervals of tlightpath.

Two cluster utilization thresholds ρ(U) and ρ(L) are used by

the proactive scheduler to scale up and scale down cluster

Ci, respectively. If ρ(Ci) > ρ(U), then Ci is scaled up. If

ρ(Ci) < ρ(L) and the worker in cluster Ci with the highest

identifier (i.e., most recently created) is idle, then Ci is scaled

down by removing said worker. When Ci no longer makes use

of workers in the auxiliary cloudlet (Sj) the super-cloudlet and

its optical circuits are taken down.

To avoid that both auto-scaling and optical circuit cre-

ation/removal procedures are invoked too often, a minimum

life time (MLT) is enforced on the created workers and optical

circuits. Once created and assigned to its cluster a worker

cannot be removed before a minimum life time tworkerMLT .

Once created and assigned to a super-cloudlet an optical

circuit cannot be torn down before a minimum life time

tlightpathMLT .

The total time required to complete both the set up of a new

super-cloudlet and cluster auto-scaling action can be reduced

when the orchestrator platform is designed to carry out these

two tasks in parallel. The time required to create an optical

circuit — the predominant time factor in creating the super-

cloudlet — depends on the total fiber distance traveled by the

signal and the specific equipment used. Typically, this time is

in the 3 to 5 minute range. The time to add workers to a cluster

depends on the virtualization platform and compute hardware

deployed. A typical value is several minutes (see Section IV),

7

which is comparable to the lightpath creation time. By carry

out these two tasks in parallel the orchestrator can make the

auto-scaling time practically transparent to the creation (or

removal) of super-cloudlets.

3) Service Offloading: Service offloading is the action

of migrating tasks from their currently assigned compute

resources to another host. In addition to its typical applications

already described in the Introduction, this functionality is also

key in the super-cloudlet architecture as illustrated by the next

example.

A cluster in a super-cloudlet consisting of two cloudlets

(home and auxiliary) may have workers assigned to application

tasks in both cloudlets. Workers in one cloudlet may need to

be live migrated to the other cloudlet. For example when it

is time to take down the super-cloudlet the workers that are

running in the auxiliary cloudlet must be migrated to the home

cluodlet, before the optical circuits between the two cloudlets

are torn down.

The PROnet Orchestrator is designed to carry out live mi-

gration of virtual machines hosting workers from one compute

node to another. Fig. 7, shows the two methods for live-

VM migration available in OpenStack: pre-copy and post-copy

methods. With the pre-copy method the memory contents of

the VM are sent to the destination VM interactively while

new pages might be added to the memory of the current

VM. The OpenStack pre-copy strategy offers an auto-converge

feature for a successful live migration of a memory-intensive

VM by slowing the instance down [31]. With the post-copy

method the memory content is copied to the new VM and

the current VM is paused. This feature activates the virtual

machine on the destination host before all of its memory has

been copied. When the virtual machine accesses a page that

is missing on the destination host, the resulting page fault is

resolved by copying the page from the source host [31]. The

performance of the two methods when applied to a super-

cloudlet is discussed in the next section.

Fig. 7. Pre-copy (left) and Post-copy (right) methods for live VM migration.

IV. EXPERIMENTAL RESULTS

A number of experiments are reported in this section

to provide further insights into the proposed super-cloudlet

architecture and its feasibility. Only three of the testbed

cloudlets (A, B, and C) are used in these experiments and their

configurations are reported in Table I. The experiments and

their results are organized in three subsections: auto-scaling of

Kubernetes cluster under varying conditions, performance of

a distributed machine learning (ML) training application, and

service offloading achieved by OpenStack when migrating a

VM hosting containers.

A. Auto-scaling

In this series of experiments the PROnet Orchestrator

instructs Kubernetes to perform scale up and scale down

upgrades of a cluster hosted by a single cloudlet fifty times.

Table II shows both mean and variance of the completion

time of these trials distinguishing between two management

network interface rates at the compute node, i.e., 1G and 30G.

The auto-scale completion time is minimally affected by the

management network interface used at the node. The high

variance of the scale up results is mainly due to the public

Internet access that is required to retrieve the required software

packages and docker images for deploying the workers.

When the scale up and scale down procedures trigger a

super-cloudlet set up or take down, at least one new lightpath

must be created or torn down, respectively. Table III reports

the average time it takes to create and tear down a lightpath in

our OpenROADM network alongside the time it takes to have

L3 reachability through the attached packet switches [32]. The

total time required to set up the network connection needed

by the super-cloudlet is 188 seconds (lightpath setupe time

+ L3-reachability time), which is less than the scale up time

of adding one worker to the compute cluster. Since the both

network set up and compute scale up procedures are executed

in parallel, the total average time to create the super-cloudlet

is around 420 seconds, which is the mean scale up time of the

compute domain. Concerning the the scale-down procedure

the 88 seconds needed to tear down a lightpath exceed the

compute cluster scale down time. Thus, the total time that

is required to take down the super-cloudlet is 88 seconds on

average.

B. The Use Case: a Machine Learning Training Task

As previously noted, operating with a super-cloudlet has the

advantage of temporarily offering extra workers to a cluster

that is experiencing a load surge. However, with the cluster

workers now being hosted in two cloudlets connected by an

optical transport network performance degradation of the tasks

running in the containers hosted by these workers may be

experienced. A use case is described and used in this section

to explore this important aspect. The chosen application task

is the distributed training of deep neural networks. Com-

pared to centralized training running on a single machine,

distributed training achieves higher training efficiency for

deep neural networks9 by distributing the training task to

run on multiple servers through either data parallelism or

model parallelism [34]. More specifically, data parallelism in

TensorFlow environment [35] is used in this study by running

containers in either an isolated cloudlet or a super-cloudlet to

train ResNet56 [36] on dataset CIFAR10 [37]. The CIFAR10

dataset contains 50,000 samples. One round of training on

the whole dataset is defined as one epoch. In each epoch, the

dataset is divided into multiple smaller disjoint batches that

are evenly assigned to the containers hosted by the workers.

9Edge computing is expected to support many applications that require
machine learning [33].

8

TABLE I
THREE CLOUDLETS USED IN THE EXPERIMENTS.

Cloudlet A Cloudlet B Cloudlet C

Number of compute nodes 11 12 4

Number of CPU cores 16 (32 via Hyperthreading) 16 (32 via Hyperthreading) 16 (32 via Hyperthreading)

Memory 32GB 32GB 32GB

Storage 1TB 1TB 1TB

Compute node’s management
interface

1Gb/s (8 nodes)
30Gb/s (2 nodes)
10Gb/s (1 node)

1Gb/s (8 nodes)
30Gb/s (3 nodes)
10Gb/s (1 node)

30Gb/s (3 nodes)
10Gb/s (1 node)

Compute node’s tenant interface 1Gb/s 1Gb/s 1Gb/s

Management switch Juniper QFX 5110 Juniper QFX 5110 Juniper QFX 5110

Tenant switch Dell Powerconnect 3048 Dell Powerconnect 3048 Dell Powerconnect 3048

Management optical lightpath Transpoders (100 Gb/s) Transpoders (100 Gb/s) Transpoders (100 Gb/s)

Tenant optical lightpath Switchponder (10 Gb/s) Switchponder (10 Gb/s) Switchponder (10 Gb/s)

TABLE II
AUTO-SCALING COMPLETION TIME AVERAGE AND VARIANCE AS A

FUNCTION OF MANAGEMENT NETWORK DATA RATE.

Mean
Scale up

Scale up
Variance

Mean Scale
Down

Scale Down
Variance

1G
nodes

420.58s 217.22s 70.90s 13.91s

30G
nodes

420.13s 184.13s 68.17s 15.90s

TABLE III
AVERAGE NETWORK CONFIGURATION TIME FOR SUPER-CLOUDLET SET

UP AND TAKE DOWN.

tlightpath creation tlightpath teardown tL3 Reachability

178s 88s 10s

The epoch time is also divided into m consecutive steps.

During a step, each container performs training using one

mth of its assigned batch of data. At the end of each step

containers exchange their respective output data to aggregate

gradients in the neural network, before proceeding with the

next step. This data exchange is carried out using transmission

control protocol (TCP) at the end of each step and may slow

down the overall training procedure depending on the network

connectivity data rate that is used between the workers hosting

the distributed training containers.

The following configurations are used in the experiments

described in this section. The deep neural network training

task Ωk,ωl
is executed using two containers (k = 2), of equal

flavor. One of the following service placements is applied

to the two containers. 1) The containers run in the same

isolated cloudlet and optical circuits are not used. 2) Each

container runs in a distinct cloudlet and the two cloudlets are

connected by a lightpath routed over a fiber optics cable of a

few meters. 3) Each container runs in a distinct cloudlet and

the two cloudlets are connected by a lightpath routed over a

fiber optics cable of 25 km. When using the super-cloudlet the

data exchange at the end of each step is carried through the

10G tenant network using Fujitsu (1FINITY) Switchponder

and Ciena Switchponder. Two flavors ω1 and ω2 are applied,

i.e., c(ω1) = 4 vCPUs and c(ω2) = 8 vCPUs. The CIFAR10

dataset is divided to form batches of 32 or 128 samples. The

number of steps in each epoch is then m = 781 (50000/32/2)

and m = 195 (50000/128/2), respectively.

TABLE IV
EPOCH COMPLETION TIME FOR THREE SCENARIOS.

Batch
Size
m

of
vCPUs per
container

single
cloudlet

super-
cloudlet
few meters

super-
cloudlet
25km

32 4 1075s 1092s 1095s
32 8 533s 527s 535s
128 4 1058s 1048s 1060s
128 8 501s 502s 504s

TABLE V
NETWORK UTILIZATION FOR THREE SCENARIOS.

Batch
Size
m

of
vCPUs per
container

single
cloudlet

super-
cloudlet
few meters

super-
cloudlet
25km

32 4 21.04Mbit/s 21.40Mbit/s 20.53Mbit/s
32 8 43.02Mbit/s 43.89Mbit/s 42.72Mbit/s
128 4 5.54Mbit/s 5.45Mbit/s 5.36Mbit/s
128 8 11.64Mbit/s 11.83Mbit/s 11.54Mbit/s

Tables IV and V report the epoch completion time and

network utilization, respectively, for four configurations and

three cloudlet settings. The number of vCPUs assigned to

each container affects both epoch time and network utilization.

The epoch completion time is reduced to approximately half

when using 8 vCPUs compared to when using 4 vCPUs.

The network utilization — defined as the tenant data rate in

and out of each container — doubles when using 8 cores

compared to when using 4 vCPUs, as the former has twice

the computing power and completes twice as many steps per

time unit (doubling the data exchanges) compared to the latter.

The batch size — which determines the number of steps in

each epoch — does not have a significant effect on the epoch

completion time. However, it significantly affects the tenant

network utilization, which is proportional to the number of

data exchanges that are performed at the end of each step.

Results show only minor variations across the three cloudlet

settings corroborating the earlier claim that making use of

9

TABLE VI
MEAN OFFLOADING TIME AND VARIANCE UNDER DIFFERENT SCENARIOS.

Live VM-migration Method 30G node in 3 containers
task scenario

30G node in 5 containers
task scenario

1G node in 3 containers
task scenario

1G node in 5 containers
task scenario

Pre-copy with auto-converge Mean: 75.4s
Variance: 3.75s

Mean: 79.37s
Variance: 4.2s

Mean: 351.61s
Variance: 651.83s

Mean: 362.22s
Variance: 583.82s

Post-copy Mean: 83.49s
Variance: 6.86s

Mean: 85.66s
Variance: 7.11s

Failed Failed

a dedicated low-latency and high-data rate optical circuit to

update the tenant network in the presence of a super-cloudlet

enables clusters to make use of workers in the auxiliary

cloudlet without experiencing major drawbacks. Also, when

increasing the length of the fiber connecting the home and

auxiliairy cloudlets from a few meters to 25 km the epoch

completion time increases by 1.5% or less, which is a modest

performance penalty. At the same time network utilization

decreases up to 4.1% due to the increased network round trip

time. The training achievable accuracy is outside the scope of

this paper.

(a) Migration time using nodes with 1G interface.

(b) Migration time using nodes with 30G interface.

Fig. 8. Offloading results under 5 containers task scenario with various
management network rate.

C. Worker Offloading

This section focuses on the completion time of the live

migration of workers (VMs) between two cloudlets. Each

worker hosts one of the containers that perform the training

of ResNet56 [36] as described in Section IV-B. Two methods

of VM live migration are considered: pre-copy with auto-

convergence and post-copy.

We also examine the effect of other factors as well. First, the

distribution level of the containerized application in the COE

cluster may influence the migration time of a worker. More

specifically, with one container assigned to each active worker,

data exchanges between every pair of workers must take place

at the end of each step. These data exchanges may affect the

migration time of the VM. This dependency is investigated

by considering two cases: Tasks requiring 3 and 5 containers

(workers), respectively. Second, the management network in-

terface data rate too may affect the migration completion time.

This dependency is investigated by considering two cases: 1G

and 30G network rate. The two charts in Fig.8 report the

migration completion time of 40 trials when migrating one

container in a group of 5. Mean and variance of these results

are reported in Table VI, along with the mean and variance

results of six other system configurations.

When successful, the post-copy method requires 8% to 11%
more time to complete migration compared to the pre-copy

with auto-converge method. The main reason for this result

is that the ML training application is a memory intensive

task and the migration process must keep up with the rate

of memory changes taking place in the source worker while

resolving all dirty memory pages. Conversely, The pre-copy

method with auto-converge throttles the CPU of the source

worker and temporally slows down the worker to keep up with

the memory changes, thus reducing the time that is required

to complete migration.

The management network interface data rate has a signifi-

cant impact on the migration completion time. By increasing

the management network interface rate from 1G to 30G the

migration completion time is reduced to about one fifth. The

reason for this outcome is again the rate of memory change and

the memory-intensive nature of the machine learning training

task. A higher network data rate facilitates the copying of

the memory pages to the destination in such a way that the

migration procedure can keep-up with the memory changes at

the source. It should also be noted that the post-copy method

completes successfully only when operating with 30G, while

it fails when operating with 1G. This failure is caused by the

network low data rate which cannot keep up with the network

related page-faults. The migration continues until it times out

when the worker is completely out of service since part of it

is running at the destination while other parts are still at the

source. Migrating one of 5 containers takes 3% to 5% more

time compared to the case in which one of 3 containers is

migrated.

10

V. SUMMARY

In this paper we describe a federated edge computing sys-

tem implemented using commercial optical transport network

equipment that is OpenROADM compliant. Service placement,

auto-scaling, and offloading are performed in the federated

edge system using the PROnet SDN Orchestrator, which auto-

matically triggers these functionalities across pairs of cloudlets

when needed. Once paired together to form a super-cloudlet,

neighboring cloudlets can statistically share their compute

resources and best handle peaks of offered load originating

from their edge-supported applications. For improved system

response time, a parallel resource provisioning technique is de-

scribed in which workers are added to an edge compute cluster

while in parallel optical circuits are being set up between the

two cloudlets to form the super-cloudlet. Super-cloudlets can

be set up dynamically to efficiently cope with time-variant

load conditions without requiring excessive overprovisioning

of resources in both compute and network domains.

FUNDING

This work is supported in part by NSF grants CNS-

1405405, CNS-1409849, ACI-1541461, CNS-1531039, and

CNS-1956357.

REFERENCES

[1] A. Yousefpour et al., “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of

Systems Architecture, 2019. [Online]. Available: http://www.sciencedir
ect.com/science/article/pii/S1383762118306349

[2] A. C. Baktir et al., “How can edge computing benefit from software-
defined networking: A survey, use cases, and future directions,” IEEE

Communications Surveys Tutorials, vol. 19, no. 4, pp. 2359–2391,
Fourthquarter 2017.

[3] F. Griffiths and M. Ooi, “The fourth industrial revolution - industry
4.0 and iot [trends in future i m],” IEEE Instrumentation Measurement

Magazine, vol. 21, no. 6, pp. 29–43, December 2018.
[4] X. Chen et al., “Efficient multi-user computation offloading for mobile-

edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2795–2808, October 2016.

[5] “Cloud Edge Computing: Beyond the Data Center,” https://www.openst
ack.org/edge-computing/cloud-edge-computing-beyond-the-data-center
/.

[6] H. T. Dinh et al., “A survey of mobile cloud computing: architecture,
applications, and approaches,” Wireless Communications and Mobile

Computing, vol. 13, no. 18, pp. 1587–1611, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.1203

[7] M. Satyanarayanan et al., “The case for vm-based cloudlets in mobile
computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, Oct
2009.

[8] F. Bonomi et al., “Fog computing and its role in the internet
of things,” in Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[9] H. H. Pang and K. . Tan, “Authenticating query results in edge
computing,” in Proceedings. 20th International Conference on Data

Engineering, April 2004, pp. 560–571.
[10] M. Cvijetic and I. Djordjevic, Advanced optical communication systems

and networks. Artech House, 2013.
[11] “OpenROADM MSA,” http://OpenROADM.org.
[12] S. Mondal et al., “A novel cost optimization framework for multi-

cloudlet environment over optical access networks,” in GLOBECOM

2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1–7.
[13] S. Mondal et al., “Computation offloading in optical access cloudlet

networks: A game-theoretic approach,” IEEE Communications Letters,
vol. 22, no. 8, pp. 1564–1567, 2018.

[14] L. Chen and J. Xu, “Socially trusted collaborative edge computing
in ultra dense networks,” in Proceedings of the Second ACM/IEEE

Symposium on Edge Computing, ser. SEC ’17. New York, NY,
USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3132211.3134451

[15] M. Kriushanth and L. Arockiam, “Load balancer behavior identifier
(lobbi) for dynamic threshold based auto-scaling in cloud,” in 2015

International Conference on Computer Communication and Informatics

(ICCCI), 2015, pp. 1–5.
[16] R. S. Shariffdeen et al., “Workload and resource aware proactive auto-

scaler for paas cloud,” in 2016 IEEE 9th International Conference on

Cloud Computing (CLOUD), 2016, pp. 11–18.
[17] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet

application deadlines in cloud workflows,” in SC ’11: Proceedings

of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, 2011, pp. 1–12.
[18] “TACC’s Stampede system,” https://portal.tacc.utexas.edu/archives/stam

pede.
[19] “OpenStack,” https://www.openstack.org/.
[20] B. Mirkhanzadeh et al., “Demonstration of joint operation across

openroadm metro network, openflow packet domain, and openstack
compute domain,” in Optical Fiber Communication Conference (OFC)

2020. Optical Society of America, 2020, p. W3C.3. [Online]. Available:
http://www.osapublishing.org/abstract.cfm?URI=OFC-2020-W3C.3

[21] H. Kang et al., “Container and microservice driven design for cloud
infrastructure devops,” in 2016 IEEE International Conference on Cloud

Engineering (IC2E), 2016, pp. 202–211.
[22] I. M. A. Jawarneh et al., “Container orchestration engines: A thorough

functional and performance comparison,” in ICC 2019 - 2019 IEEE

International Conference on Communications (ICC), 2019, pp. 1–6.
[23] “Kubernetes,” https://kubernetes.io/.
[24] “Docker Swram,” https://docs.docker.com/engine/swarm/.
[25] “Apache Mesos,” http://mesos.apache.org/.
[26] “Open Network Automation Platform (ONAP),” https://www.onap.org/.
[27] B. Mirkhanzadeh et al., “An sdn-enabled multi-layer protection and

restoration mechanism,” Optical Switching and Networking, vol. 30,
pp. 23 – 32, 2018. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S157342771730228X

[28] “Generic Routing Encapsulation (GRE),” https://tools.ietf.org/html/rfc2
784.

[29] “Virtual eXtensible Local Area Network (VXLAN),” https://tools.ietf.o
rg/html/rfc7348.

[30] “Transport PCE Wiki,” https://wiki.opendaylight.org/view/TransportPC
E:Main.

[31] “OpenStack Live VM Migration,” https://docs.openstack.org/nova/latest
/admin/configuring-migrations.html.

[32] B. Mirkhanzadeh et al., “Demonstration of an openroadm sdn-enabled
network for geo-distributed data centers,” in 2019 21st International

Conference on Transparent Optical Networks (ICTON), 2019, pp. 1–4.
[33] Y. Han et al., “Convergence of edge computing and deep learning:

A comprehensive survey,” CoRR, vol. abs/1907.08349, 2019. [Online].
Available: http://arxiv.org/abs/1907.08349

[34] K. S. Chahal et al., “A hitchhiker’s guide on distributed training of deep
neural networks,” Journal of Parallel and Distributed Computing, vol.
137, pp. 65 – 76, 2020.

[35] “Distributed training with TensorFlow : TensorFlow Core,” https://ww
w.tensorflow.org/guide/distributed training.

[36] “ResNet,” https://keras.io/examples/cifar10 resnet.
[37] “CIFAR10,” https://www.cs.toronto.edu/∼kriz/cifar.html.

11

