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Abstract—Edge computing is an attractive architecture to
efficiently provide compute resources to many applications that
demand specific QoS requirements. The edge compute resources
are in close geographical proximity to where the applications’
data originate from and/or are being supplied to, thus avoiding
unnecessary back and forth data transmission with a data
center far away. This paper describes a federated edge com-
puting system in which compute resources at multiple edge
sites are dynamically aggregated together to form distributed
super-cloudlets and best respond to varying application-driven
loads. In its simplest form a super-cloudlet consists of compute
resources available at two edge computing sites or cloudlets that
are (temporarily) interconnected by dedicated optical circuits
deployed to enable low-latency and high-rate data exchanges. A
super-cloudlet architecture is experimentally demonstrated over
the largest public OpenROADM optical network testbed up to
date consisting of commercial equipment from six suppliers.
The software defined networking (SDN) PROnet Orchestrator is
upgraded to both concurrently manage the resources offered by
the optical network equipment, compute nodes, and associated
Ethernet switches and achieve three key functionalities of the
proposed super-cloudlet architecture, i.e., service placement,
auto-scaling, and offloading.

I. INTRODUCTION

The continuous growth of Internet of Things (IoT), con-
nected devices and vehicles, cloud robotics, and 5G wireless
communications has led to a pervasive computing infrastruc-
ture with a variety of peripheral devices that act as a set
of heterogeneous data sources and offer a wide range of
services [1] [2]. Cloud computing — a term generally used to
describe data centers — is a key enabler for such services as it
provides a straightforward way to enhance the computational
capabilities of said peripheral devices by offering a centralized
data center that is rich of compute resources. As cloud-based
services evolve, Quality of Service (QoS) requirements, e.g.,
network latency and data rate, needed by such services tend
to become more stringent. For example, real-time cloud ser-
vices in industry 4.0 [3], patient monitoring, and self-driving
vehicles often require low-latency and in some cases high-
data rate network solutions. The traditional cloud computing
infrastructures, i.e., a centralized (and usually remote) data
center, cannot always fulfill these QoS requirements due to the
inherent latency of the wide area network (WAN) connection
needed to access the data center [4]. Furthermore, hosting the
computing resources in smaller sites that are in close proximity
to the user-data has the additional advantage of reducing the
data traffic in WANs and the potential to lower the service
cost charged to the end-users [1] [5].

These considerations have led to the formulation of decen-
tralized computing systems — like Mobile Cloud Computing
(MCC) [6], Cloudlet [7], fog computing [8], and edge com-
puting [9] — which are designed to best address both QoS
requirements and cost of computational-intensive services at
the edge. Applications, often referred to as tenants, can request
resources to be reserved at nearby edge computing sites in
addition to what centralized cloud computing already offers.

While edge computing has the potential to meet the tenants’
tightest QoS constraints, the resulting distributed architec-
ture presents new challenges. Edge sites (also referred to as
cloudlets) host considerably fewer computational resources
compared to conventional cloud data centers [1]. Even when
carefully planned, cloudlet compute resources may not always
suffice to meet an unexpected spike of application-driven load.
Offloading part of the load spike to a centralized data center
may not always be viable as it could violate the tight QoS
requirements of some applications. An alternative solution
is to offload part of the load spike to another cloudlet. For
example, a nearby cloudlet could share some of its unused
computational resources with the cloudlet experiencing the
load spike in a seamless manner, provided that the two
cloudlets are interconnected by means of a low-latency and
high-rate data network connection.

This paper describes and experimentally showcases a feder-
ated edge computing architecture in which compute resources
at multiple physical cloudlets are dynamically aggregated
together to form distributed super-cloudlets. The objective
of creating super-cloudlets dynamically is to best respond
to time-variant loads offered by edge-supported applications
without having to resort to permanently over-provisioned
cloudlets. In its simplest definition a super-cloudlet comprises
compute resources that are available at two physically distinct
cloudlets'. These resources are temporarily and seamlessly
combined together to form a larger and distributed super-
cluster of compute nodes. The newly formed distributed super-
cluster is more likely able to successfully cope with peaks
of offered load while still fulfilling the QoS requirements
that the edge-supported applications demand. To this end the
cloudlets that are chosen to form the super-cloudlet must be
interconnected with a low-latency and high-data rate network
connection, which may be either statically or dynamically

Extension of the super-cloudlet concept to three of more cloudlets is
outside the scope of this study.



provisioned in the metro area network (MAN). Optical circuits
are best suited for this type of connectivity [10].

For example, this low-latency and high-data rate network
connectivity is achievable through dense wavelength division
multiplexing (DWDM) equipment that is compliant with the
public OpenROADM Multi Source Agreement (MSA) stan-
dard [11].

Such an open solution offers cloudlet operators the ability to
independently choose their own preferred supplier, yet permit-
ting cloudlets of different operators to be directly connected
by optical circuits when required.

To showcase the proposed concept, an OpenROADM
testbed is programmed to implement super-cloudlets that sup-
port a machine learning training tenant application whose
performance is sensitive to architectural constraints.

II. STATE OF THE ART

The concept of forming federations of multiple cloudlets has
been theoretically investigated in a number of papers [12]-
[14]. Ref. [12] focuses on optimal planning of the optical
access network that interconnects the attached cloudlets. A
non-linear programming model is proposed to identify optimal
placement locations of cloudlet servers subjected to capacity
and latency constraints in urban, suburban, and rural sce-
narios. Ref. [13] describes an economic and non-cooperative
continuous-kernel game theoretic model to analyze compu-
tation offloading strategies between cloudlets of competing
service providers, interconnected by a TDM optical access
networks.

Ref. [14] describes a small cell base station (SBS) coalition
formation algorithm that is based on the coalitional game
theory to cope with various challenges in small-cell-based
edge systems, including the co-provisioning of radio access
and computing services, cooperation incentives, and potential
security risks. This simulation-based study shows that signifi-
cant edge computing performance improvement is achievable
by allowing cooperation among SBSs. Other studies in the
literature look into load balancing and auto-scaling schemes
in compute infrastructures [15]—-[17] without paying particular
attention to the required optical network infrastructures.

Published studies on federated cloudlets are mostly theo-
retical and focus on optical access networks. In contrast, the
study described in this paper focuses on the first experimental
work on federated cloudlets interconnected by a programmable
(SDN) DWDM optical network testbed.

III. SYSTEM DESCRIPTION

In this section, we describe a possible implementation of
the super-cloudlet architecture along with a related testbed
that is used to conduct a number of experiments to validate
the key required functionalities. The described implementation
is a compromise between proving these functionalities and
making use of a number of open software packages that
are available at the time of this publication. Over time, this
specific implementation may be further improved based on
future upgrades of these software packages.

As previously mentioned, besides offering a decentralized
and close-to-the-application service, edge computing must
also represent a cost effective alternative to centralized cloud
computing. More specifically, edge computing must address:

o High quality of service: the solution must support service
to applications with low latency requirement by assigning
compute resources that are geographically close (in a
cloudlet) to the applications [5].

o Low WAN cost: the solution must reduces congestion
in the WAN by minimizing the data exchange required
between decentralized cloudlets and centralized cloud
computing sites — e.g., offloading services to a central-
ized cloud should be avoided whenever possible [1].

o Real time scaling: similar to conventional cloud comput-
ing a cloudlet also needs to provide elasticity to scale up
and down operation based on the number of active users
and applications running [1].

o Service diversity: cloudlets must be able to offer a set
of diverse multi-tenant compute services in the form of
virtual machine, container, and bare metal [5].
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Fig. 1. (a) Two cloudlets operating independently, each hosting a single
cluster of workers. (b) A super-cloudlet consisting of two cloudlets connected
by low-latency and high-data rate optical circuits. Worker cluster C; makes
use of compute resources that are provided by cloudlet S; to cope with a
sudden surge of its applications’ load.

Consisting of two neighboring cloudlets interconnected by
low-latency and high-dat rate optical circuits the super-cloudlet
is designed and implemented to concurrently fulfill all of the
above edge computing requirements. Fig. 1(a) depicts two
cloudlets (S; and S;) that work independently, each hosting
one cluster of workers (C; and C, respectively). Fig. 1(b)
shows how the creation of a super-cloudlet (S; ;) enables
cluster C; to scale up above its hosting cloudlet (S;) capacity
by resorting to the additional compute resources that are
available at the nearby cloudlet (S;). This procedure enables
real-time scale up of cloudlet compute resources while keeping
them close to the applications, does not increase traffic in the
WAN, and supports service diversity as described next.

Our testbed implements a federated edge computing system
with four cloudlets interconnected by a packet SDN over a
full mesh OpenROADM [11] transport network. The topology
schematic is shown in Fig. 2a and the actual equipment is
shown in Fig. 2b. A total of forty re-purposed Stampede
compute nodes [18] are divided among the four cloudlets and
controlled through OpenStack [19]. Four OpenFlow-enabled
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(a) Testbed block diagram.

(b) Photo of testbed equipment as displayed at OFC’20.

Fig. 2. Live demonstration of the OpenROADM testbed with four nodes.

Juniper QFX? and four Dell®> Ethernet switches provide con-
nectivity between the compute nodes and the optical transpon-
ders and switchponders. The switches are controlled by an
OpenDaylight (ODL) controller. The optical transport network
consists of four ROADM nodes, one for each cloudlet [20].
Length of the fibers connecting the ROADMs can be manually
modified to investigate the effect of signal propagation on the
system performance. Data packets from the Ethernet switches
are transmitted over the optical transport network in the form
of client signals using eight 100Gbps transponder blades (for
a total of 20 wavelengths), and five switchponders (aggregate
line rate of 100Gbps and client rates of 1Gbps and 10Gbps).
Additional details about the three domains in the testbed are
provided next.

A. Compute Domain

In its most general definition edge computing should offer
services on various platforms such as virtual machine, con-
tainers, and bare metal. Virtual machines and bare metal both
provide more mature and isolated compute environments for
cloud-driven applications. Containers are increasingly being
considered for computationally-intensive and distributed tasks
because they offer more agile software platforms to developers
like DevOps and microservices [21]. Due to this growing
interest our study focuses on containerized applications.

In order to run containerized applications in a feder-
ated computing edge system a container orchestration engine
(COE) [22] is required, which enlists compute resources to
form a cluster of workers and assigns users’ tasks (in contain-
ers) to the available workers in the cluster. The COE usually
manages key functionalities like task placement, auto-scaling,
and load balancing for the cluster and keeps administration of
the system simple. Examples of COE include Kubernetes [23],
Docker Swarm [24] and Apache Meso [25], which all support
these key functionalities [22]. A COE cluster typically consists
of at least one master node and one worker. The master node
performs all the administrative and controlling functions, while
the workers host tasks running as containers. COEs do not
typically have awareness of the cloudlets locations, network
topology and equipment configuration, and do not natively

2 Juniper QFX5100 Series 10/25/40/100GbE Switches.
3Dell PowerConnect 3048P Switches.

support super-cloudlets. These functionalities — missing in
existing COEs — must be implemented at a higher level
of control, like a comprehensive platform for orchestration,
management, and automation of network and edge computing
services. This orchestration platform — e.g., ONAP [26] and
the PROnet Orchestrator [27] — has the necessary visibility
across both network and compute domains and is therefore
most suitable for implementing the key functionalities that are
required in the super-cloudlet architecture, like setting up and
taking down super-cloudlets.

In our testbed, OpenStack * is chosen to provide infras-
tructure as a service platform (IaaS), which includes enlisting
of the compute nodes and maintenance of networking and
multi-tenancy across cloudlets. OpenStack firstly supports
multiple COEs to host containerized applications through
the Magnum API service. Secondly, OpenStack offers both
virtual machine and bare-metal service in the cloudlets, thus
achieving the service diversity discussed in III. Each COE
is implemented using Kubernetes® . For ease of description
only one cluster of workers (C;) is created in each cloudlet
(S;), where ¢ = 1,2,3,4. Two options exist in OpenStack
two host Kubernetes workers: 1) bare-metal using Ironic and
2) virtual machine using KVM. These two options have their
pros and cons. While the bare metal option provides hosting
with reduced overhead and improved performance, the virtual
machine option offers more flexibility for workers to be live
migrated for load balancing and offloading purposes. Being
live migration a required key functionality to support super-
cloudlets, the latter option is chosen in this study. Fig. 3 depicts
an individual cloudlet and how the Kubernetes cluster is hosted
inside OpenStack. Network connectivity is described next.

B. Network Domain

A typical edge computing infrastructure requires two sepa-
rate main networks.

o The management network is required for administrative
services such as load balancing of compute nodes and
exchange of control messages for various services and
API access.

4OpenStack Stein release.
SKubernetes version 1.17



s Management Network (100 G Transponder)
s Tenant Network (10 G Switchponder)

To the Remote Site

Dell

Juni| FX
Powerconnect e

Physical Compute Nodes

Distributed ML Task

__________

Cloudlet
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o The tenant network is commonly known as production
network for West/East traffic in cloud and edge, and
usually provides dedicated communication for computing
instances that belong to a specific tenant. Tenant networks
are usually overlay networks such as generic routing
encapsulation (GRE) [28] and VXLAN [29].

It is worth mentioning that a third network type referred to
as external network carries North/South traffic, i.e., the traffic
between the compute resources and the peripheral devices that
belong to the tenant. The tenant devices are connected to one
or more external networks and the compute instances must
be able to connect to these networks so tenants can have
data exchanges between their devices and assigned compute
instances.

When a super-cloudlet is created both management and
tenant networks must be upgraded to account for the dis-
tributed nature of the compute resources hosted by the two
cloudlets that are being aggregated. For best performance, cost
effectiveness, and solution modularity dedicated optical cir-
cuits are (dynamically and temporarily) provisioned (through
wavelength and/or time division multiplexing) between these
cloudlets, as shown in Fig. 1(b). Optical circuits provide the
low-latency and high-data rate connectivity between the two
cloudlets which is advantageous for two reasons: first, a high-
performing tenant network between the cloudlets maintains the
high quality of service that is expected from edge computing
even when compute resources are allocated in the nearby
cloudlet; second, a high-performing administrative network be-
tween the cloudlets facilitates and expedites critical procedures
like task offloading and load balancing between the cloudlets.

Both packet and optical domains in the testbed are described
next.

1) Packet Domain: OpenFlow-enabled packet-switching
fabrics are used to commission both management and tenant
networks in every cloudlet. The Juniper switches are config-
ured to support the permanent management network, with the
temporary upgrades provided by the 100G transponders when

operating a super-cloudlet. The Dell switch are configured to
support the permanent tenant network, with the temporary
upgrades provided by the switchponders 10G client signals
when operating a super-cloudlet.

The higher bandwidth of the Juniper switch enables the
management network to expedite worker offload procedures,
in response to disaster occurrence or real-time changes in the
super-cloudlet design. Concerning tenant networks, isolation
(slicing) of network resources is achieved through VXLAN
which offers ease of deployment and scalability.

The VXLAN header contains a 24-bit network identifier
called VNI, which enables a large number of isolated tenant
networks to be established. In addition, since VXLAN is an
overlay network based on UDP, tenant networks can be created
on top of any layer (2 or 3) network infrastructure. Fig. 4
shows an example of VXLAN overlay network for two distinct
tenants created on top of a physical network.
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SDN-DeII Switch
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%_ Physical Network

SDN Dell Switch

Fig. 4. Two VXLAN overlay tenant networks.

2) Optical Domain: While optical circuits between
cloudlets may be permanently provisioned in special situa-
tions, a more general and flexible architecture makes use of
on-demand and dynamically provisioned optical circuits. In
the latter case optical circuits are provisioned only when the
super-cloudlet is needed, thus yielding a significant network
cost reduction. In addition, each cloudlet can be equipped
with one or just a few optical transponders, and yet that
cloudlet could be paired with any of the nearby cloudlets
that are equipped with compatible transponders. Till recently
this requirement of having compatible transponders deployed
across heterogeneous cloudlets would have required a group of
cloudlet providers to agree to use the same optical equipment
supplier. However, thanks to the recent progress made by the
OpenROADM MSA initiative it is now possible to achieve full
interoperability between equipment from multiple suppliers,
along with full SDN programmability of said equipment as
discussed later in the paper. With this significant advantage
of being able to create optical circuits on demand and be-
tween many possible cloudlet pairs, the operators have an
unprecedented number of options to scale up their cloudlet
capacity while taking into account geographical proximity of
cloudlets, compute resource type and availability, and existing
commercial agreements with other operators for the mutual
exchange of resource usage.

In our testbed, ROADM nodes, transponders, and switch-
ponders from six suppliers are interconnected as shown in
Fig. 2a.

The resulting multi-supplier optical transport network is
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Fig. 5. PROnet Orchestrator in federated edge computing.

controlled by the open source TransportPCE plugin® [30],
which makes use of a common set of NETCONF/YANG
APIs published by the OpenROADM MSA’. [11]. The
OpenROADM MSA specifications ensure interoperability of
ROADM, transponders, OTN switches, and pluggable optics.
This OpenROADM MSA compliance is a very critical element
to achieve a multi-operator federation of cloudlets in which
each operator is free to select its own equipment supplier, and
yet optical end-to-end dynamic connectivity between cloudlets
remains feasible.

As already mentioned, while operating a super-cloudlet
transponders with 100G client ports are used to provide tempo-
rary extension of the management network and switchponders
with 1G and 10G client ports are used to provide temporary
extension of the tenant networks. This is an arbitrary choice
made in our study, driven by two observations: a high data
rate (e.g., 100G) management network expedites migration
of workers between cloudlets, and switchponders make use
of time division multiplexing (OTN [20]) to create multiple
isolated client circuits with relatively low rates (e.g., 1G and
10G) over a single (e.g., 100G) optical circuit, which enable
guaranteed bandwidth separation among multiple tenant net-
works. With that noted, thanks to the software programma-
bility of OpenROADM networks the operator can choose to
assign other transport circuit rates to interconnect cloudlets.
For example 400G transponders compliant with OpenROADM
are expected to become available soon, and demanding tenant
applications may be assigned data rates in excess of 10G when
necessary.

5TransportPCE plugin version 2.0.0
70OpenROADM MSA version 2.2.1

C. Orchestration architecture

The resources in the three domains (compute, electronic
packet switching, and optical circuit switching) are managed
and orchestrated by a single software module — whose block
diagram is shown in Fig. 5 — referred to as the PROnet
(SDN) Orchestrator [27]. Interfaced with four controllers —
the TransportPCE and OpenFlow ODL controllers for man-
aging network resources, and the OpenStack and Kubernetes
controllers for managing compute resources — the PROnet
Orchestrator is configured to execute three key functionalities
of the super-cloudlet architecture, i.e., service placement, auto-
scaling, and service offloading. In order to do that, the PROnet
Orchestrator performs resource discovery and imports resource
states from the four controllers by means of the RESTCONF
protocol. Based on its internal combined abstraction of the
three domains and their resources — which also keeps track of
every super-cloudlet that is created and its current state — the
PROnet Orchestrator is then able to implement the schedulers
that activate the three key functionalities and, when necessary,
trigger the creation or removal of super-cloudlets.

The creation of a specific super-cloudlet should be driven
by algorithms that make use of equations which are based on
the following parameters and variables®. Let S; represent a
cloudlet. Let C; be the COE cluster hosted by cloudlet S;.
The following notation is defined:

o 0(S)={n(S;),c(Si),m(S;),s(S;)}: Resource
provisioned at cloudlet S; defined as the number
of compute nodes, vCPUs per node, memory per node,
and storage per node,

8The set defined in this study only provides a simple example to help
illustrate the concept. This minimal set can be expanded to account for many
more factors that play key roles in practical deployments.



o Y(C)={c(C;),m(C}), s(C;)}: Worker flavor for cluster
C); defining the number of vCPUs, memory, and storage
requirements per worker,

o w(C;): Number of workers reserved for C;,

o c#(Ci) < ¢;(C;): Number of actively used vCPUs in
worker w; in Cj,

o m}(C;) < m;(C;): Memory actively used in worker w;
in Oi,

o s7(C;) < 5;(C;): Storage actively used in worker w; in

« pi(Co=mas (e, They. Eos
of worker w; in Cj,

. p(Ci)zz;U:(?) p;(Ci)/w(C;): Average utilization factor
of all workers in C;, assuming all workers have identical
flavors,

o 0(S;;)={0(Si),o(S;)}: Resource provisioned in super-
cloudlet S; ;, defined as the resources that have been built
in the two cloudlets comprising the super-cloudlet, i.e.,
S; and S,

o wi={c(w;), m(w;), s(w;)}: Flavor for container of type [,
defining number of vCPUs, memory size, and storage size
requirements, ¢ = 1,2,3,4,...,

o Q,={k,w;}: Task request type, consisting of k containers
of type m.

) : Utilization factor

Building on these parameters and variables scheduling algo-
rithms can be designed to assist both the COE and orches-
tration platform to carry out service placement, auto-scaling,
and service offloading. Implementation of these three key
functionalities in the PROnet Orchestrator is discussed next.

1 n Worker ID Worker ID

(a) Load Balance (b) First Fit

pi(Cd)
, Load of Worker
wj in Cluster C;

Worker ID

5 pro1
More Load Balance ¢ = More First Fit

(c) Hybrid

(d) Proposed approach

Fig. 6. Scheduling and placement strategies.

1) Service Placement and Scheduling: Service placement
is the action of assigning application tasks to run on specific
workers in each cluster. This scheduling decision is typically
made by the COE, which accounts for the available workers
in the cluster, their flavors, current and forecast load. The
cloudlet administrator may also drive the COE decision based
on specific preferences and strategies, e.g., achieving balanced
loading of the available workers, or turning off as many
workers as possible. These are conflicting strategies that must
be resolved by the cloudlet administrator. Typically, incoming
task request {;={k,w;} is hosted in cluster C; as long as a
service placement can be found such that p; (C;) < T for every

worker w;, 7 = 1,2,..., where T' is a chosen threshold. To
meet the condition imposed by 7' it may be necessary to place
the k£ containers in multiple workers. When multiple solutions
exist for an incoming task request that satisfy the condition
imposed by T, the scheduler may rank said solutions according
to the administrator’s preference, e.g., load balancing or first
fit. For instance, the administrator might prefer a uniform
load balancing among all the workers or switch to the first
fit approach to minimize the cluster size within the cloudlet
and in some cases avoid creating a super-cloudlet.

To account for these two conflicting conventional strategies
— i.e., uniform load balance shown in Fig. 6(a) or first fit
shown in Fig. 6(b) — and possible hybrid options in between
— as shown in Fig. 6(c) — a simple model is described
next, which is tunable through a single parameter p. (Note
that both full load balance and first fit are special cases of the
hybrid option.) This model is easy to use when running various
experiments as it permits to modify the service placement
strategy by varying the value of p.

Let pr be a threshold assigned to workers in cluster C;
that are expected to operate at utilization levels below said
threshold, i.e., p;(C;) = p; < pr. Let 0 < p < pp be an
adjustable parameter that is set by the cloudlet administrator
to shape the load distribution across its cluster workers.
Parameter / is used to compute the utility function y;(p;) for
each worker w; in cluster C; as illustrated in Fig. 6(d). The
utility function for the first worker y; (p1) grows linearly with
the worker load p;. The utility of the second worker y5(p2) is
a piecewise function with two segments as shown in Fig. 6(d).
The offset and slope of the left segment is determined by the
value assigned to p using the following equations, which for
the generic worker w; is:

o)) = BBy i) )
Using the utility functions in (1) the ordered list L(C;) is
created by sorting the workers in C; from the lowest to
the highest value. The utility function of each worker w; is
computed at the load that would result from assigning the
container request to that worker, referred to as pj+. The lowest
cost worker in the list is chosen to host the container. Note
that when p is set to approach 0, all workers tend to have
the same utility function and the resulting average load of the
workers approaches the distribution in Fig. 6(a). When p is
set to approach pr, workers are loaded in a first fit manner as
shown in Fig. 6(b). Intermediate hybrid distributions can be
obtained by choosing p to be somewhere between 0 and pr,
obtaining average loads like those in Fig. 6(c).

2) Auto-scaling: Auto-scaling is the action of either in-
creasing or decreasing w(C;), which is the size of cluster
C;. Auto-scaling is required to adjust the cluster resources to
best meet the applications’ aggregate offered load when that
varies over time. Auto-scaling within an individual cloudlet
is straightforward and can be performed by the orchestrator
platform based on specific conditions. A typical condition for
increasing w(C;) is p(C;) approaching threshold T'. A simple




Algorithm 1 Simple scheduler algorithm.
1: procedure SCHEDULETASK(2 ;)

2 for k£ in Q2 do

3 if scheduleContainer(k) is F'lase then
4 remove all containers of this task
5 put task request in waiting queue
6: scaleup()

7 return False

8 end if

9 end for

10: return T'rue

11: end procedure
12: procedure SCHEDULECONTAINER(k,,)

13: for each w; in Cjdo .
14: ,Oj_ (C,') — MAX( % (f;?;r::)(w” ) = (Ti;)(z?;(wl) ;
57 (Ci)+s(wi)
@y )
15: if pF(Ci) <=1 then
16: add wyj to list of potential candidates Lc,
17: end if
18: end for
19: if Lc, is Empty then
20: return False
21: end if
22: Wy, + min cost(Le,)
23: assign container k,, to worker w,,
24: return True
25: end procedure
26: procedure SCALEUP()
27: if resources exist in cloudlet S; then
28: create and add worker to C;
29: else
30: select best auxiliary cloudlet .S; for super-cloudlet
31: create lightpath betweeen S; and S; cloudlets
32: create and add worker to C;
33: end if
34: return 7rue

35: end procedure

reactive method can be defined in a way that when an incoming
task cannot be scheduled in the cluster due to the lack of
resources a scale up request is triggered. A proactive method
monitors the state of each cluster periodically and triggers a
scale up or scale down action based on the workers’ utilization
factors and predefined thresholds.

Auto-scaling of a cluster (C;) size beyond its cloudlet (.S;)
capacity requires the creation of a super-cloudlet. The auxiliary
cloudlet (S;) needed for creating the super-cloudlet must be
selected by the orchestrator while taking into consideration
the following factors at S;: availability of compute resources,
availability of optical transponders, and transport network
round trip time with respect to cloudlet S;. Other factors
that may affect the selection of the auxiliary cloudlet include
past history of application load distribution, future load pre-
diction tools and collaborative agreements between cloudlets’

providers. The super-cloudlet is formally set up once cloudlet
S; and S; are connected by a dedicated optical circuit(s),
which minimizes the transport latency of both management
and tenant networks connecting the workers in the two sites.

In the testbed, auto-scaling is invoked when an application
task request cannot be fulfilled with the workers that are
currently assigned to the cluster (C}). A task Qy, ., is fulfilled
when k containers of flavor w; can be hosted by the workers
available in the cluster. Algorithm 1 shows the pseudocode of
a reactive auto-scaling scheduler implemented in the PROnet
Orchestrator. The scheduler first attempts to scale up cluster
C; with a new worker created in the home cloudlet (.5;). When
that is not possible the PROnet Orchestrator selects a nearby
cloudlet to serve as auxiliary cloudlet (S;), establishes two
optical circuits (a 100G for the management network and a
10G for the tenant network), and finally scales up C; with
a new worker created in the auxiliary cloudlet. It is worth
noting that the two optical circuits of the super-cloudlet are
created by the TransportPCE controller while concurrently the
cluster is scaled up by the OpenStack controller. These two
tasks can proceed concurrently, since the OpenStack compute
node needs mostly internet (or a local docker registry) access
to download the software packages needed to deploy the new
worker and does not require dedicated optical circuits with the
other cloudlet to carry out this task. A proactive auto-scaling
scheduler is also implemented in the PROnet Orchestrator. In
this second implementation the scheduler i) checks the state
of each cluster at regular intervals of ¢,y ster, and ii) evaluates
whether the two optical circuits in the super-cloudlet should
remain in place or be removed at regular intervals of ¢;gn¢path-
Two cluster utilization thresholds p(U) and p(L) are used by
the proactive scheduler to scale up and scale down cluster
C;, respectively. If p(C;) > p(U), then C; is scaled up. If
p(C;) < p(L) and the worker in cluster C; with the highest
identifier (i.e., most recently created) is idle, then C; is scaled
down by removing said worker. When C; no longer makes use
of workers in the auxiliary cloudlet (S;) the super-cloudlet and
its optical circuits are taken down.

To avoid that both auto-scaling and optical circuit cre-
ation/removal procedures are invoked too often, a minimum
life time (MLT) is enforced on the created workers and optical
circuits. Once created and assigned to its cluster a worker
cannot be removed before a minimum life time ¢yorker M LT-
Once created and assigned to a super-cloudlet an optical
circuit cannot be torn down before a minimum life time
tlightpathMLT~

The total time required to complete both the set up of a new
super-cloudlet and cluster auto-scaling action can be reduced
when the orchestrator platform is designed to carry out these
two tasks in parallel. The time required to create an optical
circuit — the predominant time factor in creating the super-
cloudlet — depends on the total fiber distance traveled by the
signal and the specific equipment used. Typically, this time is
in the 3 to 5 minute range. The time to add workers to a cluster
depends on the virtualization platform and compute hardware
deployed. A typical value is several minutes (see Section IV),



which is comparable to the lightpath creation time. By carry
out these two tasks in parallel the orchestrator can make the
auto-scaling time practically transparent to the creation (or
removal) of super-cloudlets.

3) Service Offloading: Service offloading is the action
of migrating tasks from their currently assigned compute
resources to another host. In addition to its typical applications
already described in the Introduction, this functionality is also
key in the super-cloudlet architecture as illustrated by the next
example.

A cluster in a super-cloudlet consisting of two cloudlets
(home and auxiliary) may have workers assigned to application
tasks in both cloudlets. Workers in one cloudlet may need to
be live migrated to the other cloudlet. For example when it
is time to take down the super-cloudlet the workers that are
running in the auxiliary cloudlet must be migrated to the home
cluodlet, before the optical circuits between the two cloudlets
are torn down.

The PROnet Orchestrator is designed to carry out live mi-
gration of virtual machines hosting workers from one compute
node to another. Fig. 7, shows the two methods for live-
VM migration available in OpenStack: pre-copy and post-copy
methods. With the pre-copy method the memory contents of
the VM are sent to the destination VM interactively while
new pages might be added to the memory of the current
VM. The OpenStack pre-copy strategy offers an auto-converge
feature for a successful live migration of a memory-intensive
VM by slowing the instance down [31]. With the post-copy
method the memory content is copied to the new VM and
the current VM is paused. This feature activates the virtual
machine on the destination host before all of its memory has
been copied. When the virtual machine accesses a page that
is missing on the destination host, the resulting page fault is
resolved by copying the page from the source host [31]. The
performance of the two methods when applied to a super-
cloudlet is discussed in the next section.

Compute node A Compute node B Compute node A Compute node B
Copying ¥ Copying Ld

] ]
VMA VMA VMA VMA
Active Paused Paused Active

Fig. 7. Pre-copy (left) and Post-copy (right) methods for live VM migration.

IV. EXPERIMENTAL RESULTS

A number of experiments are reported in this section
to provide further insights into the proposed super-cloudlet
architecture and its feasibility. Only three of the testbed
cloudlets (A, B, and C) are used in these experiments and their
configurations are reported in Table I. The experiments and
their results are organized in three subsections: auto-scaling of
Kubernetes cluster under varying conditions, performance of
a distributed machine learning (ML) training application, and
service offloading achieved by OpenStack when migrating a
VM hosting containers.

A. Auto-scaling

In this series of experiments the PROnet Orchestrator
instructs Kubernetes to perform scale up and scale down
upgrades of a cluster hosted by a single cloudlet fifty times.
Table II shows both mean and variance of the completion
time of these trials distinguishing between two management
network interface rates at the compute node, i.e., 1G and 30G.
The auto-scale completion time is minimally affected by the
management network interface used at the node. The high
variance of the scale up results is mainly due to the public
Internet access that is required to retrieve the required software
packages and docker images for deploying the workers.

When the scale up and scale down procedures trigger a
super-cloudlet set up or take down, at least one new lightpath
must be created or torn down, respectively. Table III reports
the average time it takes to create and tear down a lightpath in
our OpenROADM network alongside the time it takes to have
L3 reachability through the attached packet switches [32]. The
total time required to set up the network connection needed
by the super-cloudlet is 188 seconds (lightpath setupe time
+ L3-reachability time), which is less than the scale up time
of adding one worker to the compute cluster. Since the both
network set up and compute scale up procedures are executed
in parallel, the total average time to create the super-cloudlet
is around 420 seconds, which is the mean scale up time of the
compute domain. Concerning the the scale-down procedure
the 88 seconds needed to tear down a lightpath exceed the
compute cluster scale down time. Thus, the total time that
is required to take down the super-cloudlet is 88 seconds on
average.

B. The Use Case: a Machine Learning Training Task

As previously noted, operating with a super-cloudlet has the
advantage of temporarily offering extra workers to a cluster
that is experiencing a load surge. However, with the cluster
workers now being hosted in two cloudlets connected by an
optical transport network performance degradation of the tasks
running in the containers hosted by these workers may be
experienced. A use case is described and used in this section
to explore this important aspect. The chosen application task
is the distributed training of deep neural networks. Com-
pared to centralized training running on a single machine,
distributed training achieves higher training efficiency for
deep neural networks’ by distributing the training task to
run on multiple servers through either data parallelism or
model parallelism [34]. More specifically, data parallelism in
TensorFlow environment [35] is used in this study by running
containers in either an isolated cloudlet or a super-cloudlet to
train ResNet56 [36] on dataset CIFAR10 [37]. The CIFAR10
dataset contains 50,000 samples. One round of training on
the whole dataset is defined as one epoch. In each epoch, the
dataset is divided into multiple smaller disjoint batches that
are evenly assigned to the containers hosted by the workers.

9Edge computing is expected to support many applications that require
machine learning [33].



TABLE I
THREE CLOUDLETS USED IN THE EXPERIMENTS.

Cloudlet A Cloudlet B Cloudlet C
Number of compute nodes 11 12 4
Number of CPU cores 16 (32 via Hyperthreading) 16 (32 via Hyperthreading) 16 (32 via Hyperthreading)
Memory 32GB 32GB 32GB
Storage 1TB 1TB 1TB
Compute node’s management 1Gb/s (8 nodes) 1Gb/s (8 nodes) 30Gb/s (3 nodes)
interface 30Gb/s (2 nodes) 30Gb/s (3 nodes) 10Gb/s (1 node)

10Gb/s (1 node)

10Gb/s (1 node)

Compute node’s tenant interface 1Gb/s

1Gb/s 1Gb/s

Management switch Juniper QFX 5110

Juniper QFX 5110 Juniper QFX 5110

Tenant switch Dell Powerconnect 3048

Dell Powerconnect 3048 Dell Powerconnect 3048

Management optical lightpath Transpoders (100 Gb/s)

Transpoders (100 Gb/s) Transpoders (100 Gb/s)

Tenant optical lightpath Switchponder (10 Gb/s)

TABLE II
AUTO-SCALING COMPLETION TIME AVERAGE AND VARIANCE AS A
FUNCTION OF MANAGEMENT NETWORK DATA RATE.

Mean Scale up | Mean Scale | Scale Down
Scale up Variance Down Variance
1G 420.58s 217.22s 70.90s 13.91s
nodes
30G 420.13s 184.13s 68.17s 15.90s
nodes
TABLE III

AVERAGE NETWORK CONFIGURATION TIME FOR SUPER-CLOUDLET SET
UP AND TAKE DOWN.

tlightputh_creution ‘ tlightpath_teardown‘ tLS_Reachubility
178s | 88s | 10s

The epoch time is also divided into m consecutive steps.
During a step, each container performs training using one
mt" of its assigned batch of data. At the end of each step
containers exchange their respective output data to aggregate
gradients in the neural network, before proceeding with the
next step. This data exchange is carried out using transmission
control protocol (TCP) at the end of each step and may slow
down the overall training procedure depending on the network
connectivity data rate that is used between the workers hosting
the distributed training containers.

The following configurations are used in the experiments
described in this section. The deep neural network training
task €, ., is executed using two containers (k = 2), of equal
flavor. One of the following service placements is applied
to the two containers. 1) The containers run in the same
isolated cloudlet and optical circuits are not used. 2) Each
container runs in a distinct cloudlet and the two cloudlets are
connected by a lightpath routed over a fiber optics cable of a
few meters. 3) Each container runs in a distinct cloudlet and
the two cloudlets are connected by a lightpath routed over a
fiber optics cable of 25 km. When using the super-cloudlet the
data exchange at the end of each step is carried through the
10G tenant network using Fujitsu (1FINITY) Switchponder
and Ciena Switchponder. Two flavors wy and wsy are applied,
i.e., ¢(w1) = 4 vCPUs and c¢(wz) = 8 vCPUs. The CIFAR10

Switchponder (10 Gb/s) Switchponder (10 Gb/s)

dataset is divided to form batches of 32 or 128 samples. The
number of steps in each epoch is then m = 781 (50000/32/2)
and m = 195 (50000/128/2), respectively.

TABLE IV
EPOCH COMPLETION TIME FOR THREE SCENARIOS.

Batch | # of | single super- super-

Size vCPUs per | cloudlet cloudlet cloudlet

m container few meters 25km

32 4 1075s 1092s 1095s

32 8 533s 527s 535s

128 4 1058s 1048s 1060s

128 8 501s 502s 504s
TABLE V

NETWORK UTILIZATION FOR THREE SCENARIOS.

Batch | # of | single super- super-

Size vCPUs per | cloudlet cloudlet cloudlet

m container few meters 25km

32 4 21.04Mbit/s 21.40Mbit/s 20.53Mbit/s

32 8 43.02Mbit/s 43.89Mbit/s 42.72Mbit/s

128 4 5.54Mbit/s 5.45Mbit/s 5.36Mbit/s

128 8 11.64Mbit/s 11.83Mbit/s 11.54Mbit/s

Tables IV and V report the epoch completion time and
network utilization, respectively, for four configurations and
three cloudlet settings. The number of vCPUs assigned to
each container affects both epoch time and network utilization.
The epoch completion time is reduced to approximately half
when using 8 vCPUs compared to when using 4 vCPUs.
The network utilization — defined as the tenant data rate in
and out of each container — doubles when using 8 cores
compared to when using 4 vCPUs, as the former has twice
the computing power and completes twice as many steps per
time unit (doubling the data exchanges) compared to the latter.
The batch size — which determines the number of steps in
each epoch — does not have a significant effect on the epoch
completion time. However, it significantly affects the tenant
network utilization, which is proportional to the number of
data exchanges that are performed at the end of each step.
Results show only minor variations across the three cloudlet
settings corroborating the earlier claim that making use of



Live VM-migration Method

TABLE VI

MEAN OFFLOADING TIME AND VARIANCE UNDER DIFFERENT SCENARIOS.

30G node in 3 containers
task scenario

30G node in 5 containers
task scenario

1G node in 3 containers
task scenario

1G node in 5 containers
task scenario

Pre-copy with auto-converge Mean: 75.4s Mean: 79.37s Mean: 351.61s Mean: 362.22s
Variance: 3.75s Variance: 4.2s Variance: 651.83s Variance: 583.82s
Post-copy Mean: 83.49s Mean: 85.66s Failed Failed

Variance: 6.86s

Variance: 7.11s

a dedicated low-latency and high-data rate optical circuit to
update the tenant network in the presence of a super-cloudlet
enables clusters to make use of workers in the auxiliary
cloudlet without experiencing major drawbacks. Also, when
increasing the length of the fiber connecting the home and
auxiliairy cloudlets from a few meters to 25 km the epoch
completion time increases by 1.5% or less, which is a modest
performance penalty. At the same time network utilization
decreases up to 4.1% due to the increased network round trip
time. The training achievable accuracy is outside the scope of
this paper.

Migration Time

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Trial Number

(a) Migration time using nodes with 1G interface.
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(b) Migration time using nodes with 30G interface.

Fig. 8. Offloading results under 5 containers task scenario with various
management network rate.

C. Worker Offloading

This section focuses on the completion time of the live
migration of workers (VMs) between two cloudlets. Each
worker hosts one of the containers that perform the training
of ResNet56 [36] as described in Section IV-B. Two methods
of VM live migration are considered: pre-copy with auto-
convergence and post-copy.

We also examine the effect of other factors as well. First, the
distribution level of the containerized application in the COE

10

cluster may influence the migration time of a worker. More
specifically, with one container assigned to each active worker,
data exchanges between every pair of workers must take place
at the end of each step. These data exchanges may affect the
migration time of the VM. This dependency is investigated
by considering two cases: Tasks requiring 3 and 5 containers
(workers), respectively. Second, the management network in-
terface data rate too may affect the migration completion time.
This dependency is investigated by considering two cases: 1G
and 30G network rate. The two charts in Fig.8 report the
migration completion time of 40 trials when migrating one
container in a group of 5. Mean and variance of these results
are reported in Table VI, along with the mean and variance
results of six other system configurations.

When successful, the post-copy method requires 8% to 11%
more time to complete migration compared to the pre-copy
with auto-converge method. The main reason for this result
is that the ML training application is a memory intensive
task and the migration process must keep up with the rate
of memory changes taking place in the source worker while
resolving all dirty memory pages. Conversely, The pre-copy
method with auto-converge throttles the CPU of the source
worker and temporally slows down the worker to keep up with
the memory changes, thus reducing the time that is required
to complete migration.

The management network interface data rate has a signifi-
cant impact on the migration completion time. By increasing
the management network interface rate from 1G to 30G the
migration completion time is reduced to about one fifth. The
reason for this outcome is again the rate of memory change and
the memory-intensive nature of the machine learning training
task. A higher network data rate facilitates the copying of
the memory pages to the destination in such a way that the
migration procedure can keep-up with the memory changes at
the source. It should also be noted that the post-copy method
completes successfully only when operating with 30G, while
it fails when operating with 1G. This failure is caused by the
network low data rate which cannot keep up with the network
related page-faults. The migration continues until it times out
when the worker is completely out of service since part of it
is running at the destination while other parts are still at the
source. Migrating one of 5 containers takes 3% to 5% more
time compared to the case in which one of 3 containers is
migrated.



V. SUMMARY

In this paper we describe a federated edge computing sys-
tem implemented using commercial optical transport network
equipment that is OpenROADM compliant. Service placement,
auto-scaling, and offloading are performed in the federated
edge system using the PROnet SDN Orchestrator, which auto-
matically triggers these functionalities across pairs of cloudlets
when needed. Once paired together to form a super-cloudlet,
neighboring cloudlets can statistically share their compute
resources and best handle peaks of offered load originating
from their edge-supported applications. For improved system
response time, a parallel resource provisioning technique is de-
scribed in which workers are added to an edge compute cluster
while in parallel optical circuits are being set up between the
two cloudlets to form the super-cloudlet. Super-cloudlets can
be set up dynamically to efficiently cope with time-variant
load conditions without requiring excessive overprovisioning
of resources in both compute and network domains.
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