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A major barrier to realising biofuels’ climate change mitigation potential is Received 7 January 2020
uncertainty concerning carbon emissions from indirect land use change Accepted 18 May 2020
(ILUQ). Central to this uncertainty is the extent to which yields can respond KEYWORDS
dynamically to increased demand for agricultural commodities. This study Yield; elasticity; ILUC; biofuel;
examines the elasticity of soybean and corn yields in the USA for 1990-2017 Bayesian network

using Bayesian network models to robustly quantify uncertainty. The central

finding is that a single parameter value for yield elasticity does not ade-

quately represent the effects of technology, policy and price pressures

through time. The models demonstrate the limiting role of technological

progress as well as farmers’ capital investment in response to system shocks.

Results suggest evaluation of parameter uncertainty alone is unlikely to

capture a full range of future ILUC scenarios and reiterate the need for ILUC

studies to use probabilistic approaches as standard to robustly inform

climate change mitigation policies.

1. Introduction

Large-scale deployment of bioenergy with carbon capture and storage (BECCS) is believed necessary to
restrict global warming to below 1.5°C (Intergovernmental Panel on Climate Change [IPCC], 2018). In
scenarios consistent with warming of 1.5°C or less, BECCS has been found necessary to remove an
average of 12 Gt C yr™! by 2100 (IPCC, 2018). However, major concerns have been raised about the
pressures placed on the land system by large-scale BECCS deployment (IPCC, 2018). Prominent among
the potential negative consequences of BECCS is indirect land use change (ILUC; Gough et al., 2018). ILUC
occurs when a change in agricultural production in one location leads to a change in land use elsewhere
to offset the change in land use at the primary location (Overmars et al., 2011). Emissions from indirect
deforestation could erase the carbon sequestration potential of BECCS (El Akkari et al., 2018).

Analysis of ILUC emissions due to first generation biofuels has highlighted agricultural intensification
as the least studied and most uncertain aspect of the system (Wicke et al., 2012). Models used in ILUC
studies represent yield increases in a variety of ways depending primarily on their disciplinary back-
ground; a crucial modelling choice being whether to treat yield increases as endogenous or exogenous to
the land system. However, in both cases, assumptions about future yields have been found to be the
central cause of model uncertainty.

Adopting the endogenous approach, Plevin et al. (2015) found that 50% of parameter uncertainty
in ILUC projections of the widely-used economic-based Global Trade Analysis Project (GTAP) model is
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Figure 1. Literature range for greenhouse gas emissions of 1% generation biofuels: corn ethanol, soybean biodiesel and sugarcane
ethanol, the predominant biofuel in Brazil (USDA FAS, 2019), which is included for context. In all studies ILUC is the principal
cause of uncertainty. Chen and Kocolski are individual modelling studies, Wicke reviewed modelling studies, whilst Overmars
used statistical methods. Error bars are full reported range. Sources: Chen — Chen et al. (2018); Kocolski — Kocolski et al. (2013);
Overmars — Overmars et al. (2015); Wicke — Wicke et al. (2012)

Previous studies of yield elasticity have typically used conventional statistical approaches such
as linear and mixed-effects models to unpick the relative importance of factors influencing yields
(e.g., Berry & Schlenker, 2011). However, these methods do not fully allow price-dependent yield
changes to be separated from factors independent of price, which risks wrongful attribution of
yield (in-)elasticity to exogenous factors such as climate or confusing the long-term rate of
technological progress with short-term price-driven intensification (Golub & Hertel, 2012; study
question one, as below). Furthermore, such methods do not support robust uncertainty quanti-
fication (study question two) and assume a yield elasticity that is static through time (study
question three). To address these challenges, we take a novel approach to study of yield
elasticities, by applying Bayesian network (BN) models. We discuss key aspects of BNs relevant
to our study in section 2.1 and for a more detailed introduction readers are referred to online
appendix 1.

Therefore, this study explores the impact of biofuel policies on yields in the USA corn and soybean
production systems, which underpin creation of ethanol and biodiesel respectively. As the USA is the
largest global producer of first-generation biofuels, and given BECCS remains an emerging technol-
ogy, the USA is the best available test case to explore the potential ILUC consequences of BECCS. The
study uses Bayesian network models to isolate yield response to price from confounding factors such
as climate and long-term yield growth, to quantify uncertainty about yield elasticity, and to assess
the impact of disruptive events on yields. It seeks to answer three central questions to better
understand the importance of yield elasticity for ILUC:

(1) Are USA corn and soybean yields elastic to price, and if so, to what extent?
(2) What is an appropriate parameterisation to represent current uncertainty about yield elasti-
city within ILUC modelling studies?
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(3) Has yield elasticity shown discrete system shifts driven by new technologies (e.g., GM crops)
or the introduction of biofuel policies? If not, has it evolved linearly or remained constant
through time?

2. Methods
2.1. Overview of study methods

The structure of BNs can either be constructed using expert knowledge of a system, or using
machine learning (Nagarajan et al., 2013). Typically, in the land use sciences, BN structures have
been developed based on expert understanding (e.g., Celio et al., 2014), with the parameters of the
model then defined quantitatively from field or remote sensing data (e.g., Nascimento et al., 2020).
However, given the identified lack of literature agreement on the processes that drive yield increases,
we adopt a machine learning approach to create network structures, thereby defining the presence
(or absence) of relationships between variables numerically. Specifically, machine learning was used
to create the structures of BN models for spatiotemporal subsections of the corn and soybean
production systems (section 2.3). A flow chart of study methods is given in Figure 2.

The use of BNs allowed relationships between price and agricultural intensification to be specified
explicitly through the inclusion or omission of arcs (representing causal relationships) between price
variables and drivers of yields (Figure 3). This should enable the price signal to be isolated from underlying
yield growth (study question one, as above). The relationships represented by the arcs (directed edges) in
a BN can themselves be parameterised with a probability distribution through Bayesian inference,
enabling robust quantification of model parameter uncertainty (study question two; section 2.5).

To further isolate yield elasticity from other processes, intensification was defined as all farming
decisions that impact yields on existing productive agricultural land - fertiliser, chemical, seed,
machinery inputs and double cropping. Double cropping was included to account for the negative
impact on yields of the late planting date required for a second crop (Mourtzinis et al., 2017).
Extensification was included in the study to account for more marginal lands being brought into
production and constraining yield elasticity under elevated prices (Secchi et al., 2009).

Methods developed in computational biology for the representation of gene regulatory networks
with BNs support numerical identification of systemic breakpoints (Pyne et al., 2018). These methods
simultaneously construct the dependencies within a system and compute the breakpoints at which
these change significantly (Dondelinger et al., 2013). Such methods enabled identification of
systemic shifts within US agricultural production during the study period (section 2.3.1).
Identifying timesteps where structural changes in the land system occurred allowed relaxation of
the assumption that yield elasticity is static through time (question three).

The resulting BN models of subsections of the overall study system were combined into a single
holistic model (Figure 4; section 2.4). The USA soybean and corn agricultural systems were the central
focus of the holistic model, with other drivers of commodity prices treated as external forcings.
Varying these economic forcings was the basis of counterfactual experiments (section 2.6).
Comparison of yields between scenarios allowed yield elasticity to be assessed (section 2.7). An
erratic climate has been implicated in yield variance and agricultural commodity price spikes
(Chatzopoulos et al., 2019). Therefore, whilst climate was not a central focus of counterfactual
experiments, it was accounted for in intensification models, where yield was the target variable.

2.2, Study boundaries and data processing

2.2.1. Study boundaries

The study period was set as 1990-2017 to allow analysis of the impact on agricultural production of
the introduction of biofuel mandates in 2005 and GM crops in 1996. The study focuses on USDA
agricultural resource regions one to six (ARR) (US Department of Agriculture [USDA], 2000; Figure 5).
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Figure 2. Flowchart of study methods; numbers in parentheses in the accompanying text box indicate the paper section of
corresponding descriptions in the text.

The ARRs are areas of the USA with broadly similar agricultural land uses and production systems.
ARRs one to six were chosen as these were the dominant corn and soybean regions during the study
period, accounting for 97% and 91% of national production respectively (USDA, 2019); no data on
key markers of intensification (machinery inputs, chemical and fertiliser inputs) were available for
zones seven to nine (US Department of Agriculture Economic Research Service [USDA ERS], 2019).
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Yield

Price-independent

Price variable yield driver
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Figure 3. lllustrative Bayesian network structure demonstrating separation of price-dependent from price-independent drivers of
yield. Circles (nodes) represent variables and arrows (arcs) represent uni-directional probabilistic relationships between them
(Jensen, 2001). The figure is an a-temporal static BN; by contrast a dynamic BN would factor in lagged responses between
variables. Yield is influenced by two variables (termed ‘parent nodes’), one of which is price-dependent (e.g., rate of fertiliser
application, b) and one is price-independent (e.g., growing season temperature, c). The price-dependent parent node to yield (b)
can be updated given knowledge of price (a), allowing yield (d) to be predicted in the context of both price-dependent and price-
independent variables (c).

2.2.2. Data pre-processing

Table 1 gives an overview of sources and spatiotemporal resolution of data used in this study; Table 2
describes all candidate predictor variables in intensification, extensification and price BN models
following data pre-processing. All data were re-scaled to an annual timestep and the county level,
with linear interpolation used for data sets with partial spatial or temporal coverage. Where data
were provided at the state-level, values for counties in missing states were filled with the mean of the
relevant ARR. Processed data are made available as online appendices 2a-2 h, and a detailed over-
view of data pre-processing is given in appendix 3. Further key points are noted below.

2.2.2.1. USDA agricultural survey. The USDA agricultural survey provided core data for acreage
planted and harvested, yield and percentage of planted acreage that was irrigated. Planting dates
were used to calculate a day by when 50% of the crop had been planted, which has been suggested
as a proxy for double cropping (Egli, 2008).

Response rates to the USDA Agricultural Survey are declining over time (Johansson & Effland, 2017).
As a result, 61% of counties for soybean and 64% of counties for corn had at least one missing year of
data. Survey responses are decreasing most acutely in regions outside Heartland (ARR one) — the region
with the most intensive production and highest yields (USDA, 2019). For example, there were 10 times
more missing data years per county in the Northern Great Plains (ARR three) compared to Heartland.
Therefore, to mitigate this systematic bias, all counties with at least two data points were included, with
linear interpolation used to fill missing years. The impact of this on study results were evaluated by
learning BN models on data both with and without this data cleaning.

2.2.2.2. County-level price and profit margin. Farmers’ decisions on which crops to grow, and
how intensively, are influenced by short-term commodity prices and climate anomalies (Schnitkey &
Zulauf, 2019), tempered substantially by government subsidies (Graff Zivin & Perloff, 2012) and
insurance schemes (Babcock, 2012). However, a thorough and recent account of the weight farmers
ascribe to these factors during their decision making could not be identified. Therefore, economic
influence on land use was modelled in two ways, representing different weights to this information.
Both representations of economic decision-making become candidate predictor variables in a single
set of extensification and intensification model structures (Table 2).

The first method, to represent a short-term or low-information decision, was simply to allow
commodity price from the previous year to influence decision-making in the following year. Small
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Figure 4. Structure of overall model. The USA agricultural system is the central model system, comprising 48 Bayesian Network
sub-models. Commodity price is calculated with the two price BN models, using modelled national agricultural production and
external forcings as inputs. The location of Bayesian networks in the overall model are indicated by underlined text.

regional differences in farm gate prices were ignored as price in the overall model was calculated at
a national level (section 2.4). Second, to represent a higher-information decision, USDA ERS calcula-
tions of profit per-acre (USDA ERS, 2019) were used as the basis for a per-acre profit-loss calculation
for both corn and soybean. This accounted for yield, commodity price, operation and capital costs,
crop failure, subsidies, insurance payments and the opportunity cost (the unrealised potential value
of labour if put to another productive use) of using land productively rather than fallowing land and
acquiring subsidies under the Conservation Reserve Programme (CRP) over a three-year window. For
a detailed description see online appendix 3.

2.3. Component model construction

Prior to model construction, data were divided into the six USDA ARRs. Each region was then treated
as a separate spatial subsystem. The target variable (the variable of central interest in a BN) for the
intensification subnetworks was yield, and for extensification BNs the target was the change in
acreage from the prior year.
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Figure 5. Spatial boundaries of this study; only counties where data was available, and so were included in the analysis, are
shown coloured in.

2.3.1. Time break identification

Growth in biofuel demand was previously found to cause discrete system shifts in land use
(Verstegen et al, 2016). Therefore, we employed the EDISON machine learning algorithm
(Dondelinger et al., 2013, appendix 1) to identify years in which systems exhibited a systemic shift.
All potential explanatory and target variables were passed to the algorithm, which was run over 100
bootstrap samples of data for each ARR. To avoid overfitting resulting from multiple breakpoints
being identified in consecutive study years, a single time break was permitted per spatial subsystem.
The modal year identified as the highest probability breakpoint across iterations was chosen. This
created 12 spatiotemporal subsystems of extensification and intensification for each commaodity.

2.3.2. BN variable selection

An initial screening of predictor variables (termed ‘feature selection’ in machine learning) was
conducted to encourage parsimonious model learning. Within the time breaks identified by the
EDISON algorithm, network structures were created using the ‘hill climbing’ machine learning
approach (Nagarajan et al., 2013), which creates network structures by seeking to optimise a given
metric (appendix 1). The algorithm was run across 1000 bootstrap iterations with the Bayesian
Information Criterion (BIC) as the metric (Schwarz, 1978). Variables were retained if they connected
to the target variable in at least 50% of network structures.

2.3.3. BN structure and parameter learning

Following variable selection, network structures for extensification and intensification were con-
structed using the same bootstrap hill-climbing machine learning approach. To enable the final
network structures to appropriately represent causal processes in the system, physically meaningless
arcs (such as from yield to climate) were blacklisted from consideration by the algorithm.
Furthermore, having identified temporal breakpoints in the system, static (a-temporal) BNs were
used for model construction (Figure 3). An assumption of dynamic BNs is that all variables potentially
have lagged relationships. However, to best represent prior knowledge about farmers’ decision-
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Table 1. Overview of source, usage, temporal and spatial resolution of data sets used.

Dataset

Usage

Temporal extent
(resolution)

Spatial resolution

USDA Agricultural Survey®

USDA ERS Intensification Data®

Commodity acreage, yield,
planting date, irrigated acreage

GM adoption, fertiliser application
rates, rate of chemical &
machinery inputs

1990-2017 (Annual)

GM seed:
2000-2017 (Annual)
Fertiliser application:

County

State

1990-2017 (Annual)
Chemicals &
Machinery:
1997-2017 (5-yearly)
Medium-term expected return per 1997-2017 (Annual)  Agricultural Resource
acre Region

USDA ERS Profit-Loss Model®

Conserve Reserve Programme Enrolment CRP land availability and per acre  1990-2017 (Annual)  County
& Payments® payment
USDA agricultural insurance data® Medium-term expected return per 1990-2017 (Annual) County
acre, insured acreage pct.
USDA ERS agricultural subsidies® Feeds into medium-term expected 1990-2017 (Annual) State

return per acre
Mean growing season temperature  1990-2017 (Monthly)
and precipitation

Climate data for continental USA® 5 km? gridded

USDA ERS Biofuel Data® National level influence of biofuel 1990-2017 (Annual) National
price & production on
underlying commodity price
USDA Foreign Agricultural Service Trade Import and Export of Soybean &  1990-2017 (Annual)  National
Data’ influence on price
Source:

#US Department of Agriculture [USDA NASS], 2019.

PUSDA Economic Research Service [USDA ERS], 2019.

“USDA Farm Service Agency [USDA FSA], 2019.

9US Department of Agriculture Risk Management Agency [USDA RMA], 2019.
*Vose et al,, 2014

fUSDA Foreign Agricultural Service [USDA FAS], 2019.

Table 2. Overview of explanatory variables considered for inclusion in Bayesian network structures. Key: *raw acreage planted
was for baseline data throughout, included as a proxy for the underlying suitability of the county for agriculture; *nitrogen,
potash and phosphate application rate considered separately.

Extensification

Variable category Intensification

Economic variables Pricegq

3-year profit expectation

Price;;

Relative 3-year profit expectation between Corn,
Soy and CRP lands

Proportion of total cropland planted with rice,
sorghum, wheat or barley

Acres planted of target commodity (baseline)*

Land management Acres planted of target commodity (baseline)*

& suitability
Change in acres planted of target commodity lag 1* Rate of fertiliser*, machinery and chemical
application
Total CRP lands Julian Day at which half of target commodity was
planted
9% of target commodity production irrigated
Climate Growing season temperature Growing season temperature
Growing season precipitation Growing season precipitation
GM uptake Pre-GM acres planted of target commodity, % GM uptake % for target commodity (overall and

change in acres planted (1996 = 1) those with stacked attributes)

GM uptake % for target commodity

making, we elected to directly specify which variables could exhibit lagged relationships. Therefore,
we adopted a static BN framework, and defined lag structures explicitly by including price from the
previous year and our profit-loss model as candidate predictor variables. A summary of the lagged
relationships included in the model is given in Table 3.
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Table 3. Summary of temporal dependencies allowed between variables in BN models. Relative expected return is
the expected return between soybean and corn, and between each commodity and CRP payments. Change in
commodity acreage at lag 1 represents the effects of crop rotation on commodity acreage (Plourde et al., 2013).

Variable Time lag (years) Intensification Extensification
Change in commodity acreage 1 X v
Commodity price 1 v v
Expected return on production 1-3 v v
Relative expected return 1-3 X v

* Price lags influence yield through intermediary variables such as fertiliser inputs.

A range of arc selection thresholds based on the proportion of bootstrap iterations in which an arc
was present were then trialled. Therefore, to enable model assessment, data for 20% of counties
were held back as a testing set. Final network structures were selected based on their overall BIC
score and the RMSE of predictions on the relevant target variable in the testing set. Predictions from
BNs were conducted using ‘likelihood weighting’ throughout; this is a stochastic sampling method
for prediction that uses all available evidence in a BN, not just the direct parents of a node, and
therefore accounts for indirect relationships in a system (Guo & Hse, 2002; see appendix 1).

The chosen library for BN modelling, ‘bnlearn’ (Scutari, 2010; section 2.8), has best-in-class facility
for machine learning of network structures in systems with both discrete and continuous data types
(Nagarajan et al,, 2013). However, it does not support Bayesian parameterisation of such networks.
Therefore, parameters for the relationships between nodes were initially specified with maximum
likelihood estimates, which were used for model selection and calibration of the overall model. These
parameters were then relearned with Bayesian methods to allow uncertainty quantification in model
experiments (section 2.5).

2.3.4. Price model construction

For price models, only 28 data points were available as training data. Therefore, rather than using
machine learning to develop model structures, price BN models were constructed manually based
on subject-matter knowledge and predictive accuracy. Final models were selected on the RMSE of
their predictions across all 28 data points.

2.4. Overall model construction

The 50 resulting BN models (12 intensive and 12 extensive component models, plus one price model,
for each commodity) were then combined into one comprehensive model (Figure 4). Farmers’
extensification and intensification decisions were predicted simultaneously at each time step.
Based on intensive inputs, yield was predicted. Yield and commodity footprint predictions were
combined to calculate agricultural production of each commodity. To convert production in the six
study ARRs to national production, modelled production was multiplied by the reciprocal of the ratio
of production in the study area to national production in USDA data in each study year:

n=6
— — 1
Productionygtional,s = Z Productiony, ; * - (1
National,t .t Productionagr—s Y )
n=1 "/ Productionyationat ¢

Modelled national production was then fed into the models of corn and soybean price. Calculated
price became the lagged price variable influencing production in the next year. Modelled price and
yield were also used to update three-year expected return, with costs scaling linearly with the
percentage change in modelled inputs against baseline data. The difference between expected
return from corn, soybean, and CRP payments was also updated.
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2.4.1. Model calibration

Intensification and extensification outputs of the overall model were calibrated using annual
county-level USDA yield and acreage data. During this process, extensification BNs consistently
overestimated the elasticity of commodity acreage to price. Therefore, predicted change in acre-
age was divided by a free parameter representing the economic cost of converting new farmland
for production (Claasen & Tegene, 1999). The available acreage in each county was restricted to
150% of the maximum commodity acreage in the underlying data. With these additional con-
straints, the model performed well against observations (soybean pseudo r> = 0.78, corn pseudo
r? = 0.79). Prices in the baseline runs were an average of 2.51% above modelled prices in the
standalone price model, and an average of 3.21% below this reference price in corn, suggesting
the overall model slightly underestimated (overestimated) soybean (corn) supply elasticity (Figure
6). Importantly, for both commaodities, the model overestimates supply elasticity during the acute
2012 price spike.

2.5. Uncertainty quantification

In addition to assessment of data uncertainty on BN model structures (section 2.2.2.1), parameter
uncertainty was assessed. Deterministic parameters for each node in all intensification and extensi-
fication BNs were replaced with parameter distributions derived from Bayesian regressions. Where
both discrete and continuous variables were present, separate parameter distributions were com-
puted for each combination of discrete nodes in the network structure. This process was the direct
Bayesian equivalent of the frequentist approach used to derive the BNs’ original deterministic
parameters (Scutari, 2010). Weakly informative priors, specifying the type of the posterior distribu-
tion (e.g., normal, gamma, etc.) without imparting strong information on its parameter values, were
used for all variables in each regression (Gelman et al., 2008). These were normal distributions with
1 =0 and o as follows:

Standalone price model | I Overall model
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Figure 6. Model calibration showing predicted price in the overall model and the price models as a standalone using observed
production data. Additional error in the overall model outputs is therefore caused by errors in modelled USA agricultural
production. Whilst both models perform well against observations, for both commodities, the overall model overestimates
farmers’ capacity to respond to increased price pressure during the 2012 commodity spike.
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Ointercept = 10 * o(y) (2)

Ocoefficient = (2.5/0(x)) * o(y) (3)

Probability-weighted samples (n = 500) were then made from the resulting posterior distributions to
enable Monte Carlo simulation of the overall model. Whilst results presented for the overall model
exclusively use stochastic intensification and extensification models, price models remained
deterministic.

2.6. Model experiments

Four counterfactual scenarios of the study period were explored to assess yield elasticities given
shifts in economic forcings. These were compared against a baseline run where all forcings used
historical values from USDA ERS data (USDA ERS, 2019). The counterfactuals were: ‘Double Biofuel’
and ‘Half Biofuel’ in which forcings for biofuels were doubled and halved respectively; and ‘Double
Both’ and ‘Half Both" in which both biofuel and Chinese soybean demand were doubled and halved
respectively.

2.7. Analysis of results

Calculation of inter-scenario elasticity allowed the reaction of yields to the underlying demand signal
to be isolated from other confounding factors. First, percentage change in yield between each
scenario and the baseline run in each study year was calculated. Second, change in demand was
calculated as the percentage change between baseline price and the theoretical price with increased
demand but static supply predicted from standalone BN price models:

— Yieldzenaro— Yieldpgeme | —— —
Elasticity = — Vieldoeine / Demandicengio—Demandysss (4)
Demandbm

2.8. Computational tools

Data preparation, modelling and analysis were conducted with the R programming language
version 3.6.1 (R Foundation for Statistical Computing, 2019). Time breaks were identified using
EDISON library version 1.1.1 (Dondelinger et al, 2013). BN models were constructed using the
bnlearn package version 4.4.1 (Scutari, 2010). Bayesian parameter learning for BN models was
conducted in RStanarm version 2.18.2 (Goodrich et al., 2018). Project code and R objects used to
run the final model, including all 50 BN structures used, are made available as online appendices
4a-4 c.

3. Results
3.1. Component models

3.1.1. Time breaks

Temporal breakpoints identified numerically by the EDISON algorithm show clear alignment with
real-world disruptive events (Table 4), suggesting this method identified meaningful systemic shifts
in the study system. Breakpoints for extensification all align with the introduction of GM crops, whilst
11/12 soybean and corn breakpoints cluster around the 2005 introduction of biofuel mandates and
the 2012 commodity price spike.
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Table 4. Breakpoint years identified for each commodity subsystem.

Agricultural Resource Region Soybean Acreage Corn Acreage Soybean Intense Corn Intense
Heartland 1996 1996 2005 2013
Northern Crescent 1996 1996 2013 2013
Northern Great Plains 1996 1996 2005 2006
Prairie Gateway 1996 1996 2005 2006
Eastern Uplands 1996 1996 2013 2013
Southern Seaboard 1996 1996 1992 2013

3.1.2. Price models

The best-performing model of corn price had two predictor variables: USA production and the
product of corn ethanol price and proportion of USA corn production used for ethanol (pseudo
r? = 0.90). The best-performing model of soybean price had three predictor variables: USA produc-
tion, the price of biodiesel and Chinese soybean imports minus Brazilian soybean production -
reflecting the importance of the globalised trading of soybean meal as animal feed in the commodity
system (pseudo r? = 0.90; Yao et al., 2018).

3.1.3. Underlying drivers of yields
Analysis of BN structures shows the primary influence on yields for both commodities are intensive
inputs, accounting for 66% of parent nodes to yield in corn and 55% in soybean. ‘Parent nodes’ are
those that influence a given variable of interest (Figure 3). GM crops play a larger role in corn yields
(13 parent nodes across all networks; Figure 7) than soybean yields (3 parent nodes). Soybean is
more sensitive to climate, with growing season temperature and precipitation accounting for 38% of
parent nodes to yield, compared to 20% in corn. Yield is more closely linked to price variables in corn,
which had 45 price-dependent intensive drivers of yield, to 27 in soybean (Figure 8).

However, comparison of networks learned on data with linear interpolation across missing values
(hereafter ‘interpolated data’) to those learned on data where counties with poorer data quality were
filtered (hereafter ‘filtered data’) questions the certainty of these findings. In contrast to networks
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Figure 7. Frequency of intensive agricultural inputs as parent nodes to yield in Bayesian network structures. ‘Interpolated” and
‘Filtered’ reflect the two approaches trialled to deal with missing values in the underlying USDA data.
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Label Key:

Acr. — commodity acres planted, Temp — growing season temperature,

Rain — growing season precipitation, Pot. / Pho. / N. — Potash / Phosphate /
Nitrogen application rate, GM1 — total % GM Corn, GM2 - % GM Corn with
multiple genetic modifications, Che. — expenditure on chemicals, Mac. —
machinery expenditure, P/L — medium term profit loss expectation, Pt-1 —
previous year price.

Figure 8. Example Bayesian network model structures used in this study: a) for corn intensification in Heartland from 1990-2012
and b) for soybean intensification in the Northern Great Plains from 2005-2017. Yield and its relationships with other variables
are marked red, whilst price variables and their relationships are marked blue. a) is denser, with a larger range of variables
influencing yield, and more of these being influenced by price, whereas b) shows a greater impact for underlying environmental
factors.

based on the interpolated data, networks for the filtered data have a similar number of intensive
inputs as parents to yield between commodities: 35 for corn and 33 for soybean.

Corn networks for Heartland (ARR1), where data was most complete, had just one fewer parent
node yield for intensive inputs in the filtered data than the interpolated data. However, overall there
were 26% fewer intensive inputs as parent nodes to yield in the filtered data compared to the
interpolated data. In contrast, in soybean there was one more intensive input as a parent to yield in
the filtered data, but there were four fewer parent nodes related to climate. This is indicative of the
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Figure 9. Intensive and extensive response of agricultural production to changes in economic forcings. Columns are median
values; error bars are 95% confidence interval.

filtered data being weighted towards more established agricultural regions, where yields were less
climate-dependent.

3.2. Overall model

3.2.1. Overview of model outputs

Model results indicate the agricultural system is substantially responsive to price effects (Figure 9).
Doubling of biofuel forcing leads to a 20.63% increase in corn yield and the ‘double both’ scenario
leads to a 6.97% increase in soybean yields from the mean annual values across baseline scenario
runs. In corn, intensification is more responsive to changes in demand than extensification by an
average of 42.50%. Furthermore, price effect sizes are far greater in corn than soybean, perhaps
reflecting the stronger role of climate in the soybean system. However, in all cases, the 95%
confidence interval is greater than the effect size, indicative of substantial parameter uncertainty
across models of both commodities.

3.2.2. Yield elasticity

Calculating relative yield elasticity between counterfactual scenarios provides point estimates of
0.223 for corn and 0.152 for soybean (Table 5, Figure 10). Yield elasticity was significantly greater
than zero in all scenarios (one-way Wilcoxon-tests: corn, p <0.0001; soybean p <0.0001). Yield
elasticity was significantly larger in scenarios where demand was decreased than in scenarios

Table 5. Summary statistics for relative yield elasticity between counterfactual scenarios and baseline model runs. Biofuel only
and biofuel + Chinese demand scenarios for soybean are combined by respective increase or decrease in forcing.

Corn Soybean
Percentile Overall Double Forcing Half Forcing Overall Double Forcing Half Forcing
25t 0.111 0.113 0.110 0.045 0.028 0.083
50t 0.223 0.206 0.256 0.152 0.109 0.199

75" 0.349 0.286 0.458 0.287 0.223 0.383
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Figure 10. Relative yield elasticity between counterfactual and baseline scenarios from Monte Carlo simulation. Results are
grouped by scenarios where biofuel and Chinese soybean demand forcings were increased (double forcing) or reduced (half
forcing). Values below 0 are indicative of a high degree of parameter uncertainty in the model. Although positively skewed
(skewness: corn 0.019; soybean 0.812), overall commodity distributions are closer to a normal than lognormal distribution. Counts
are of national mean elasticity in a given simulation study year.

where demand was increased (one-way Kolmogorov-Smirnov tests, both commodities p <0.0001).
This trend was most stark in the soybean biofuel only scenarios: median elasticity was just 0.065 in
double biofuel, but 0.171 in half biofuel. Furthermore, yield elasticity tended to be negatively
correlated with increased price forcing against the baseline. This trend was present throughout in
soybean (Kendall's Tau: T —0.20, p <0.0001), but only present in corn after the introduction of biofuel
mandates in 2005 (—0.29, p <0.0001); before this the relationship was weakly positive (t +0.18,
p <0.0001).

Yield elasticity showed clear evidence of systemic shifts in response to price events in both corn
and soybean (Figure 11). Yield elasticities in corn after the introduction of biofuel mandates in 2005
increased by 156%, and after the commodity price spike in 2012 soybean yield elasticities increased
by 87% (one-way Kolmogorov-Smirnov tests, both p <0.0001). This suggests these major economic
events more closely couple the system to price, although the larger effect size in scenarios with
reduced demand pressures suggests the size of the event strongly impacts the system’s ability to
respond (Table 6). Importantly, the combination of the negative correlation of yield elasticity with
increasing price pressure and increased yield elasticity post-2005 entails that when model outputs
for the half biofuel run in corn from 2005 onwards are excluded, corn yield elasticity drops to 0.13 -
giving a roughly similar value to soybean.

4, Discussion and conclusions
4.1. Implications for ILUC modelling

In the results presented here, yield elasticity was greater than zero in all scenarios and across all time
periods, reinforcing the findings of previous studies that intensification is vital for determining ILUC
emissions. Point estimates for yield elasticities of 0.223 for corn and 0.152 for soybean are in broad
agreement with the majority view in the literature for values of this parameter (Table 7). The results
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Figure 11. Scatter plots of relative yield elasticities between counterfactual scenarios and baseline runs. Non-linear system shifts
are highlighted by plotted shape. Soybean biofuel scenarios are shown from 2008 when biodiesel began to play a significant role
in USA soybean production.

Table 6. Change in relative yield elasticity against the baseline scenario up to
and after the given time break years. Overall, the 2005 introduction of biofuel
mandates, and the 2012 commaodity price spike serve to increase the impact
of short-term economic factors on yields. Soy biodiesel only became a major
influence on soybean prices after 2005, so data from before that point are not

shown.
Time break Scenario Soybean Corn
2005 Double Biofuel - 0.115
2012 Double Biofuel 0.235 0113
2005 Half Biofuel - 0321
2012 Half Biofuel 0.469 0.219
2005 Double Both —0.135 -
2012 Double Both —0.027 -
2005 Half Both 0.028 -
2012 Half Both 0.203 -

Table 7. Yield elasticity results compared to literature values. The value for Laborde and Valin (2011) is for all crops in the USA.

Commodity This study Berry, 2011 Huang & Khanna, 2010 Hertel et al.,, 2010 Laborde & Valin, 2011
Corn 0.223 (0.136%) 0.03 0.15 0.25 0.2
Soybean 0.152 (0.133%) - 0.06 - 0.2

+ parameter value when substantial elasticities projected In the reduced forcing scenarlos are filtered from the data.

in this study do not support the findings of Berry (2011) that yield is uncoupled from price effects, but
do bolster that study’s argument that the widely used 0.25 value is a substantial overestimate (Hertel
et al., 2010).

However, several factors complicate these findings. In our results, yields are clearly more elastic
when demand declines than when demand increases (Figure 10). Declining yield elasticity as price
pressure increases is particularly evident in corn after the introduction of biofuels and suggests
farmers’ ability to increase yields in response to price has strong limitations. Using a single value to
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4.2. Implications for policy

This study’s most immediate policy implication is that biofuel policies informed by studies which
parameterised yield elasticity with a single value in the commonly used range of 0.2-0.25 may under-
estimate ILUC effects and overestimate the reductions in greenhouse gas emissions from first-generation
biofuels. For example, assessments of the US National Renewable Fuel Standard and California’s Low
Carbon Fuel Standard assumed a uniform yield elasticity of 0.25 (Hoekman & Broch, 2018). More
fundamentally, the limitations of a single deterministic parameter for yield elasticity illustrated here
further questions whether ILUC is currently understood and quantified to a precision that provides an
appropriate basis for effective ILUC mitigation policies (Khanna et al,, 2017; Pelkmans et al., 2019).

Systemic shifts due to price events combined with greater yield elasticity when prices decline in
the results here are consistent with a conceptual model of yield elasticity in which farmers may use
intensive inputs to increase yield to a limited degree in the short-term, but where larger yield
increases are ultimately a function of agricultural technology. Therefore, as farmers have relatively
recently made substantial capital investments to respond to higher prices in the USA, it is unclear
whether technology has advanced enough to enable US farmers to respond to a further system
shock from the proposed increased biofuel mandate (Hoekman & Broch, 2018).

Such a strong limit to upside yield elasticity also highlights the potential for one-off price spikes to
create vulnerabilities for terrestrial Carbon stocks through peaks in ILUC emissions (Grosche &
Heckelei, 2016). Price spikes present an inherent difficulty for payment-based conservation schemes
such as the US Conservation Reserve Programme (CRP), as rapid price changes can outpace policy
responses such as increased conservation payments (Wright & Wimberley, 2013). This challenge
reflects a growing concern that lack of consideration of lagged-responses between the multiple
actors in the land system risks undermining climate change mitigation policy-making (Brown et al.,
2019). Therefore, to avoid land use emissions and damage to biodiversity (Wimberley et al., 2017),
payments in the CRP and similar schemes elsewhere may need to be pre-emptively increased before
any future subsidies or mandates to promote biofuel production are introduced.

The potential for price spikes may increase as the currently regionalised production and consump-
tion of biofuels becomes increasingly globalised (Matzenberger et al,, 2015). However, the introduction
of cellulosic biofuels may loosen the linkage between fuel prices and food inherent to first generation
biofuels (Janda & Kristoufek, 2019), potentially mitigating against future price spikes. This bolsters the
case for governments to incentivise cellulosic biofuel research and deployment rather than increasing
existing mandates and subsidy schemes (Robertson et al., 2017). Moreover, for the carbon removal
potential of BECCS to be realised, not only will supply chains need to be energy efficient (Fajardy &
Mac Dowell, 2018), but also robustly future-proofed against price spikes and peaks in ILUC emissions.
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