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ABSTRACT: Combinatorial fusion analysis (CFA) is an approach for combining multiple
scoring systems using the rank-score characteristic function and cognitive diversity
measure. One example is to combine diverse machine learning models to achieve better
prediction quality. In this work, we apply CFA to the synthesis of metal halide perovskites
containing organic ammonium cations via inverse temperature crystallization. Using a data
set generated by high-throughput experimentation, four individual models (support vector
machines, random forests, weighted logistic classifier, and gradient boosted trees) were
developed. We characterize each of these scoring systems and explore 66 possible
combinations of the models. When measured by the precision on predicting crystal
formation, the majority of the combination models improves the individual model results.
The best combination models outperform the best individual models by 3.9 percentage

Cognitive diversity
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points in precision. In addition to improving prediction quality, we demonstrate how the fusion models can be used to identify
mislabeled input data and address issues of data quality. In particular, we identify example cases where all single models and all fusion
models do not give the correct prediction. Experimental replication of these syntheses reveals that these compositions are sensitive to
modest temperature variations across the different locations of the heating element that can hinder or enhance the crystallization
process. In summary, we demonstrate that model fusion using CFA can not only identify a previously unconsidered influence on

reaction outcome but also be used as a form of quality control for high-throughput experimentation.

1. INTRODUCTION

High-throughput experimentation (HTE) has been used to
accelerate synthesis and characterization' for many areas of
chemistry” and materials science.” In addition to merely
increasing the rate at which experiments are performed, HTE
provides an opportunity to generate larger data sets for use
with machine learning and artificial intelligence (ML/AI)
methods and to take actions to test model predictions in the
laboratory.* Furthermore, laboratory automation facilitates the
capture of a complete record of experimental successes and
failures® and enables more systematic sampling of experimental
variables that avoids human biases,’ both of which improve the
quality of ML models for chemical reaction prediction.

As one specific example, we consider metal halide perov-
skites,” an emerging class of materials for photovoltaics® and
optoelectronics.” High-throughput approaches have been used
to explore perovskite thin-films,'”"" polycrystalline sam-
ples,'”"® nanocrystals,''> and single crystals (by vapor
diffusion’® and inverse temperature crystallization'’). Our
work has focused on developing high-throughput systems for
perovskite single crystal growth (RAPID),"” utilizing inverse-
temperature crystallization (ITC).'"® The ESCALATE'
software used by our system enables comprehensive data
capture and reporting of these experiments. The ESCALATion
web dashboard (http://escalation.sd2e.org) automatically
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trains and evaluates a suite of ML models based on new
experimental data, displaying the experimental results and
model interpretability insights, as well as tracking and
versioning of the data sets and models over time. This
provides us with a unique experimental data set that has
allowed us to uncover physicochemical features responsible for
crystal formation for a diverse set of molecular building units.”

An open challenge for scientific HTE applications is the
need for quality control. Unlike the traditional quality
engineering goal of manufacturing products with known
specifications,”’ most scientific experiments do not have a
known “right answer”. Often the most interesting scientific
results involve serendipity,”” and the most desirable materials
are the “extraordinary” ones having extreme properties that
exceed previously known examples or compositions that exist
outside of the established search domains.”> The challenge is
to distinguish scientifically interesting outliers from exper-
imental anomalies, which can arise from many sources
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including the following: (i) uncontrolled (but measured)
variations in experiment performance that affect entire batches
of experiments (e.g, laboratory humidity and temperature
variations); (ii) systematic variations that occur across
experimental batches (e.g, temperature distribution on a
heating element); (iii) uncontrolled and unmeasured varia-
tions in experiment performance (e.g., water contents in the
reaction solutions and distribution of dispense volumes); (iv)
operator errors and variations (e.g., experimental outcome
assignments); and (v) the inherently stochastic nature of the
process being studied (e.g, crystal growth). The scale of data
generation that HTE enables precludes direct human oversight
of every individual experiment, so an alternative approach is to
use statistical approaches or machine learning models to
identify outlier points for re-examination and verification. This
presents the classic “chicken and the egg” problem.”* The
model depends upon the training set it is trying to audit, and
its ability to detect anomalies may be hindered by the
anomalies themselves. Errors that influence large groups of
experiments, such as types (i) and (ii) described above, can
fool the classifier. Furthermore, legitimate fluctuations like type
(v) should be included but might be mistaken for types (iii)
and (iv).

Ensemble methods and data fusion have been used in
machine learning and AT (ML/AI) strategies and models.”>~*°
These include the following: bagging and boosting,””*
random forests,>’ conditional mixture models,>* ensemble
models,” combining pattern classifiers,”*>® combining artifi-
cial neural nets,*® data fusion in information retrieval,>® causal
inference and data fusion,> and combinatorial fusion
analysis.36 Since each of the individual systems (or models)
has strengths and weaknesses across various domains,
ensemble methods (or model fusion) have been demonstrated
to be successful when individual systems are diverse. However,
the notion of “diversity” varies when using various ensemble
methods in different domains. These include correlation (or
rank correlation) about data distribution in statistics and
different diversity measurements in ML/AIL. Most of these
diversity measurements are related to data items in the data
set. Combinatorial fusion analysis (CFA) was proposed to
combine multiple scoring systems using the rank-score
characteristic (RSC) function and cognitive diversity
(CD).*** (RSC and CD are defined in the Methods
section.) Instead of defining a performance criterion, the
RSC function is used to characterize a scoring system. The CD
between two scoring systems A and B is then defined using
RSC functions of A and of B to measure the dissimilarity (or
variations) between two systems.”” >” CFA also addresses the
issue of rank versus score combination (vide infra).* This is
depicted in the graphical table of contents image, adapted from
Figure S of ref 38. The CFA framework has been applied to a
variety of domains including target tracking and computer
vision,*! ChIP-seq peak detection,” information retrieval,*’
brain science,”® wireless network communication,** virtual
screening,45 and reinforcement learning.46

Herein, we demonstrate the use of CFA to improve the data
quality and prediction quality of HTE materials synthesis
experiments. First, we quantify the cognitive diversity of
different model types. We demonstrate that combination
models constructed by model fusion improve prediction
quality metrics. Using the more robust predictions from
model fusion, we identify questionable experimental results—
focusing on those in which every single model and every fusion

model fail to predict the outcome. Using our metal halide
perovskite data set, we analyze and identify possible factors
associated with these failures. We describe new laboratory
experiments for these points that tested both the reproduci-
bility of the original experiments as well as the proposed
causative factors. Using these new experimental results, we are
able to distinguish the fundamental limits of the current
models to predict reaction outcomes and the level of
experimental variation to be expected.

2. METHODS

2.1. Model Fusion. Combinatorial fusion analysis (CFA)
provides methods and algorithms for data fusion, consensus
scoring, preference ranking, and ensemble machine learn-
ing.**~*>**% CFA combines multiple scoring systems either at
the attribute level (e.g., features, variables, parameters, or cues)
or at the system level (e.g, models, modalities, software, or
experts). In this paper, we use model fusion, a special case of
combinatorial fusion, at the system level where each model is
considered as a scoring system.

Let D={d,, d, .., d,} be a set of n data items, with each data
item, d,, corresponding to an experiment. The scoring system A
on the data set D consists of a score function, s,, and a rank
function, r,. The score function s,: D — R assigns a score
value (a real number in R; for a binary classifier, this score is
the probability of being in the “positive” class) to each data
item d; in D, i.e., s4(d;) in R for each d; in D. The rank function
ra: D = N, where N = {1, 2, .., n}, and n is the cardinality of D,
is derived from s, by sorting the score values into descending
order and assigning the rank order of the score value to the
data item which has that score value. For a scoring system A,
its score function s, and derived rank function r,, the rank-
score characteristic (RSC) function f,: N — R is defined as

fA(i) = sA(rA(_l)(i)), foriinN (1)

The RSC function of the scoring system A, f,, was defined by
Hsu et al. in 2002* and subsequently used to define the notion
of cognitive diversity in a variety of domain applications in
ML/AL and data fusion.***® The RSC function characterizes
the scoring (or ranking) behavior of the underlying scoring
system A. Moreover, since f, is a function from ranks in N to
scores in R, it does not rely on specific data set items from
sampling or experiments, so long as they are sampled from the
same pool of potential data items. The RSC function values are
normalized to the interval [0, 1]; this allows us to compare
different scoring systems, as otherwise they would have their
own score interval. In this paper, cognitive diversity, CD(A, B),
which provides the diversity measurement between two
models A and B, is calculated from the difference between
RSC functions f, and f5°>***

CD(4, B) = | Y (f, () — £, (1))
i=1 (2)

where n = cardinality of D, f,, f: N — R.*> CD differs from the
traditional correlation or rank correlation in statistics (which
measures association between two data distributions) or
diversity measurement in machine learning and ensemble
methods.”******* Correlation and rank correlation measures
depend upon having a shared set of data set items. In contrast,
CD can be applied even when the test data sets are different
(such as different experiments or sampling strategies). The
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diversity strength, ds(A), of the scoring system A is defined as
the arithmetic average of CD between A and other scoring
systems.

Methods of combination play an important role in the
performance of the combined system. Traditional approaches
use either score combination, such as in regression or Bayesian
networks, or rank combination, such as in rank aggregation or
consensus ranking.”’~>° Hsu and Taksa*’ compared rank and
score combination methods for data fusion in information
retrieval. They showed that under certain conditions, which
include a relatively large cognitive diversity, rank combination
can achieve better results than score combination. The CFA
framework, which combines multiple scoring systems, allows
researchers to take advantage of both worlds either by
combining the score functions in the parametric Euclidean
score space (R") or the rank functions in the permutation rank
space (N"), where D = the set of all data items, cardinality of D
= n, with score function s,: D — R and rank function: r,: D —
N. Let A}, Ay, ..., A, be a set of t scoring systems and wy, w,, ...,
w, be the weights assigned to each of the scoring systems. Each
scoring system A; has score and rank functions, s, and r,,

respectively. The weighted score combination, SC(4, j = 1 to
t), and weighted rank combination, RC(4; j = 1 to tS, of the t
scoring systems are defined as

t t
scld) =| sy @) 2w

j=1 j=1 3)

and

t t
spe(dy) = Z wj*rA,(di) /Z W

j=1 j=1 (4)
for d; in D. The rank functions of the combined scoring
systems SC(4;), RC(4)), rsc(d;), and rpc(d;) can be obtained
from sgc(d;) and spc(d;), respectively. Although eqs 3 and 4
look explicitly like linear combinations, they are implicitly in
two different combinatorial solution spaces. When evaluating
the performance difference between the combined system and
each of its individual systems, eq 3 operates on the parametric
Euclidean score space. However, eq 4 operates on the set of all
permutations, S,, the symmetric group of order n, with a metric
properly defined.*”*®*” We further note that other methods of
combinations are possible. For example, nonlinear combina-
tion using majority voting and convex combination using the
mixed group rank are used in combining multiple classifier
systems.‘“’5

2.2. Performance Metrics. In the binary classification,
each data item is classified as either positive or negative; in our
experiments, this corresponds to the formation of, or failure to
form, a high quality single crystal. Accuracy, precision, and
recall are used to evaluate the binary classifiers that comprise
each single machine learning model.

To generalize these measures to rank-based systems, it is
helpful to recall that each scoring system assigns a score, and a
numerical threshold is applied to distinguish positive and
negative predictions. If ¢ is the rank of the data item which has
this threshold as its score value, then data items ranked from 1
to t are predicted positive, and data items with a rank greater
than t are predicted negative. Accuracy, recall, and precision
measures can be generalized to evaluate rank-based systems in
the following way: If there are k actual positives in the test set,

a perfect model should predict all true positives at the top k of
the single rank-score characteristic function and predict all true
negatives for every data item after these first k items.
Therefore, one way to calculate the precision for a ranking
system is to take the first k items as predicted positives and
then determine the number of true positives contained in that
set. The abbreviation “Pre@k” denotes the precision of the
first k number of data items, where k is the number of actual
positives in the test set.”® Pre@k is commonly used to
characterize the retrieval quality of rank models for
information retrieval tasks, such as search engines.40 For
both score combination and rank combination models, the
model predicts the top k data items as predicted positives and
then calculates the Pre@k to evaluate performance.

2.3. Computational Implementation. The work de-
scribed here used a data set of 9387 inverse temperature
crystallization perovskite synthesis experiments divided among
45 organoammonium cation species, reflecting the state of the
project on November 27, 2019, assigned the internal label
“dataset#44 (DS#44)”. A complete transcript of these data is
available via the Materials Data Facility>® and via an interactive
browser.”* This data set includes a set of 75 physicochemical
features (e.g., concentrations, temperature, stir rate) and
organic property descriptors (e.g, molecular weight, atoms
number, functional groups), described in Tables S1 and S2 in
the Supporting Information.

These data were used to train four binary classifier models,
where 1 (“positive”) is the production of a large, high quality
single crystalline product, and 0 (“negative”) is any other
outcome (e.g., polycrystalline sample, precipitation of starting
materials, no reaction) and a prediction probability in the
range of [0,1]. A 80/20% random train-test split was
performed and used for all models to facilitate comparison.
Files containing the exact training and test data, as well as the
model predictions, are found at https://github.com/tyq0330/
Model Fusiong. Using these data, four classifier models were
constructed using an automated model Test Harness (https:/ /
github.com/SD2E/test-harness) system implemented in Py-
thon 3.6.8 using the scikit-learn 0.22.1°° implementation of
each classifier.

The specific models are (A) support vector radial basis
classifier (SVM) (hyperparameters: regularization parameter C
= 100000, rbf kernel, gamma = 0.1); (B) random forest
classification (RF) (hyperparameters: 361 trees in forest,
criterion = “entropy” for the information gain, min_sample-
s_leaf = 13, balanced class weight); (C) weighted logistic
classifier (WLC) (cost function: balanced class weight); and
(D) gradient boosted tree (GBT) (hyperparameters: learning
rate = 1, max_depth = 10, max_features = “auto”, n_estimators
= 100). The thresholds for RF, WLC, and GBT are set to 0.5,
and the threshold for SVM is a variable; in DS#44, it is 0.413.

In this paper, our model fusion combines four single models
in pairs (6), triples (4), and quadruple (1). Each of these 11
combined models is then considered using both score and rank
combinations. The score combination (SC) combines score
values of the score functions from each of the underlying single
models (eq 3). Likewise, the rank combination (RC) combines
the rank numbers of rank function from each of the underlying
single models (eq 4). This results in a total of 22 possible
combined models. Finally, the scores and ranks of the different
models can be weighted according to three different weighting
schemes: average combination (AC), weighted combination by
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performance (WCP), and weighted combination by diversity
strength (WCDS), where

—, AC
n
. . P.
weight of model j /_ WwCP
W= —— - = n )
sum of weights 17j
dsl- DS
J_ wceD
21 dsj

for AC, WCP, and WCDS, respectively. We note that in the
average combination, every model j of the n models is given
the same weight 1/n. In the weighted combination by
performance and by diversity strength, we use the performance
criterion precision at k, Pre@k, and diversity strength ds(A) as
the weight of each individual model A, respectively. Since there
are 11 different models in each of the score and rank
combinations of three different weight combinations, we have
a total of 66 different combined models using the CFA
framework. Predictions of the four classifier systems for each of
the test set items are provided as input to the CFA analysis
which were performed using Python 3.6.8. This code is
available at https://github.com/tyq0330/Model Fusiong.

2.4. Experimental Method. The experimental procedures,
material characterizations, and chemical discoveries for the
high-throughput inverse temperature crystallization (ITC)
synthesis of metal halide perovskite single crystals are
described in our previous work.'” In brief, an automated
liquid handling robot pipettes four different types of stock
solutions into glass vials on a 96-well microplate (see Figure
S1)."” These stock solutions consist of (a) lead(1I) iodide and
the selected organoammonium iodide in solvent, (b) just the
selected organoammonium iodide in solvent, (c) the neat
solvent (most commonly gamma-butyrolactone, GBL), and
(d) neat formic acid. The liquid handling robot dispenses the
reagent stock solutions and then vortexes and heats the
microplates to mix the reagent solutions. After vortexing is
complete, the resulting perovskite solutions are heated without
vortexing for 2.5 h to allow for crystal growth. For the reactions
performed in this study, the heating temperature was typically
set to a nominal 105 °C setting, which corresponds to an actual
average temperature of 95 °C as measured by IR thermometry.
The historical data set, DS#44, was mostly performed at this
setting but also contains reactions performed at other
temperatures (e.g., 80 °C, 67 °C). After reaction completion,
the resultant crystals are scored by visual inspection into four
outcome classes: (1) clear solution without any solid; (2) fine
powder; (3) small crystallites (average crystal dimension <0.1
mm); and (4) large (>0.1 mm) crystals suitable for structure
determination by single crystal X-ray diffraction. Of these,
outcome class “4” corresponds to “positive” in our binary
classification machine learning task. In addition to visual
inspection at the time of experiment, we also capture
photographs of the reaction outcomes that are stored with
the data. Our past work has indicated that visual inspection
with this rubric was more accurate and reproducible across
operators than computer vision approaches for this system. To
validate model fusion predictions, we performed 92 additional
reactions with specific microplate locations across seven
chemical systems (ethylammonium iodide/Pbl,, n-butylam-
moniuon iodide/Pbl,, dimethylammonium iodide/Pbl,, and

isobutylammonium iodide/Pbl,, imidazolium iodide/Pbl,
acetamidinium iodide/Pbl, and guanidinium iodide/Pbl,)
for this paper.

3. RESULTS AND DISCUSSION

3.1. Binary Classification Performance of Individual
Models. Table 1 shows the mean and standard deviation of

Table 1. Prediction Quality Metrics (Mean and Standard
Deviation) of Individual Models for Data Sets DS#30—
DS#43

model accuracy precision recall
SVM (A) 0.887 + 0.006 0.736 + 0.028 0.753 + 0.020
RF (B) 0.844 + 0.008 0.598 + 0.024 0.877 + 0.015
WLC (C) 0.689 + 0.010 0.388 + 0.033 0.715 + 0.023
GBT (D) 0.885 + 0.006 0.745 + 0.029 0.716 + 0.025

prediction metrics for each single model from data set #30
(DS#30) to data set #43 (DS#43). The variations reflect the
evolving performance of the models as more training items are
added. These variations include the performance as different
random test sets are used for evaluation and the changing
chemical species being studied over the course of 13 weeks of
experimentation. To focus on a single set of these models,
Table 2 shows prediction metrics for each individual model for

Table 2. Prediction Quality Metrics of Individual Models
for Data Set DS#44“

model (threshold) rank t true positive accuracy precision  recall

SVM (A) (0.413) 380 253 0.877 0.666  0.709
RF (B) (0.5) 527 312 0.862 0.592  0.874
WLC (C) (0.5) 747 271 0.701 0363 0759
GBT (D) (0.5) 321 234 0.888 0729  0.655

“t is the rank number of the threshold for each model.

DS#44 where the threshold and its rank ¢ for the four models
SVM(A), RF(B), WLC(C), and GBT (D) are 0.413 at t = 380,
0.5 at t = 527, 0.5 at t = 747, and 0.5 at ¢t = 327, respectively.
All models, with the exception of GBT, predict more positive
outcomes than contained in the test set and have varying
capabilities at identifying the true positives present. Although
the WLC (C) classifier has the lowest accuracy and precision,
its true positive and recall rates are comparable to some of the
better models and thus can be useful in an exploratory project,
where the cost of low specificity is small (a few extra
experiments) but the cost of low sensitivity is high (a missed
discovery).

3.2. Model Fusion Performance. To assess the quality of
ranking-based fusion models, we first establish a shared
baseline with the individual models. An appropriate measure-
ment suitable for characterizing rank-based models is precision
at k (Pre@k).” As there are 357 actual positives among the
1878 experiments in the test set, the precision at 357 (Pre@
357) quantifies the extent to which the highest ranked items
correspond to the “best” (i.e., positive outcome) reaction
selection. Table 3 shows the number of true positives (#TP)
and the precision at rank 357 (Pre@357) for each of the
individual models trained and tested on DS#44. The best
performance is achieved by the GBT model, followed closely
by RF and SVM. The WLC model performs much lower than
the other three models, consistent with the lowest performance
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Table 3. Number of True Positives, #TP, Found and
Precision at Rank 357, Pre@357, Calculated for Each of the
Four Individual Models

model #TP@357 Pre@357
SVM (A) 243 0.681
RF (B) 249 0.697
WLC (C) 157 0.440
GBT (D) 251 0703

with respect to accuracy and precision in the score-based
metrics observed in both Tables 1 and 2. The rank-score
characteristic (RSC) function, eq 1, is plotted for each of the
individual models in Figure 1. The shape of each RSC function

score

o 250 500 750 1000 1250 1500 1750
rank

Figure 1. Rank-score characteristic (RSC) function graph (eq 1) for
each of the four models: SVM (A), RF (B), WLC (C), and GBT(D)
for 1878 test items in DS#44.

characterizes the scoring (or ranking) behavior of that model.
A model whose RSC function graph is a hypothetical diagonal
line from point (0, 1.0) to point (1878, 0) corresponds to a
simple linear relationship between score and rank. In Figure 1,
the RSC function graph of the WLC (C) model, which is
closest to the diagonal line DL, assigns a score in [0, 1.0] to a
rank in [1, 1878] in proportionally decreasing order. An RSC
function above this hypothetical diagonal line, such as the first
300 data items predicted by the GBT model (red),
corresponds to assigning higher scores than to the correspond-
ing ranks. Steep changes in the RSC function indicate abrupt
score assignment changes to subsequently ranked items. A
model with the RSC function graph below the hypothetical
diagonal lines, such as the SVM model (blue), gives relatively
lower scores. The cognitive diversity (CD) between two
models (eq 2) describing the area between their RSC functions
is shown in Figure 2a. The diversity strength of a model, defined
as the average of the cognitive diversities to the other three
models, is shown in Figure 2b. The model WLC (C) has the
largest diversity strength among these four models, followed by
GBT (D). The model RF (B) and model SVM (A) have very
similar values on diversity strength.

As noted in the Methods section, model fusion considers the
11 combinations of four single models, two methods of
combinations (i.e.,, score combination (SC) and rank
combination (RC)), and three weighting schemes (average
combination (AC), weighted combination by performance
(WCP) using Pre@357, and weighted combination using
diversity strength (WCDS)). In general, a good practice when

Diversity

WLC(C) GBT(D) b) Strength

a) SVM(A)  RF(B)

SVM (A) SVM(A) | 244.44

RF (B) RF (B) | 244.45

WLC (C) L WLC (C) | 402.01

GBT (D) GBT(D) | 284.71

Figure 2. (a) Cognitive diversity (eq 2) between SVM, RF, WLC, and
GBT models and (b) diversity strength of each of these individual
models.

selecting single models to include in a CFA analysis is to
include scoring systems that are relatively “good” (make
predictions that are better than chance) and “different” (have a
large diversity strength relative to the other models) ;* the four
models described in the previous section satisfy these
properties. In general, previous virtual screening studies
applying CFA™ and idealized numerical studies® have found
that combinations of three or four different individual models
(with sufficiently large diversity strength) suffice for most of
the performance gains, after which there are only diminishing
improvements.

Complete results for these combination schemes AC, WCP,
and WCDS are included in Table S3 in the Supporting
Information. Overall, the majority (39/66) of these new
models (13, 15, and 11 cases for these combination methods
AC, WCP, and WCDS, respectively) using DS#44 have Pre@
357 better than or equal to the best of the individual models.
Among the 66 combination models, the best one is
RC(ABCD) under the WCP with Pre@357 = 0.742 which is
3.9% points higher than the best individual model GBT(D)
with Pre@357 = 0.703 (Table 3 in section 2 and Table S3 in
the Supporting Information). This is followed by RC(ABD)
under AC with Pre@357 = 0.734, RC(ABD) under WCP with
Pre@357 = 0.731, and RC(ABD) under WCDS with Pre@357
= 0.728. Performance of the 22 model fusion results using
WCP is depicted in Figure 3. (Figures S2 and S3 show
corresponding versions of this plot for the AC and WCDS
weighting schemes.) In addition to showing the precision of
each of the 22 combined models, the single model results are
denoted by three horizontal lines at y = Pre@357 =
0.703(GBT(D)), 0.697(RE(B)), and 0.681(SVM(A)). Not
shown is 0.440 (WLC(C)). Most of the high-performing rank
combinations are better than the comparable score combina-
tion. Despite the greater diversity strength of model C
compared to the other models, combinations involving
model C tend to have lower prediction performance than
other combined models. This is not surprising as model C has
much lower performance compared to the other three models.
In contrast, combinations involving B but not C perform better
in most combined models’ cases, as it has a relatively high
performance and diversity strength. This explains why the best
results under both AC and WCDS are achieved by rank
combination of models A, B, and D, specifically RC(ABD).
However, the performance of these models is lower than
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Figure 3. Precision (Pre@357) of each of the 22 combined models
using weighted combination by performance (WCP) (points with “O”
for rank combination and “A” for score combination) compared with
the single model (horizontal line) precisions (Pre@3S7) for the
models SVM(A), RE(B), and GBT(D) is 0.681, 0.697, and 0.703,
respectively. The line for WLC(C)’s Pre@357 = 0.44 is not shown.

RC(ABCD) under WCP discussed above. AC and WCDS are
degraded by including (relatively poor performing) model C,
because they either equally weight its predictions or over-
weight its predictions (because C has higher diversity
strength), respectively. In contrast, WCP takes into account
C’s lower performance, while still allowing it to contribute
diversity strength to the final prediction.

3.3. Extracting Insight from Model Fusion Results. In
binary classification, each individual model has its own score as
a threshold to classify positive or negatives: 0.413, 0.5, 0.5, and
0.5 for models A, B, C, and D, respectively. In model fusion
using combinatorial fusion analysis (CFA), we define precision
of an individual model to be Pre@k, where k is the number of
positives in the data set. For example, model WLC(C) has
threshold rank t = 747 with 271 true positives found (shown in
Table 2) but has 157 true positives discovered with respect to
Pre@357 (shown in Table 3). The large discrepancies between
predicted 271 and 157 TPs are caused by the smaller threshold
with higher rank t used by model WLC which produces not
only higher true positives but also much higher false positives.

3.3.1. Model Fusion Finds Positives That Are Missed by
Individual Models. Results by model fusion using CFA in
Section 2 have correctly found nine true positive (TP) data
items which would not have been found by any of the
individual models. Table S8 and Table S9 show the rank of
these data items in various WCDS fusion models for DS#39
and DS#44, respectively. Tables S4 and S5 with nine TPs and
Tables S6 and S7 with five TPs show corresponding versions
for model fusion for AC and WCP combinations, respectively.)
For example, data item “” in Table S9 was found to be true
positive at rank 335 using Pre@357 by RC(CD) but was
predicted (incorrectly) to be negative or to be positive but
ranked low by each of the single models and ranked at 667,
476, 387, and 456 by each of the four individual models A (t =
380), B (t = 527), C (t = 747), and D (t = 321), respectively.
In total, there are nine such TP data items: four in DS#39
{a)b,c,d} (Table S8) and five in DS#44 {efgh,j} (Table S9).
In contrast, all the TP data items found by individual models
A, B, C, and D were also correctly predicted by some model
fusions in the CFA framework. This demonstrates that model

tusion using CFA provides more predictive power than each of
the four individual models. In addition to these WCDS results,
similar analyses using AC and WCP are included in Tables
S4—S5 and S6—S7, respectively. We also examined agreements
between single models and each of the combination models
AC, WCP, and WCDS. These include 26 false positives (FPs)
(Table S10) and 17 false negatives (FNs) (Table S11). These
false positive and false negative results are predicted incorrectly
by the individual models and by the fusion models. This is a
surprising anomaly which may suggest a possible problem with
these individual experiments. We propose using this type of
discrepancy as a criterion for prioritizing experiments for
replication.

3.3.2. Experimental Replication by Reproduction and
Relocation. In the original experimental data set, each
individual experiment was randomly assigned a location on
the 96-well plate to avoid any correlations between the vial
location and its composition. As shown in the infrared thermal
image of the heating block in Figure 4, there are temperature

H
- - -

Figure 4. Infrared camera image of the 96-well microplate at a
nominal 105 °C setting. The number in each square indicates the
types assigned in our analysis; these proceed concentrically from the
center. The close-distance infrared images captured at individual vials
provide mean temperatures for Types I, II, and III locations of 97.3,
96.7, and 95.9 °C, respectively.

variations between locations in the center areas labeled as Type
I (with rows labeled with C, D, E, and F and columns labeled
with S, 6, 7, and 8), in the middle areas labeled with Type II
(32 totals), and those in the edge areas on the left/right side
and top/bottom labeled with Type III (48 locations total with
24 locations labeled with rows A and H and columns
numbered 1—12 and 24 locations with rows from B to G
and columns 1, 2, 11, and 12). These variations may alter the
equilibrium and/or kinetics of the inverse temperature
crystallization process. Although edge effects are well-known
in HTE literature,”>"’ they are predominantly treated as a
binary distinction between “edge” or “interior”. As we will
show below, dividing the surface into three regions provides a
better explanation.

We considered two different types of replication experi-
ments: reproduction experiments are performed at the exact
same location as the original experiment, and relocation
experiments are moved to a different location. In both cases,
the composition and the nominal (plate-level) temperature
remain fixed. Because a comgplete electronic record of each
experiment is maintained,'”"” we were able to examine not
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only expected influences (e.g., composition, temperature, time,
etc.) but also unexpected influences (e.g, location of the
reaction vials on the heating block). For each of the nine TPs
in Tables S8 and S9, we performed reproduction experiments
(results in Table S15) and relocation experiments (Table S19).
These TP results were correctly predicted by the CFA models,
despite being missed by the individual models.

From the 26 FPs and 17 FNs in Tables S10 and S11, we
selected 10 and 10 from each of FP and FN groups,
respectively, and identified possible commonalities among
these anomalous experiments. The goal of selecting a subset of
these misclassified experiments was to facilitate reproduction at
the same location and experimental replication at different
locations, discussed below. In total, there are 29 reproduction
results comprising 9 TPs, 10 FPs, and 10 FNs experiments.
(See Tables S15, S16, and S17.) There are 63 relocation
results, consisting of 18 TPs, 22 FPs, and 23 FNs experiments.
(See Tables S19, S20, and S21.) The 29 reproduction and 63
relocation experiments are summarized in Table 4 and Table S,

Table 4. Status of Different/Identical for 29 Reproduction
Experiments”

outcome 9 TPs 10 FPs 10 FNs total
different 4 S 4 13
identical N S 6 16
total 9 10 10 29

“Conducted at the same location as the original experiment.

respectively. These results are tabulated based on whether the
outcome of the reproduced/relocated experiment was the
same as or different from the original experiment.

Table S. Status of Different/Identical for 63 Relocation
Experiments”

outcome 9 TPs 10 FPs 10 FNs total
different 15 13 13 41
identical 3 9 10 22
total 18 22 23 63

“Experiments moved to a different location.

Following the schematic in Figure 4, the 96-well microplate
is classified into three types of locations: Type 1 (16 center
locations), Type II (32 middle locations), and Type III (48
edge locations), respectively. Table 6 depicts the number of
same and different outcomes, and the type sensitivity ratio
(TSR) is defined as the ratio of the number of different to
same results (13/16 = 0.81) for the 29 reproduction
experiments distributed over the three types of locations:

Type I (2/4 = 0.5), Type II (2/5 = 0.4), and Type III (9/7 =

Table 6. Different, Identical, and TSR of the 29
Reproduction Experiments over Locations Type I, Type 1II,
and Type III

location
outcome Type 1 Type 11 Type III total
different 2 2 9 13
identical 4 S 7 16
total 6 7 16 29
TSR 0.5 0.4 1.29 0.81

1.29). Table S18 contains a breakdown of experiment
outcomes for the 9 TPs, 10 FPs, and 10FNs for these different
locations (Types I, II, and III). All three types (TP, FP, and
FN) have fewer identical outcomes in Type III locations than
in Type I or Type II. All TP reproduction experiments yielded
identical results in Type I locations, and reproducibility was
higher in Type II locations than in Type III locations. For FP,
only identical outcomes were observed in Type I or Type II
locations, but there were many different results in Type II
locations. This is consistent with increased temperature
sensitivity. For FN, there was no clear trend across the
different types of locations, suggesting that FN model failures
arise from other contributions.

Further insight can be gained by deliberately relocating
experiments between different types of locations. Table 7
summarizes the number of different-result, same-result, and
type sensitivity ratio (TSR) as the triple (a, b; c) for the 63
relocation experiments, tabulated based on the original
position (Type X location) and new position (Type Y
location) where {X, Y} = {I, II, III}. The results in Table 6
indicate that Type III locations on the 96-well microplate are
more likely to have different results when reproduced; the TSR
is greater than the average over all experiments. This is
expected, as the edge locations can be as much as 5 °C colder
(and on average are 1.4 °C colder) than the interior, which
could hinder the inverse-temperature crystallization process.
More surprisingly, considering the relocation experiments in
Table 7, the TSRs for relocations between middle and edge
locations (Type II — Type III or Type IIl — Type II) are
higher than the background of the other experiments. It is
known that the onset temperature for inverse temperature
crystallization processes is highly dependent upon the
composition of the solution. Our results suggest that these
specific experiments have compositions where the small
temperature variations between the different locations are
sufficient to cause or prevent crystal formation. Experiments in
Type III locations which were initially incorrectly predicted as
FP or EN would have been correct predictions if they had been
moved to a different location. However, merely augmenting
the DS#44 training and testing sets with the location
information (provided as a one-hot-encoded vector) did not
improve any of the prediction quality of the single models by
more than 0.00S. This provides additional evidence that these
chemical compositions are poorly described by the training
data. In this way, we can use the fusion models to provide
additional credibility to the predictions and use the
discrepancy between predicted and actual outcomes to identify
these scientifically interesting anomalies, as distinct from other
types of prediction errors.

4. CONCLUSION

Model fusion using combinatorial fusion analysis (CFA),
which combines multiple scoring systems (MSSs) using the
rank-score characteristic (RSC) function and cognitive
diversity (CD), was used to improve the prediction quality
of four individual models and enhance the data quality of the
HTEs. By combining the four individual models A (SVM), B
(random forest), C (weighted logic classifier), and D (gradient
boosted tree) in all combinatorial ways (pairs, triples,
quadruples) using both score and rank combinations, we
have generated 22 fusion models for each of the three
combination methods: average combination (AC), weighted
combination using performance (WCP), and weighted
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Table 7. Number of (a) Different, (b) Identical Observed Outcomes, and (c) TSR, Written as Triples (a, b; c) of the 63

Relocation Experiments from Type X to Type Y Location”

Type X Type I Type 1I
I (0, 1; 0) (0, 2; 0)
II (1,1; 1) (3, 0; *)°
11 (3,3 1) (11, 3; 3.66)
total (4, 5; 0.8) (14, 5; 2.8)

Acye»

indicates the number is not applicable.

Type Y
Type III total
(6, 4; 1.5) (6, 7; 0.86)
(6,1; 6) (10, 2; 5)
(11, 7; 1.57) (25, 13; 1.92)
(23, 12; 1.92) (41, 22; 1.86)

combination using diversity strength (WCDS). The majority
of these 66 fusion models (summarized in Table S3) improves
the prediction quality of individual models. Among the 39
fusion models, which improve all single models A, B, C, and D,
rank combination of all four models, RC(ABCD), achieves the
highest accuracy Pre@357 of 0.742, a 3.9%-point increase over
the best single model GBT (D).

An examination of shared attributes of the 26 reactions that
are incorrectly predicted as positives (Table S10) or 17
reactions incorrectly predicted as negatives (Table S11)
indicated that these reactions are predicted by all of the
individual models and the fusion models. Incorrect predictions
are more likely to occur on edge sites (Type I1I in Figure 4) of
the reaction plate. Outcomes of 29 reproductions and 63
relocation experiments (comprised of 9 TPs, 10 FPs, and 10
FNs) are shown in Tables 4 and S. Experiments at the edge
locations (Type III) showed many more changes in both
reproduction and relocation (Tables 6 and 7). Using a
combination of infrared thermometry and experimental
replication of 63 experiments to control for location changes,
we identified temperature changes of the order of 7 °C at the
plate edge as sufficient to change some of the reaction
outcomes. The data sets originally used for machine learning
model training did not contain this location information and
hence could not account for this difference. Merely dividing
the locations into “interior” and “edge” is insufficient to
describe this trend; rather, division into an interior, middle,
and edge region (Types I, II, and III) better explains the results
of relocating experiments.

In addition to demonstrating that model fusion can inform
and improve data and prediction quality of HTE perovskite
synthesis, our work also confirms previous results using CFA
framework.””** In agreement with previous theoretical work
by Hsu and Taksa," under certain conditions involving
cognitive diversity, rank combination can perform better than
score combination. In agreement with our numerical findings,
when the combination is better than the individual model, the
rank combination fusion models (bottom half of Table S3) do
perform better than score combination fusion models (top half
of Table S3). Results in Yang et al.* demonstrate that a
combination of scoring systems is better than individual
systems only if they are relatively good and different. Three
fusion models, AB, BD, and ABD, confirmed this assertion
(Table S3). Our work not only builds upon the previous
success of this approach to cheminformatics problems on
virtual screening and consensus scoring*”*® but also highlights
the ability of the CFA model fusion approach to help improve
quality control on high-throughput experimental studies. Based
on these results, we plan to incorporate model fusion-based
quality control into future versions of the ESCALATE'
program.
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