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ABSTRACT: Predicting protein stability is a challenge due to the
many competing thermodynamic effects. Through de novo protein
design, one begins with a target structure and searches for a sequence
that will fold into it. Previous work by Rocklin et al. introduced a
data set of more than 16,000 miniproteins spanning four structural
topologies with information on stability. These structures were
characterized with a set of 46 structural descriptors, with no explicit
inclusion of configurational entropy (Scnf). Our work focused on
creating a set of 17 descriptors intended to capture variations in Scnf
and its comparison to an extended set of 113 structural and energy
model features that extend the Rocklin et al. feature set (R). The Scnf
descriptors statistically discriminate between stable and unstable
distributions within topologies and best describe EEHEE topology stability (where E = β sheet and H = α helix). Between 50 and
80% of the variation in each Scnf descriptor is described by linear combinations of R features. Despite containing useful information
about minipeptide stability, providing Scnf features as inputs to machine learning models does not improve overall performance when
predicting protein stability, as the R features sufficiently capture the implicit variations.

■ INTRODUCTION

Protein folding is a grand challenge of biophysical chemistry. A
protein’s three-dimensional structure is determined by a
balance of thermodynamic and kinetic effects, arising from
noncovalent interactions among the residues and with the
solvent, resulting in many possible local minima for a given
amino acid sequence.1,2 Predicting the ground state of an
amino acid sequence requires the exploration of the many
possible local minima. A naive search approach would grow
exponentially with chain length, but natural proteins take
advantage of funnel-shaped potential energy surfaces3 and
conserved nonlocal weak contacts4 to accelerate the folding
process. However, even with advances in computational
methodologies and hardware, the direct simulation of protein
folding remains a challenge.5 Rather than proposing one or
more sequences that may result in a desired structure, an
alternative strategy of de novo protein design begins with a
target structure and attempts to determine sequences that will
produce it.6 In addition to fundamental insight, de novo protein
design has applications in the development of therapeutic
protein−protein inhibitors6 and novel biological nanomateri-
als.7

De novo miniproteins (of approximately 42 amino acids in
length) provide a unique benchmark for protein design
capability, as very few stable miniproteins are known in
natural biological systems, yet their small size makes them
tractable for computational analysis. Recently, Rocklin et al.
described a high-throughput oligonucleotide library synthesis

and protease-based stability assay that enabled the evaluation
of 16,159 miniproteins, spanning 4 secondary-structure
topologies, which expanded the number of known stable
miniproteins by 2717 examples.8 These miniproteins were
designed without metal-ion binding sites or disulfide bonds, so
that stability is an intrinsic property of the amino acid
sequence, independent of external cofactors or cellular
processing environment. Each protein is present in folded
and unfolded forms with a ratio determined by the free energy
of folding. The assay measures the stability of a protein based
on the susceptibility of its ensemble to proteases; proteins with
a higher fraction of its ensemble in the unfolded state are
expected to be more susceptible to protease degradation. A
valuable aspect of this data set is that it includes a complete
record of both stable and unstable proteins. This inclusion of
both “successes” and “failures” to produce stable proteins is
important for the design of predictive scientific machine
learning models.9 Rocklin et al. used a logistic regression
model to predict stability using 46 structural descriptors.
Models trained and tested within a topology captured some
contributions to stability (R2 = 0.63−0.85 for predicted
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stability), but as depicted in Figure S1, this model primarily
described stability differences between topologies, rather than
intra-topology variations.
Protein folding involves a complex set of enthalpic and

entropic contributions. The Rosetta force field1 models many
of the enthalpic ones, such as van der Waals interactions and
inter-residue hydrogen bonding. It also indirectly models some
of the entropic ones, such as the hydrophobic effect, through a
term that quantifies the effects of desolvating protein atoms.
However, it is unclear whether Rosetta captures other
important entropic contributions. For instance, one of the
major forces in protein folding is the loss in the configurational
entropy (Scnf) of the protein chain upon folding. Rosetta may
partially capture this loss through reference energiessingle
constants for each of the 20 amino acids that are intended to
help quantify unfolded-state free energies.1 However, calculat-
ing the Scnf of a protein is computationally challenging, as it
depends on atom coordinate fluctuations and their subsequent
correlations. One way around this challenge is by estimating
Scnf using a neural network trained to predict the Scnf
determined by molecular dynamics simulations.10 The
pretrained neural network can be used as a shortcut for
estimating the configurational entropy of a protein, provided a
structure (which is available to us as this is a de novo design
problem) and a sequence (also available as the candidate
sequence). Configurational entropy has been used as a
consideration in designing thermostable mutations of
adenylate kinase homologues.11,12

In this paper, we describe the creation of a set of 17 protein
descriptors based on the Popcoen configurational entropy
package by Goethe et al.10 We then test for significant
differences in the distributions of these entropy descriptors
when comparing stable versus unstable proteins. We also
discuss the impact of the newly generated descriptors on
machine learning models trained to predict protein stability
and evaluate how much of their variation arises independent of
the extended Rocklin descriptor set, which includes a larger
superset of structure and energy metrics described in Rocklin
et al. Finally, a thorough comparison of the mutual information
between the Rocklin-extended (R) and Popcoen entropy terms
is provided in order to evaluate how much information is
gained by the R set from the new descriptors. In addition to
addressing the specific question of protein stability prediction,
this work is also intended as a case study in how the role of
novel physical contributions to energy models can be evaluated
by using a combination of experimental data and machine
learning methods.

■ COMPUTATIONAL METHODS
Minipeptide sequences, computed structures (in PDB format),
Rocklin-extended (R) descriptors, and experimental stabilities
reported in Rocklin et al.8 are publicly available at https://
github.com/jandestrada/Scnf_Publication; a detailed manifest
is provided in the Supporting Information. The R descriptors
are partially derived from the 3.10 version of the Rosetta force
field which includes the Rosetta full-atom and Talaris2013
energy functions,8 as well as structural and sequence metrics.
The 113 features are described in the section on “Definition of
scoring metrics” (pp 58−62) of the Supporting Information of
ref 8. A 46-feature subset was selected for constructing the
logistic regression models used in ref 8; for that reason, we
refer to the full 113-feature set used here as “extended”. The
data set comprises 16,159 tested protein designs of four

different secondary-structure groupings (denoted “topolo-
gies”). Secondary structure was obtained from DSSP13

information, which represents residues in alpha helices as
“H”, in β sheets as “E”, and in loops as “L”. A topology is
constructed from a repetition of these secondary structures,
with loops implicit between letters. For instance, EEHEE
represents a topology of two β sheets, followed by an α helix,
followed by two β sheets, each connected by loops.
The stability score was calculated using the approach in

Singer et al.,22 a refinement of the Rocklin et al. approach. In
brief, fluorescently tagged proteins are expressed on the surface
of yeast cells. They are challenged with increasing concen-
trations of protease, sorted by fluorescence, and sequenced.
This yields an empirical resistance to degradation by protease,
expressed as EC50: how much protease is necessary to degrade
half of the proteins in a given time. This is a function both of a
protein’s likelihood of being folded (i.e., its stability) and its
inherent sequence-specific resistance to the protease when
unfolded. The latter is predicted by an “unfolded-state model”,
a computational model trained to predict EC50 as a function of
local amino acid motifs for proteins in an unfolded state. The
difference between the empirical EC50 and the unfolded-state
model’s prediction is the stability score. This value is on a log10
scale and can be used by machine learning models as a label for
regression or, by thresholding it, as a label for classification. A
stability score of 0 indicates a protein whose structure confers
no additional resistance to proteolysis beyond that predicted
by its amino acid sequence. A stability score of 1 indicates that
the protein’s resistance to the action of the protease is 10 times
greater than that predicted by the susceptibility of its amino
acid sequence. By convention, when assigning a binary class
label, a stability score greater than 1 is “stable”. Between 19.6
and 45.5% of tested sequences in each topology are stable
(Figure S2).
Configurational entropies (Scnf) were computed using

Popcoen version 1.10 Popcoen uses an artificial neural network
trained on molecular dynamic simulations of proteins to carry
out fast (∼0.1 s per protein) estimates of how much the
protein fluctuates across all backbone and side-chain torsion
angles.10 The Popcoen entropy estimation is calculated by
decomposing total Scnf into a sum of per-residue contributions,
Si, where i denotes the residue index. Goethe et al. frame the
entropy calculation in terms of bond-angle torsion coordinates,
given that most coordinates will have negligible fluctuations
due to the covalent structure of the protein. Each Si is
composed of two terms: a marginal entropy of a given torsion
angle and a mutual information between two torsion angles.
This sum is applied across the entire set of torsion angles in the
protein. However, since a brute force computation across the
entire set is unfeasible due to its high dimension, an approach
similar to the second-order maximum information spanning
tree (MIST) approximation of entropy is used. The Si values
are calculated from molecular dynamic (MD) simulations of
proteins in explicit solvent (TIP3P water), where they gather
the distribution of torsion angle fluctuations and integrate in
order to obtain marginal entropies and mutual information
between torsion angles. Therefore, higher values of Scnf suggest
the protein has higher flexibility in its torsion angles, since it
exhibits higher amino acid backbone and side-chain fluctua-
tions. Here, the input to Popcoen is a de novo structure and
sequence information (contained in a PDB file) and the
outputs are predicted configurational entropy values for each
residue and for the entire protein. Using the list of per-residue
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values and DSSP information, we created descriptors
containing average, total, maximum, minimum, and range of
Scnf values per secondary-structure type. The nomenclature of
the descriptors follows a set pattern: Mean_X_entropy,
X_min_entropy, X_max_entropy, X_range_entropy, and Sum-
X_entropies (X = H, E, or L). In addition to these descriptors,
the descriptor set includes S_PC, the sum of all per-residue
entropies, i.e., the total Scnf estimate. These computations were
performed using an (Actor-BAsed COmputing) system
containerization of the Popcoen software.14,15 Popcoen’s per-
residue definition of Scnf allows us to calculate Scnf for any given
secondary structure, as long as DSSP information is available.
Our calculated SumX_entropies features should be interpreted
as a sum of partial configurational entropies across residues in a
given secondary structure, where a higher SumX_entropies
value means Popcoen predicted the protein exhibits high
backbone and side-chain fluctuations. Positive correlations
between stability and Scnf features would suggest that proteins

exhibiting high backbone and side-chain fluctuations are more
enriched in stable proteins than those with lower fluctuations.
Resulting distributions were characterized using the

Kolmogorov−Smirnov (KS) test from SciPy version 1.3.0. A
variety of machine learning (ML) models were trained on
these features using SciKit-Learn16 version 0.20.2specifically,
Random Forest Classifier, Scalar Vector Machine, Gradient
Boosted Classifier, Keras Neural Network, K-Nearest Neigh-
bors, Naive Bayes Classifier, Gaussian Mixture Model, and
Decision Tree Classifier. For each model, our general strategy
consisted of starting with a 5-fold cross validation per model.
In general, k-fold cross validation is a method for estimating
prediction quality, by dividing the data into k subsets (“folds”),
training the model on all but one (k − 1) of the subsets, and
testing the model on the remaining subset; this is repeated k
times, using a different subset for testing each time. We report
the uncertainties associated with these. After cross validation,
models were audited using Shapley additive explanations

Figure 1. Standardized configurational entropy descriptor distributions within each topology. Blue regions represent stable proteins as defined by
stability score; orange regions represent unstable proteins. Distribution differences between stable and unstable categories in descriptors such as
Mean_H_entropy, Mean_E_entropy, and SumH_entropy demonstrate the entropy descriptors’ potential for classification.
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(SHAP),17 a game-theoretic method for assessing the direct
feature influence on model predictions. Finally, a SciKit-Learn
linear regression was used to measure whether the variation
from the created features could be explained from existing R
features. An Explain Like I’m 5 (eli5, version 0.9.0)18

permutation analysis was performed to identify features most
important for subsequent linear regression model construction.
Mutual information feature selection (Figure S3) and KBest
down selection from SciKit-Learn were used to identify which
R features captured the most information from the Popcoen
Scnf. Pandas version 1.0.1 was used to interact with the data.19

The complete data sets and an interactive Python 3.70 Jupyter
notebook performing the analyses described in this paper are
available at https://github.com/jandestrada/Scnf_Publication.

■ RESULTS AND DISCUSSION
Configurational Entropy Feature Distributions of

Stable and Unstable Miniproteins Aggregated across
All Topologies Have Modest Differences. Figure S4
compares the distributions of the 17 configurational entropy
features introduced in our work for stable (orange) and
unstable (blue) proteins when including all topologies. To
quantify the differences between the distributions, we applied
the two-sample Kolmogorov−Smirnov (KS) test on stable and
unstable distributions to rank the Scnf features’ potential for
classification. The two-sample KS test is a non-parametric test
that measures the distance between two empirical distribu-
tions, outputting a decimal value between 0 (no distance) and
1 (most distance). The null hypothesis is that both
distributions are drawn from the same sample, and thus have
no distance between them. This test is an appropriate choice
because it makes fewer assumptions than its parametric
counterparts. The KS test statistic also has a corresponding
p-value, based on the sample sizes. Results are shown in Figure
S5 and Table S1. The loop and α helix features,
L_min_entropy, SumH_entropies, Mean_L_entropy, and L_ran-
ge_entropy, showed the highest KS values, with 0.22, 0.14, 0.13,

and 0.10, respectively. The top entropy feature, L_min_e-
ntropy, had a higher KS value than 58 of 113 Rocklin-extended
(R) features. For reference, the highest KS value for the R
features was score_per_res (0.65, p-value <0.05). From this, we
conclude that, although no individual Scnf descriptor predicts
stability and the collection of Scnf descriptors alone may not be
capable of predicting protein stability, they are at least as
descriptive as the majority of the previously used R features. A
notebook carrying out KS analysis can be found in the
supporting GitHub repository.20

Configurational Entropy Feature Distributions for
Stable and Unstable Miniproteins Are More Distinct
When Considering Individual Topologies. Visualizing Scnf
feature distributions using all topologies did not greatly
separate stable from unstable proteins, which motivates
visualizing distributions within a specific topology (Figure 1).
Three out of four topologies show differences in feature
distributions, of which EEHEE showed the strongest
distribution separation. Table S1 shows that SumE_entropies
in EEHEE topology have the largest discrepancy between
stable and unstable proteins (KS value: 0.391, p value <10−10).
Unlike the case of considering all proteins (see Table S2), the
distributions for stable and unstable EEHEE designs are less
symmetrical, indicating a better ability to distinguish stability
using these features. This is quantitatively described by higher
KS values between stable and unstable distributions.
Miniproteins in the EEHEE topology tend to be stable with
a low β sheet Scnf value (fewer internal degrees of freedom)
and a high α helix Scnf value (more internal degrees of
freedom). This opposing trend between strands and helices
highlights that Scnf values are not always correlated with
stability in the same direction, even within the same topology.
This result could suggest that rigid ordering of one secondary-
structural element could be compensated by increased
flexibility in another element. However, since protein stability
arises from differences between folded and unfolded states and
since Scnf only quantifies the degree of disorder in the folded

Figure 2. (a) Kernel density estimate plot of stable and unstable EEHEE protein distributions for Rocklin-extended features representing a score
calculated using Rosetta and (b) generated feature SumE_entropies representing the total Scnf of β sheet residues. Stable EEHEE proteins favor β
sheet rigidity. Two-sample Kolmogorov−Smirnov test value for total_score: 0.71 (0*). (c) Distribution of total_score values and (d)
SumE_entropies values across the entire data set and EEHEE topology. The large spike on 0 corresponds to topologies with β sheets.
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state, Scnf is not fully able to address this hypothesis. Figure 2
shows distributions for the entropy feature with the highest KS
value (SumE_entropies) and the R feature with the highest KS
value (total_score). The distributions have been separated by
stable and unstable miniproteins. Figure 2 suggests stable
EEHEE proteins favor a low β sheet configurational entropy,
highlighting the entropy features potential for classification.
Entropy Features Describe Stability for Three out of

Four Topologies. To compare the models’ true-positive and
false-positive rate, we quantified their performance through the
receiver operating characteristic area under curve (ROC-AUC,
hereafter abbreviated “AUC”) score. First, for every topology,
we trained a 5-fold cross validated model using Scnf features,
where the average is shown on the diagonal in Figure 3a. Three
out of four models showed predictive power with AUCs
greater than 0.50. Next, we evaluated whether a model trained
on one topology would have predictive power on another
topology. This result is shown in the off-diagonal in Figure 3a,
where some topologies succeeded but the signal was not
generally strong. Thus, training and testing within a topology
generally exhibits higher AUC scores than across topologies,
although the high performance in some off-diagonal results
suggests some predictive generalizability. Testing on the
EEHEE topology leads to the best performance, followed by
EHEE and HHH; learning on the HEEH topology was not
generally successful. It is worth noting that the HEEH
topology contained the smallest amount of stable miniproteins,
making it inherently difficult for any model to achieve high
performance (Figure S2). The best result off-diagonal belongs
to the HHH−EEHEE train−test pair. Parts b and c of Figure 3
show how the total α helix entropy distribution difference that
is present in HHH is more pronounced in EEHEE. Specifically,
the KS value for EEHEE SumH_entropy (second column) is
greater than that for HHH SumH_entropies (first column).
This trend is seen for SumH_entropies across all topologies
(Figure S6). This cross-topology consistency could lead to
improved performance. However, cross-topology inconsistency
could lead to consistent misprediction, as in the case of the
EHEE−HEEH train−test pair’s minimum loop residue Scnf.
Notice the peak in stable proteins for EHEE directly overlaps
with a peak of unstable proteins in HEEH, possibly leading to
consistent misprediction and an AUC score below 0.500.
Scnf Metrics Are Correlated with Amino Acid

Composition. Having found that Scnf features correlate with
protein stability, we next sought to understand the physical
basis of this correlation. Scnf measures the number of accessible
microstates as a protein fluctuates about all backbone and side-
chain torsion angles. Since some side chains are inherently
more flexible than others and since side chains differ in how
much they constrain backbone flexibility, we hypothesized that
Scnf measurements would correlate with the underlying amino
acid composition of the protein. To test this hypothesis, we
created a new set of descriptors that quantify the amino acid
composition within different secondary-structure elements.
These descriptors have the pattern f rac_X_Y, where X =
amino acid and Y = secondary structure, and the values have
the pattern (number of X in amino acids of topology Y)/(number
of amino acids of topology Y). For example, frac_A_H for a
sequence AYPFA with secondary structure HHLHH would be
2/4, or 0.5.
We then used multiple linear regression to search for a

correlation between the above features and Scnf values for
specific secondary-structure elements for a given topology.

Figures S7, S8, S9, and S10 show the results of this analysis for
all four topologies. In each case, the regressions show an
intermediate correlation between amino acid composition and
Scnf, within each given topology. The amino acids that are most

Figure 3. (a) Heatmap showing AUC score results for SVM trained
on the topology on the y-axis and tested on the topology on the x-axis
using only entropy features. Results on the diagonal correspond to a
5-fold cross validation within a topology. Scores below 0.50 could
suggest trends present in the training set lead to consistent
mispredictions in the testing set. (b) Kernel density distributions
for entropy features within specific topologies detailed in panel c’s x-
axis. The y-axis shows the displacement from the mean for each
feature, where the mean was calculated collectively from all
topologies, which is why features are not centered around zero. (c)
Two-sample Kolmogorov−Smirnov values for distribution of stable−
unstable miniproteins.
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predictive of entropy are not always the same between
secondary structures and topologies. This may partially stem
from different secondary structures having different underlying
frequencies of amino acids, due to Rosetta’s bias during design
or other restrictions imposed in the design protocol. However,
comparing the effects of amino acids in the same secondary
structure largely eliminates this influence. Next, we sought to
identify amino acids that were correlated with both stability
(Figure S11) and Scnf. We identified multiple amino acids that
fit this profile. For instance, stable EEHEE designs tend to have
low Scnf in strands and high Scnf in helices. We observe that
strand Scnf and stability are both negatively correlated with the
frequency of E and K residues in strands, whereas helical Scnf
and stability are both positively correlated with the frequency
of M and F in helices (Figure S7). When considered jointly,
designs that are most depleted in E and K residues in strands
and most enriched for M and F in helices tend to be
qualitatively much more stable than designs showing the
opposite trend (Figure S12). The EHEE topology also tends to
be more stable when β sheet Scnf is lower and α helix Scnf is
higher. In this case, the frequency of W in strands is negatively
correlated with strand Scnf and positively correlated with
stability, while the frequency of M in helices is positively
correlated with both helical Scnf and stability (Figure S8).
Finally, designs from the HHH topology tend to be more
stable with high values of total Scnf. We find that Scnf and
stability are both correlated with the frequency of V and I in
helices and both negatively correlated with the frequency of P
and N in loops (Figure S9). This analysis did not provide
useful information for the HEEH topology given there were no
correlations between HEEH proteins’ Scnf and stability
(Figures S10 and S13). As with EEHEE, grouping EHEE
and HHH designs based on these patterns in amino acid
composition yields groups of designs with substantially
different stability distributions (Figures S14 and S15).
Together, these results suggest that the predictive power of
Scnf features arises partly from a protein’s amino acid
composition.
Existing Rocklin-Extended (R) Features Partially

Describe Configurational Entropy Variations. We
assessed the correlation between R features and total Scnf in
order to evaluate whether they implicitly capture variations
from Scnf features. We used a linear regression to evaluate this
correlation, which showed an R2 score of 0.811. However, due
to the covariant nature of the data (see Figure S16), we needed
to take a different approach to understand what features were
responsible for explaining the variance. Two strategies were
used to determine the most important R features. Scikit-learn’s
KBest feature downselection method was used to determine
which features account for most of the variance in Popcoen’s
Scnf, where “k” features are chosen which maximize the F1
score of the linear regression on an 80−20 training−testing
data split. Using k = 40 leads to R2 = 0.646. Using k = 10 leads
to R2 = 0.465. Finally, if k = 1, the selected feature is
lk_ball_iso, the Lazaridis−Karplus solvation free energy, which
leads to R2 = 0.414 (Figure 4); the negative slope is consistent
with a larger Scnf reducing the total free energy. Proteins with
higher Scnf have a slightly higher hydrophobicity, but these two
properties are essentially uncorrelated (R2 = 0.032). An
increase in our Scnf features corresponds to an increase in
internal degrees of freedom for a given miniprotein. Feature
sets for these k values can be found in Table S3 and in the
supporting GitHub repository under Model_pred_Spc.21 We

found correlations between amino acid composition and
secondary-structure configurational entropy in order to identify
what the entropy features were capturing. Lasso regression was
used in order to maximize the regression performance and
minimize the number of features used (Figure 5b). Using an α
value of 0.1, an R2 of 0.732 was observed, yielding a set of 34
features. Using this approach, we find a smaller set of features
and a regression with a higher R2 score when compared to the
K-Best approach. This improvement is observed because
LASSO regression applies weights to feature coefficients in
order to penalize high magnitude features, which can happen
when features are highly covariant. K-Best selects its features
using one-way ANOVA between the feature and label;
therefore, it neglects covariance between features. The eli5
permutation analysis was performed (Figure 5c), confirming
the observed set of features from the Lasso regression. The
most important feature is lk_ball_iso. Although the data set has
a large abundance of stable α helix containing structures
(Figure S2), there is no apparent effect on the feature
importance values (see supporting notebook21). When training
the LASSO regression to predict each Scnf feature, the two best
R2 were for S_PC and SumE_entropies; the worst R2 were for
all loop entropy features (L_range_entropy, SumL_entropies,
L_min_entropy, L_max_entropy, and Mean_L_entropy) (see
Figure S17).
Figure S18 summarizes the results of this feature selection

process as a Venn diagram. K-Best and Lasso regression agree
in their assignment of 11 features as important to configura-
tional entropy, corresponding to solvation energy (lk_ball_iso,
net_sol_per_res), attractive interactions (fa_atr), packing
qual i ty (holes , degree) , and hydrogen bonding
(hbond_sr_bb_per_sheet, hbond_sr_bb).

Machine Learning Models Incorporating Configura-
tional Entropy Features Do Not Predict Protein Stability
Better than Those Trained on Rocklin-Extended
Features (R) Alone. Eight classifierssupport vector
machine (SVM), random forest (RF), neural network (NN),
gradient boosted (GBC) tree, K-nearest neighbors (K-NN),
naive bayes (NB), decision tree (DT), and Gaussian mixture
model (GMM)were trained and tested on a 5-fold cross
validation split which included all protein topologies, where
training sets were sampled to have equal amounts of stable and
unstable miniproteins, due to overall data set class imbalance.
The results are shown in Figure 6. The RF, SVM, NBC, and K-

Figure 4. Lazaridis−Karplus solvation energy as a function of
configurational entropy. Each point indicates a protein in this data set,
with total hydrophobicity color coded.
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NN models on average exhibited improved precision when
both R and configurational entropy (Scnf) features were
included; these models also exhibited reduced recall. However,
the balanced accuracy (i.e., the average accuracy of predicting
stable and unstable proteins) did not show the same change.
Inclusion of Scnf features slightly reduces these models’
likelihood for false positives on average. We trained and tested
the models within each topology, since we showed the features
have the potential to be predictive based on our KS value
analysis. ML models incorporating Scnf features and R features
perform on average the same as ML models incorporating only
R features. Performance for R models can be accessed at
Scnf_ML_Performance.

Machine Learning Models Using a Subset of the
Rocklin-Extended Feature Set Are Able to Predict
Protein Stability. A set of 55 R descriptors whose
Kolmogorov−Smirnov (KS) value was greater than the highest
configurational entropy (Scnf) descriptor’s KS value was
selected. Machine learning models were trained using this
reduced feature set (R_sub) and the reduced R set with Scnf
features (RS_sub). The difference between using RS_sub and
all R features is on average 0.0056 across all models across all
metrics, suggesting the remaining 58 R features are
nonessential for our predictive models. The difference between
RS_sub and R_sub is on average 0.0071 across all models,
suggesting entropy features do not significantly improve these
models (Table S4). Including Scnf features in addition to the
reduced feature set does not improve the models. This result
could be explained using the fact that 35/55 features in the
reduced R set were shown above to implicitly capture Scnf
through Lasso regression and K-Best feature downselection
(Table S5). This implies that the contribution of configura-
tional entropy to protein stability prediction can be described
by the subset of retained R features.

Models Containing Only Entropy Features Evaluated
on a Leave-One-Out Topology (LOO) Train−Test Split

Figure 5. Performance of a LASSO linear regression model using
Rocklin-extended (R) descriptors to predict the protein’s total
configurational entropy (Scnf) as computed by Popcoen. (a) Predicted
value of Scnf on the x-axis and the Popcoen value of Scnf on the y-axis
for the test set. The small spread about the bisectrix between
predicted and true values shows the R descriptors accurately capture
most of the variation in Scnf. (b) LASSO linear regression coefficients.
(c) eli5 permutation feature importances. Descriptors were stand-
ardized prior to fitting in order to comparatively visualize their
contributions.

Figure 6. (a) Difference between the average performance for models
including Rocklin-extended (R) descriptors and configurational
entropy (Scnf) descriptors versus only R descriptors. Models shown
include support vector machines (SVMs), random forest classifier
(RFC), convolutional neural network (CNN), gradient boosted
classifier (GBC), K-nearest neighbors (K-NN), naive Bayes classifier
(NBC), decision tree classifier (DTC), and Gaussian mixture model
(GMM). Error bars show differences across 5-fold cross validation.
The inset shows the total magnitude of standard deviation across
cross validation. (b) Baseline values for ML models trained using the
R feature set.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.0c09888
J. Phys. Chem. B XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.0c09888/suppl_file/jp0c09888_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.0c09888/suppl_file/jp0c09888_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09888?fig=fig6&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.0c09888?rel=cite-as&ref=PDF&jav=VoR


Exhibited Inferior Scores When Compared to Models
Containing All Rocklin-Extended Features. We surveyed
all of the ML models, training on all topologies except one.
This left-out topology served as the test set in order to measure
the model’s potential to generalize to very different types of
interactions. Inclusion of Scnf features with R features does not
greatly change the performance compared to only R features,
with all models achieving an AUC around 0.5−0.6. These
results suggest entropy features do not make models more
generalizable to unseen topologies (Figures S19−S24). An
exception is the case of the DTC; models including R and Scnf
features slightly outperformed models when including both
data sets (see Figure 7).

■ CONCLUSIONS
Predicting the stability of small de novo proteins can advance
the development of new targeted therapeutics6 and bionano-
materials.7 Machine learning models trained on large, high-
throughput experimental data sets can assist in these
predictions but depend upon the quality of the input features
used to describe the proteins. Machine learning interpretability
can also be aided by using physically motivated input
descriptors. Previous work focused on a subset of structural
descriptors and energy features extracted from the Rosetta
force field; we have extended this to include configurational
entropy (Scnf) protein descriptors. Scnf features on their own
adeptly discriminate between stable and unstable miniprotein
designs, shown by Kolmogorov−Smirnov values for the
highest Scnf value, which was greater than 58 features based
on Rosetta energy function properties and geometric features
(R). Scnf features discriminate stable and unstable designs for
three out of four topologies. Scnf features captured interactions
in the EEHEE topology best, followed by EHEE and HHH.
Scnf features captured interactions in HEEH the least, possibly
due to the small number of stable miniproteins. Although
configurational entropy is not explicitly included in the R
features, 81% of the configurational entropy variation is
captured by a subset of 12 R features (Figure 5), dominated
by protein packing, solvation energy, and attractive−repulsive
interactions. However, machine learning model precision was

not improved by addition of these entropy features. These
results suggest that, although the R features do not explicitly
incorporate configurational entropy, machine learning models
built on a sufficiently large and diverse feature set can use a
subset of them to describe the measure of configurational
entropy used in this study, which estimates the amount that a
protein would fluctuate in an MD simulation. Although many
of the features correlated to Scnf are Rosetta energy terms, some
are not (e.g., number of charged or hydrophobic residues and
the distribution of backbone torsion angles in designs relative
to native proteins), suggesting there may be interactions
missing from Rosetta to completely capture Scnf.
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