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ABSTRACT: Metal halide perovskites are a promising class of materials
for next-generation photovoltaic and optoelectronic devices. The discovery
and full characterization of new perovskite-derived materials are limited by
the difficulty of growing high quality crystals needed for single-crystal X-
ray diffraction studies. We present an automated, high-throughput
approach for metal halide perovskite single crystal discovery based on
inverse temperature crystallization (ITC) as a means to rapidly identify
and optimize synthesis conditions for the formation of high quality single
crystals. Using this automated approach, a total of 8172 metal halide
perovskite synthesis reactions were conducted using 45 organic
ammonium cations. This robotic screening increased the number of
metal halide perovskite materials accessible by an ITC synthesis route by
more than 5-fold and resulted in the formation of two new phases, [C2H7N2][PbI3] and [C7H16N]2[PbI4]. This comprehensive data
set allows for a statistical quantification of the total experimental space and of the likelihood of large single crystal formation.
Moreover, this data set enables the construction and evaluation of machine learning models for predicting crystal formation
conditions. This work is a proof-of-concept that combining high throughput experimentation and machine learning accelerates and
enhances the study of metal halide perovskite crystallization. This approach is designed to be generalizable to different synthetic
routes for the acceleration of materials discovery.

■ INTRODUCTION

Metal halide perovskites1,2 can exhibit tunable electronic
properties3−6 that are leveraged in optoelectronic,7−11 thermo-
electric,12,13 and photovoltaic devices,14−19 for which power
conversion efficiencies of 24.2% have been achieved.20 The
composition and structure of metal halide perovskites
determine electronic properties such as carrier mobilities and
band structure.6,21 However, access to suitable crystalline
perovskites for detailed characterization of their structure and
physical properties has been hindered by limited under-
standing of the underlying processes through which large high
quality single crystals grow.
A diverse array of synthetic routes exist for the growth of

metal halide perovskite single crystals, including antisolvent
vapor-assisted crystallization,22−25 seeded crystal growth,26,27

slow evaporation,28,29 and inverse temperature crystallization
(ITC).30−33 ITC is a promising choice for structural studies of
new perovskite materials because it can be used to grow high
quality crystals without the need for long growth times. To
date, metal halide perovskite ITC behavior, in which the
solubility decreases with increased temperature, has been
observed for only four compositions: methylammonium lead
iodide (MAPbI3), methylammonium lead bromide
(MAPbBr3), formamidinium lead iodide (FAPbI3), and
formamidinium lead bromide (FAPbBr3).

34−36 Extension of

the ITC route to new chemical systems is slow because
successful crystal growth using this technique requires the
simultaneous optimization of a large number of interdependent
parameters such as reagent concentration and reaction
temperature, necessitating many experimental trials.
High-throughput synthetic approaches are well-suited for

efficiently exploring large experimental parameter spaces.37

Such approaches have been used to search for new organic
reactions,38−41 optimize synthetic conditions of inorganic
materials,42−45 and discover new inorganic materials for
energy, catalysis, and sensing applications.46−52 Specifically,
high-throughput synthetic approaches have been used to
explore the formation of metal halide perovskites in the form of
thin-films,53,54 polycrystalline samples,50 nanocrystals,55,56 and,
recently, as single crystals produced by antisolvent vapor-
assisted crystallization.52 The application of such high-
throughput approaches to the growth of metal halide
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perovskite single crystals requires the adaptation of exper-
imental routes to ensure compatibility with liquid handling
robotics. Optimal utilization of high-throughput data sets
requires the capture of nuanced experimental details that
enable subsequent analysis with machine learning models,
which have shown promise in this domain.52−55,57−63

In this report, we describe a series of high-throughput metal
halide perovskite crystal growth experiments, using a new
platform for Robot-Accelerated Perovskite Investigation and
Discovery (RAPID). A total of 8172 individual crystallization
reactions were performed via ITC across 45 chemical systems.
This RAPID screening increased the number of metal halide
perovskite systems for which ITC conditions can be used to
grow crystals by more than 5-fold. Additionally, our work
resulted in the discovery of two new compounds, C2H7N2PbI3
and (C7H16N)2PbI4. Experiment generation and data manage-
ment in the high-throughput workflow were enabled by a
software pipeline, ESCALATE (Experiment Specification,
Capture and Laboratory Automation Technology),64 to both
capture a complete record of the high-throughput experiments
and observational data, and to format those data for use in
machine learning studies. The resulting data set was used to
train machine learning models for each chemical system,
demonstrating the utility of our high-throughput approaches to
metal halide perovskite crystal growth.

■ RESULTS AND DISCUSSION
Robot Accelerated Perovskite Workflow. A high-

throughput robotic synthesis of perovskites imposes three
practical constraints. First, the use of a liquid handling robot
necessitates that all reagents be dispensed as homogeneous
solutions. The solubilities of the reactive species thus define
the upper bounds of the chemical concentration space in which
reactions can be performed, while the lower bounds are
necessarily zero (i.e., solvent only). If data are to be used for
subsequent modeling, then software such as ESCALATE64

must capture all of these experimental details, even for manual
operations such as the preparation of stock solutions. Second,
chemical compatibility with the robot precludes the use of
strong acids, such as HI. Only weak acids, such as formic acid,
are allowed in the experiment to avoid robot damage. Third,
heating block limitations, as well as the flash point of solvents,
constrain reaction temperatures from 95 °C to room
temperature. We classify any synthesis satisfying these
constraints as “RAPID”.
In this paper, we describe a RAPID ITC route for the

formation of metal halide perovskite single crystals. The
solubilities of all reactants are measured (see Table S2 in the
Supporting Information, SI) to ensure that stock solutions
utilize the highest possible concentrations of the dissolved
species, maximizing the amount of chemical space available for
exploration. The liquid handling robot pipettes four different
types of stock solutions into 96 well microplates: (1) a stock
solution of lead(II) halide and the selected organoammonium
halide, included to increase the solubility of the lead halide; (2)
a stock solution of the selected organoammonium halide; (3)
pure solvent; and (4) neat formic acid. The stock solutions are
prepared in one of three solvents: γ-butyrolactone (GBL),
dimethyl sulfoxide (DMSO), and dimethylformamide (DMF)
(see Table S2 for the solvent used in each chemical system).
After dispensing the reagent solutions, the liquid handler
vortexes and heats the microplates to ensure that the solutions
are fully mixed. After vortexing is complete, the resulting

perovskite solutions are heated undisturbed for 2.5 h to allow
for crystal growth. An experimental flowchart describing
reagent selection, benchtop testing, reaction components,
stock solution preparation, and robotic reaction is shown in
Figure S4. All variables with explanation of their bounds and
values in the experiments are specified in Table S3, and
detailed experimental procedures are available in the SI. Initial
experiments focused on Pb2+ and I−, the most explored metal
and halide combination in metal halide perovskites. Iodides are
generally more stable than chlorides and bromides and have
narrower band gaps more appropriate for solar applications.5,65

Using formic acid promotes crystallization by shifting the lead
iodide equilibrium from colloidal cluster species to ionic
species, reducing the crystallization onset temperature.30,66

Formic acid is a sufficiently weak acid to be compatible with
the NIMBUS liquid handling robot used in this work.
The selection of specific reactant concentrations, with

corresponding solution volumes, is performed using a quasi-
random sample of the possible experimental composition
parameters through ESCALATE.64 Additionally, ESCALATE
generates complete sets of instructions for the human
operators (e.g., stock solution preparation) and the input
files used by the robot to perform the experiments.
ESCALATE is then used to capture the complete set of
operator actions, ambient conditions, operator observations,
and instrument log files associated with each reaction, along
with relevant metadata.64 Although the experiment generation
and data management processes could have been performed
manually, ESCALATE automated and accelerated these
processes to meet the requirements for high-throughput
experimentation. Among the observational data is a visual
score of crystallite size for each reaction vial, following the
scheme of our previous work and that of Cooper and co-
workers.60,67 Photographs of reaction vials are captured and
reaction outcomes are scored into four classes: (1) clear
solution without any solid; (2) fine powder; (3) small
crystallites (average crystal dimension <0.1 mm); and (4)
large (>0.1 mm) crystals suitable for structure determination
by single crystal X-ray diffraction (see Crystal Scoring Rubric
in the SI and examples of crystal images and their scores in
Table S1 and Figure S2). The entire life-cycle of an experiment
is shown in Figure S3. The complete data set from these
reactions, including outcomes, crystal images, X-ray diffraction
patterns, and modeling, is accessible via the SI; these data can
be analyzed and visualized interactively using the online scripts
provided68 (see Interactive Data Visualization and Analysis
Interface section in the SI). Detailed descriptions of the
experimental and computed features used for this work are
provided in the SI. Crystallization outcomes, and the features
of the experiments that produced them, are tabulated in a
comma-separated-value (CSV) file publicly available at
https://github.com/darkreactions/rapid.69

High-Throughput Screening. A total of 8172 ITC
reactions were performed in 45 different chemical systems,
each of which contains lead(II) iodide and an organic cation.
Here, 45 structurally diverse organoammoniums are chosen as
organic cations, including aliphatic ammonium ions [e.g.,
methylammonium (MA), ethylammonium (EtA)]; aromatic
cations [e.g., phenethylammonium (PhenEtA), benzylammo-
nium (BenA)]; linear chains [e.g., n-butylammonium (nBuA),
n-dodecylammonium (nDodA)]; branched structures [e.g.,
iso-butylammonium (iBuA), acetamidinium (Acet)]; cyclic
cations [e.g., cyclohexylmethylammonium (CHMA)]; secon-
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dary and tertiary ammoniums [e.g., N,N-diethylpropane-1,3-
diammonium (NNDiEtPA)]; and amidinium ions [e.g.,
formamidinium (FA)]. Chemical structures and abbreviations
for these 45 organoammoniums are shown in Figure 1. These
compounds comprise all of the organoammonium iodides sold
by the vendor (GreatCell Solar Materials.), providing a survey
of the most accessible region of chemical space and the one
most replicable by other chemists. Reactions within a given
system vary in their lead iodide, organoammonium iodide and
formic acid concentrations. As shown in Figures 2, S5, and S6,
high-throughput screening allowed for the identification of
conditions that result in large crystals (indicated by red circles)
for each chemical system, demonstrating the efficacy of
exploratory work using this automated workflow. Whereas
only methylammonium (MA) and formamidinium (FA) halide
perovskites were previously known to form via ITC,34−36 we
find that ITC is possible for perovskites that incorporate
organoammonium cations with a much wider range of

molecular weights, degree of ammonium substitution, and
structural features such as aliphatic and aromatic rings. The
high-throughput screening results for all 45 chemical systems
are accessible through our interactive data visualization and
analysis interface (For example images, see Figure S1).68

The conditions for which large, macroscopic crystals grow
often cluster in a single region of chemical concentration space
for each chemical system, with cluster positions varying
between systems. For the synthesis of EtAPbI3 at 95 °C
(Figure 2b), large, Class 4 crystals are formed in the
intermediate inorganic and organic concentration regime
(0.3−0.8 M and 1−2 M, respectively) with a high
concentration of formic acid (>6.0 M). Higher lead iodide
concentrations tend to produce fine powders (Class 2) because
such high PbI2 concentrations induce faster nucleation.
Conversely, lower concentrations of lead iodide do not result
in any solid product.15 The observation that adding formic acid
facilitates crystallization is consistent with reports by Snaith

Figure 1. Chemical structures of the organoammonium cations studied in this work (see Table S2 for full chemical names). Blue-colored structures
produce Class 4 large crystals confirmed to be perovskite-derived phases. Black structures produce Class 4 crystals with unknown structure (i.e.,
powder-XRD patterns do not match any known phases of perovskite-derived compounds, PbI2, or organoammonium iodides). Red-colored cations
produce only Class 1−3 outcomes or PbI2 crystals. Single asterisk (*) indicates cations producing Class 3 outcomes with unknown phase. Double
asterisk (**) indicates Class 3 outcomes confirmed as a perovskite-derived phase.
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Figure 2. Crystal quality of 2295 lead iodide perovskite reactions as a function of the organic cation and the concentrations of the organic,
inorganic (PbI2), and formic acid precursors. Organic precursors are methylammonium iodide (a), ethylammonium iodide (b), n-butylammonium
iodide (c), formamidinium iodide (d), acetamidinium iodide (e), and cyclohexylmethylammonium iodide (f). Reactions shown were performed at
95 °C. Light gray boxes show two-dimensional projections of the data. Dark gray triangles illustrate the accessible experimental space in the
organic−inorganic plane, as constrained by precursor solubilities. Additional data for other organoammonium precursors are shown in Figures S5
and S6 and in the interactive data visualization interface.68

Figure 3. Powder X-ray diffraction patterns of crystals grown from the following systems: MA/PbI2 (a), EtA/PbI2 (b), nBuA/PbI2 (c), FA/PbI2
(d), Acet/PbI2 (e), and CHMA/PbI2 (f). See text for ICSD numbers for reference patterns.
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and co-workers;70 increasing the acidity of the reaction
solution dissolves PbIx colloid intermediates, raising the
effective lead and iodide concentrations, and in turn promoting
metal halide perovskite single crystal formation.
Powder X-ray diffraction measurements (pXRD) performed

on ground, Class 4 samples from RAPID reactions indicate
that tetragonal MAPbI3

30,71 was successfully synthesized from
the MA/PbI2 reaction system (Figure 3a). The FA/PbI2
system predominantly produced cubic FAPbI3 mixed with
the hexagonal phase (Figure 3d), which is not surprising in
light of the bistability of this compound and its propensity
toward phase transitions.72,73 Some PbI2 impurity (ICSD
#52370) was also observed in the MA/PbI2 and FA/PbI2
systems due to the decomposition of the perovskite phases
between synthesis and characterization.74,75 Our ability to
quickly explore possible reaction conditions to yield both
MAPbI3 and FAPbI3 demonstrates the utility of RAPID for the
formation of metal halide perovskites. Additional pXRD
patterns indicate that orthorhombic EtAPbI3

76,77 (Figure 3b),
orthorhombic (nBuA)2PbI4

78,79 (Figure 3c), and 13 other
metal halide perovskites (Figures S7−S19) were crystallized
using ITC methods.
Powder XRD patterns from the Acet/PbI2 system (Figure

3e) did not match simulated XRD patterns (Figure S20) for
calculated structures of AcetPbI3,

80 and no experimental
structures have been reported for either Acet/PbI2 or
CHMA/PbI2 (Figure 3f). This suggests that our high-
throughput experiments revealed the presence of two
previously unknown compounds, which we confirm below.
To the best of our knowledge, ITC crystallization of the other
17 compounds shown in Figures 3 and S7−S19 (excluding
MAPbI3 and FAPbI3) have not been previously reported,
which demonstrates the utility of RAPID for discovering new
synthetic routes. For the remaining 26 systems (i.e., those not
shown in Figures 3 or S7−S19), nine of them produced large
Class 4 crystals of unknown structures (i.e., unreported
perovskite-derived phases, lead iodide or ammonium iodides,
colored black in Figure 1) and another four cations produced
Class 3 small crystals that are either perovskite-derived phases
or unknown phases (marked with ** and * respectively in
Figure 1). The remaining 13 chemical systems (colored red in
Figure 1, without marks) only produced Class 1, Class 2, or
lead iodide crystals. The pXRD patterns for all 45 chemical
systems are available through the interactive data visualization
interface.68 These results suggest that additional screening,
supplemented by high-throughput XRD, may be necessary for
identifying perovskite-derived phases in those systems.
Crystal Structure Determination. The use of high-

throughput experimentation in the RAPID approach described
here enables the direct elucidation and optimization of crystal
growth conditions. The optimized reaction conditions,
determined using RAPID, were then validated with bench
scale reactions for each system. The result was the formation of
very large (>1 mm), high-quality single crystals (Figure 4)
without the need for subsequent optimization. Crystals from
the MA/PbI2 and FA/PbI2 systems were dodecahedral,
consistent with prior literature reports for their ITC
syntheses.30,73 Crystals from the EtA/PbI2 systems were
irregularly shaped, while reactions in the nBuA/PbI2 and
CHMA/PbI2 systems produced flake-like crystals similar to
those reported for 2D perovskite structures.78 Reactions in the
Acet/PbI2 system resulted in yellow needle-like crystals. All of
these large crystals are suitable for single crystal X-ray

diffraction studies. The ability to grow such large, high quality
crystals after a single set of high-throughput experiments will
accelerate materials discovery.
The yellow crystals shown in Figure 4e and the orange

crystals in Figure 4f are based upon the unidentified phases in
the Acet/PbI2 and the CHMA/PbI2 systems, respectively.
Structural determination based on single-crystal X-ray
diffraction confirmed two new phases: AcetPbI3 crystallizes
in P31m while (CHMA)2PbI4 crystallizes in P21/c. Crystallo-
graphic details are provided in Table 1, while tables of bond
lengths and angles are listed in the SI.

The structure of AcetPbI3, shown in Figure 5a, consists of
one-dimensional [PbI6/2]

− chains separated by Acet cations.
The [PbI6/2]

− chains are constructed from face shared
octahedra. The asymmetric unit contains four distinct lead
sites and four distinct iodine sites. This results in two unique
[PbI6/2]

− chains, one of which contains Pb1, Pb2, I1 and I2,
while the other contains Pb3, Pb4, I3, and I4. The Pb−I bonds
range between 3.189(3) and 2.235(2) Å. The [PbI6/2]

− chains
are aligned along the c-axis. An extensive hydrogen-bonding

Figure 4. Optical micrographs of metal halide perovskite crystals
produced by the MA/PbI2 (a), EtA/PbI2 (b), nBuA/PbI2 (c), FA/
PbI2 (d), Acet/PbI2 (e), and CHMA/PbI2 systems (f). Scale bar: 1
mm.

Table 1. Crystallographic Data for AcetPbI3 and
(CHMA)2PbI4

compound AcetPbI3 (CHMA)2PbI4
formula C2H7I3N2Pb C14H32I4N2Pb
fw 646.98 943.24
space-group P31m (no. 157) P21/c (no. 14)
a (Å) 15.2648(6) 16.5155(8)
b (Å) 15.2648(6) 8.6521(5)
c (Å) 8.1332(3) 8.7642(4)
α (deg) 90 90
β (deg) 90 99.0461(19)
γ (deg) 120 90
V (Å3) 1641.25(14) 1236.77(11)
Z 6 2
ρcalc (g cm−3) 3.928 2.533
λ (Å) 0.71073 0.71073
T (K) 100(2) 100(2)
μ (mm−1) 23.820 11.811
R1
a 0.0365 0.0350

wR2
b 0.0658 0.0935

aR1 = ||Fo| − |Fc||/|Fo|.
bwR2 = [w(Fo

2 − Fc
2)2/w(Fo

2)2]1/2
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network exists between the Acet cations and [PbI6/2]
− chains.

The structure of AcetPbI3 is similar to the recently reported

structure of pyrrolidinium lead iodide, which has a narrow
optical bandgap and decent water resistance.81

The structure of (CHMA)2PbI4, shown in Figure 5b,
contains two-dimensional [PbI2/1I4/2]

2− layers and CHMA
cations. The [PbI2/1I4/2]

2− layers are constructed from corner
shared octahedra. These layers are similar to those found in
Ruddlesden−Popper phase perovskites.78 The asymmetric unit
contains a single lead site and two distinct iodine sites. The
Pb−Iterminal bonds have distances of 3.2129(5) Å, while the
Pb−Ibriding distances range between 3.1680(4) and 3.1729(4)
Å. The [PbI2/1I4/2]

2− layers lie in the ab plane and are
separated by the organic cations. An extensive hydrogen-
bonding network exists between the CHMA cations and
[PbI2/1I4/2]

2− layers. The ammonium sites on the CHMA
cations reside in the recesses within the [PbI2/1I4/2]

2− layers.
Details on the data collection, processing, and refinement of
single crystal X-ray diffraction data for AcetPbI3 and
(CHMA)2PbI4 can be found in the SI.
As expected for 1D hybrid perovskite structures, whose

electronic bands are less disperse than 3D perovskites,82 the
electrical conductivity of AcetPbI3 single crystals is low, falling
below the sensitivity limit of our measurement apparatus (2.8
× 10−11 S/cm, see SI: Conductivity Measurement and Figure
S24). UV−visible absorption spectra and Tauc analyses
suggest that AcetPbI3 and (CHMA)2PbI4 have indirect
bandgaps of 2.11 and 2.22 eV, respectively (Figures S21 and
S22). While (CHMA)2PbI4 exhibits a green emission peak at
536 nm (40 nm full width at half-maximum, fwhm), AcetPbI3
shows violet PL with an emission peak at 409 nm (54 nm
fwhm) (Figure S23). The color-pure and short-wavelength PL
makes AcetPbI3 a potential candidate for violet and blue light-
emitting diodes. Violet or blue PL is rarely reported for 1D-
perovskite derivatives, which often show broader PL spectra at
longer wavelengths due to the formation of self-trapped
excitons.81,83−85 Preliminary stability tests suggest that both
AcetPbI3 and (CHMA)2PbI4 are stable against humidity and
oxygen over periods longer than 7 months; as shown in Figure
S25, pXRD patterns of the two crystals exhibit no phase
changes after storage in air at room temperature under 23−
33% humidity. The identification and preliminary character-
ization of AcetPbI3 and (CHMA)2PbI4 demonstrate the utility
of RAPID to discover novel compounds with unexpected
properties and environmental stability. More extensive
investigations into the physical properties of the crystalline
materials isolated in this work will be described elsewhere.

Quantifying Experimental Space and the Likelihood
of Single Crystal Formation. The comprehensive sampling
of the experimental space, facilitated by RAPID, enables the
rigorous statistical analysis of reaction outcomes. To quantify
the number of possible experiments for a given set of stock
solutions, we calculated the volume Vtotal inside the convex hull
(Ctotal) of the trials in the 19 crystallization screens which
successfully result in the formation of large single crystals
(Figures 2, S5, and S6). Here, Ctotal is the smallest convex
polyhedral envelope containing all of the data points in
multidimensional parameter space.86 Differences in the
reactant solubilities between organoammonium iodides result
in convex hulls of different volumes. As shown in Figure 6b,
the Piper/PbI2 system exhibits the largest possible exper-
imental space (as measured by Ctotal) followed by nHex/PbI2,
Morph/PbI2, and Acet/PbI2 in descending order. The nDodA/
PbI2 system exhibits the smallest Vtotal due to the poor

Figure 5. Three-dimensional packing and [PbI6/2]
− chain structure in

AcetPbI3 (a) and the three-dimensional packing and [PbI2/1I4/2]
2−

layer structure in (CHMA)2PbI4 (b). Green polyhedra represent
[PbI6] octahedra, while purple, white, and blue atoms correspond to
iodine, carbon, and nitrogen, respectively. Hydrogen atoms have been
removed for clarity.
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Figure 6. (a) Convex hulls, and the grid points contained within them, for the explored experimental space (blue lines/circles) and Class 4
outcomes (orange lines/circles), for the EtA/PbI2 system at 95 °C. Inset: grid points within the Class 4 convex hull, with colors indicating Class 4
(red circles) and non-Class 4 (gray circles) outcomes as determined by the k-NN algorithm. (b) Convex hull volume of explored chemical space for
all 19 perovskite syntheses. (c) Likelihood of large single crystal formation, P4, for the 19 chemical systems studied.
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solubility of n-dodecylammonium iodide and lead iodide/n-
dodecylammonium iodide mixtures in GBL.
To quantify the volume of the regions in which single

crystals can be grown for each system, the convex hulls
containing all Class 4 outcomes were calculated (C4, outlined
in red in Figure 6a). C4 includes some reactions that failed to
generate single crystals (Classes 1−3, shaded in gray in Figure
6a), because the boundary between Class 4 and non-Class 4 is
irregular. Therefore, the volume of C4 will not accurately
measure reaction success. Alternatively, the nai  ve approach of
computing the ratio of number of successful reactions to the
total number of observed reactions does not correctly describe
the crystal formation probability because the distribution of
reaction points is not homogeneous. A better estimate is
obtained by interpolating the experimental data onto a uniform
grid of points in the experimental space. Ctotal contains Ntotal of
these grid points while C4 contains N4 points. Each grid point
is assigned a crystal score using the 5 nearest experimental data
points, following the k-nearest-neighbor (k-NN) algorithm
with k = 5 (see SI for additional details on algorithm). This is a
computationally tractable approximation to the generalized
higher-order Voronoi tessellation.87 The subset of N(4) grid
points assigned to Class 4 scores using the k-NN method
better accounts for the irregular (i.e., concave) envelopes. A
graphical example is shown as an inset in Figure 6a for the
EtA/PbI2 system, with red circles denoting the N(4) points
assigned to Class 4 with other crystal scores (N4−N(4))
indicated by gray circles. The corresponding plots for the other
perovskite syntheses are shown in the SI (Figures S26−S43).
The likelihood of Class 4 formation (defined as P4 = N(4)/

Ntotal) for the 19 systems in which metal halide perovskites
were produced is shown in Figure 6c and Table S7. The FA/
PbI2, CHMA/PbI2, and iBuA/PbI2 systems show the highest
likelihood of Class 4 crystal formation (P4 = 0.53, 0.46, and
0.42 respectively) within the explored experimental space,
followed by Acet/PbI2 (0.15), 4FBenA/PbI2 (0.15), DiMA/
PbI2 (0.11), and MA/PbI2 (0.10). The other 12 systems show
significantly lower P4 values (<0.1) which indicate that for
these systems, the formation of large perovskite crystals is
thermodynamically less favorable over the vast majority of
experimental space. In the perovskite literature, the Gold-
schmidt tolerance factor (calculated from the effective ionic
radius of A-cation, B-cation and X-anion in the perovskite
structure: ABX3) is used to measure the stability and
synthesizability of three-dimensional perovskite materials.1,88

However, the 19 perovskite materials synthesized in this work
are not necessarily three-dimensional. Thus, the P4 value is not
merely determined by the effective ionic radius but by a variety
of factors. The formation of single crystals was rarely observed
for (nBuA)2PbI4 and (NNDiEtPA)4Pb5I18 syntheses, consis-
tent with their low P4 of 0.002 and 0.0001. The ability to
quickly visualize the state space in each system and to quantify
the crystal growth probabilities is a direct result of the high-
throughput, parallelized experimental data collection enabled
by the RAPID approach.
Machine Learning. Synthetic chemistry data sets often

exclude failed results (“dark reactions”)60 and suffer from
anthropogenic bias in experiment choices, limiting machine
learning (ML) models trained on such data.89 In contrast,
RAPID’s combination of high-throughput experimentation,
randomized reaction parameters and complete data capture is
ideal for training and evaluating machine learning models. As a
demonstration, we exported ESCALATE’s default set of 75

reaction conditions (e.g., concentrations, temperature, stir
rate) and organic property descriptors (e.g., molecular weight,
number of atoms, functional groups) and constructed a variety
of machine learning models using the Scikit-Learn Python
library (see SI and Methods for additional details). Binary
classifier models were constructed to distinguish between
experiments resulting in high quality single crystals (Class 4)
and non-Class 4 outcomes. These models were applied to a
base data set composed of the 4074 reactions in the 19 systems
in which large crystals of metal halide perovskites were
produced. Unless noted otherwise, each model was trained by
randomly dividing the base data set into training and test sets
(comprised of 80 and 20% of the data, respectively), with 5-
fold cross-validation. The three models with the highest
accuracy were as follows: Pearson VII Universal Function
Kernel-based Support Vector Machine (PUFK-SVM), k-NN
(where k = 1) and Radial Basis Function Kernel-based Support
Vector Machine (RBFK-SVM) with respective accuracies of
0.869, 0.845, and 0.841 (complete results, including metrics
such as recall and precision, are listed in Table S8). Our
prediction quality on these 19 systems exceeds the 13%
accuracy demonstrated for a comparable task on 3-
picolylammonium lead bromide in previous work.52 The
good performance of the 1-NN approach is indicative of an
interpolation (rather than extrapolation) problem,90 which in
turn is indicative of the high quality of the full, quasi-random-
sampled data set. Learning curves for the six representative
perovskites previously highlighted in Figures 2−4 using the
accuracy, precision, recall, and F1 scores are shown in Figures
S44−S49. The learning curves of the other 13 successful
systems can be viewed in the interactive data visualization and
analysis interface.68 Training data and Python implementations
of all of the models are available both in the interactive data
visualization browser68 and on the supporting GitHub
repository.69

The ML models described above can be used to reduce the
number of experiments needed to accurately predict successful
crystallization conditions. As a test, the data were separated by
A-cation identity, with the PUFK-SVM model performance
being considered as a function of the number of training
examples for each A-cation type. As expected, model
predictions become more accurate with an increasing number
of training experiments (Figure 7a); the model for the EtA/
PbI2 system achieves prediction accuracy as high as 85% with
only ∼100 experiments. However, the flatness of the curves
beyond 100 experiments indicates that a richer set of features
(rather than more data) is needed to further improve the
prediction quality. For (nBuA)2PbI4, the prediction accuracy
decreases with an increasing number of training experiments,
but this trend is an artifact of the low probability of Class 4
formation (P4 = 0.002, Figure 6c). The early training rounds
have no Class 4 outcomes, so the models are trained to predict
only non-Class 4 outcomes, i.e., that all test samples will fail.
The accuracy (formula given in the Software and Computation
section in the SI) will be high even though the model fails to
predict any of the positive outcomes. It is well-known that a
heavily imbalanced distribution of class populations can result
in accuracy values that do not capture the overall performance
of the model, whereas the low precision and recall values for
(nBuA)2PbI4 (Figure S46) do. As the number of training
samples increases, and the model starts to predict successes,
the accuracy when modeling the imbalanced test set is
reduced.
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As it might be useful to be able to predict fine powder and
small crystallite growth conditions, we trained binary
classification models for Class 1, Class 2, and Class 3
outcomes, individually, for the case of EtAPbI3 (e.g., Class X
= positive, non-Class X = negative, for X = 1, 2, 3). These
results are shown in Figure S51. We found that our machine
learning model (SVM with Pearson VII kernel) has the best
performance predicting Class 1 (clear solutions) while having
the lowest prediction metrics for Class 3. Predicting Class 2
outcomes is similar in performance to predicting Class 4
results. We hypothesize that the ML performance for different
classes could be largely influenced by their distribution in
experimental space (see Figure 2). Class 1 is easy to predict by
the model as its reactions are distributed almost exclusively in a
regularly shaped convex hull in the experimental space. The
irregular distribution of Class 3 outcomes in the narrow space
between Class 4 and Class 2 makes it the most difficult to
predict.
ML models can assist in determining which experimental

parameters contribute the most to the accuracy of the

prediction, providing physical insight. As an illustrative
example, we considered the EtA/PbI2 system using only the
concentrations of the organic, inorganic, and formic acid
species. As depicted in Figure 7b, a PUFK-SVM model (red)
trained exclusively on EtA/PbI2 system data resulted in the
highest performance, plateauing at 87% accuracy. For
comparison, the control model (dashed line) that predicts
every reaction to fail has 76% accuracy. Therefore, the PUFK-
SVM predictions are significantly better than random chance.
A 1-NN model (i.e., a k-NN with k = 1) in this three-
dimensional feature space is 1−2% lower in absolute accuracy
than the PUFK-SVM after 100 training experiments. This 1-
NN algorithm is equivalent to using the most similar past
reaction outcome as a prediction, and the high sample density
of our data set facilitates this approach. Importantly, we find
that the combination of the three reactant concentrations is
meaningful. We demonstrated this by generating 1-NN models
that only consider the concentration of a single reagent (green,
blue, and purple lines in Figure 7b). These single variable
models are less accurate than the control model, indicating that
they have no predictive value. Taken together, these data
support the reasonable conclusion that crystal quality is not
determined by the concentration of a single chemical species,
but instead depends on the concentrations of all species.
ML models can help generalize understanding across both

reactions and reagent choices. As a demonstration, we used the
PUFK-SVM model to predict reaction outcomes for each of
the six representative perovskite systems studied given the
following two training/testing strategies. The first strategy
trained models using data only from the perovskite of interest.
This baseline strategy corresponds to beginning the study of
each organic cation with a tabula rasa. The second strategy
trained ML models for a given cation of interest using data
from the other N-1 organic cations as well. In principle,
training data from other cations should improve prediction
quality if the model can extract generalizable trends from the
available chemical descriptors. However, the accuracies for
both strategies (shown in Figure S50) are statistically
indistinguishable for all cations tested, indicating that, despite
the ability to generalize across reaction conditions (vide supra)
for a single cation, the models do not generalize across
different cations. This could arise from the limitations of the
current chemical descriptors or from the type of reaction
outcomes we choose to model. Our current research efforts are
aimed at addressing this issue, e.g., by incorporating new
molecular embeddings and reaction representations pertaining
to crystal formation.

■ CONCLUSIONS
We have developed an automated, high-throughput robotic
synthesis platform (Robot-Accelerated Perovskite Investigation
and Discovery, or RAPID) for metal halide perovskite single
crystal discovery. A total of 8172 reactions were performed
using our RAPID workflow, spanning the large experimental
space of inverse temperature crystallization in only ∼400 h of
unattended operation. For comparison, the same number of
reactions performed manually, at 10 reactions per day, would
require over 800 days, or over 6000 h of human labor. We
identified conditions that produce perovskite single crystals for
19 out of 45 target perovskite compositions, adding 17 new
materials to the library of metal halide perovskites accessible
via ITC (a 400% increase). Among these compounds are two
novel perovskite species, AcetPbI3 and (CHMA)2PbI4, for

Figure 7. Learning curves for predicting perovskite crystal formation
at 95 °C. (a) Prediction accuracy vs number of training experiments
for PUFK-SVM models of the MA/PbI2, EtA/PbI2, nBuA/PbI2, FA/
PbI2, Acet/PbI2, and CHMA/PbI2 system crystallization. Solid lines
show mean accuracy distinguishing between Class 4 and non-Class 4
outcomes; shaded bands indicate the standard deviation from 5-fold
cross validation results for each system. (b) Accuracy predicting EtA/
PbI2 Class 4 crystal formation for six different models: PUFK-SVM; a
control model assuming no Class 4 crystals (dashed line); 1-NN
models (k = 1) based on the concentrations of all three precursors
(organic, inorganic, formic acid); and 1-NN models based on only
one precursor.
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which we reported the crystal structures and performed
preliminary characterization. Our RAPID data set allowed us
to quantify the probability of randomly finding a condition that
produces single crystals. We also demonstrated the use of this
data set to train machine learning models to improve common
materials discovery tasks. Fewer than 100 experiments are
typically required to build an informative model for a new
organic cation species, but the current data set and features
preclude generalization across organic cations. This initial
study emphasizes the need to expand the chemical library and
physicochemical descriptors91 to further improve the ability of
ML models to predict the crystallization conditions of new
organic−inorganic metal halide perovskites. Nonetheless,
RAPID is a powerful tool for accelerating perovskite discovery
and can be readily extended to a broad range of synthetic
routes and materials.91,92

■ EXPERIMENTAL SECTION
Materials. All reagents were purchased from commercial sources

and used without further purification. Lead iodide, formic acid,
dimethyl sulfoxide (DMSO), and dimethylformamide (DMF) were
purchased from Sigma-Aldrich with 99%, ≥ 95%, ≥ 99.5%, and 99.8%
purity, respectively. γ-Butyrolactone (GBL) (≥98%) was purchased
from Spectrum Chemical. All 45 ammonium iodides used in this work
were purchased from GreatCell Solar Materials with purity ≥98%.
Stock Solutions and Solubility Measurements. Before each

robotic synthesis, stock solutions (ammonium iodide stocks and
stocks containing mixtures of PbI2/ammonium iodide) were prepared
manually based on the solubility of these compounds. To determine
the maximum solubility of lead iodide in a given solvent (GBL,
DMSO, or DMF) and for a given ammonium iodide concentration,
lead iodide was mixed with different amounts of a selected
ammonium iodide and then the solvent was added gradually into
the mixtures until the solids were completely dissolved. During the
dissolution process, suspensions were stirred and heated in an oil bath
at 450 rpm and 75 °C. The resulting solutions were allowed to cool to
room temperature to confirm their stability. The solubilities of pure
ammonium iodides were measured using the same procedure.
Solubility data for lead iodide and individual ammonium iodides are
shown in Table S2. All stock solutions were used within 8 h of their
preparation.
Robotic Synthesis Workflow. High-throughput synthesis of

metal halide perovskite single crystals was performed with a Hamilton
Microlab NIMBUS4 liquid handling robot equipped with four
independent micropipettors. Robotic protocols, programmed in
Hamilton Method Editor software, imported experiment-specific
reaction parameters, such as reagent volumes, reaction times, and
shaking speeds, from Microsoft Excel .xls spreadsheets generated by
the ESCALATE64 software pipeline. In addition to specifying
experimental parameters, ESCALATE was used to capture exper-
imental results and observations following characterization of the
products.
Reaction components (i.e., the stock solutions, pure solvent, and

formic acid) were placed in designated locations on NIMBUS
operation deck, as shown in Figure S4. Glass scintillation vials (8 × 43
mm2 diameter × height), which served as reaction vessels, were
loaded into a 96-well aluminum microplate (Symyx Technologies),
which was placed on a Hamilton Heater Shaker II (HHS2) module
on the NIMBUS deck. Robot protocols were then initiated, beginning
with preheating the 96 empty vials in the HHS2 to 105 °C set
temperature. After the HHS2 temperature reached 80 °C, the liquid
handling robot dispensed into each reaction vial specified amounts of
the pure solvent, PbI2/ammonium iodide stock solution, ammonium
iodide stock solution, and formic acid. The microplate was then
vortexed at 750 rpm for 15 min, followed by dispensing of a second
cycle of formic acid. After another 20 min of vortexing at 750 rpm, the
resulting solutions were held at an actual solution temperature of 95
°C (105 °C set temperature) without shaking for 2.5 h to allow for

crystal growth. During crystallization, the NIMBUS robot was left
undisturbed, and air convection was minimized by closing the sash of
the fume hood. Additional details are given in the “Robotic
Workflow” section and Step-by-Step Robotic Procedure in the SI.

Crystal Scoring. To score reaction outcomes, reaction vials were
inspected at different angles by eye. Reaction outcomes were scored
into four classes. Class 1: no solid observed in the solutions. Class 2:
fine powder observed with no visible crystal facets; under
illumination, reflection is diffuse rather than specular. Class 3: small
crystallites with approximate size 0.1 mm or smaller; distinct from
Class 2 in exhibiting specular reflection at certain angles, indicating
the presence of crystal facets. Class 4: large crystals (>0.1 mm) with
straight edges and large area of specular reflection from crystal facets.
When multiple crystal types were observed in the same vial, we used
the highest score for each reaction.

Characterization. Powder X-ray diffraction measurements were
performed on a Bruker AXS D8 Discover GADDS X-ray
Diffractometer equipped with a Vantec-500 area detector operated
at 35 kV/40 mA using Co Kα radiation (1.79 Å wavelength). Diffuse
reflectance UV−visible absorption spectra of powders ground from
large perovskite crystals were measured with an Agilent Cary-5000
UV−vis−NIR spectrophotometer. Photoluminescence spectra (PL)
of powders ground from large perovskite crystals were measured using
a Horiba Jobin Yvon Fluorolog-3 spectrofluorometer. PL spectra were
collected from 365 to 650 nm with 1 nm wavelength steps and 0.01 s
integration time per step. Conductivity measurements were
performed on needle-shaped AcetPbI3 single crystals (with lengths
of 0.3−0.6 mm) using a customized probe station. The needle crystals
were placed on double-sided tape on clean glass slides and carbon
paste was applied at opposite ends of the needle crystals as electrodes.
In this configuration, the cross-sectional area of electron transport is
approximately the cross-sectional area of the needle crystals, which is
in the range of 0.3−0.4 mm2. Platinum probes were placed to form
contacts with carbon electrodes, and a Keithley 2400 source meter
was used to measure I−V curves.

Software and Machine Learning. Scripts for data analysis and
visualization were written in Python 3.6 in Jupyter notebooks using
the following libraries: Numpy 1.14.6, Pandas 0.22.0, Scipy 1.0.1,
Matplotlib 3.1.0 and Scikit-learn 0.19.2. We used the Quickhull
algorithm implemented in Scipy to calculate convex hulls. For
machine learning, a total of 75 features were selected to describe each
perovskite single crystal synthesis reaction. Those features include
eight reaction conditions and 67 computed property descriptors of
organoammonium. Detailed explanations for the features used in this
work are listed in Section 3 of the SI (Explanation of Features/
Descriptors for Machine Learning Modeling). Experimental results
were analyzed as a binary classification problem: Class 4 outcomes
were considered as positive results while non-Class 4 outcomes were
considered as negative results. A 5-fold cross-validation procedure was
used to prepare training/testing data sets for machine learning
modeling. For 5-fold cross-validation, there were 5 different train/test
splits on the data set: in each split, 80% of the data was randomly
drawn to train the machine learning model, while the remaining 20%
of the data was reserved for testing. Model hyper-parameters were
optimized using a grid search method with 5-fold cross-validation for
highest prediction accuracy.
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