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Abstract—The provisioning of delay guarantees in packet-
switched networks such as the Internet remains an important,
yet challenging open problem. We propose and evaluate a
framework, based on results from stochastic network calculus,
for guaranteeing stochastic bounds on network delay at a
statistical multiplexer. The framework consists of phase-type
traffic bounds and moment generating function traffic envelopes,
stochastic traffic regulators to enforce the traffic bounds, and
an admission control scheme to ensure that a stochastic delay
bound is maintained for a given set of flows. Through numerical
examples, we show that a stochastic delay bound is maintained
at the multiplexer, and contrast the proposed framework to an
approach based on deterministic network calculus.

Index Terms—Quality-of-service, delay guarantee, network
calculus, traffic regulator, admission control.

I. INTRODUCTION

Currently, the Internet does not provide end-to-end delay
guarantees for traffic flows. Even if the path taken by a given
traffic flow is fixed, e.g., via mechanisms such as software-
defined networking (SDN) or multi-protocol label switching
(MPLS), network congestion arising from other flows can
result in highly variable delays. The variability and random
nature of traffic flows in a packet-switched network make it
very challenging to provide performance guarantees.

The standard approach to providing network performance
guarantees consists of two basic elements:

1) Admission control: A new flow is admitted to the
network only if sufficient resources are available to
maintain a given performance guarantee.

2) Traffic regulation: Each traffic flow must be regulated
to ensure that it does not use more resource than what
was negotiated by the admission control scheme.

Admission control is challenging due to the random and bursty
nature of traffic flows, which makes them difficult to charac-
terize and regulate. Even when flows are modeled as random
arrival processes, provisioning for end-to-end performance
guarantees in a multi-hop network is generally intractable.

In his seminal work, Cruz [1], [2] proposed the so-called
(o, p) characterization of traffic, which imposes a determin-
istic bound on the burstiness of a traffic flow. By bounding
traffic flows according to (o, p) parameters, Cruz developed
a network calculus which determined how these parameters
propagate through network elements, from which end-to-
end delay bounds could be derived. An important feature
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of the (o,p) characterization is that it could be enforced
by a traffic regulator. In practice, however, the deterministic
(o, p) characterization leads to very loose end-to-end delay
bounds, which leads to very low utilization of the network
resources. Nevertheless, the (o, p) characterization was the
basis for further research into stochastic bounds on traffic
burstiness and stochastic network calculus to provide tighter,
probabilistic end-to-end delay guarantees. Stochastic network
calculus and associated performance bounds remains an active
topic of research, with ongoing efforts aimed at improving the
tightness of the stochastic delay bounds. To our knowledge,
however, stochastic network calculus has not previously been
applied within a practical framework to provide performance
guarantees.

We present a practical framework for providing performance
guarantees based on concepts from stochastic network calcu-
lus. Traffic flows are characterized by the phase-type traffic
traffic descriptor proposed in [3] as well as a moment gen-
erating function (MGF) traffic envelope [4]. The phase-type
traffic bound for each traffic flow is enforced by a stochastic
traffic regulator, see [5]. An admission control scheme decides
whether or not to admit a new traffic flow on the basis of both
the phase-type descriptor and the MGF envelope to guarantee a
stochastic delay bound for all admitted traffic flows. The main
contribution of this paper is to demonstrate that stochastic
delay guarantees can be achieved for admitted flows while
maintaining relatively high traffic utilization in the network.

The remainder of the paper is organized as follows. In
Section II, we discuss the phase-type traffic bound and its use
as a traffic descriptor, as well as the MGF traffic envelope.
In Section III, we discuss a scheme to enforce both a phase-
type bound and an MGF envelope for a traffic process. In
Section IV, we discuss an admission control scheme for a
statistical multiplexer based on the phase-type bounds and
results from stochastic network calculus. Numerical results,
which demonstrate the proposed framework are presented in
Section V. Concluding remarks are given in Section VL.

II. STOCHASTIC TRAFFIC BOUNDS

Let A = {A(s,t) : 0 < s < t} denote a traffic arrival
process, where A(s,t) denotes the amount of traffic arriving
in time interval [s,t). For simplicity, we shall assume that the
time parameters s and ¢ are discrete unless otherwise specified,
but the results that follow also carry over to the continuous-
time case. Our proposed framework involves two types of



bounds on a traffic process: a phase-type traffic bound and
an MGF traffic envelope.

A. Phase-type Traffic Bound

We consider stochastic bounds on the burstiness of a traffic
flow, with respect to an upper rate p, which is chosen to be
larger than or equal to the long term average traffic rate, i.e.,
p > limy o A(g’t) , The concept of phase-type bounded traffic
is defined as follows [3].

Definition 1. A traffic process A is characterized by a phase-

type traffic descriptor [p; (a,®, Q,T)] if
P{W,(t; A) > o} < ame?71, (1)

for all t > 0 and all o € (0,7T]. Here, 1 is a column vector
of all ones, a > 0, T' > 0. The virtual workload of a constant
rate queue with service rate p and input traffic A is defined
by

Wo(t; A) = max [A(s,t) — p(t — )], 2
and (7, Q) denotes the parameter of a phase-type distribu-
tion [6].

When T = oo, the phase-type traffic bound is a particular
case of generalized stochastically bounded burstiness (gSBB),
which was developed in [7], [8]. In [3], it was shown that the
phase-type bound defined above is closed with respect to a
stochastic network calculus based on the gSBB concept.

The concept of gSBB is closely related to the Stochasti-
cally Bounded Burstiness (SBB) concept introduced in [9],
which in turn is a generalization of Exponentially Bounded
Burstiness (EBB) [10]. A key feature gSBB vs. SBB is that
it is based on the workload process W, (¢; A), which can be
reasonably assumed to be stationary and ergodic, rather than
the arrival process A, which is neither stationary nor ergodic.
Consequently, as discussed in Section III, a stochastic traffic
regulator can be designed based on enforcement of a time-
average approximation of the left-hand side of (1).

The problem of finding a phase-type traffic descriptor to
fit a given traffic trace can be formulated as a semi-infinitely
constrained optimization problem [11], which can be solved
numerically for special phase-type distributions such as the
hyperexponential distribution. In particular, the hyperexponen-
tial distribution provides a tight phase-type bound for a large
class of traffic flows. Given the procedure developed in [11],
we shall assume that each traffic flow that requests admission
to the network has an associated phase-type traffic descriptor.

B. MGF Traffic Envelope

An alternative approach to characterizing a traffic process
is to bound the moment generating function (MGF)

Ma(6;s,t) :=F [eeA(Syt)}

where 6 > 0 is a free parameter [4].

Definition 2. The MGF traffic envelope of traffic process A is
defined by

E [60A<s,t)} < HP(O)(t=5)+6(0)) 3)

where the parameters 5(6) > 0 and () > 0 are functions of
0> 0.

The MGEF traffic envelope is analogous to the deterministic
(0, p) characterization in that it involves analogous parameters
4(0) and p(0) and it can be related to the EBB characterization
via the Chernoff bound.

The MGF traffic envelope, however, has some advantages
compared to the phase-type bound traffic descriptor, the most
important being the following,

Theorem 1 (Sum of MGF envelopes). When n indepen-
dent flows Aj,...,A,, with MGF envelope parameters
(61,p1), .- (Gn, pn), respectively, are superposed, the aggre-
gate traffic process A = A; + ...+ A, can be characterized
by the MGF parameter (&,p), where 6 = Y. ,6; and
p= Z?:l Pi-

This property of the MGF traffic envelope not only simplifies
the computations involved in admission control, but more
importantly, it captures the effect of statistical multiplexing
gain. For this reason, our proposed framework uses both
the phase-type bound traffic descriptor and the MGF traffic
envelope. The problem of finding a MGF traffic envelope can
be simplified by defining a finite set © of values to consider
for the free parameter 6 in (3). Then a set of MGF envelope
parameters, {(5(0), 5(9)) : 6 € ©}, could be determined using
an approach similar to the procedure in [11] for fitting the
phase-type traffic descriptor.

III. STOCHASTIC TRAFFIC REGULATION

Next, we discuss methods for enforcing both a phase-type
bound traffic descriptor and the MGF traffic envelope.

A. (o*,p) Regulator

The deterministic (o, p) regulator tends to provide a very
loose bound on the traffic or to incur unnecessarily large delays
on the traffic. To address these issues, a stochastic traffic
regulator was proposed in [5], which enforces a probabilistic
bound on a traffic process A:

P{W,(t; A) > v} < f(7),

where f() is a non-increasing positive bounding function and
T is a limit on the tail distribution of the workload. We refer to
a regulator that enforces (4) as a stochastic (o*, p) regulator,
where the burstiness parameter o* is variable.

Users specify their traffic flows with a descriptor
[p; (f(),T)] in terms of a bound of the form (4). In particular,
for the phase-type bound the bounding function has the form
f(7) = ame®Q71 (cf. (1)). By applying results from stochastic
network calculus, the admissibility of a given set of traffic
flows with respect to a certain probabilistic end-to-end delay
constraint can be determined. However, such an end-to-end de-
lay guarantee can only be provided if the traffic flows conform

vy € 0,77, “4)



to their negotiated traffic parameters. The (o*, p) regulator
can be applied at the network edge to force compliance of
each traffic flow to a negotiated phase-type bound parameter.
Optionally, the regulator could be applied at internal nodes of
the network to reshape traffic flows to their negotiated phase-
type traffic bounds. This has the benefit of maintaining the
negotiated traffic profile for each traffic flow over a multi-hop
path, but requires the additional overhead of traffic regulation
within the network.

B. MGF Traffic Envelope Regulator

According to Definition 2, the MGF envelope parameters
p(0) and 6(0) satisfy (3). However, verification of (3), requires
estimation of the MGF E [eeA(S’t)] , which presents difficulties
because the traffic process A is non-stationary and non-
ergodic. Therefore, we introduce an alternative MGF envelope
characterization.

Definition 3. The MGF workload envelope (or w-envelope) of
traffic process A is defined by

E |:69W§(g>(t;A):| § 69&(‘9), (5)

where 6 > 0 is a free parameter, p(f) > 0 and 6(¢) > 0, and
W;(A;t) is the workload defined in (2).

The MGF w-envelope provides an upper bound on the MGF
traffic envelope in the following sense.

Theorem 2. Suppose a traffic process A has an MGF w-
envelope with parameter {(5(0),p(0)) : 6 € O}, i.e.,

E [GOWp(e)(t;A)} < 69&(9), 0 e 0. (6)

Then it is also characterized by an MGF traffic envelope
{(6(0),p(0)) : 0 € ©}, ie.,

E [GGA(s,t)} <flotrt=9l  g<s<t, 0. (7)

Proof. For 0 < s <,

A(s,t) —p(t —s) < Olgggt[/l(s,t) —p(t—9)] =W,(tA).

Therefore,

E[eG[A(<97t)—p(t—S)]] < E[69Wa(t;A)]7

and the result follows immediately. [

Theorem 2 implies that a traffic regulator which enforces an
MGF w-envelope with parameter (&, p) also enforces an MGF
traffic envelope with the same parameter. To enforce an MGF
traffic envelope for a traffic process A, we can estimate the left-
hand side of (6), for each value of § € ©, via a time-average
and regulate it to ensure that the inequality is maintained. This
can be accomplished by designing a stochastic regulator along
the lines of the (c*, p) regulator in [5].

IV. ADMISSION CONTROL

We develop an admission control scheme based on a
stochastic delay bound derived from the phase-type traffic
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Fig. 1. Multiplexer with n independent traffic flows.

bound and MGEF traffic envelope. The phase-type bound pro-
vides a tighter delay bound when a small to moderate number
of flows is considered. When the number of flows becomes
larger, the MGF envelope can yield a tighter bound due to
the statistical multiplexing effect. Therefore, we propose a
hybrid admission control scheme which uses both types of
traffic bounds.

A. Admission Control via Phase-Type Bound

Consider a multiplexer of capacity C' with a set of n inde-
pendent traffic flows, A = {1,...,n}, as inputs characterized
by phase-type traffic descriptors A; = [p;, (a;, 7, Q, T3)],
¢ = 1,...,n. The essential task of the admission controller
is to determine whether or not a stochastic delay bound of the
following form can be satisfied:

P{D > d} <, (8)

where D represents the delay experienced by a packet in the
multiplexer, ¢ > 0 is a small number, e.g., € = 1073, and d
represents a “maximum” tolerable delay for a packet from any
of the admitted flows. Clearly, a necessary condition for (8)
to be satisfied is Y ;" , p; < C.

A phase-type traffic bound for the aggregate traffic input to
the multiplexer can be determined by repeated application of
the following theorem.

Theorem 3 (Independent Sum). Let A; and As be independent
traffic processes characterized by phase-type traffic descriptors
Ay = [p1,(a,, G, T1)], and Ag = [pa, (b, B, H, T5)], respec-
tively. The aggregate process A = A; + A, is bounded by
the phase-type traffic descriptor A = [p, (¢, 7, Q,T)]. where
p=p1+p2, T=min(T1,T2), c=a+b— ab,

o a(l b)a, b(1 a)l&a?b

C C

o, 0], (©))

Q=

coof
coITo
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0
@

where g = —G1.

This theorem can be derived from [7, Theorem 4] for gSBB
flows by applying properties of the phase-type distribution.
In Theorem 3, if the number of phases represented by the
phase-type traffic descriptors A; and A, equals m, then the
number of phases in A will be 4m. To avoid this expansion in



the size of the phase-type traffic descriptor, we can apply the
numerical method developed in [11] to determine a phase-type
traffic descriptor A, which approximates the true aggregate
descriptor A, but only has m phases. Thus, we obtain a
practical procedure for obtaining a phase-type traffic descriptor
for the superposition of an arbitrary set of independent flows
characterized by phase-type traffic descriptors.

Given the above procedure for determining a phase-type
traffic descriptor for an aggregate traffic flow A at the input
to a multiplexer, a relationship between € and d in (8) can be
derived from following theorem:

Theorem 4. Let A be a traffic process with phase-type de-
scriptor [p; (a, ™, Q,T)] that is input to a FIFO system with
constant transmission rate C' > p. Then the steady-state delay
D through the system can be bounded as follows:

P{D > d} < amel©~ D7, (10)

forall t >0 and all TH2 > d > £.

This theorem can be derived from [7, Theorem 8] for gSBB
flows by applying properties of the phase-type distribution.

B. Admission Control via MGF Envelope

In conjunction with Theorem 1, the following result can
be used to perform admission control based on MGF traffic
envelopes [4].

Theorem 5. Suppose a traffic process A with MGF envelope
(6(0),p(0)), 6 € O, is offered as input to a constant rate
server of capacity C' > p. Then the steady-state system delay
D can be bounded as follows:

05(0)

—0d

Y

The parameter 6 can be optimized to minimize the right-hand
side of (11) .

C. Hybrid Admission Control Scheme

We proposed a hybrid admission control scheme that com-
bines the phase-type traffic descriptor and MGF traffic en-
velope characterizations of the input traffic flows. The basic
setup is depicted in Fig. 1. Each flow passes through a (¢*, p)
stochastic regulator (see Section III-A), which enforces a
phase-type traffic descriptor negotiated between the network
and the traffic flow. Similarly, an MGF traffic w-envelope
for each flow is enforced by an MGF traffic regulator (see
Section III-B).

Given a set of flows A = {1,...,n}, the hybrid admission
control scheme checks two admission criteria with respect to
the stochastic delay constraint (8):

1) Using the procedure based on the phase-type traffic
descriptors outlined in Section IV-A, determine whether
or not A is admissible.

2) Using the procedure based on MGF envelope parameters
outlined in Section IV-B, determine whether or not A is
admissible.

If A is admissible under criterion 1 or criterion 2, then A is
considered admissible.

V. NUMERICAL STUDY

In this section, we demonstrate key aspects of the pro-
posed framework using traffic flows modeled as MMPPs and
discrete-time Markov on-off fluid processes.

A. Markov Modulated Poisson Process

The MMPP is a popular continuous-time model for traf-
fic flows possessing a high degree of burstiness [12]. An
m-state MMPP is a doubly-stochastic Poisson point pro-
cess N(t) parameterized by a diagonal arrival matrix A =
diag{\1,..., A}, where A; > 0 is the Poisson arrival rate
when the underlying Markov chain is in state ¢ and a rate
matrix R = [r;;], 1 < 4,5 < m, where r;; > 0 is the departure
rate of the Markov chain from state ¢ to j # 7. For 1 <1i < m,
rii < 0 and —r;; is the departure rate of the Markov chain
from state . The rate matrix R is the generator matrix of the
modulating Markov chain. For example, a 2-state MMPP is
parameterized by arrival and rate matrices given, respectively,

by
_ )\1 0 I ' T1
A_|:0 A2:|7 R_|:T’2 —T2 ’
The superposition of n independent MMPPs is again an

MMPP. The rate matrix R and the arrival rate matrix A of
the aggregated process are given, respectively, by

R=R,@&...0R,, A=A, ©...@A,,

(12)

13)

where @ denotes the Kronecker-sum [12]. For example, the
superposition of two independent, identically distributed 2-
state MMPPs results in a 3-state MMPP with arrival matrix

2o 0 0
A= 0 A+ Ao 0 (14)
0 0 21
and rate matrix
—2’[”2 2T2 0
R = T1 —r1 —7Te T2 (15)
0 27"1 —27’1

Assume that the packet lengths times are independent and
generally distributed. Then the MMPP N (¢) together with
the packet lengths specifies a continuous-time traffic arrival
process A. When the process A is fed as input to a multiplexer
with constant service rate, the system can be modeled as an
MMPP/G/1 queue. A closed-form expression for the Laplace
transform of the virtual waiting time of a MMPP/G/1 queue
is given in [13].

B. Admission Control via Phase-Type Bounds

We consider the scenario shown in Fig. 1, in which five
statistically independent traffic flows A;, ¢ = 1,---,5 arrive
on input links with capacity Cj, to a multiplexer with constant
service rate C. All flows are identically distributed 2-state
MMPPs characterized by Poisson arrival rates A\; = 0.75 and
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Fig. 2. Stochastic delay bound via phase-type traffic bounds.

A2 = 0.5 and rate matrix given by r; = 2 and 7, = 1. Hence,
the average arrival rate of each flow is 0.583 packets/unit
of time. All packet lengths are assumed to be exponentially
distributed with mean p~! = 1. The input link capacity is set
as Ci, = 5 and the multiplexer has a constant rate server of
rate C' = 5.

The superposition of traffic flows A4;, ¢ = 1,...,5, is a 6-
state MMPP whose parameter can be determined using (13).
With the 6-state MMPP as the input traffic, the multiplexer
can be modeled as an MMPP/M/1 queue. Therefore, a closed-
form solution for the virtual waiting time distribution at the
multiplexer can be determined using results from [13]. The
orange curve in Fig. 2 shows the tail distribution of the
incurred delay in this case. Using definition (1), a phase-
type bound can be obtained for each input traffic stream by
considering the virtual waiting time distribution of a 2-state
MMPP/M/1 queue. Using results from [13], this distribution
has the form of an hyperexponential distribution. For this
scenario, the procedure for fitting a traffic flow to a phase-
type traffic descriptor (see Section II-A) can be bypassed. We
shall set the parameter p equal to mean rate of the MMPP,
i.e., 0.583. In this case, the phase-type bounding parameters
of A;, fori =1,...,5 can be chosen to exactly match the tail
of the workload distribution. Thus, we can assume T = oo,
and we obtain ¢ = 0.583,

m = [0.0.9982,0.0018], Q= {_0'413 0

0 —0.858] - 9

Since the traffic flows are MMPPs, they automatically sat-
isfy the derived phase-type bounds and hence do not need to be
regulated, although (c*, p) regulators are shown in Fig. 1 for
the general case. Using the phase-type descriptor in (16), and
Theorem 3, the phase-type descriptor of the aggregate arrival
traffic can be derived. In this case, the aggregate traffic is
characterized by a phase-type descriptor with a 92-state phase-
type parameter. In this example, the approximation procedure
described in Section I'V-A to limit the number of phases in the
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Fig. 3. Statistical multiplexing gain via MGF traffic envelopes.

phase-type descriptor was not performed. Using this phase-
type descriptor for the aggregate traffic, a bound on the delay,
as shown in Fig. 2, can be derived via Theorem 4. The blue
curve in Fig. 2 shows the bound on the delay. From Fig. 2
the phase-type bounds can be used to provide the following
stochastic delay guarantee: P{D > 5} < 1073. The output
link utilization in this case is 5(0.583)/C' = 0.583.

To compare the stochastic delay guarantee with a de-
terministic guarantee, such as that provided by the (o, p)
characterization of Cruz [1], we can increase the value of C
such that P{D > 5} is close to zero, say 1071%. As shown in
Fig. 2, we can derive the exact tail probability P{D > 5}
for every C. By increasing the value of C, we have that
P{D > 5} < 107!° when C > 8.5. Therefore, the link
utilization that can be achieved when a deterministic guarantee
is provided can be most 5(0.583)/8.5 ~ 0.34.

C. Admission Control via MGF Traffic Envelope

As mentioned in Section II-B, an advantage of the MGF
traffic envelope representation is that it can capture statistical
multiplexing gain. Here, we shall consider a discrete-time
Markov on-off fluid flow as a model for traffic flows. Such a
process consists of an underlying discrete-time 2-state Markov
process. In state 1 (On-state) the source generates a constant
fluid flow of packets at rate r and in state 2 (Off-state), the
source does not generate packets. The underlying Markov
process has transition probability matrix P given by

P— [Pu P12}

p21 P22’

where p;; for 4,7 = 1,2 are the transition probabilities from

state ¢ to state j. The steady-state probability of states On and
Off are given, respectively, by

_ b2 _ b2

n — 77 H - - -

D12 + pa1 P12 + p21

The mean arrival rate of the process is po,nr. This process is

also characterized by a burst parameter 5§ = 1/p12 + 1/pa1.

7)

(18)



According to [4], the MGF traffic envelope of the Markov
On-Off process is given by &(6) =0 and p(0) =

Eln P11 +D22€" +/ (P11 +p22€%7)2 —4(p11 +paz —1)ef”
0 2 ’
(19)

for 6 > 0. For the special case of a memoryless On-Off
process, we have p;; = po1 and psas = pio. In this case,
Pon = P22 and the MGF traffic envelope simplifies to the
form 6(6) = 0 and
. 1
po) =4

Consider a multiplexer with constant rate C. Suppose a
maximum of M identically distributed and statistically inde-
pendent input Markov on-off fluid flows can be supported at
the multiplexer while satisfying (8) for some specific d and
€. We are interested in evaluating the number of admissible
flows per unit capacity, given by M/C, as C increases. As
an example, we shall assume that each Markov on-off fluid
flow, A;, for 1 < i < M, has average rate p,,r = 0.1, peak
rate 7 = 1, and burst parameter 5 = 300. Each Markov
on-off fluid flow can be characterized by an MGF traffic
envelope (6(6), 5(0)), which can be enforced by a regulator, as
discussed in Section II-B. In this case, p;(#) for 1 <i < M,
is given by (19), where § > 0 is a free parameter. Also as
mentioned before, 5;(0) =0 for 1 < ¢ < M.

According to Theorem 1, the aggregate traffic process,
A=Ay + Ay + ...+ Ay can be characterized by the MGF
parameter p = Mp;(f) and 6 = 0. The admission control
scheme imposes a stochastic delay constraint of the form (8)
with d = 100 and € = 1073, For each value of M and C, by
using Theorem 5, and by optimizing the free parameter 6 > 0
we can derive a statistical bound on the delay for d = 100. If
the derived statistical bound on the delay is less than e, then
such a choice of M and C is acceptable. For each value of
C, we try to find the maximum value of acceptable M such
that the desired statistical bound on the delay is satisfied.

With mean rate allocation, 1/0.1 = 10 flows can be
supported per unit capacity, whereas with peak rate alloca-
tion, only one flow can be supported per unit capacity. By
performing admission control according to the MGF bound
parameters, statistical multiplexing gain is achieved as C
increases, as shown in Fig. 3. In particular, as C' increases, the
number of admissible flows per unit capacity, M /C' increases
and approaches the mean rate allocation of 10 flows per
unit capacity. This shows that statistical multiplexing gain is
achieved.

In (pon€’ +1—pon), 0>0.  (20)

VI. CONCLUSION

We presented a practical framework for providing stochastic
delay guarantees based on results from stochastic network
calculus. Key elements of our approach are the phase-type
traffic bound [3], the MGF traffic envelope [4], a method for
fitting a traffic flow to a phase-type bound [11], stochastic
traffic regulators to enforce compliance of a traffic flow to

a negotiated traffic descriptors [5] and an admission control
scheme. Each flow characterizes its traffic process by a phase-
type traffic descriptor, which can be determined using the pro-
cedure developed in [11]. Similarly, an MGF traffic envelope
can be determined for each traffic flow. Both types of traffic
descriptors are enforced by stochastic regulators and are used
in the proposed admission control scheme.

Our numerical study showed that much higher traffic uti-
lization can be achieved compared to the deterministic (o, p)
framework, while providing a stochastic delay guarantee.
Moreover, even higher utilization can be achieved by taking
into account statistical multiplexing gain. The main contri-
bution of this work is to show how results from stochastic
network calculus can be applied in a practical framework to
provide performance guarantees. In ongoing work, we are
extending the proposed framework to multi-hop networking
scenarios.
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