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ABSTRACT: Discovery of new perovskite materials is motivated by a
broad range of materials applications and accelerated by recent advances
in machine learning (ML). We herein report dataset augmentation,
benchmarking, and interrogation for an ongoing experimental campaign
consisting of 9483 halide perovskite synthesis experiments. To address
limitations in previous work, we developed an improved description of
the reactant concentrations in the experiments (validated against
experimental observations) and performed experiments quantifying the
excess volume of mixing of γ-butyrolactone/formic acid mixtures used in
the perovskite syntheses. Combining this improved description of
reactant concentration with other physicochemical features of the
reactants, we constructed 1108 ML models to elucidate the roles of the algorithm (k-nearest neighbors, linear support-vector
machine, and gradient boosted tree), feature set (12 in total), preprocessing regime (e.g., standardization), and training data holdout
scheme on ML predictive ability. ML comparisons illustrated that the chemical accuracy of less sophisticated physical models in a
dataset do not hinder interpolative model performance. Analysis of feature contributions showed how ML models “learn”
competitive representations for concentration using raw experimental descriptions. Interrogation of the most performant models
indicated that the numerical values of physicochemical features were not important, rather these features were being used to identify
and interpolate within a particular reactant set. ML models were shown to be capable of making rudimentary extrapolations to
untrained chemical systems when compared against basic benchmarks, and models which included the newly developed chemical
features were shown to be more reliable than models trained without. These results illustrate how a stepwise comparative approach
to machine learning can provide insight into what and how much models are “learning” for a given prediction task.

■ INTRODUCTION

Continued research into metal halide perovskites has improved
photovoltaic power conversion efficiency from 3.8% in 2009 to
25.2% in 2019,1−5 and has led to increased chemical diversity,6,7

novel optoelectronic devices,8−11 sensors,12 and batteries.13

Accelerated discovery of new perovskite compositions has been
achieved through high-throughput synthesis of nanomaterials,14

thin films,15−18 and single crystals.19 Single crystal perovskites
are especially important as they have longer charge diffusion
lengths,5,20 higher carrier mobilities,21,22 higher optoelectronic
performance than thin film analogues,23,24 and the atomic
structures obtained via single-crystal X-ray diffraction are a
starting point for first-principles simulations. Predicting perov-
skite crystallization is difficult because the precursor solutions
are concentrated, nonideal electrolytes,25−27 subject to reagent
compositional variation,28,29 and sensitive to potentially
uncontrolled experimental conditions such as temperature and

humidity.30 As a result, most efforts to grow novel perovskite
single crystals proceed through trial and error.
There is precedent for predicting crystal formation using

machine learning (ML). For example, a radial basis function
(RBF) support vector machine (SVM) trained on a dataset of
35,858 small organic molecules predicted crystallizability of
previously unreported compounds with 79% classification
accuracy,31 a random forest model trained on 1,948 crystal
structures predicted the crystallizability of full-Heusler com-
pounds with a true positive rate of 0.94,32 and an SVM trained
on historical reaction data including successful and failed
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reactions (3,955 entries) predicted the formation of novel
vanadium selenites with 79% classification accuracy.33 Fur-
thermore, machine learning has been used in an iterative fashion
to actively explore and optimize polyoxometalate crystal
growth.34,35 These examples suggest the feasibility of halide
perovskite crystal formation prediction.
In our recent work describing a dataset of high-throughput

inverse temperature crystallization (ITC) perovskite syntheses
(RAPID),19 we showed that ML models trained on a small
number of experiments for a given set of reactants can
successfully predict reaction outcomes for new experiments
performed using those reactants. However, this type of reaction
prediction does not exactly correspond to the problem of
discovering new materials. At the most general level, an
experiment is described by the reaction conditions (e.g.,
temperature, time, composition) for a set of reactants (e.g.,
lead iodide, methylammonium iodide, solvent). Machine
learning (ML) models can be trained to “learn” the underlying
relationships between inputs (conditions, reactants) and
experimental outcomes, and then evaluated on a test set of
experimental data. When the same reactant sets exist in both the
training and testing data, model performance measures only the
quality of a prediction at the level of conditions. This type of
performance is measured when using training and testing sets
comprised of only a single reactant set, or performing a
randomly selected standard test−train−split (STTS) across
experiments. In contrast, the problem of developing a new
material corresponds to predicting outcomes for a novel reactant
set that are not in the training data. This type of performance is
measured by a leave-one-out (LOO) test−train split at the level
of reactants. A successful “extrapolation” to new reactant sets
relies upon having a sufficiently rich numerical description such
that new experiments can be related to the past experiments, i.e.,
so that one can interpolate between the descriptions of the
different reactants. The models in ref 19 successfully predicted
reaction outcomes for experiments at novel conditions only
when they had training data for the reactants; that is they
successfully interpolated only at the level of conditions, but failed
to extrapolate to new reactants. This is surprising because it
included molecular features that have previously been used to
successfully predict hydrothermal synthesis of amine-templated
metal oxides at the level of reactants.19,33,36 This failure
suggested a deficiency in the existing experiment description.
One possible experimental description deficiency involves

reaction concentrations, which could prevent finding similarities
between experiments using different reactants. For example,
both nonideality of mixing and inadequacies in how the reactant
concentrations are computed following a series of automated
dispense steps can be problematic. In principle, corrections for
these issues could be “learned” from a sufficient dataset of raw
observations, but it is unclear whether they can be learned from a
typical experimental dataset. As a ground truth, we used
experiment and chemical insight to develop physical based
models for both effects. We then performed an extensive set of
machine learning calculations to determine: (1) whether ML
can “learn” a way out of a bad physical model of concentration
using raw experimental data; (2) what features are used to
“learn” these properties; and (3) the extent to which these
improved descriptions improve our ability to predict the
formation of novel perovskite crystals.

■ METHODS

SolV Model Volumes. A typical experiment consists of the
following steps: (1) preparation of precursor solutions following
a volumetric and gravimetric recipe, (2) volumetric dispensing
of the precursors into reaction vials by a liquid handling robot,
and (3) characterization and classification of the experimental
outcome based on the size and quality of the crystals formed
during the experiment. Determining reactant concentration
following step 2 requires calculation of chemical concentrations
in the precursor solutions from step 1. The original calculation of
the chemical concentration in an experiment, denoted herein as
the “Solvent Volume only” model or “SolV”, made two
assumptions which simplified early data processing. First, SolV
assumes that the volume of precursor mixing is additive. This
assumption is valid when the solvent molecules have comparable
sizes and shapes, but more often there is some positive or
negative excess volume of mixing (i.e., Vm

E ≠ 0). This
assumption can be critiqued by experimental measurements of
the excess volume of mixing. Second, SolV neglects volume
displacement by solutes in precursor solution. This assumption
is valid in the limit of dilute solutions, but it fails for concentrated
solutions. The “concentration” computed in this way is initially
proportional to molality, but when these solutions are
subsequently dispensed volumetrically (by an automated liquid
handler) to create the reaction composition, the unknown
solution density introduces an idiosyncratic deviation in the
computed concentrations of the final reaction unique to each
stock solution, precluding a direct comparison across different
experiments.

SolUD Model Volumes. The SolV model can be critiqued
by developing and comparing an alternate model that
incorporates this volume change. To this end, we propose the
“Solutions Using Density” or “SolUD” model which makes the
following assumptions: (1) the volume of the solution is the sum
of the volumes of the solvents and solutes, (2) a dissociable ionic
solute’s volume is the sum of the molecular or ionic volumes of
its component ions, and (3) deviations from the previous two
assumptions are approximately linear and can be corrected
empirically.
The first challenge to development of the SolUD model is

determining the most practical means of calculating the
displacement volume of a solute. One approach is to use
experimental bulk crystal densities. This is especially applicable
to lead diiodide, which is present in the form of 80−100 nm lead
iodide colloids during the ITC process.25,27 For some of the
organoammonium salts considered here, densities are also
available from crystallographic databases. Experimental bulk
crystal densities provide an upper bound of the total volume
displacement, because bulk crystals contain void spaces which
lower the density. Alternatively, the volume displacement can be
computed from the molecular van der Waals volume of a given
organoammonium species combined with experimental ionic
radius of the halide counterion. An advantage of this approach is
that it is applicable to solutes that do not have known crystal
structures. In either case, experimentally determined or
calculated, the density can be used to determine the final
volume change of a solution upon addition of the solute species
and thereby improve the concentration calculation for precursor
solutions.
The SolUD model approximates total solution volume as

defined by the sum of solvent and solute volumes. The process of
calculating SolUD solution volumes can be divided into three
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steps: (1) calculation of an approximate density using molecular
and ionic volumes, (2) application of an empirical correction to
the density to compute an approximated bulk crystal density,
and (3) summation of the species volumes. For the first step, the
density derived from volumes of the molecular species (ρa) is
estimated as

m n m
V n Va
o h h

o h h
ρ =

+
+ (1)

where mo and mh are the organoammonium cation and halide
masses (respectively), Vo is the organoammonium cation van
derWaals volume (computed using ChemAxon37 cxcalc 19.27.0
from the cation’s SMILES string), Vh is the ionic volume of
halide ion (determined from the tabulated ionic radii),38 and nh
is the number halide anions present in the salt.
Next, an empirical correction to the calculated ρa values was

generated through comparison with the subset of organo-
ammonium salts with experimental bulk densities available in
the Cambridge Structural Database (CSD).39 A total of four
linear corrections were obtained to transform calculated ρa
values to the bulk crystal densities (ρb) using eq 2: ρbcombined

, ρbI,

ρbBr, and ρbCl.

m b( )b aρ ρ= × + (2)

where m and b are empirical parameters. Using the calculated
bulk crystal density values, we generated a dataset describing
computed volumes of solutions derived from SolV, SolUDMol
(volume derived from molecular volumes), and SolUD (volume
derived from pb calculated densities). We compared these values
to experimentally observed solution volumes for precursor
solutions prepared from lead diiodide, organoammonium
iodide, and γ-butyrolactone (GBL). The SolUD volumes were
calculated by taking the sum of the volumes from each solid
species added to the total solvent volume

V V
m

total solvent
i

i

i
∑

ρ
= +

(3)

where mi and ρi are the added mass and the density for each
solute i. The values for each organoammonium salt density ρa
and ρb are reported in the file “OrganoammoniumDensityDa-
taset.xlsx” included in the Supporting Information. The dataset
also includes associated refcodes for each structure obtained
from CSD, van der Waals volumes obtained from ChemAxon,
and details of all described calculations. The dataset comparing
experimentally observed volumes to SolV and SolUD volumes is
included in the Supporting Information as “SolutionVolume-
Dataset.xlsx”.
Vm

E Experimental Method.Determination of excess molar
volume (Vm

E) of mixing was performed following the density-
measurement procedure described by Lunelli and Scagnolari.40

The density, ρ(i), of a formic acid/γ-butyrolactone stock
solution, i, is obtained by sequential mass measurement of a
filled Hamilton 1710 TLC analytical syringe using a Mettler
Toledo B204S balance. The molar volume of each stock
solution, Vm(i), is determined from,

V i
v i v i

i v i M v i M
( )

( ) ( )

( ) ( ) ( )m
FAH FAH GBL GBL

FAH FAH FAH GBL GBL GBL
1 1

ρ ρ
ρ ρ ρ

=
+

[ + ]− −

(4)

where ρx,vX(i), and MX are the density, volume added for stock
solution i, and molecular weight of the neat chemical X. The
excess molar volume (Vm

E) for each mole fraction,

V i V i x i V x i V( ) ( ) ( ) ( )m
E

m FAH m FAH GBL m GBL, ,= − [ + ] (5)

where xFAH (i) and xGBL (i) are the mole fractions of FAH and
GBL in a given stock solution and Vm,GBL and Vm,FAH are the
molar volumes of the neat solutions of GBL and FAH. The
dataset of experimental measurements (“ExcessMolarVolume-
Data.xlsx”), excess volume calculations, and Mathematica 12.0
and Python 3.7 code files used for curve fitting are included with
the Supporting Information.

Experimental Dataset. Experimental data are taken from
ongoing work in high-throughput robotically driven inverse
temperature crystallization (ITC) workflow, comprising 9483
organic−inorganic metal halide perovskites crystallization
experiments at the time of this study. A detailed description of
the ITC workflow and experimental process can be found in the
Supporting Information as well as in past publications.19

Experimental data capture and reporting, including precursor
preparation, materials monitoring data, and final data
augmentation with concentrations and physicochemical de-
scriptors is performed using the ESCALATE “capture” platform
(v2.57).41 The SolUD and SolV derived concentration values
were incorporated into the ESCALATE “report” code (at
v0.7),42 and were applied to the entirety of the dataset, including
retroactive experiments.
For this article, the larger perovskite dataset was filtered to

include only: (1) ITC experiments (designated “Workflow
1.1”), (2) reactions that use GBL as a solvent, (3) reactant sets
containing at least one instance of “success” (large single
crystal). These restrictions reduce the dataset to 5049 unique
experiments spanning 19 unique reactant sets.43 Each experi-
ment has 423 features. A complete description of dataset is
included as “0045.perovskitedata.csv” in Supporting Informa-
tion.

Machine Learning Models for Perovskite Crystalliza-
tion. The development pipeline for ML models includes a data
preprocessing regime followed by the fitting and evaluation of
multiple ML models, varying both feature sets data hold out
schemes (Figure 1).
A total of 1108 models were trained, evenly divided between

standard train-tests plits (STTS) and a leave-one-amine-out
(LOO) holdout scheme. During a STTS split, datasets were
divided into six folds: five folds were used for cross-validation
and hyperparameter optimization and one fold was used for
testing. Reported results are based on test-fold performance. In
the LOO holdout scheme, each ammonium halide salt was
treated as the test set while data on the remaining 18 ammonium
halide salts were used for hyperparameter tuning and cross-
validated model training. Both STTS and LOO holdout sets
were constructed through random sampling of the larger dataset
without replacement.
To study the role of different types of experimental and

computational features for prediction, we grouped the features
into four categories or “feature subsets”: “Chemicals” (Chem),
“Reagents” (Reag), “Experiment” (Exp.), and “Features” (Feat).
Chem includes chemical quantities, such as the masses and
volumes of each chemical, used in the preparation of “Reagents”
(i.e., precursor solutions) along with the dispense volume of
each reagent into experiments. Reag includes information such
as the concentration of the final reagent solutions and the
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volume of each reagent dispensed into experiments. Exp
contains all data captured by the workflow required to prepare
the final experiment solution. Finally, Feat (Feat + Actions)
includes only the physicochemical descriptors (e.g., surface area,
polarity, volume, number of rings) of the organic reagents and
the actions associated with experiments. To emphasize the
comparison of concentration descriptors central to this article,
use of “SolV” and “SolUD” feature subsets are explicitly denoted.
From these feature subsets, we constructed 12 feature sets by
systematically varying the included feature subsets, as outlined in
Figure 2.
Machine learning (ML) models were built with Scikit-Learn

for Python.44 Common ML algorithms were chosen, including:
gradient boosted trees (GBT), k-nearest neighbors (kNN), and
linear support vector machines (L-SVC). A minimum perform-
ance baseline was constructed using GBTmodels trained on two

“nonsense” datasets the “Y” and “deep” shuffled datasets, which
were generated by shuffling inputs relative to outputs or
shuffling all data within each feature set, respectively. Models
generated from Y shuffled datasets with high correlation indicate
overfittings or spurious correlations between model inputs and
the outputs; any seemingly performant model generated on the
original dataset would be suspect.45,46 An additional perform-
ance baseline was provided by kNN where k = 1, which can be
thought of as “memorization” of the data.47 Because measures
such as precision and accuracy are often deceptive for datasets
with large class imbalances, we instead report the Matthews
correlation coefficient (MCC), which does not suffer from this
problem.48 Models that only predict the majority class will have
an MCC of zero; an MCC of “1” corresponds to perfect
prediction of both successes and failures. Preprocessing
variations include one hot-encoding (OHE) of the organo-
ammonium identity with simultaneous removal of physico-
chemical descriptors, normalization (norm), and standardization
(std). Normalization and standardization processes were divided
into three increasingly general tiers: (0) preprocessing on Feats*
only, (1) preprocessing on SolUD and SolV, and (2) the entire
dataset. These models were computed using Texas Advanced
Computing Center (TACC) resources and infrastructure.
Additional details regarding model design, optimized hyper-
parameters, and related code is documented in the Supporting
Information.

■ RESULTS AND DISCUSSION
There are two competing philosophies for machine learning in
science. Historically, most scientists have tried to use domain
expertise to improve the underlying descriptions on which the
machine learning work is based. This feature development
technique is especially important when working with relatively
small experimental datasets, as it reduces the complexity of the
model. It also has the benefit of facilitating more human-
interpretable models,33,49 but requires a significant investment
in human expertise and may introduce anthropogenic biases.36

Alternatively, a complicated model can be trained to make high
quality predictions directly from the raw inputs, given a
sufficiently large dataset. However, this approach may introduce
a series of potential problems. The models may be
uninterpretable, they may extrapolate in nonsensical ways
outside the training data, and they may not “learn” what you
think they are learning but instead focus on scientifically
irrelevant details in the dataset.50

Here, we have the opportunity to compare these two
approaches directly. We first describe the development of
improved features for describing reaction composition using the
traditional toolbox of physical chemistry. Any models
introduced are kept intentionally simple, e.g., correcting
systematic trends using linear models. We also quantify other
factors that would compete with these descriptions of
composition (e.g., nonideality of mixing). This allows us to
perform a direct comparison between the physicochemical
model approach and the purely data driven approach, which we
analyze in the context of ML model generation and evaluations.
Finally, an exploration of model performance in the context of
leave-one-out (LOO) is performed. This workflow (data
analysis, model generation, model performance evaluation)
enables critical analysis of the input data as well as elucidating
the effect of input data on machine learning model utility.

Determination of Bulk Density. Densities derived from
the organoammonium iodides van der Waals volumes and

Figure 1. Overview of computational pipeline for machine learning.

Figure 2. Overview of the 12 unique feature sets generated from
individual feature subsets of the main perovskite dataset.
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tabulated iodide ion volumes were calculated and compared to
available experimental values from CSD (reported at 295 K).
Similar linear regression metrics including R-squared, root mean
squared error (RMSE), and mean absolute error (MAE), were
observed for organoammonium iodide, bromide, and chloride
salts (Figure 3, Table S1). A high correlation (R2 = 0.96)

between experimental and computed density values is observed
in Figure 3, but the values computed using van der Waals and
ionic radii fail to account for void spaces in the bulk crystal and
therefore systematically overestimate density of ammonium
halide salts. An empirical correction was developed for each
halide independently. The correction to the organoammonium
iodides ρaI provides the computed bulk density ρbI via eq 6.

(1.02 ) 0.76b aI I
ρ ρ= − (6)

Additional information describing the derivation of bulk density
for organoammonium salts can be found in the Supporting
Information.
Comparison of SolV and SolUD Models. As our dataset

contains only organoammonium iodides, we used ρbI-derived
densities and the reported density of PbI2 for subsequent volume
calculations of precursor solutions. Experimentally measured
volumes were available for 172 of the 219 precursor solutions.
Comparing the observed volume to the calculated volumes
illustrates the improvement provided by the SolUD volume
model. A linear regression and associated metrics including R-
squared, RMSE, and MAE are reported for SolV and SolUD
(Table 1, Figure 4). The SolV model underestimates the
observed volumes by an average of 30% across all reagents,
whereas the SolUD model has one to one correspondence with

the observed volumes and has a MAE within the precision of
most observations (±1 mL).

SolUD Volume Estimates for Dataset Auditing. Given
the overall high performance of the SolUD volume estimates, we
suspected that the outliers were the result of data entry
problems. Written laboratory notebooks were used to confirm
the presence of data entry errors and then rectified where
possible. Of the 219 solutions prepared, only 172 of them have
experimental volume observations. Of these, four (4) had
observed volumes that deviated by more than 10% from the
SolUD predicted volume, and of these, one (1) was confirmed as
a data entry error. An additional four (4) solutions were
identified where the actual concentrations exceeded the
maximum expected concentrations based on measured
solubility limits. Of these, two (2) solution preparation logs
were confirmed to have data entry errors. Since the
implementation of these validation steps we have audited a
total of eight stock solutions (effecting 768 experiments, 8.1% of
the dataset) and rectified data entry errors associated with three
stock solutions (effecting 288 experiments, 3% of the dataset).

Non-Ideal Mixing of GBL and FAH. Another possible
source of error is the nonideal volume of mixing. These
perovskite ITC experiments consist predominately of two
solvents: (1) GBL used in the reagent solutions and (2) formic
acid (FAH) added in the final step of the experiment. We are
unaware of prior experimental measurements of the excessmolar
volume of GBL:FAH mixtures. From the solution density
measurements (eq 4), we calculated the excess molar volume as
a function of mole ratios of FAH and GBL (eq 5), fitting the
results to a cubic polynomial. These data provide a calculated
maximum Vm

E = 1.33 mL/mol for a mole fraction of formic acid
of 0.36 (Figure 5).
The Vm

E data can be used to approximate the maximum error
incurred for ΔVmix in our workflow process. Even in the worst
case of 0.36 FAH:0.64 GBL, neglecting the excess molar volume
of mixing only underestimates the true volume by 2.02% and
hence overestimates the solute concentration by 2.06%. In
comparison, neglecting the volume displaced by solutes (using
SolV instead of SolUD), overestimates the solute concentration
by an average of 24.1 ± 9.0% across all experiments, with a
maximum andminimum concentration overestimation of 41.7%
and 4.5% for the solute, respectively. These data suggest that the
volume error, owing to nonideal mixing, would only marginally
improve the SolUD model; therefore, we opted to omit ΔVmix

Figure 3. Experimental crystal densities versus computed densities of
organoammonium halide salts.

Table 1. Linear Regression andModel FitMetrics Comparing
Observed Reagent Volumes to Those Derived from SolV and
SolUD Volume Modelsa

SolV SolUD

slope (m) 1.3 1.0
intercept (b) 1.6 0.2
R2 0.94 0.98
RMSEa (mL) 3.1 2.0
MAEb (mL) 2.2 0.9

aRMSE is root mean squared error. bMAE is mean absolute error.

Figure 4. Observed solution volumes versus the SolV and SolUD
calculated volumes.
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contributions when computing SolUD concentrations. Calcu-
lations comparing the percent change in concentration values as
well as a detailed derivation of Vm

E can be found in the
Supporting Information.
Machine Learning Models for Perovskite Crystalliza-

tion. The dataset described abovealong with the improved
concentration modelsprovides a unique opportunity to
benchmark the performance of ML models for predicting
perovskite crystallization with and without concentration
features. In particular, we aimed to demonstrate: (1) that
machine learning performance using an inferior SolV solution
model was similar to the improved SolUD solution model and
(2) raw experimental characteristics could be used to match or
even exceed model performance of physically accurate concen-
tration features given enough experimental data and phys-
icochemical features.
We first compared MCC for 6-fold standard-test-train-split

(STTS) models using SolV, SolUD, and SolUD + Chem feature
sets (Figure 6). The benchmark baselines of Y-shuffled or deep-
shuffled data yielded an MCC of 0, as expected. Models with
access to meaningful features outperform the shuffled baselines.
Improving the concentration model alone (SolV versus SolUD)
does not improve model predictions, but the additional

inclusion of chemical features (SolUD+Chem) does. The GBT
model only slightly outperforms “the memorization” strategy of
kNN where k = 1. Using the complete training data (Figure 6a)
gives better performance than the stratified training sets (Figure
6b) where 96 experiments are sampled from each organo-
ammonium iodide. As this trend holds true for all STTS model
comparisons, we will focus the remaining analysis on models
trained using only the full dataset without stratification.
Comparing the concentration features (SolV, SolUD),

physicochemical descriptors (Feats Only), and chemical
descriptions (Chem), indicates that GBT is the highest
performing algorithm. (Figure 7). Models trained on the SolV

and SolUD features perform similarly despite the latter being a
more faithful description of solution concentration. For all three
algorithms, the Chem features, which consists of quantities of
chemicals used in reagents and the volume of the reagents, are
the most performant. GBT model performance is not largely
impacted by the choice of feature set (Figure S6) nor by
standardization or normalization of the input (Figure S8).
The best model overall was a GBT model fit on the SolV +

Chem feature set using standardized physicochemical features

Figure 5. Third order polynomial fit of excess molar volume (Vm
E)

versus mole fraction of FAH (xf). The maximum Vm
E of 1.33 mL/mmol

occurs at a FAH mole fraction of 0.36.

Figure 6. Baseline GBT performance for 6-fold standard-test-train-split (STTS) trained on (a) all members of the training set and (b) stratified sample
of 96 random experiments from each reactant set. Error bars show the standard deviation of performance for held-out data.

Figure 7. MCC comparison of kNN, GBT, and L-SVC models using
STTS on various feature sets. Error bars and labels describe the
standard deviation of performance for held-out data.
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(MCC = 0.71± 0.01, 109 total features). The best kNNmodels
perform nearly as well as the best GBT models (kNN, Chem,
standardizing all inputs, MCC = 0.66± 0.05, 109 total features).
However, these additional Chem features provide only a small
improvement to model performance. For comparison, the best
model without them is GBT Feat + SolUD with MCC = 0.64 ±
0.02, using 76 total features. This small difference indicates that
the additional Chem information about quantities and volumes
provides limited information beyond the concentration features
(SolV and SolUD).
To better understand which data were most impactful to the

model, we compared normalized feature contributions from
GBT models targeting the Chem, SolV, SolUD, and SolUD +
Chem feature sets (Figure 8).

When either the SolV and SolUD concentration features are
included, they take significant precedence over the other
features (Figure 8, parts a, b, and d). The Chem feature set
lacks an explicit concentration feature, but does contain
precursor dispense volumes (Figure 8c) from which the
variation in the actual concentration of a species can be
accurately inferred. As an example, we observe positive values of
Pearson correlation coefficient (PCC) between SolUD-derived
inorganic concentration and the inorganic dispense volume

(PCC = 0.63) as well as between the SolUD-derived organic
concentration and the organic dispense volume (PCC = 0.50)
(Figure 9). When no concentration model is present, ML

models learn the most from features that are related to
computing concentration; out of the 103 features in the Chem
feature set, all ten features necessary to fully calculate
experimental concentration were present in the top 20 features.
The comparable performance of the Chem feature set with the
SolUD, along with the feature contribution analysis strongly
suggests that the model is “learning” an equivalent representa-
tion of concentration from the raw experimental data.
Models fit on the SolUD + Chem feature set use both

concentration and dispense volume information (Figure 8a), but
removing dispense volumes does not reduce model perform-
ance. For example, the GBT algorithm on the SolUD + Chem
dataset after removing the dispense volumes features has no
impact on model performance (MCC = 0.67± 0.04). From this,
we conclude that dispense volumes do not provide useful
additional information but are likely merely selected because of
high covariance with the concentration (Figure 9).51

To understand if the numerical values of the Feat feature set
were at all important to the models, we compared kNN and
GBT models fit to a dataset without the physicochemical
descriptors (i.e., we removed the Feat subset) and instead used
one-hot encoded (OHE) (Figure 10). One-hot encoding the
amine identity reduces the number of input features from 76
(Feat+SolUD) to 25 (OHE+SolUD), without reducing the
GBT model performance. This indicates that the underlying
models require minimal information from the numerical value of
the physicochemical features and instead are using the values as
an identity; effectively, the model likely uses the feature to
determine the reactant set and then interpolates within the
concentration space for that reactant set. These data are further
supported by the weighted feature analysis of the OHE GBT
method which demonstrates similar feature weighting and
performance (Figure S10).

Figure 8. Normalized feature contributions for GBT models trained
using (a) SolUD + Chem, (b) SolUD, (c) Chem and (d) SolV feature
sets.

Figure 9. Covariance analysis comparing dispense volumes, SolV
concentrations and SolUD concentrations. Numerical values are equal
to the Pearson correlation of the intersecting features.
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Taken together, these analyses illustrate that ML is capable of
“learning” a way around bad physical models (i.e., SolV) and
even assembling raw experimental characteristics (i.e., Chem)
into highly competitive models. ML performance is shown to be
independent of the accuracy of the chemical representation (i.e.,
SolV vs SolUD vs Chem) and dependent upon precise
representations of experimental variation. The features govern-
ing the similar performance in GBT models were identified
through stepwise analysis which showed that the model was
“choosing” data associated directly with the concentration
calculation over other extraneous information in the dataset.
Toward Generalizable ML Models (LOO). The model

performance and underlying behavior of physicochemical
features in STTS models outline the weakness of current
physicochemical descriptors for generalizing to untested amines.
While physicochemical features help guide models to concen-
tration relationships for a set of chemicals (similar to OHE),
these values seem to be numerically meaningless; attempting to
build suitable models for LOO prediction demonstrates the
inherent difficulty in predicting crystallization in untrained
chemical systems (Figure 11).
The highest average MCC was reported for a kNN (k = 1)

model, although the standard deviation of model performance

was large (kNN (k = 1), Chem, MCC = 0.15 ± 0.18). The
success of kNN = 1 indicates that memorization of similar
reactions is a better strategy than any other attempted algorithm
and preprocessing scheme. The small performance improve-
ment when moving from only the description of masses and
volumes (Chem) and the calculation using the density-corrected
concentration (SolUD) indicates that the models account for
some but not all of the effect. Using all of the training examples
(Figure 11a) tends to perform worse than stratifying the training
set examples (Figure 11b). A closer examination of each of the
resulting models for predicting each of left-out amines revealed
that 33% of models built using all training examples predicted
every test reaction to fail, whereas only 19% of models built using
stratified examples predicted “all fail”. There is no discernible
trend in the relationship between amines which correlated with a
model making “all fail” or “all success” predictions, but kNN
models are less susceptible to this pathology. Models which
included the SolUD features (independent of algorithm) were
also less likely to suffer from the “all fail” condition and also had
the lowest average MCC improvement by excluding “all fail”
(see extended discussion in the Supporting Information).
Furthermore, the best models identified in the STTS work
(GBT, SolUD + Chem) do not suffer from this problem.
Constant predictions yield an MCC score of zero, whereas

other common metrics such as precision and recall can be
deceptively higher. On the other hand, precision (true positives
per predicted positives) can be a valuable metric for
experimental choice quality. To better understand this, we
focus on the best model algorithms and feature sets identified
above. Figure 12 compares the MCC and precision for the
stratified LOO problem for (1) the collection of all models
(including constant predictions), (2) only models that make
nonconstant predictions, (3) the hypothetical cases of
predicting “all failure”, and (4) “all success” for every reaction
(with points 3−4 indicated as horizontal lines). An “all fail”
prediction gives undefinedMCC and precision scores, indicated
by the solid red line at zero in both plots. (Figure S11 shows the
corresponding unstratified training regime results.)
Excluding constant prediction cases (open blue circle)

increases both performance metrics. Excluding “all fail”
examples increased MCC by an average of 0.015 across all
model types and feature; for the models using the SolUD
features and average MCC improvement of 0.010 was observed.

Figure 10. Comparison of model performance for kNN and GBT
models fit to one-hot-encoded (OHE) dataset, compared to the
performance of the GBT model fit on data with no preprocessing.

Figure 11. Best performing LOO models across all algorithms, preprocessing, and feature sets: (a) all available data for each process space and (b)
stratified random draw from each process space.
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The smaller improvement reflects that previous observation that
models using SolUD are less susceptible to the “all-fail”
pathology. Whether or not constant predictions are excluded,
the precision and MCC for models are better than the
hypothetical “all success” predictions (dashed black line)
which models the case of picking experiments at random. A
positive correlation was observed between percentage of total
successful experiments and precision of all models; a higher
proportion of successful experiments is an easier target for
models (Table S7).
The STTS and LOO tasks provide a useful benchmark forML

performance using the described perovskite dataset. Although
the performance on the LOO task is worse than on the STTS
task, our results demonstrate that the improved SolUDconcen-
tration model, in combination with the additional experimental
information in the perovskite dataset, can predict perovskite
crystallization in untrained chemical system better than chance.

■ CONCLUSION
Improved concentration representations are applicable both
retroactively and proactively to an ongoing high-throughput
perovskite crystallization campaign. Volumes calculated using
the “Solution Using Density” (SolUD) method closely agree
with experimental observations (R2 = 0.975 across 172 precursor
solutions). The SolUD model also provided a useful auditing
tool which identified possible anomalies covering 8% (768
experiments) of the dataset, and of those anomalies, 37.5% (288
experiments) could be corrected from other laboratory records.
We applied machine learning (ML) to the updated perovskite
dataset and demonstrated three important outcomes: (1)
upfront costs associated with intensive feature engineering can
be mitigated by careful experimental design (i.e., constraints on
the scale and variability of experimental campaigns), (2)ML can
accommodate less sophisticated physical models affording that
precise representations of experimental variation are available,
and most interestingly, (3) ML can “learn” a proxy for
concentration using raw experimental descriptions.
The development of an accurate concentration representation

and subsequent ML comparison have provided crucial insight
toward development of a generalizable model for prediction of
perovskite crystallization. ML models are capable of describing

compositional variations for a known set of reactants, and the
best gradient boosted tree (GBT) model demonstrated a
Matthews correlation coefficient (MCC) of 0.71 ± 0.01 using
109 total features. However, most of this performance can be
captured by one-hot-encoding chemical identities in combina-
tion with SolUD concentration features (MCC = 0.65 ± 0.05).
The similar performance of the models implies that molecular
property descriptors are used primarily as a means of identifying
a particular reactant set, rather than learning generalizable
trends. This is further supported by the ‘leave one reactant set
out’ testing, which was less successful (MCC = 0.15 ± 0.18) at
predicting reactions involving novel reactant sets. However,
even this limited performance is above the baseline MCC = 0
score, indicating the value of chemical features to make
extrapolative predictions about reaction outcome. The wide
standard deviations for LOOmodels were attributed to variation
in amine model performance; the LOO models which were
identified as consistently performant across aminesthose
which specifically avoiding the pitfall of making “all fail”
predictionswere shown to predominately include the newly
developed SolUD features. Although models can use exper-
imental data (masses and volumes) to make interpolative
predictions, physically meaningful features (density-corrected
concentrations) improves robustness when performing extrap-
olations.
In summary, a stepwise comparative approach to machine

learning can provide insight into what and how muchmodels are
“learning” for a given prediction task.50 We aim to use these
findings to improve the perovskite dataset with the goal of
significantly expanding the ability to predict crystal formation in
untested reactant sets.
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