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Exploring PIM Architecture for High-performance Graph
Pattern Mining

Jiya Su, Linfeng He, Peng Jiang, Rujia Wang

Abstract—Graph mining applications, such as subgraph pattern matching and mining, are widely used in real-world domains such as
bioinformatics, social network analysis, and computer vision. Such applications are considered as a new class of data-intensive
applications that generate massive irregular computation workloads and memory accesses, which are different from many well-studied
graph applications such as BFS and page rank. In this paper, we use the emerging process-in-memory architecture to accelerate
data-intensive operations in graph mining tasks. We first identify the code blocks that are best suitable for PIM execution. Then, we
observe a significant load imbalance on PIM architecture and analyze the root cause for such imbalance in graph mining applications.
Lastly, we evaluate several scheduling schemes that help reduce the load imbalance and discuss potential optimizations to enhance
performance further.

Index Terms—Process-in-memory, Graph pattern mining

F

1 INTRODUCTION

Process-in-memory architecture (PIM) [1] is considered as
a promising solution to enhance the performance of memory-
bounded data-intensive applications. With PIM architecture, it
is possible to integrate general-purpose or specialized computa-
tion units in or near the memory module. When the application
and data are appropriately placed and scheduled on the PIM
and host CPU, we can reduce massive data movement between
the CPU and memory module to achieve high-performance
and energy-efficient computation. For example, classical graph
processing applications, such as BFS and page rank, have been
implemented on emerging PIM architectures with software and
hardware co-designs [1], [14].

Recently, graph pattern mining (GPMI) algorithms emerge as
a new class of data-intensive applications that has attracted
extensive attention from system [13], [19], [20] and architecture
[2], [16], [21] domain. GPMI has many real-world use cases,
such as motif extraction from gene networks [15] and pattern
search over semantic data [5]. GPMI is fundamentally differ-
ent from the general graph processing applications in several
ways: 1) the computation involves more complex iterations
which may cause load imbalance; 2) the computation involves
enormous data accesses (more details in §2.2). Therefore, it
is challenging to use conventional hardware, such as CPU or
GPU, to accelerate the computation.

Therefore, we are motivated to examine the new class of
GPMI applications and study the challenges of applying PIM
architecture to such applications. We first explore the memory
access characteristics of the graph matching algorithm and find
the intersection and subtraction (I/S) operations are memory
access intensive, which are suitable for PIM architecture. Then
we compare the performance of I/S operations on CPU host
and PIM to evaluate the potential performance gain. We iden-
tify that the workload distribution to PIM cores could cause
significant imbalance and hurt the performance improvement

• J. Su and R. Wang are with the Computer Science Department, Illi-
nois Institute of Technology, Chicago, IL. E-mail: jsu18@hawk.iit.edu,
rwang67@iit.edu.

• L. He and P. Jiang are with the Computer Science Department, University
of Iowa. E-mail: linfeng-he@uiowa.edu, peng-jiang@uiowa.edu.

from PIM architecture. We evaluate several scheduling schemes
which reduce the load imbalance in selected workloads. In
addition, we identify the root cause of such load imbalance
regarding the input graph and patterns and propose potential
schemes that can overcome such challenges.
2 BACKGROUND AND MOTIVATION

2.1 Process-in-Memory Architecture
Processing-in-Memory (PIM) integrates processing units in-

side the memory to reduce the overhead of frequent data
movement. PIM can be implemented using a variety of tech-
nologies. 3D-stacking with TSVs technology is a commonly
used technology for PIM due to its large bandwidth and energy
advantages. Two of the most prominent 3D-stacked memory
technologies today are Hybrid Memory Cube (HMC) [3] and
High Bandwidth Memory (HBM) specification [9], [11], both of
which consist of one logic die stacked with several DRAM dies.
The PIM cores could be either implemented on the logic die [1],
[4], [6], [8], [14] or in the DRAM banks [2], [11].

In this work, we assume that the PIM cores are integrated
into the HMC architecture, and they can process the same ISA
as the host. The host access the HMC with an external link,
while the PIM cores access the HMC via internal TSVs. Note
that the latest PIM module from Samsung [11] uses the HBM
architecture with 128 programmable computing units. Due to
the limited documentation on the new PIM interface, we follow
prior research work and use the HMC interface for evaluation
purposes.
2.2 Graph Mining Applications and Algorithms
Applications: In this work, we focus on the motif counting
(MC) GPMI application. A motif is any connected, unlabeled
graph pattern. The goal is to identify all motifs (patterns) with k
vertices and count the embeddings of each of the patterns. This
kernel is widely used in bioinformatics. The evaluated patterns
are shown in Figure 1.
Representative algorithms: There are two available algo-
rithms that can support GPMI applications. 1) Exhaustive-check
method, used in Arabesque [19], RStream [20], Gramer [21],
which explores the subgraphs to a certain size, and per-
forms isomorphism checks to aggregate the explored sub-
graphs; and 2) Pattern-enumeration method, used in Au-
tomine [13], GraphZero [12], GraphPi [18], directly finds the
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Fig. 1. Patterns with 3 and 4 vertices.
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Fig. 2. Pattern enumeration with AutoMine [13] method.

subgraphs that are isomorphic to the pattern. Compared
with the exhaustive-check method, the pattern-enumeration
method can achieve higher performance since it eliminates the
computation-intensive isomorphism tests with lots of edge-
dimension random accesses and avoids checking the sub-
graphs not matching the pattern. AutoMine [13] outperforms
RStream [20] and Arabesque [19] by several orders of magni-
tude on real-world graphs of different scales. Therefore, we fo-
cus on the pattern-enumeration algorithm for GPMI applications.
Pattern enumeration steps: Figure 2 shows the steps of pattern
enumeration with AutoMine algorithm. First, it generates all
patterns according to the requirements of the application (Step
1). Then, for each pattern, it first constructs a colored complete
pattern graph to encode all the neighborhood relations of the
vertices in the pattern (Step 2). Specifically, it paints all present
edges black and adds red edges for the absent ones. Next, it
assigns an order to the vertices of the pattern, and specifies the
direction for the edges from small id vertices to large id vertices
(Step 3). Finally, according to the vertex ids and the directed
edges, we can construct a multi-layer nest for loop (pseudocode
in Figure 2) to find all embeddings (also called subgraphs) that
match the pattern. Each vertex in the pattern is associated with
a for loop. The loops start from the smallest vertex id v0. If
the incoming edge (i, j) is black, which means there is an edge
between vertices i and j, then vertex j belongs to the intersection
of the neighbor sets of vertex i; if the edge is red, which means
there is no edge between vertices i and j, then vertex j belongs
to the subtraction of the neighbor set of the vertex i. Take v2
in the 3-size pattern 1 as an example, since the incoming edge
(0, 2) is black and edge (1, 2) is red, v2 ∈ N(v0)−N(v1).

2.3 Motivation
Identify suitable PIM workload from GPMI applications.
As shown in Figure 2, accessing the neighbor vertices and
operating on the neighbor vertex list (e.g., N(v0), N(v1)) with
intersect(∩) and subtraction(−) set operations (I/S operations in
short) are critical and memory-intensive. This makes I/S oper-
ations include most of the memory accesses of the nest for loop
function. Table 1 summarizes the execution time and memory
access ratios of the I/S operations in the nest for loop function
on 5 different graphs (The details of the graphs are shown in
Table 2).

TABLE 1
The time and memory access ratios of I/S operations in the

nest for loop function.
Matching Size Graph Execution time ratio Memory access ratio

3-size

CiteSeer 19.12% 38.97%
MiCo 29.67% 94.16%

Patents 23.65% 85.46%
Youtube 16.67% 92.82%

LiveJournal-1 24.70% 96.04%

4-size
CiteSeer 26.16% 36.29%

MiCo 32.87% 96.06%
Patents 25.00% 89.42%

The data is collected by running the applications on a 16-
core CPU simulator (details in §4.1). We find that I/S operations
account for 20∼33% of the entire nest for loop execution time.
Moreover, the number of memory accesses coming from I/S
operations accounts for 85∼96%, except for CiteSeer. CiteSeer
graph is relatively small (84KB) and can fit into the cache
(Table 3), so the I/S operations generate a relatively small
proportion of memory accesses. In other larger graphs, I/S
memory access accounts for more than 85%, which can be
considered as a memory-intensive application. Therefore, it is
reasonable to offload I/S operations to PIM. Note that the I/S
operations do not dominant the execution time, other code
blocks which involve complex computation but few memory
accesses (e.g., select the execution order of the I/S operations,
and remove the duplication of the result in each for loop)
also need to be optimized with other software or hardware
approaches.
Load imbalance of I/S operations. Additionally, from Figure 2,
we know that finding n-size patterns requires n layers of for
loops. When executing the code on multiple cores, the most
straightforward way is to assign the I/S operations (the second
for loop to the last for loop) to the same core base on the
root vertex (v0 in the first-level loop). Such a method (root
vertex-based assignment) can guarantee the data dependency
of following I/S operations.

However, the number of loops at each layer is determined
by the results of I/S operations (e.g., N(v0)−N(v1) in Figure 2),
which varies a lot based on patterns or graphs, and cannot
be determined by offline profiling. In comparison, for general
graph processing applications such as BFS and PR, the work-
load of each vertex is small and easy to obtain from the vertex
degree. Therefore, compared with general graph processing
applications, the workloads of GPMI applications on different
cores could differ significantly. As the matching size increases,
the number of layers of the for loop increases, resulting in a
more significant load imbalance. Also, PIM usually has much
more cores (128 in this paper) than the host, making the load
imbalance problem even worse. To fully utilize the parallelism
brought by the PIM architecture, we should address the load
imbalance issue properly.

3 I/S OPERATION SCHEDULING

We now describe the following three root vertex-based
scheduling methods. Note that, round-robin and balanced
queue are two common scheduling schemes to address load
imbalance issue. We also show the results of No Dependency on
PIM as a reference, representing the ideal case where we do not
consider the execution dependencies between I/S operations.
Our system settings can be found in §4.1.
• I/S on CPU (CPU). This scheme only uses CPU cores. The

nest for loop function is assigned to different CPU cores ac-
cording to their root vertices (v0) IDs.

• Round-robin on PIM (RR). I/S operations are all executed
on PIM cores. Based on the root vertex ids, the nest for loop
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functions (tasks) on CPU core 0 are assigned from PIM core 0
to PIM core 7 in turn, and then from PIM core 7 to PIM core
0 in reverse.

• Balanced queue on PIM (BQ). In the PIM core, for each
I/S operation, we sum the lengths of the two arrays (N(vi)
and (N(vj)) to estimate the workload of this I/S operation
and store the estimated workload in a queue. Then for an
incoming task, the host assigns the task to a corresponding
PIM core with the least workload in the queue.

• No Dependency on PIM (Ideal). This scheduling method
ignores the dependencies among all I/S operations with the
same root vertex and treats each single I/S operation as an
independent task. I/S operations are assigned to different
PIM cores through the round robin strategy.

4 EVALUATION

4.1 Experimental Setup
Graph Datasets. Table 2 shows the five real-world graphs used
in our experiments. These graphs are used in most graph
mining papers, such as Arabesque [19], RStream [20], and
AutoMine [13]. Before execution, we sort the vertices based on
their degree from largest to smallest (the id of the vertex with
the highest degree is 0, the id with the second highest degree is
1, and so on).
Applications. We run 3-size and 4-size motif counting (MC) in
the experiments. For 3-size MC, there are 2 different patterns;
and for 4-size MC, there are 6 different patterns (Figure 1). We
evaluate the performance of these 8 patterns separately.
System Configurations. We use ZSim [17] with Ramulator [10]
to simulate the host CPU and PIM system. We modify Zsim
to generate traces for the CPU and PIM when executing the
nest for loop function. We also modify Ramulator to support 16
CPU cores with 3-level caches and 128 PIM cores (following
Samsung PIM core number [11]) with L1i and L1d caches. All
caches use LRU policy. The host CPU frequency is 4 times of the
PIM core frequency, which is also adopted from the Function-
In-Memory DRAM [11]. We allow one CPU core to assign tasks
to the corresponding 8 PIM cores (CPU core 0 offloads tasks to
PIM cores 0-7, etc). Table 3 shows the detailed configurations of
our simulated system.

4.2 Experimental Results and Analysis
Figure 3 shows the I/S operation execution time with dif-

ferent scheduling schemes. We present two values for each
experiment: the longest time (in light color) all cores finish the
workload; the average time (in shaded color) spent on each core
to complete the workload. The closer the longest time is to the
average time, the more balanced the workload at each core.
Average time. For all graphs and patterns, the average I/S
time on PIM is around half the average time on the CPU. This
indicates that the selected I/S operations are indeed suitable
for PIM execution. While the number of PIM cores is 8 times
the CPU cores, the frequency of the PIM is 4 times slower than
that of the CPU. Taken together, PIM is twice as fast as CPU.
Second, for the three scheduling methods on PIM, although the
task scheduling methods are different, the total workload is the
same, so the average time of the three methods is very close.

TABLE 2
Graph Datasets [13]

5% Deg. = the top 5% node degrees / all node degrees.
Graphs Vertices Edges Size Avg.Deg. Max.Deg. 5% Deg.
CiteSeer 3264 4536 84KB 2.78 99 23.2%

MiCo 100K 1.08M 18MB 21.60 1359 29.9%
cit-Patents 3.77M 16.52M 332MB 8.75 793 22.9%

com-Youtube 1.13M 2.99M 57MB 5.27 28,754 56.7%
soc-LiveJournal1 4.85M 43.11M 1.2G 17.79 20,334 42.4%

TABLE 3
System configurations

Host Processer [1], [6]
Cores 16 OoO cores, 4GHz, 4-issue

L1I Cache private, 32KB, 4-way, 4-cycle , 64B, 16 MSHRs
L1D Cache private, 32KB, 8-way, 4-cycle , 64B, 16 MSHRs
L2 Cache private, 256KB, 8-way, 12-cycle, 64B, 16 MSHRs
L3 Cache shared, 16MB, 8 banks, 16-way, 28-cycle, 64B, 16 MSHRs per bank

PIM Cores
Cores 128 in-order cores, 1GHz, 4-issue [1], [7], [11]

L1I Cache private, 32KB, 4-way, 4-cycle, 64B, 16 MSHRs [6]
L1D Cache private, 32KB, 8-way, 4-cycle, 64B, 16 MSHRs [6]

3D Memory Stack
Organization 4GB, 4 layers × 32 vaults × 1 stack [3]

Timing Parameters tCK = 1 ns, tRAS = 27 ns, tRCD = 14 ns,
tCL = 14 ns, tWR = 15 ns, tRP = 14 ns [14]

Serial links 4 links, 16 bits link width, 30Gb/s lane speed,
total 240GB/s bandwidth [3]

Internal links 32 links, 12 Bytes/cycle, 15GB/s per link,
total 480GB/s bandwidth [14]

Load imbalance on CPU and PIM. We observe moderate
load imbalance on CPU for most patterns and graphs, except
for Youtube 3-size pattern 1 and CiteSeer 4-size pattern 1.
Meanwhile, since PIM has more cores, we observe a much
more severe load imbalance. Compared to the CPU cores, while
the average time with PIM cores is reduced, the longest time
may not(e.g., with RR scheduling). In CiteSeer, 3-size Youtube,
and 4-size Mico pattern 1&3, imbalanced workload makes I/S
operations completion time on PIM longer than on CPU.
Effectiveness and limitations of PIM-side scheduling. With
BQ scheduling, we use static information (length of two neigh-
boring lists) to estimate each core’s workload. BQ can effec-
tively mitigate the load imbalance in various input graphs.
However, compared to the Ideal case, we can further reduce
a performance gap on 3-size pattern 1, 4-size patterns 1-3. The
results show that, while the length of two neighboring lists can
estimate the heaviness of workload per core, using the root
vertex to partition the I/S operations could lead to a large task
on a core, and no matter how the task is scheduled, it will
always be the bottleneck.
Load imbalance regarding pattern size. As the pattern size
increases, the number of for loop layers of the nest for loop
function increases, and the workload of a single task scheduled
by root vertex increases, resulting in more obvious workload
differences of each task. For CiteSeer, Mico and Patents graphs,
all the scheduling methods of 4-size pattern 1 are more unbal-
anced than the corresponding 3-size pattern 1.
Load imbalance regarding pattern shape. As discussed in
§2.3, due to the root vertex-based task assignment, the task per
core can vary a lot based on the results of the I/S operations.
Additionally, the characteristics of patterns can also determine
the load. The patterns in Figure 1 can be divided into three cat-
egories: a) 3-size pattern 1, 2; b) 4-size pattern 1, 3, 5, 6; c) 4-size
pattern 2, 4. In each category, a following pattern has one more
edge than the previous pattern. In the nest for loop, adding an
edge to the pattern means that a subtraction(−) operation in the
for loop will be replaced by a intersection(∩) operation. Since
A−B = A∩B, according to the data in Table 2, the edges of all
graphs are sparse, which means that |N(v)| >> |N(v)|. There-
fore, |N(vi) − N(vj)| = |N(vi) ∩ N(vj)| >> |N(vi) ∩ N(vj)|.
As a result, the execution time and load imbalance decreases
when we extend the edge in each category: a) 3-size: pattern
1 > 2; b) 4-size: pattern 1 > 3 > 5 > 6; c) 4-size pattern 2
> 4. Our experimental results in Figure 3 also show the same
behavior. This is also reason that for the 3-size pattern 2 and 4-
size patterns 4, 5, and 6, the root vertex BQ scheduling method
can almost mitigate the load imbalance, but the scheduling
method needs to be optimized for other patterns with more
subtraction operations.
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Fig. 3. The I/S operation performance of 3-size and 4-size matching.

Potential solutions to address load imbalance with PIM
architecture. As such, to fully utilize the PIM architecture to
accelerate the I/S operations, there is a need to address the load
imbalance issue, which cannot be mitigated with conventional
scheduling schemes (RR or BQ) for graph processing. Two
potential solutions are: divide the workload based on non-root
vertex id so that the scheduling can be done at a finer grain;
implement work stealing mechanisms among PIM cores so that
the workload distribution to PIM cores can be determined at
runtime.
Impact of parallelism and bandwidth. We have also evaluated
the execution time of the BQ scheduling method on 128 CPU
cores. Due to the limited space, we discuss the average execu-
tion time of running 3-size pattern 1 on the CiteSeer graph as
an example. On 16 CPU cores at 4GHz is 31.3 ms, on 128 CPU
cores at 4GHz is 11.9 ms. By reducing the CPU core frequency
to 1GHz, on 128 cores, the time is 21.3 ms. In comparison,
on 128 OoO PIM cores, the time is 15.9 ms, and on 128 in-
order PIM cores, the time is 21.6 ms. We observe that both
parallelism and bandwidth of PIM architecture could impact
the performance. The parallelism gained from 16 CPU cores
to 128 CPU cores improves the I/S operation performance by
2.6x. When all are running at 1GHz, 128 OoO PIM cores can
be 1.34x faster than 128 OoO CPU cores, which means that the
high memory bandwidth can also help with the performance.

5 RELATED WORK

Several recent works proposed specialized hardware for
GPMI applications. GRAMER [21] adds a specialized memory
hierarchy, where the valuable data permanently resides in the
static memory while others are dynamically maintained in a
cache-like memory with a lightweight replacement strategy
to improve the performance. IntersectX [16] accelerates graph
mining with the help of the extension of stream instructions
set and the architectural improvement based on conventional
processors. SISA [2] uses specialized set-centric ISA and in-
memory logic to alleviate the bandwidth requirements of the set
operations. Compared with the concurrent work listed above,
we focus on leveraging general-purpose PIM cores to accelerate
GPMI applications with balanced data and task allocation.
Moreover, we identify that, to efficiently exploit the compu-
tation power of host and PIM, we have to carefully schedule
the operations while maintaining the correct dependencies be-
tween loops. The observations and challenges are not discussed
in any other work.

6 CONCLUSIONS

To conclude, in this work, we identify the PIM-suitable
I/S operations in GPMI applications and evaluate them on
general purpuse PIM architecture. However, it is challenging
to maintain good load balancing when assigning tasks from
the host to the PIM. We find that load imbalance significance
depends on many factors, including the pattern itself. We
evaluate two classical scheduling schemes and find out that
static scheduling schemes for improving load balance cannot
fully solve the problem. The root cause is from the unique
GPMI algorithm: using the root vertex to partition the I/S
operations could lead to a large task on a core, and no matter
how the task is scheduled, the large task will always be the
bottleneck. Based on the observations, we plan to explore fine-
grained scheduling schemes with runtime work-stealing to
further release the power of PIM architecture for this new class
of applications.
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