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Gaussian Half-Duplex Diamond Networks:
Ratio of Capacity the Best Relay can Achieve

Sarthak Jain, Soheil Mohajer, Martina Cardone

Abstract—This paper considers Gaussian half-duplex
diamond n-relay networks, where a source communicates
with a destination by hopping information through one
layer of n non-communicating relays that operate in
half-duplex. The main focus consists of investigating the
following question: What is the contribution of a single
relay on the approximate capacity of the entire network?
In particular, approximate capacity refers to a quantity
that approximates the Shannon capacity within an additive
gap which only depends on n, and is independent of the
channel parameters. This paper answers the above question
by providing a fundamental bound on the ratio between
the approximate capacity of the highest-performing single
relay and the approximate capacity of the entire network,
for any number n. Surprisingly, it is shown that such a
ratio guarantee is f = 1/(2 + 2 cos(2π/(n + 2))), that is a
sinusoidal function of n, which decreases as n increases.
It is also shown that the aforementioned ratio guarantee
is tight, i.e., there exist Gaussian half-duplex diamond n-
relay networks, where the highest-performing relay has
an approximate capacity equal to an f fraction of the
approximate capacity of the entire network.

Index Terms—Half-duplex, approximate capacity, dia-
mond network, relay selection.

I. INTRODUCTION

Relaying is foreseen to play a key role in the next gener-
ation technology, promising performance enhancement of
several components of the evolving 5G architecture, such
as vehicular communication [1], [2], millimeter wave
communication [3], [4] and unmanned aerial vehicles
communication [5], [6]. Relays can be classified into
two main categories, namely full-duplex and half-duplex.
While a full-duplex relay can simultaneously receive
and transmit over the same time/frequency channel, a
half-duplex relay has to use different times/bands for
transmission and reception. A critical aspect for the
implementation of the full-duplex technology consists
of the design of proper Self-Interference Cancellation
(SIC) techniques [7], [8], [9]. Specifically, SIC techniques
can be broadly classified into three main categories,
namely: (i) propagation-domain, (ii) analog-domain, and
(iii) digital-domain. While the first technique leverages the
use of multiple antennas at the transmitter and receiver,
the other two techniques are based on the premise that
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a replica signal – similar to the SI signal – can be
created (in the analog or digital domain), and used to
subtract the SI signal from the received signal. These
techniques work well in some scenarios, but their physical
layer robustness is yet to be exhaustively demonstrated
in different operating environments. Additionally, the
current prototypes are larger and more complicated than
practically desirable [10], [11], and the SIC operation
might also require a significant energy consumption
which cannot be sustained in scenarios where low-cost
communication modules are needed and nodes have
limited power supply. Given this, it is expected that
half-duplex will still be widely used in next generation
wireless networks [12].

In wireless networks with relays, several practical
challenges arise. For instance, relays must synchronize for
reception and transmission, which might result in a highly-
complex process. Moreover, operating all the relays might
bring to a severe power consumption, which cannot be
sustained. With the goal of offering a suitable solution
for these practical considerations, in [13] the authors
pioneered the so-called wireless network simplification
problem, which seeks to provide fundamental guarantees
on the amount of the entire network capacity that can be
retained by operating only a subset of the relays.

In this paper, we investigate the network simplifi-
cation problem in Gaussian half-duplex diamond n-
relay networks, where a source communicates with a
destination by hopping information through a layer of n
non-communicating half-duplex relays. Our main result
consists of deriving a fundamental bound on the amount
of the approximate capacity1 of the entire network that
can be retained when only one relay is operated. This
bound amounts to f = 1

2+2 cos(2π/(n+2)) , i.e., a fraction
f of the approximate capacity of the entire network
can always be retained by operating a single relay. The
merit of this result is to provide fundamental trade-
off guarantees between network resource utilization and
network capacity. For instance, assume a Gaussian half-
duplex diamond network with n = 3 relays. Our result
shows that if one wants to achieve 38% (or less) of
the approximate capacity of the entire network, then it
suffices to use only one relay, whereas if larger rates
are desirable then it might be needed to operate two

1As we will thoroughly explain in Section II, approximate capacity
refers to a quantity that approximates the Shannon capacity within
an additive gap which only depends on n, and is independent of the
channel parameters.
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or three relays. We also show that the guarantee f is
tight, i.e., there exist Gaussian half-duplex diamond n-
relay networks where the highest-performing relay has
an approximate capacity equal to f of the entire network
approximate capacity. To prove this, we provide two
network constructions (one for even and the other for
odd values of n) for which this guarantee is tight.

A. Related Work

Characterizing the Shannon capacity for wireless relay
networks is a long-standing open problem. In recent years,
several approximations for the Shannon capacity have
been proposed among which the constant gap approach
stands out [14], [15], [16], [17], [18]. The main merit
of these works is to provide an approximation that is at
most an additive gap away from the Shannon capacity;
this gap is only a function of the number of relays n, and
it is independent of the values of the channel parameters;
because of this property, this gap is said to be constant.
In the remaining part of the paper, we refer to such an
approximation as approximate capacity.

In a half-duplex wireless network with n relays, at each
point on time, each relay can either receive or transmit,
but not both simultaneously. Thus, it follows that the
network can be operated in 2n possible receive/transmit
states, depending on the activity of each relay. In [19], the
authors proved a surprising result: it suffices to operate
any Gaussian half-duplex n-relay network with arbitrary
topology in at most n + 1 states (out of the 2n possible
ones) in order to characterize its approximate capacity.
This result generalizes the results in [20], [21] and [22],
which were specific to Gaussian half-duplex diamond
relay networks with limited number of relays n. This
line of work has given rise to the following question:
Can these n+1 states and the corresponding approximate
capacity be found in polynomial time in n? The answer
to this question is open in general, and it is known only
for paths, i.e., the so-called line networks [23], and for a
specific class of layered networks [24]. Recently, in [25],
the authors derived sufficient conditions for Gaussian
half-duplex diamond networks, which guarantee that the
approximate capacity and a corresponding set of n + 1
optimal states can be found in polynomial time in n.

In this work, we are interested in providing funda-
mental guarantees on the approximate capacity of the
entire network that can be retained when only one relay
is operated. This problem was first formulated in [13] for
Gaussian full-duplex n-relay diamond networks: it was
proved that there always exists a sub-network of k ≤ n
relays that achieves at least a fraction of k/(k + 1) of the
approximate capacity of the entire network. Moreover,
the authors showed that this bound is tight, i.e., there
exist Gaussian full-duplex n-relay diamond networks in
which the highest-performing sub-network of k relays
has an approximate capacity equal to k/(k + 1) of the
entire network approximate capacity. Recently, in [26]
the authors analyzed the guarantee of selecting the

highest-performing path in Gaussian full-duplex n-relay
networks with arbitrary layered topology. Very few results
exist on the network simplification problem in half-
duplex networks. In [27], the authors showed that in
any Gaussian half-duplex n-relay diamond network, there
always exists a 2-relay sub-network that has approximate
capacity at least equal to 1/2 of the approximate capacity
of the entire network. Recently, in [28] the authors
proved a tight guarantee for Gaussian half-duplex n-
relay diamond networks: there always exists an (n − 1)-
relay sub-network that retains at least (n − 1)/n of the
approximate capacity of the entire network. Moreover,
they showed that when n � 1, then for k = 1 and k = 2
this guarantee becomes 1/4 and 1/2, respectively, i.e., the
fraction guarantee decreases as n increases. These results
are fundamentally different from full-duplex [13], where
the ratio guarantee is independent of n. The main merit
of our work is to provide an answer to a question that
was left open in [28], namely: What is the fundamental
guarantee (in terms of ratio) when k = 1 relay is operated,
as a function of n?

B. Paper Organization

Section II describes the Gaussian half-duplex diamond
relay network, and defines its approximate capacity.
Section III presents the main result of the paper, by
providing a tight bound on the approximate capacity
of the best relay with respect to the entire network
approximate capacity. Section IV provides the proof of the
bound, and Section V presents some network realizations
that satisfy the bound with equality, hence showing that
the ratio proved in Section IV is tight. Finally, Section VI
concludes the paper. Some of the more technical proofs
are in the Appendix.

II. NETWORK MODEL

Notation. For two integers n1 and n2 ≥ n1, [n1 : n2]
indicates the set of integers from n1 to n2. For a complex
number a, |a| denotes the magnitude of a. Calligraphic
letters (e.g., A) denote sets. For two sets A and B, A ⊆
B indicates that A is a subset of B, and A ∩B denotes
the intersection between A and B. The complement of
a set A is indicated as Ac; � is the empty set. E[·]
denotes the expected value. Finally, bxc is the floor of x.

The Gaussian half-duplex diamond n-relay network
N consists of two hops (and three layers of nodes), as
shown in Fig. 1: the broadcast hop between the source
(node 0) and the set of n relays {R1,R2, ...,Rn}; and the
multiple access hop between the relays {R1,R2, ...,Rn}

and the destination (node n+1). The n relays are assumed
to be non-interfering, and the source can communicate to
the destination only by hopping information through the
relays, i.e., there is no direct link from the source to the
destination. Note that this assumption of absence of direct
link models wireless settings where the source and the
destination are at a distance greater than the transmission
range of the transmitter and hence, the signal sent by the
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Fig. 1: Gaussian half-duplex diamond network with n relays.

transmitter will be received at or below the noise level at
the destination. For instance, consider a scenario where
the n relays are placed in the middle between the source
and the destination, i.e., for all i ∈ [1 : n] we have that
dsi ≈ d and did ≈ d where dsi (respectively, did) is the
distance between the source and relay i (respectively, relay
i and the destination). It therefore follows that dsd , namely
the distance between the source and the destination is
dsd ≈ 2d. From the simplified path loss model [29], the
power received at the destination through the direct link
can be written as Pdl

r ≈ PtK (d0/2d)γ, where: (i) Pt is
the transmit power at the source, (ii) K is a unitless
constant that depends on the antenna characteristics and
the average channel attenuation, (iii) d0 is a reference
distance for the antenna far field (typically assumed to
be 1-10 meters indoors and 10-100 meters outdoors),
and (iv) γ is the path loss exponent, which depends on
the propagation environment and varies between 2 (free
space propagation) and 6 (indoor scenarios such as office
building with multiple floors). Thus, the received power
at the destination through the direct link is approximately
3γ dB smaller than the one received through each of
the n relays, i.e., this attenuation varies between 6 dB
(when γ = 2) and 18 dB (when γ = 6). Thus, in this
range, the signal received through the direct link can
be assumed to be received below the noise floor, and
hence treated as noise at the destination. Furthermore,
it is important to note that the diamond network is the
most basic relay network model which captures two
inherent aspects of wireless communication, namely: (i)
its broadcast nature, and (ii) signal superposition (at
the destination). Therefore, understanding the diamond
network is a crucial first step towards understanding more
complicated models such as those considering a direct
link between the source and destination.

Relays are assumed to operate in half-duplex mode,
i.e., at any given time they can either receive or transmit,
but not both simultaneously. The input/output relationship
for the Gaussian half-duplex diamond n-relay network at
time t is defined as

Yi,t = (1 − Si,t )(hsiX0,t + Zi,t ), ∀i ∈ [1 : n], (1a)

Yn+1,t =

n∑
i=1

Si,thidXi,t + Zn+1,t, (1b)

where: (i) Si,t is a binary variable that indicates the state
of relay Ri at time t; specifically, Si,t = 0 means that relay
Ri is in receiving mode at time t, and Si,t = 1 means that
relay Ri is in transmitting mode at time t; (ii) Xi,t, ∀i ∈
[0 : n] is the channel input of node i at time t that satisfies
the unit average power constraint E[|Xi,t |

2] ≤ 1; (iii) hsi
and hid are the time-invariant2 complex channel gains
from the source to relay Ri and from relay Ri to the
destination, respectively; (iv) Zi,t , i ∈ [1 : n + 1] is the
complex additive white Gaussian noise at node i; noises
are independent and identically distributed as CN(0,1);
and finally (v) Yi,t, ∀i ∈ [1 : n + 1] is the received signal
by node i at time instant t.

The Shannon capacity (a.k.a. the maximum amount of
information flow) for the Gaussian half-duplex diamond
n-relay network in (1) is unknown in general and its
computation is notoriously an open problem (even for
the case of one relay). However, it is known that the
cut-set bound provides an upper bound on the network
capacity [30]. Moreover, several relaying schemes, such
as quantize-map-and-forward [15] and noisy network
coding [16] have been shown to achieve rates within a
constant additive gap from the Shannon capacity. We
continue with the following definition.

Definition 1. For the Gaussian half-duplex diamond n-
relay network N described in (1), define

Cn(N) = max
λ

t

s.t. t ≤
∑
S⊆[1:n]

λS

(
max

i∈Sc∩Ωc
`i + max

i∈S∩Ω
ri

)
,∑

S⊆[1:n]
λS = 1, λS ≥ 0, ∀S ⊆ [1 : n],

(2)

where the first set of constraints hold for all Ω ⊆ [1 : n],
and ∀i ∈ [1 : n] we have that

`i = log(1 + |hsi |2), ri = log(1 + |hid |2).

In the above definition, `i and ri are the point-to-point
capacities of the link from the source to relay Ri and
of the link from relay Ri to the destination, respectively.
Moreover, in (2) we have that: (i) S ⊆ [1 : n] corresponds
to the state of the network in which the relays Ri, i ∈ S,
are in transmitting mode, while the rest of the relays are
in receiving mode; (ii) λS denotes the fraction of time
that the network operates in state S; (iii) λ is the vector
obtained by stacking together λS,∀S ⊆ [1 : n], and is
referred to as a schedule of the network; (iv) Ω ⊆ [1 : n]
is used to denote a partition of the relays in the ‘side of
the source’, i.e., {0}∪Ω is a cut of the network; similarly,
Ωc = [1 : n] \Ω denotes a partition of the relays in the
‘side of the destination’; note that, for a relay Ri, i ∈ Ω,
to contribute to the flow of information we also need
i ∈ S; similarly, for a relay Ri, i ∈ Ωc, to contribute to

2The channel coefficients are assumed to remain constant for the
entire transmission duration and hence, they are known to all the nodes
in the network.
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Fig. 2: The 4 possible cuts in Gaussian half-duplex diamond networks with n = 2 relays.

For Ω = � : t ≤ max(`1, `2)λ� + `2λ{1} + `1λ{2} + 0λ{1,2},
For Ω = {1} : t ≤ `2λ� + (`2 + r1)λ{1} + 0 λ{2} + r1 λ{1,2},

For Ω = {2} : t ≤ `1λ� + 0λ{1} + (`1 + r2) λ{2} + r2 λ{1,2},

For Ω = {1,2} : t ≤ 0λ� + r1λ{1} + r2 λ{2} +max(r1,r2) λ{1,2},

Sum of λ : 1 = λ� + λ{1} + λ{2} + λ{1,2},
Non-negativity of λ : λ ≥ 0.

(3)

the flow of information we also need i ∈ Sc . In what
follows, we illustrate this through a simple example.
Example. Consider a Gaussian half-duplex diamond
network with n = 2. Then, for this network there are
22 = 4 possible cuts (as shown in Fig. 2), each of which
is a function of 22 = 4 possible receive/transmit states
(i.e., R1 and R2 are in receiving mode, R1 and R2 are in
transmitting mode, one among R1 and R2 is in receiving
mode and the other is in transmitting mode). Then, the
optimization problem in (2) will have the constraints
given in (3), at the top of this page. �

The following proposition is a consequence of [13],
[15], [16], and shows that Cn(N) in Definition 1 is
within a constant additive gap from the Shannon capacity.
Because of this property, in the remaining of the paper
we refer to Cn(N) as approximate capacity. Specifically,
in [13] the authors have shown that the cut-set bound of
a Gaussian n-relay full-duplex diamond network can be
approximated within a constant gap that is logarithmic
in n, in terms of its individual link capacities, i.e.,
(`i,ri), i ∈ [1 : n]. In half-duplex this gap becomes linear
in n to account for the fact that there are 2n network
states (and hence the entropy term will be upper bounded
by n – see also [18]). In [15], the authors have designed a
scheme based on quantize-map-and-forward [14] (which
is a network generalization of compress-and-forward)
and proved that it approximates the cut-set bound of
any (i.e., not necessarily diamond) Gaussian half-duplex
relay network within a constant gap that is linear in
n. Thus, the results in [13] and [15] lead to the result
in Proposition 1. It is also worth noting that the noisy

network coding scheme [16] (which is also a network
generalization of compress-and-forward) can be used as
an alternative scheme to quantize-map-and-forward for
claiming Proposition 1.

Proposition 1. Let CG
n (N) be the capacity of the

Gaussian half-duplex diamond n-relay network N in (1),
and Cn(N) be the quantity defined in Definition 1. Then,��CG

n (N) − Cn(N)
�� ≤ κn,

where κn = O(n) only depends on the number of relays
n, and is independent of the channel coefficients.

The optimization problem in (2) seeks to maximize
the source-destination information flow. This can be
computed as the minimum flow across all the network
cuts. Moreover, each relay can be scheduled for re-
ception/transmission so as to maximize the information
flow. Thus, the problem in (2) is a linear optimization
problem with O(2n) constraints (corresponding to the 2n
network relay partitions Ω ⊆ [1 : n]), and O(2n) variables
(corresponding to the 2n network states S ⊆ [1 : n]).

III. PROBLEM STATEMENT AND MAIN RESULT

An important problem in wireless communication is
to characterize the fraction of the network (approximate)
capacity that can be achieved by using only a subset of the
relays in the network, while the remaining relays remain
silent. In this work, we address this question for a single
relay case in a Gaussian half-duplex diamond n-relay
network. More precisely, we characterize fundamental
guarantees on the approximate capacity of the best single
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relay sub-network, as a fraction of the approximate
capacity of the entire network N .

We note that the approximate capacity Cn(N) in (2)
is a function of the network N only through the point-
to-point link capacities (`i,ri), i ∈ [1 : n]. Thus, with a
slight abuse of notation, in what follows we let N =
{(`i,ri), i ∈ [1 : n]}. We also use Ni = {(`i,ri)} to denote
a half-duplex network consisting of the source, relay Ri

and destination. By solving the problem in (2) for the
single relay Ri, i ∈ [1 : n], we obtain that the approximate
capacity of Ni is given by

C1(Ni) =
`iri
`i + ri

. (4)

We also define the best single relay approximate capacity
of the network as the maximum approximate capacity
among the single relay sub-networks, that is,

C1(N) = max
i∈[1:n]

C1(Ni).

Our goal is to find universal bounds on C1(N)/Cn(N),
which hold independently of the actual value of the
channel coefficients. In particular, our main result is
given in the next theorem, the proof of which is provided
in Sections IV and V.

Theorem 1. For any Gaussian half-duplex diamond
network N with n relays and approximate capacity
Cn(N), the best relay has an approximate capacity
C1(N) such that

C1(N)

Cn(N)
≥

1

2 + 2 cos
(

2π
n+2

) . (5)

Moreover, the bound in (5) is tight, i.e., for any positive in-
teger n, there exist Gaussian half-duplex diamond n-relay
networks for which the best relay has an approximate
capacity that satisfies the bound in (5) with equality.

Fig. 3 provides a graphical representation of the bound
in (5) as a function of the number of relays n. Before
concluding this section, we state a few remarks.

Remark 1. The bound in (5) for n = 2 and n → ∞
reduces to

C1(N)

Cn(N)
≥

{
1/2 n = 2,
1/4 n→∞,

which subsumes the result of [28]. However, the bound
in (5) provides a tight and non-asymptotic guarantee for
any n, which was left as an open problem in [28].

Remark 2. The bound in (5) has a surprising behavior,
which depends on the cosine of a function of n. This
is also fundamentally different from the result in full-
duplex [13], where it was shown that the best relay has
always a capacity that is at least 1/2 of the approximate
capacity of the entire network, independent of n.

Remark 3. Fig. 4 shows some of the statistics of the ratio
C1(N)/Cn(N) for networks with randomly generated

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
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Fig. 3: Analytical ratio in (5) as a function of n.

(`i,ri), i ∈ [1 : n], where (|hsi |, |hid |) follow the Rayleigh
distribution with scale parameter σ = 1. For each n ∈
[1 : 10], 1000 sample networks were generated. The
ratio C1(N)/Cn(N) for these 1000 networks is plotted
as a box-plot, wherein on each box: (i) the central mark
indicates the median; (ii) the top and bottom edges of the
box indicate the 75th and 25th percentile, respectively.
Any point which is at a distance of more than 1.5 times the
length of the box from the top or bottom edge is an outlier
(represented by a plus sign). Whiskers are drawn from
the edges of the box to the furthest observations, which
are not outliers. The circular dots indicate the worst case
ratio in (5). From Fig. 4, we observe that networks with
Rayleigh faded channels have a larger ratio on average
than the worst case. For example, consider n = 3: we
have C1(N) ≥ 66% of C3(N) for 50% of the networks
and C1(N) ≥ 72% of C3(N) for 25% of the networks,
while the worst case ratio is only 38.2%.

Remark 4. The result in Theorem 1 provides a guarantee
in terms of the approximate capacities. However, Proposi-
tion 1 readily allows us to obtain a similar guarantee in
terms of the Shannon capacities. From Proposition 1, we
in fact have the following relationships on the Shannon
capacities CG

1 (N) and CG
n (N)

CG
n (N) ≤ Cn(N) + κn, (6a)

CG
1 (N) ≥ C1(N) − κ1, (6b)

where κ1 = 1 and κn = n + 3 log(n). Thus, we have that

CG
1 (N)

CG
n (N)

(6)
≥

C1(N) − κ1
Cn(N) + κn

≥
C1(N) − κ1 − κn

Cn(N)

≥ f −
κ1 + κn
Cn(N)

.

(7)

It is clear that when Cn(N) is large, e.g., when the
network is operated at high SNR, then the term κ1+κn

Cn(N)

in (7) vanishes leading to
CG

1 (N)

CG
n (N)

≥ f . This implication
is the main motivation for our study of ratio guarantees
in terms of the approximate capacity.

IV. PROOF OF THE BOUND IN THEOREM 1

In this section, we formally prove that the bound given
in Theorem 1 is satisfied for any Gaussian half-duplex
diamond network. Towards this end, we first provide
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link coefficients generated from the Rayleigh distribution with
parameter σ = 1.

a few properties on the approximate capacity and the
general theory of optimization in Section IV-A. Then, in
Section IV-B, we provide a sketch of the proof of the
fraction guarantee in (5), and finally in Section IV-C we
use the properties of Section IV-A to prove in detail (5).

A. Properties on the Approximate Capacity

Here, we derive some properties on the approximate
capacity of a Gaussian half-duplex diamond n-relay
network that we will leverage to prove the fractional
guarantee in (5). In particular, we start by stating the
following three properties, which directly follow by
inspection of the optimization problem in (2). We have,

(P1) The approximate capacity Cn(N) is a non-
decreasing function of each point-to-point link
capacity; that is, Cn(N + ε) ≥ Cn(N), for any 2n-
vector ε of non-negative entries.

(P2) The ratio C1(N)/Cn(N) is invariant to scaling all
the point-to-point link capacities by a constant factor;
that is, C1(N)/Cn(N) = C1(αN)/Cn(αN).

(P3) The ratio C1(N)/Cn(N) is invariant to a relabelling
of the relay nodes.

Using the above properties, we have the following lemma.

Lemma 1. Let N? be the collection of half-duplex
diamond n-relay networks for which the ratio C1(·)/Cn(·)

is minimum. Then, there exists N ∈ N? that satisfies the
following three properties:

1 ≤ `1 ≤ `2 ≤ ... ≤ `n−1 ≤ `n ≤ ∞, (8a)
1 ≤ rn ≤ rn−1 ≤ ... ≤ r2 ≤ r1 ≤ ∞, (8b)
`iri
`i + ri

= 1, ∀i ∈ [1 : n]. (8c)

Proof. We first prove that there exists N ∈ N? for which
all the n single relay approximate capacities are identical.
Consider N ∈ N? with approximate capacity Cn(N) and
C1(N) = C1(Nk), i.e., relay Rk has maximum single-
relay approximate capacity among all the relays. Thus,
∀ j ∈ [1 : n] we have

C1(Nk) =
`krk
`k + rk

≥
`jrj
`j + rj

= C1(Nj). (9)

Now, we can create a new network N ′ = {(`′i ,r
′
i ), i ∈ [1 :

n]}, where

`′i =
C1(Nk)

C1(Ni)
`i, r ′i =

C1(Nk)

C1(Ni)
ri, i ∈ [1 : n].

Note that since C1(Nk) ≥ C1(Ni), we have `′i ≥ `i and
r ′i ≥ ri . Hence, Property (P1) implies

Cn(N
′) ≥ Cn(N). (10)

Moreover, for every i ∈ [1 : n], we have

C1(N
′
i ) =

`′ir
′
i

`′i + r ′i
=

(
C1(Nk )

C1(Ni )

)2
`iri

C1(Nk )

C1(Ni )
(`i + ri)

=
C1(Nk)

C1(Ni)
C1(Ni) = C1(Nk),

=⇒ C1(N
′) = max

i∈[1:n]
C1(N

′
i ) = C1(Nk). (11)

This together with (10) yield to C1(N
′)

Cn(N
′)
≤

C1(N)
Cn(N)

, which
impliesN ′ ∈ N?. Now, we can considerN ′′ = 1

C1(Nk )
N ′.

Property (P2) implies that C1(N
′′)

Cn(N
′′)
=

C1(N
′)

Cn(N
′)
≤

C1(N)
Cn(N)

, and
hence N ′′ ∈ N?. Moreover, it is easy to show that in
N ′′ we have C1(N

′′
i ) = 1 for every i ∈ [1 : n]. This

proves (8c) for the network N ′′. Next, we can relabel
the relay nodes such that they will be sorted in ascending
order according to their left-hand link capacities `′′i , and
hence satisfy (8a). Note that Property (P3) guarantees
that the ratio C1(N

′′)/Cn(N
′′) is invariant. Finally, com-

bining (8a) and (8c) readily proves (8b), and concludes
the proof of Lemma 1. �

Next, we present a lemma, that we will use in the
proof of Theorem 1.

Lemma 2. Let A be any set, and { fi(·), i ∈ [1 : t]} be
any set of functions. Then, the two optimization problems
given below have identical solutions:

max
x∈A

y

s.t. y ≤ fi(x), i ∈ [1 : t],
(12)

and, min
µ

max
x∈A

t∑
i=1

µi fi(x)

s.t. µi ≥ 0, i ∈ [1 : t],
t∑

i=1
µi = 1.

(13)

Proof. We prove Lemma 2 by showing that an optimal
solution for (12) is a feasible solution for (13), and an
optimal solution for (13) is a feasible solution for (12).

Let x? be an optimal solution for (12) and assume
j ∈ [1 : t] to be such that fj(x?) ≤ fi(x?),∀i = [1 : t].
Then, the optimal value of (12) is equal to fj(x?). Now,
letting µj = 1, µi = 0,∀i ∈ [1 : t], i , j, and x = x?
in (13), we see that fj(x?) is a feasible solution for (13).
Similarly, let x′ be an optimal solution for (13) and
assume k ∈ [1 : t] such that fk(x′) ≤ fi(x′),∀i = [1 : t].
Then, it is easy to see that the optimal µ′ in (13) is
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given by µ′
k
= 1, µ′i = 0,∀i ∈ [1 : t], i , k; moreover, the

optimal value for (13) is equal to fk(x′). Since x′ ∈ A
and fk(x′) ≤ fi(x′),∀i = [1 : t], then fk(x′) is also a
feasible solution for (12). This concludes the proof of
Lemma 2. �

B. Sketch of Proof of the Fraction Guarantee in (5)
To prove the ratio guarantee in (5), we use Lemma 1

and Lemma 2. We start by noting that the result in
Lemma 1 implies that there always exists an optimal
network N such that C1(Ni) = 1,∀i ∈ [1 : n], and hence
also C1(N) = 1. Thus, proving (5) reduces to proving that,
for any Gaussian half-duplex diamond n-relay network N
with C(Ni) = 1,∀i ∈ [1 : n], we always have Cn(N) ≤

σn + 2, where σn = 2 cos( 2π
n+2 ), or equivalently,

max
N:C1(Ni )=1,∀i∈[1:n]

Cn(N) ≤ σn + 2. (14)

At first glance, the optimization problem in (14) is very
hard to solve because it has O(2n) variables and O(2n)

constraints. Also, it is not convex and does not appear to
follow any nice property. Therefore, in order to simplify
this problem, we construct a sequence of five optimization
problems, namely OPT0−OPT4, where each optimization
problem is either a relaxation of or is equivalent to the
previous optimization problem. In particular, we show
the following flow of simplifications in Section IV-C:

max
N:C(Ni )=1,∀i∈[1:n]

Cn(N)
(a)
= OPT0

(b)
≤ OPT1

(c)
= OPT2

(d)
≤ OPT3

(e)
= OPT4

(f)
=σn + 2,

(15)

where, broadly speaking, the labeled equalities and
inequalities follow from: (a) using C(Ni) = 1,∀i ∈ [1 : n]
to express (`i,ri) using a single variable zi; (b) consid-
ering only a subset of the cut constraints and hence,
enlarging the set over which a feasible solution can be
found; moreover, in this step, the optimization over the
network schedule (which has 2n entries) is relaxed to
an optimization over n variables αi ∈ [0,1], i ∈ [1 : n]
indicating the total fraction of time relay i is in receiving
mode; (c) using Lemma 2; (d) observing that in the
optimal solution of OPT2 some of the variables appear
in a repeated manner and hence, can be grouped together
by also leveraging the fact that the objective function
is convex in these variables; in this step, some of the
constraints are also removed, hence leading to an increase
of the optimum cost function; (e) using Lemma 2; and
(f) using properties of linear homogeneous recurrence
relations of order 2.

C. Proof of the Fraction Guarantee in (5)
We use Lemma 1 to rewrite the constraints in the

optimization problem in (14). Towards this end, we define

zi , `i − 1, i ∈ [1 : n]. (16)

Recall that C1(Ni) =
`iri
`i+ri

= 1. This implies that ri =
1
zi
+ 1. Therefore, the class of networks of interest can

be parameterized by z = [z1, z2, . . . , zn]. Note that the
condition in (8a) implies that 0 ≤ z1 ≤ z2 ≤ ... ≤ zn ≤ ∞.
Rewriting our optimization problem in (14) in terms of
zi’s, and using the definition of the approximate capacity
in (2), we arrive at

OPT0 = max
z

max
λ
Γ

s.t.

Γ ≤
∑
S⊆[1:n]

λS

(
max

i∈Sc∩Ωc
`i + max

i∈S∩Ω
ri

)
, ∀Ω ⊆ [1 : n],∑

S⊆[1:n]
λS = 1, λS ≥ 0, ∀S ⊆ [1 : n],

`i = 1 + zi, ri = 1 +
1
zi
, i ∈ [1 : n],

0 ≤ z1 ≤ z2 ≤ · · · ≤ zn ≤ ∞.

(17)

Reducing the Number of Constraints. Note that the
optimization problem in (17) has one constraint for each
possible partition of the relays Ω ⊆ [1 : n]. Instead of
considering all relay partitions, we can focus on a small
class of them parameterized as Ωt,∀t ∈ [0 : n], where

Ωt = [t + 1 : n], and Ω
c
t = [1 : t]. (18)

That is, Ωt partitions all the relays into two groups,
namely {t + 1, . . . ,n − 1,n} on the ‘source side’, and
{1,2, . . . , t} on the ‘destination side’. With this, the right-
hand side of the cut constraint corresponding to Ωt in (17)
can be simplified as in (19), at the top of the next page,
where the inequality in (a) follows from the fact that, in
the first summation t < Sc implies Sc ∩Ωc

t ⊆ [1 : t − 1],
which together with `1 ≤ `2 ≤ · · · ≤ `n (according
to (8a)) yields maxi∈Sc∩Ωc

t
`i ≤ maxi∈[1:t−1] `i = `t−1. A

similar argument holds for the other three summations
in (a) of (19). The equality in (b) of (19) follows by
letting αt =

∑
S:t<S λS and ᾱt = (1 − αt ) =

∑
S:t∈S λS

for t ∈ [1 : n]. Finally, in (c) we replaced `t by 1+ zt and
rt by 1 + 1

zt
for t ∈ [1 : n], according to the constraints

in (17). Note that, we define zi = −1 for i < [1 : n]. For
instance, for t = 0, the function g0(z,α) reduces to

g0(z,α) = ᾱ1

(
1
z1
+ 1

)
+ α1

(
1
z2
+ 1

)
.

Now, by ignoring all the cut constraints except those in
{Ωt : t ∈ [0 : n]}, we obtain

OPT1 = max
z,α
Γ

s.t. Γ ≤ gt (z,α), ∀t ∈ [0 : n],

αi ∈ [0,1], ∀i ∈ [0 : n + 1],
0 ≤ z1 ≤ z2 ≤ . . . ≤ zn,

z−1 = z0 = zn+1 = zn+2 = −1.

(20)

It is clear that OPT0 ≤ OPT1, where OPT0 and OPT1
are the solutions of the optimization problems in (17)
and in (20), respectively. This follows since in (20) we
only considered a subset of the cut constraints that we
have for solving (17) and hence, we enlarged the set
over which a feasible solution can be found. Moreover,
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∑
S⊆[1:n]

λS

(
max

i∈Sc∩Ωc
t

`i + max
i∈S∩Ωt

ri

)
=

∑
S:t∈S

λS max
i∈Sc∩Ωc

t

`i +
∑
S:t<S

λS max
i∈Sc∩Ωc

t

`i +
∑

S:t+1∈S
λS max

i∈S∩Ωt

ri +
∑

S:t+1<S
λS max

i∈S∩Ωt

ri

(a)
≤

∑
S:t∈S

λS`t−1 +
∑
S:t<S

λS`t +
∑

S:t+1∈S
λSrt+1 +

∑
S:t+1<S

λSrt+2

(b)
= (1 − αt )`t−1 + αt`t + (1 − αt+1)rt+1 + αt+1rt+2

(c)
= ᾱt (zt−1 + 1) + αt (zt + 1) + ᾱt+1

(
1

zt+1
+ 1

)
+ αt+1

(
1

zt+2
+ 1

)
, gt (z,α), (19)

variables α’s can be uniquely determined from λ’s, but
the opposite does not necessarily hold.

Now, using Lemma 2, we can rewrite (20) as the
following optimization problem ]

OPT2 = min
µ

max
z,α

h(µ,z,α)

s.t. µt ≥ 0, ∀t ∈ [0 : n],∑n

t=0
µt = 1,

αi ∈ [0,1], ∀i ∈ [0 : n + 1],
0 ≤ z1 ≤ z2 ≤ . . . ≤ zn,

z−1 = z0 = zn+1 = zn+2 = −1,

(21a)

where

h(µ,z,α) =
n∑
t=0

µtgt (z,α). (21b)

Thus, by means of Lemma 2, we have OPT2 = OPT1.
Optimum z?t ’s Are Grouped. Our next step towards
solving the optimization problem of interest is to show
that in the optimum solution of (21), z?t will appear in
a repeated manner, i.e., except possibly for z?1 and z?n ,
each z?t equals either z?

t−1 or z?
t+1.

We start by taking the derivative of the function
h(µ,z,α) defined in (21b) with respect to each variable
zt , and we obtain

∂

∂zt
h(µ,z,α) = (µtαt + µt−1ᾱt+1)

− (µt−2αt−1 + µt−1ᾱt )
1
z2
t

,

∂2

∂z2
t

h(µ,z,α) = 2(µt−2αt−1 + µt−1ᾱt )
1
z3
t

≥ 0.

Therefore, since αt ’s and µt ’s are non-negative variables,
h(µ,z,α) is a convex function of zt for any fixed
coefficient vectors µ and α. Hence, at the optimum
point (µ?,z?,α?) for (21), each zt should take one of its
extreme values. However, recall that zt ’s are sorted, i.e.,
zt−1 ≤ zt ≤ zt+1. This implies that for the optimum vector
z? = [z?1 , z

?
2 , · · · , z

?
n ] we have3 z?t ∈ {z

?
t−1, z

?
t+1} for

3Otherwise if z?
t−1 < z?t < z?

t+1, the convexity of the function
h(µ, z,α) implies that it can be further increased by either decreasing
z?t to z?

t−1 or increasing it to z?
t+1.

t ∈ [2 : n−1]. Moreover, 0 ≤ z1 ≤ z2 implies z?1 ∈ {0, z
?
2 },

and similarly, zn−1 ≤ zn ≤ ∞ implies z?n ∈ {z
?
n−1,∞}.

More precisely, the parameters (z?1 , z
?
2 , · · · , z

?
n ) can be

grouped into

z?1 = . . . = z?t1 = β1,

z?t1+1 = . . . = z?t2 = β2,

...

z?tm−1+1 = . . . = z?tm = βm,

(22)

where 0 ≤ β1 < β2 < · · · < βm−1 < βm ≤ ∞. Note that
tj−tj−1 (with t0 = 0) is the number of zi’s whose optimum
value equals βj . Also note that m is the number of distinct
values that the collection of z?t ’s take. Note that except for
possibly β1 and βm, each other βj should be taken by at
least two consecutive z?t and z?

t+1, that is tj − tj−1 ≥ 2 for
j ∈ [2 : m−1]. This implies that the number of distinct β’s
cannot exceed n+2

2 . This together with the fact that m is
a non-negative integer, imply 1 ≤ m ≤ b n+2

2 c. Moreover,
if β1 > 0, then z?1 = z?2 = β1, and hence t1 ≥ 2. Similarly,
if z?n < ∞, we have z?n = z?

n−1, and thus tm − tm−1 ≥ 2.
In summary, we have

t1 ≥ 1 if β1 = 0,
t1 ≥ 2 if β1 > 0,
ti − ti−1 ≥ 2 for i ∈ [2 : m − 1],
tm − tm−1 ≥ 1 if βm = ∞,
tm − tm−1 ≥ 2 if βm < ∞.

(23)

Example. Consider a diamond network with n = 5 relays.
For the optimum vector z? = [z?1 , z

?
2 , z

?
3 , z

?
4 , z

?
5 ] we have

z?1 ∈ {0, z
?
2 }, z?2 ∈ {z

?
1 , z

?
3 }, z?3 ∈ {z

?
2 , z

?
4 },

z?4 ∈ {z
?
3 , z

?
5 }, z?5 ∈ {z

?
4 ,∞}.

There are several possible solutions that satisfy the
conditions above. One possibility could be

z?1 = z?2 = z?3 = z?4 = z?5 = β1,

in which case, with reference to (22), we have m = 1
and t1 = 5. Alternatively, we may have

z?1 = 0 = β1, z?2 = z?3 = β2, z?4 = z?5 = β3,
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in which case, with reference to (22), we have m = 3,
t1 = 1 (since β1 = 0), t2 = 3 and t3 = 5. �

We now leverage (22) to rewrite gt (z,α) in (19) in
terms of the optimum values of z?t . In particular, we focus
on functions gt (z,α) for t ∈ {t0 = 0, t1, t2, . . . , tm = n}.
Let β = (β1, β2, . . . , βm). First, for t = t0 = 0, noting that
z−1 = z0 = −1, we have

g0(z
?,α) = ᾱ1

(
1
z?1
+ 1

)
+ α1

(
1
z?2
+ 1

)
(a)
≤ ᾱ1

(
1
z?1
+ 1

)
+ α1

(
1
z?1
+ 1

)
= 1 +

1
β1
, G0(β), (24)

where the inequality in (a) follows from z?1 ≤ z?2 . Next,
for all t ∈ {t1, t2, . . . , tm−1}, we obtain (25), at the top
of the next page. Note that (b) in (25) follows from the
fact that ti − ti−1 ≥ 2, which implies z?

ti−1 = z?ti = βi , and
similarly z?

ti+1 = z?
ti+2 = βi+1. However, for t1 = 1 we

have z?0 = −1, and hence (b) is an inequality, and similarly
for tm − tm−1 = 1 we have z?tm+1

= z?
n+1 = −1 and hence

(b) is also an inequality. Finally, since zn+1 = zn+2 = −1
for t = tm = n, we can write

gn(z
?,α) = αn(z?n + 1) + ᾱn(z?n−1 + 1)

(c)
≤ αn(z?n + 1) + ᾱn(z?n + 1)
= 1 + βm , Gm(β), (26)

where the inequality in (c) holds since z?n ≥ z?
n−1.

Therefore, using (24)-(26) we can upper bound the
objective function of the optimization problem in (21) as

h(µ,z,α) =
n∑
i=0

µigi(z
?,α)

=
∑

i∈{t0 ,...,tm }

µigi(z
?,α) +

∑
i<{t0 ,...,tm }

µigi(z
?,α)

≤

m∑
i=0

µti Gi(β) +
∑

i<{t0 ,...,tm }

µigi(z
?,α). (27)

Further Reduction of the Constraints. Recall that the
optimization problem in (21) includes a minimization
with respect to µ. Hence, setting more restrictions on the
variable µ can only increase the optimum cost function.
Let us set µt = 0 for t < {t0 = 0, t1, t2, . . . , tm = n},
and µti = µ̃i for i ∈ [0 : m]. Here µ̃i’s are arbitrary
non-negative variables that sum up to 1. Incorporating
this and the bound in (27) into the optimization problem
in (21) leads us to

OPT3 = min
µ̃

max
m∈[1: b n+2

2 c]
max
β

m∑
t=0

µ̃tGt (β)

s.t. µ̃t ≥ 0, ∀t ∈ [0 : m],
m∑
t=0

µ̃t = 1,

0 ≤ β1 < β2 < · · · < βm ≤ ∞.

(28)

Note that OPT2 ≤ OPT3 since: (i) the objective function
in (28) is an upper bound for that of (21), and (ii) the
feasible set for µ in (21) is a super-set of that of µ̃
in (28). Finally, we can again apply Lemma 2 on the
optimization problem in (28) and rewrite it as

OPT4 = max
m∈[1: b n+2

2 c]
max
β
Φ

s.t. Φ ≤ Gi(β), ∀i ∈ [0 : m],

0 ≤ β1 < β2 < · · · < βm ≤ ∞,

(29)

where Gi(β)’s are defined in (24)-(26). Note that
Lemma 2 implies that OPT3 = OPT4.
Analysis of the Inner Optimization Problem. Let us
fix m in the optimization problem in (29), and further
analyze the inner optimization problem. This yields

OPT5(m) = max
β
Φ

s.t. Φ ≤ Gi(β), ∀i ∈ [0 : m],

0 ≤ β1 < β2 < · · · < βm ≤ ∞,

(30)

for every fixed m ∈
[
1 : b n+2

2 c
]
. The following lemma

highlights some important properties of the optimum
solution of the optimization problem defined in (30).

Lemma 3. For every integer m, there exists some solution
(β?,Φ?) for the optimization problem in (30) that satisfies

Gi(β
?) = Φ?, ∀i ∈ [1 : m − 1].

Moreover, if β?1 > 0, we have G0(β
?) = Φ?, and similarly,

if β?m < ∞, then Gm(β
∗) = Φ?.

Proof. We use contradiction to formally prove the claim
in Lemma 3. Let Φ? be the optimum value of the
objective function, which can be attained for each β ∈ B,
where B denotes the feasible set of β i.e.,

min
i∈[0:m]

Gi(β) = Φ
?, ∀β ∈ B.

If the first claim in Lemma 3 does not hold, then for every
β ∈ B there exists some minimum q(β) ∈ [1 : m − 1]
such that Gq(β)(β) > Φ

?, i.e., G j(β) = Φ
? for every

j < q(β). Among all optimum points β ∈ B, let β? be
the one with minimum q(β?), that is, q(β) ≥ q(β?) , q.

We have

2 + β?q +
1

β?
q+1
= Gq(β

?)

> Gq−1(β
?) = 2 + β?q−1 +

1
β?q
= Φ?.

It is straight-forward to see that there exists some β̂q
such that β?

q−1 < β̂q < β?q and

2 + β̂q +
1

β?
q+1
= 2 + β?q−1 +

1
β̂q
.

Thus, for the vector β̂ = [β?1 , · · · , β
?
q−1, β̂q, β

?
q+1, · · · , β

?
m]

we have

Gq(β
?) > Gq(β̂) = Gq−1(β̂) > Gq−1(β

?) = Φ?,

G j(β̂) = G j(β
?) ≥ Φ?, j ∈ [0 : m] \ {q,q − 1}.

(31)
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gti (z
?,α) =αti (z

?
ti
+ 1) + ᾱti (z

?
ti−1 + 1) + ᾱti+1

(
1

z?
ti+1
+ 1

)
+ αti+1

(
1

z?
ti+2
+ 1

)
(b)
≤ (αti + ᾱti )(βi + 1) + (αti+1 + ᾱti+1)

(
1
βi+1
+ 1

)
=2 + βi +

1
βi+1
, Gi(β). (25)

Therefore (β̂,Φ?) is an optimum solution of the opti-
mization problem, and we have β̂ ∈ B. However, from
(31) we have q(β̂) ≤ q − 1 = q(β?) − 1, which is in
contradiction with the definition of q = q(β?) and β?.
Similarly, we can show that if β?1 > 0 then G0(β

?) = Φ?,
and if β?m < ∞ then Gm(β

?) = Φ?. This concludes the
proof of Lemma 3. �

We now analyze the structure of OPT5(m). In particular,
for a given m, we will find the optimum β? that satisfies
Lemma 3. We distinguish the following two cases.

(I) If β?1 > 0, then we define

b0 = 1, bi =
1∏i

k=1 β
?
k

, ∀i ∈ [1 : m]. (32)

(II) If β?1 = 0, then we define

b0 = 0, b1 = 1, bi =
1∏i

k=2 β
?
k

, (33)

where i ∈ [2 : m] in (33). Under both cases we have

β?i =
bi−1
bi

, ∀i ∈ [1 : m].

Using the change of variables above and Gi(β
?) =

OPT5(m), i ∈ [1 : m − 1] (see Lemma 3), we get that

Gi(β
?) = 2 + β?i +

1
β?
i+1
= 2 +

bi−1
bi
+

bi+1
bi

,

where i ∈ [1 : m − 1]. Then, for a given n (number of
relays in the network) and m (number of relays with
distinct channel gains in the network), we define

σn,m , OPT5(m) − 2 =
bi−1
bi
+

bi+1
bi

, (34)

where i ∈ [1 : m − 1], which implies

bi+1 − σn,mbi + bi−1 = 0, ∀i ∈ [1 : m − 1]. (35)

The expression in (35) is a linear homogeneous recurrence
relation of order 2 and its solution can be written as [31]

bi = uUi + vV i, i ∈ [0 : m], (36)

where U and V are the roots4 of the characteristic equation
of the recurrence relation in (35), that is,

X2 − σn,mX + 1 = 0. (37)

4The solution in (36) holds only if the characteristic equation
in (37) has simple (non-repeated) roots. Note that if σn ,m = 2 then
U = V = 1 and hence, the solution of the recurrence relation would be
bi = u + vi. This is, however, a monotonic function of i, and cannot
satisfy both the initial and final conditions of the recurrence relation.

Moreover, u and v in (36) can be found from the initial
conditions of the recurrence relation. In particular, under
case (I) and β?1 > 0 we have b0 = 1 and b1 =

1
β?1
=

G0(β
?) − 1 = OPT5(m) − 1 = σn,m + 1. Similarly, under

case (II) and β?1 = 0 we have b0 = 0 and b1 = 1.
Once u and v are found, we can fully express bi as

a function of σn,m, for i ∈ [0 : m]. Then, we can use
the final condition for β?m to identify the value of σn,m.
More precisely, if β?m = ∞ then bm = 0. Otherwise, if
β?m < ∞, from Lemma 3 we have σn,m+2 = OPT5(m) =
Gm(β

?) = 1 + β?m, which implies 1 + σn,m = β
?
m =

bm−1
bm

.
The optimum value of σn,m is given in the following
proposition, the proof of which is in Appendix A.

Proposition 2. The optimal value σn,m defined in (34)
is given by

σn,m=



2 cos
(

2π
2m+2

)
if β?1 > 0 and β?m < ∞,

2 cos
(

2π
2m+1

)
if β?1 > 0 and β?m = ∞,

2 cos
(

2π
2m+1

)
if β?1 = 0 and β?m < ∞,

2 cos
(

2π
2m

)
if β?1 = 0 and β?m = ∞.

(38)

Optimizing Over m. Recall from (34) that OPT5(m) =
σn,m + 2. Therefore, Proposition 2 fully characterizes the
optimum solution of the maximization problem in (30).
The last step of the proof of the ratio guarantee in
Theorem 1 consists of finding the optimal solution for
the optimization problem in (29). Recall from (29) that

OPT4 = max
m∈[1: b n+2

2 c]
OPT5(m) = 2 + max

m∈[1: b n+2
2 c]

σn,m, (39)

where σn,m is given in (38). The following proposition
provides the optimum m and hence, the optimum solution
for the optimization problem in (29).

Proposition 3. The optimal solution for the optimization
problem in (39) is given by

OPT4 = 2 + 2 cos
(

2π
n + 2

)
.

Proof. To find the optimal solution OPT4 for the op-
timization problem in (39), we need to compute the
maximum value of σn,m over m for the four different
cases in Proposition 2. Note that all the four expressions
in Proposition 2 are increasing functions of m. Hence,
we only need to find the maximum value of m in each
case. We can analyze the next four cases, separately.
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1) β?1 > 0 and β?m < ∞. For this case, from (23) we
have t1 ≥ 2 and ti − ti−1 ≥ 2 for i ∈ [2 : m]. Thus,
since tm = n, we get

n = tm =
m∑
i=2
(ti − ti−1) + t1 ≥ 2(m − 1) + 2 = 2m,

which implies m ≤ n
2 , and hence

OPT4 = 2 + max
m≤ n

2

σn,m = 2 + max
m≤ n

2

2 cos
(

2π
2m + 2

)
= 2 + 2 cos

(
2π

n + 2

)
.

2) β?1 > 0 and β?m = ∞. For this case, from (23) we
obtain t1 ≥ 2, tm − tm−1 ≥ 1 and ti − ti−1 ≥ 2 for
i ∈ [2 : m − 1]. Therefore,

n = tm = (tm − tm−1) +

m−1∑
i=2
(ti − ti−1) + t1

≥ 1 + 2(m − 2) + 2 = 2m − 1,

which implies m ≤ n+1
2 . Therefore,

OPT4 = 2+ max
m≤ n+1

2

σn,m = 2+ max
m≤ n+1

2

2 cos
(

2π
2m + 1

)
= 2 + 2 cos

(
2π

n + 2

)
.

3) β?1 = 0 and β?m < ∞. For this case, from (23) we
have t1 ≥ 1 and ti − ti−1 ≥ 2 for i ∈ [2 : m]. Thus,

n = tm = (tm − tm−1) +

m−1∑
i=2
(ti − ti−1) + t1

≥ 2(m − 1) + 1 = 2m − 1,

which implies m ≤ n+1
2 . Therefore, we obtain

OPT4 = 2 + max
m≤ n+1

2

σn,m = 2+ max
m≤ n+1

2

2 cos
(

2π
2m + 1

)
= 2 + 2 cos

(
2π

n + 2

)
.

4) β?1 = 0 and β?m = ∞. Finally, for this case, from (23)
we can write t1 ≥ 1, tm − tm−1 ≥ 1 and ti − ti−1 ≥ 2
for i ∈ [2 : m − 1]. Hence,

n = tm = (tm − tm−1) +

m−1∑
i=2
(ti − ti−1) + t1

≥ 1 + 2(m − 2) + 1 = 2m − 2,

which implies m ≤ n+2
2 . Therefore, we obtain

OPT4 = 2 + max
m≤ n+2

2

σn,m = 2 + max
m≤ n+2

2

2 cos
(

2π
2m

)
= 2 + 2 cos

(
2π

n + 2

)
.

Therefore, for all four cases we obtain OPT4 = 2 +
2 cos

(
2π
n+2

)
, which proves our claim in Proposition 3.

This concludes the proof of Proposition 3. �

In summary, by collecting all the results above together,
we have proved that for any Gaussian half-duplex dia-
mond n-relay network N , the sequence of simplifications
in (15) is always satisfied. This proves the inequality
in (14), and concludes the proof of (5) in Theorem 1.

V. THE WORST NETWORKS: PROOF OF THE
TIGHTNESS OF THEOREM 1

We here prove that the bound in (5) is tight, that is,
for any number of relays, there exists some networks
for which C(N1)/Cn(N) = 1/(2 + 2 cos(2π/(n + 2))).
Towards this end, for every integer n we provide some
constructions of half-duplex diamond n-relay networks
for which the best relay has an approximate capacity that
satisfies the bound in (5) with equality.

Our constructions are inspired by the discussion and
results in Section IV-C. More precisely, we need to satisfy
all the bounds in (15) with equality.
Case A.1: Let n = 2k be an even integer, and consider a
half-duplex diamond n-relay network N with θ = 2π/(n+
2) and for i ∈ [1 : k] let

`2i = `2i−1 =
2 sin(θ) sin (iθ)

cos (iθ) − cos ((i + 1)θ)
,

r2i = r2i−1 =
2 sin(θ) sin (iθ)

cos ((i − 1)θ) − cos (iθ)
.

(40)

It is not difficult to see that, for the network in (40), we
have `1 ≤ `2 ≤ . . . ≤ `n, r1 ≥ r2 ≥ . . . ≥ rn. Moreover,
for every relay t ∈ [1 : n] with i = b t+1

2 c, we have

C1(Nt ) =
`trt
`t + rt

=

(
1
`t
+

1
rt

)−1

=
2 sin(θ) sin (iθ)

cos ((i − 1)θ) − cos ((i + 1)θ)
= 1

=⇒ C1(N) = 1, (41)

i.e., the best relay in N has an approximate capacity of
1. Finally, ∀t ∈ [0 : n − 1], with i = b t+1

2 c

`t + rt+2

=
2 sin(θ) sin (iθ)

cos (iθ) − cos ((i + 1)θ)
+

2 sin(θ) sin ((i + 1)θ)
cos (iθ) − cos ((i + 1)θ)

= 2 sin(θ)
2 sin

(
(2i+1)θ

2

)
cos

(
θ
2
)

2 sin
(
(2i+1)θ

2

)
sin

(
θ
2
)

= 4 cos2
(
θ

2

)
= 2 cos(θ) + 2, (42)

where we let `0 = rn+1 = 0.
Consider now a two-state schedule given by

λS =


1
2 if S = So = {1,3,5, . . . ,2k − 1},
1
2 if S = Se = {2,4,6, . . . ,2k},
0 otherwise.

The rate Rn(N) achieved by this two-state schedule can
be found from (2), and satisfies the set of (in)equalities
in (43), at the top of the next page, where in (a) we set t =
maxSe ∩Ωc and s = maxSo ∩Ωc , and (b) is due to the
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Rn(N) = min
Ω⊆[1:n]

∑
S⊆[1:n]

λS

(
max

i∈Sc∩Ωc
`i + max

i∈S∩Ω
ri

)
= min
Ω⊆[1:n]

{
1
2

(
max

i∈Se∩Ωc
`i + max

i∈So∩Ω
ri

)
+

1
2

(
max

i∈So∩Ωc
`i + max

i∈Se∩Ω
ri

)}
(a)
= min
Ω⊆[1:n]

{
1
2

(
`t + max

i∈Se∩Ω
ri

)
+

1
2

(
`s + max

i∈So∩Ω
ri

)}
(b)
≥ min
Ω⊆[1:n]

{
1
2
(`t + rt+2) +

1
2
(`s + rs+2)

}
(c)
= min
Ω⊆[1:n]

{
1
2
(2 cos(θ) + 2) +

1
2
(2 cos(θ) + 2)

}
= 2 cos(θ) + 2. (43)

fact that if t = maxSe ∩Ωc then t + 2 is an even number
that belongs to Ω, and similarly s + 2 ∈ So ∩Ω. Finally,
in (c) we used the equality derived in (42). Therefore,
the rate of 2 cos(θ) + 2 is achievable for this network.
Moreover, note that the approximate capacity Cn(N) of a
Gaussian half-duplex diamond n-relay network is always
upper bounded by that of the same network when operated
in full-duplex mode (i.e., each relay can transmit and
receive simultaneously). Also, note that, for the network
in (40), we have that r1 = maxi∈[1:n] ri . Hence, we have

Cn(N)≤CFD
n (N)≤ r1=

2 sin2(θ)

1 − cos(θ)
=2 cos(θ) + 2. (44)

Finally, (43) and (44) imply Cn(N) = 2 cos(θ) + 2. This
together with (41) leads to

C1(N)

Cn(N)
=

1
2 cos (θ) + 2

=
1

2 cos
(

2π
n+2

)
+ 2

(45)

for the network in (40) and hence, proves the tightness of
the bound in (5) when n is even. Note that this network
corresponds to Case I of the analysis in Appendix A,
where β?1 > 0 and β?m < ∞. An example of the network
construction in (40) for n = 6 is provided in Fig. 5b.
Case A.2: There is also another network for even values
of n = 2k that achieves the bound in (5). This network
is given by

`1 = rn = 1, r1 = `n = L →∞,

`2i = `2i+1 =
sin (iθ) + sin ((i + 1)θ)

sin ((i + 1)θ)
,

r2i = r2i+1 =
sin (iθ) + sin ((i + 1)θ)

sin (iθ)
,

(46)

where θ = 2π/(n + 2) and i ∈ [1 : k − 1]. It is easy to
check that for this network we also have C1(N) = 1 and
Cn(N) = 2 cos(θ) + 2, which can be achieved using the
two-state schedule

λS =


1
2 if S = So = {3,5, . . . ,2k − 1,2k},
1
2 if S = Se = {2,4,6, . . . ,2k},
0 otherwise.

ℓ1
ℓ2

r1
r2

Source Destination

Rn

0

R1

R2

R3

R4

R5

R6

7

ℓ3

ℓ4

ℓ5

ℓ6

r3

r4

r5

r6

(a)

i `i ri
1

√
2 2 +

√
2

2
√

2 2 +
√

2
3 2 2
4 2 2
5 2 +

√
2

√
2

6 2 +
√

2
√

2
(b)

i `i ri
1 1 L →∞

2 2+
√

2
2 1 +

√
2

3 2+
√

2
2 1 +

√
2

4 1 +
√

2 2+
√

2
2

5 1 +
√

2 2+
√

2
2

6 L →∞ 1
(c)

Fig. 5: Gaussian half-duplex diamond networks with n = 6
relays for which the bound in (5) is tight. The table in (b) shows
the link capacities for the network defined in (40) and the table
in (c) indicates the link capacities of the network given in (46).

Note that in this schedule relay R1 is (asymptotically)
always in receive mode and relay Rn is always in transmit
mode. This leads to

C1(N)

Cn(N)
=

1

cos
(

2π
n+2

)
+ 2

.

This network corresponds to Case IV of the network
analysis in Appendix A, where β?1 = 0 and β?m = ∞.
The realization of this network configuration for n = 6
is provided in Fig. 5c.

Remark 5. We give an example to illustrate that the
network in Fig. 5b has the ratio C1(N)

Cn(N)
smaller than or

equal to any other n = 6 relay network. Specifically,
consider the same network as in Fig. 5b, but where the
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values of `3 and r3 are slightly changed to `3 = 2.1 and
r3 = 1.9091; note that we still ensure that `3r3

`3+r3
= 1. The

approximate capacity of this new network is 3.3741 and
for Fig. 5b is 3.4142 = cos

(
2π
6+2

)
+ 2. Since, C1(N) = 1

for both the networks, the ratio C1(N)
Cn(N)

is smaller for
the network given by Fig. 5b compared to the slightly
modified network.

Case B.1: Let n = 2k+1 be an odd number. We consider
a Gaussian half-duplex diamond n-relay network N with

`1 = 1, r1 = L →∞,

`2i=`2i+1=
sin (iθ) + sin ((i + 1)θ)

sin ((i + 1)θ)
, i ∈ [1 : k] ,

r2i=r2i+1=
sin (iθ) + sin ((i + 1)θ)

sin (iθ)
, i ∈ [1 : k] ,

(47)

where θ = 2/pi/(n+ 2) Similar to Case A.1, the network
in (47) satisfies `1 ≤ `2 ≤ . . . ≤ `n and r1 ≥ r2 ≥ . . . ≥
rn. Also, the single relay approximate capacities satisfy

C1(Ni) =
`iri
`i + ri

=

(
1
`i
+

1
ri

)−1
= 1, (48)

for i ∈ [1 : n], which implies C1(N) = 1, i.e., the best
relay in N has unitary approximate capacity. Furthermore,
for any t ∈ [1 : n] with i = bt/2c, we have

`t + rt+2

=
sin (iθ) + sin ((i + 1)θ)

sin ((i + 1)θ)
+

sin ((i + 1)θ) + sin ((i + 2)θ)
sin ((i + 1)θ)

=
2 sin ((i + 1)θ) + 2 sin ((i + 1)θ) cos(θ)

sin ((i + 1)θ)
= 2 cos(θ) + 2,

where we let rn+1 = rn+2 = 0. Therefore, similar to (43)
we can show that Rn(N) = 2 cos(θ) + 2 is achievable for
this network, using the two-state schedule given by

λS =


1
2 if S = So = {3,5, . . . ,2k + 1},
1
2 if S = Se = {2,4,6, . . . ,2k},
0 otherwise.

Note that in this schedule, relay R1 is (asymptotically)
always receiving, since its transmit capacity is unbound-
edly greater than its receive capacity. Moreover, similar
to (44), we can argue that Cn(N) ≤ `n = 2 cos(θ) + 2.
Therefore, we get

C1(N)

Cn(N)
=

1

cos
(

2π
n+2

)
+ 2

,

which proves the tightness of the bound in (5) when
n is odd. Note that this network topology corresponds
to Case III of the network analysis in Appendix A. An
example of the network construction in (47) for n = 5 is
provided in Fig. 6b.

ℓ1
ℓ2

r1
r2

Source Destination

0

R1

R2

R3

R4

R5

ℓ3

ℓ4

ℓ5

r3

r4

r5

6

(a)

i `i ri
1 1 L →∞
2 1.8019 2.2470
3 1.8019 2.2470
4 3.2470 1.4450
5 3.2470 1.4450

(b)

i `i ri
1 1.4450 3.2470
2 1.4450 3.2470
3 2.2470 1.8019
4 2.2470 1.8019
5 L →∞ 1

(c)

Fig. 6: Gaussian half-duplex diamond networks with n = 5
relays for which the bound in (5) is tight. The table in (b)
shows the link capacities of the network given in (47) and the
table in (c) indicates the link capacities of the network in (49).

Case B.2: The second network configuration that
satisfies the bound in (5) with equality for an odd number
of relays, i.e., n = 2k + 1, is given by

`2i−1 = `2i =
2 sin(θ) sin (iθ)

cos (iθ) − cos ((i + 1)θ)
,

r2i−1 = r2i =
2 sin(θ) sin (iθ)

cos ((i − 1)θ) − cos (iθ)
,

`n = L →∞, rn = 1,

(49)

where θ = 2π/(n + 2) and i ∈ [1 : k]. It is easy to
see that this network also satisfies `1 ≤ `2 ≤ . . . ≤ `n
and r1 ≥ r2 ≥ . . . ≥ rn. Moreover, the approximate
single relay capacities equal one, and hence C1(N) =
1. Furthermore, the approximate capacity of the entire
network is Cn(N) = 2 cos(θ) + 2, which can be achieved
using the two-state schedule given by

λS =


1
2 if S = So = {1,3,5, . . . ,2k + 1},
1
2 if S = Se = {2,4,6, . . . ,2k,2k + 1},
0 otherwise,

i.e., the relay node Rn always transmits. This leads to

C1(N)

Cn(N)
=

1

cos
(

2π
n+2

)
+ 2

,

which shows that the network in (49) satisfies the bound
in (5) with equality. Note that this network topology
corresponds to Case II of the analysis in Appendix A.
An example of such network for n = 5 relay nodes is
shown in Fig. 6c. It is worth noting that the two network
topologies introduced for an odd number of relays are
indeed identical up to flipping of the left and right point-
to-point link capacities, and relabeling of the relays.
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VI. CONCLUSION

In this paper, we have shown that in any n-relay half-
duplex Gaussian diamond wireless network, operating
the best relay always guarantees that at least an f =

1
2+2 cos( 2π

n+2 )
fraction of the entire network approximate

capacity can be retained. We have also proved that this
bound is tight, i.e., we have shown that there exist n-relay
half-duplex Gaussian diamond networks for which the
best relay’s approximate capacity is exactly equal to an
f fraction of the entire network approximate capacity.

Future directions would consist of extending the
presented ratio guarantees to: (i) cases where k > 1
relays are selected for operation; (ii) networks where
the source can communicate to the destination through a
direct link; and (iii) networks with multi-antenna nodes.
Specifically, the second and third research directions
on networks with a direct link between the source and
destination, and on multi-antenna nodes might require a
novel proof technique from the one in this paper for the
case of no direct link and single-antenna nodes. When the
source can directly communicate with the destination, the
expressions for the approximate capacity become more
complicated to be handled analytically than in the case
of a diamond topology. For instance, the single relay
approximate capacity for relay Ri, i ∈ [1 : n] is given by

C1(Ni) =

{
cds if cds ≥ min{`i,ri},
`iri−c

2
ds

`i+ri−2cds
if cds < min{`i,ri},

(50)

where cds is the point-to-point capacity of the link
between the source and the destination. We note that the
expression in (50) is more involved than the expression
in (4) for the single relay approximate capacity in
diamond networks and hence, obtaining a tight ratio
guarantee in this setting might require a different proof
technique. For the multi-antenna nodes, although the
constant gap approximations in [15] and [16] extend to
this case, it is not anymore possible to approximate the
Shannon capacity in terms of the individual link capacities
as we have done in Definition 1. In the multi-antenna
case, in fact, the phase of the channels plays a critical
role and might lead to ill-conditioned matrices inside
the log det(·) expressions. To the best of our knowledge,
finding techniques to properly deal with such log det(·)
expressions in a way that leads to tight ratio guarantees
in multi-antenna networks is an open problem.

APPENDIX A
PROOF OF PROPOSITION 2

We consider the four possible cases, depending on the
values of β?1 and β?m.
Case I: β?1 > 0 and β?m < ∞. Since β?1 > 0, then from
Lemma 3, we know that

1 +
1
β?1
= G0(β

?) = OPT5(m)
(34)
= σn,m + 2

⇒
1
β?1
= σn,m + 1.

Moreover, using (32) inside (36), we obtain{
uU0 + vV0 = b0 = 1,
uU1 + vV1 = b1 =

1
β?1
= σn,m + 1,

⇒

{
u = U−1

σn ,m−2 ,

v = V−1
σn ,m−2 .

(51)

Then, since β?m < ∞, Lemma 3 implies that

1 + β?m = Gm(β
?) = OPT5(m) = 2 + σn,m,

or equivalently,

σn,m + 1 = β?m =
bm−1
bm
=

uUm−1 + vVm−1

uUm + vVm
.

Therefore, we have

0 = u
(
Um(σn,m + 1) −Um−1

)
+ v

(
Vm(σn,m + 1) − Vm−1

)
= uUm(U + 1) + vVm(V + 1), (52)

where the last equality follows since we have

Um(σn,m + 1) −Um−1 = Um−1(Uσn,m +U − 1)
(a)
= Um−1(U2 +U)

= Um(U + 1),

and (a) follows from the characteristic function in (37).
Thus, since UV = 1, from (52) we obtain

U2m =

(
U
V

)m
= −

v

u
V + 1
U + 1

(b)
= −

V − 1
U − 1

V + 1
U + 1

(c)
=

1
U2 ⇒ U2m+2 = 1,

where the equality in (b) follows by using the values
in (51) for u and v, and the equality in (c) follows by
substituting V = 1/U. Thus, we get 2m+2 pairs of (U,V),
enumerated by a parameter k ∈ [0 : 2m + 1], given by

U(k) = exp
(

2kπi
2m + 2

)
, V(k) = exp

(
−

2kπi
2m + 2

)
.

Therefore, we have

σn,m(k) = U(k) + V(k) = exp
(

2kπ j
2m + 2

)
+ exp

(
−

2kπ j
2m + 2

)
= 2 cos

(
2kπ

2m + 2

)
.

Note that σn,m above is a function of k. However, the
choice of k = 0 leads to U = V = 1 and σn,m = 2 which
is an invalid choice (see Footnote 4). Other than that, for
every given m we have

σn,m = max
k∈[0:2m+1]

k,0

σn,m(k) = σn,m(1) = 2 cos
(

2π
2m + 2

)
,

which proves Proposition 2 when β?1 > 0 and β?m < ∞.
Case II: β?1 > 0 and β?m = ∞. The initial condition
of the recurrence relation are identical to that of Case I.
Hence, we get bi = uUi + vV i , where u and v are given
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in (51). Moreover, β?m = ∞ implies bm = 0. Substituting
this in (36) for i = m leads to

0 = bm = uUm + vVm,

which implies

U2m (a)=

(
U
V

)m
= −

v

u
(b)
= −

V − 1
U − 1

(a)
=

1
U

⇒ U2m+1 = 1,

where (a) is due to the fact that V = 1/U, and (b) follows
from (51). Thus,

U(k) = exp
(

2kπ j
2m + 1

)
, V(k) = exp

(
−

2kπ j
2m + 1

)
,

and hence,

σn,m(k) = U(k) + V(k)

= exp
(

2kπ j
2m + 1

)
+ exp

(
−

2kπ j
2m + 1

)
= 2 cos

(
2kπ

2m + 1

)
,

for k ∈ [0 : 2m]. Maximizing σn,m(k) we get

σn,m = max
k∈[0:2m]

k,0

σn,m(k) = σn,m(1) = 2 cos
(

2π
2m + 1

)
,

as claimed in Proposition 2.
Case III: β?1 = 0 and β?m < ∞. When β?1 = 0, the initial
conditions of the recurrence equation are given in (33).
We have {

uU0 + vV0 = b0 = 0,
uU1 + vV1 = b1 = 1,

⇒


u = 1√

σ2
n ,m−4

,

v = − 1√
σ2

n ,m−4
.

(53)

Moreover, Lemma 3 for β?m < ∞ implies

1 + β?m =Gm(β
?) = OPT5(m) = 2 + σn,m

⇒ 1 + σn,m = β
?
m =

bm−1
bm

.

Hence, we obtain

uUm−1 + vVm−1 = bm−1 = (1 + σn,m)bm
= (1 + σn,m) (uUm + vVm)

or equivalently,

uUm−1(U + σn,mU − 1) + vVm−1(V + σn,mV − 1)
(a)
= uUm−1(U +U2) + vVm−1(V + V2) = 0,

where (a) follows since U and V are the roots of the
characteristic function in (37). Thus,

U2m =

(
U
V

)m
= −

v

u
V + 1
U + 1

(a)
=

1
U
⇒ U2m+1 = 1,

where the equality in (a) follows from (53). Therefore,
similar to Case II, we get

σn,m = 2 cos
(

2π
2m + 1

)
,

which proves our claim in Proposition 2.
Case IV: β?1 = 0 and β?m = ∞. Since β?1 = 0 , the initial
conditions of this case are identical to those of Case III
given in 53. However, from β?m = ∞ we have bm = 0,
which implies

0 = bm = uUm + vVm.

This leads to

U2m =

(
U
V

)m
= −

v

u
(a)
= 1⇒ U2m = 1, (54)

where the equality in (a) follows by using (53). Thus,

U(k) = exp
(

2kπ j
2m

)
, V(k) = exp

(
−

2kπ j
2m

)
,

σn,m(k) = U(k) + V(k) = 2 cos
(

2kπ
2m

)
,

for some k ∈ [0 : 2m − 1]. Maximizing σn,m(k) over
k , 0 we get

σn,m = max
k∈[0:2m−1]

k,0

σn,m(k) = σn,m(1) = 2 cos
(

2π
2m

)
.

(55)
This proves our claim in Proposition 2, for the forth case
when β?1 = 0 and β?m = ∞.
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