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abstract: Within-host processes (representing the entry, estab-
lishment, growth, and development of a parasite inside its host)
may play a key role in parasite transmission but remain challenging
to observe and quantify. We develop a general model for measur-
ing host defenses and within-host disease dynamics. Our stochastic
model breaks the infection process down into the stages of parasite
exposure, entry, and establishment and provides associated proba-
bilities for a host’s ability to resist infections with barriers and clear
internal infections. We tested our model on Daphnia dentifera and
the parasitic fungusMetschnikowia bicuspidata and found that when
faced with identical levels of parasite exposure,Daphnia patent (trans-
mitting) infections depended on the strength of internal clearance. Ap-
plying a Gillespie algorithm to the model-estimated probabilities
allowed us to visualize within-host dynamics, within which signatures
of host defense could be clearly observed. We also found that early
within-host stages were the most vulnerable to internal clearance,
suggesting that hosts have a limited window during which recovery
can occur. Our study demonstrates how pairing longitudinal infec-
tion data with a simple model can reveal new insight into within-
host dynamics and mechanisms of host defense. Our model and
methodological approach may be a powerful tool for exploring
these properties in understudied host-parasite interactions.

Keywords: within-host dynamics, Markov model, host resistance,
invertebrate immunology, Daphnia, Metschnikowia.

Introduction

Parasites and pathogens reside primarily within their hosts,
but attempts to understand the ecology of infectious dis-
ease often neglect within-host processes (Hawley andAltizer
2011; Becker et al. 2019; Stewart Merrill and Johnson 2020).
The concealed nature of within-host disease dynamics can
make them difficult tomeasure.Moreover, a living host eco-
system introduces unique complexities that are absent

from abiotic systems (Rynkiewicz et al. 2015). Despite
these challenges, quantifying within-host dynamics has
become a central goal for understanding the spread of in-
fectious disease (Ellner et al. 2007; Graham et al. 2007; Day
et al. 2011; Gog et al. 2015; Handel and Rohani 2015;
Civitello et al. 2018).
Within-host dynamics refer to interactions between

host and parasite (occurring on or inside the host) that
shape a parasite’s ability to transmit to new susceptible
hosts (Antolin 2008). The outcomes of these dynamics that
are useful for understanding transmission include the fol-
lowing: (i) whether the parasite can invade, establish, and
develop within the host (given contact); (ii) the size of
the within-host parasite population; and (iii) the dura-
tion of the infectious period (Antolin 2008; Gog et al.
2015; VanderWaal and Ezenwa 2016; McCallum et al.
2017; for a more evolutionary framing of within-host dy-
namics, seeMideo et al. 2008). The first of these outcomes
represents a key filter for determining whether a suscep-
tible host can support infection and serve as a source for
future transmission (Gog et al. 2015). Hence, one of the
primary features that regulates within-host dynamics is
host resistance, a collection of defenses that hosts use to
prevent the entry, establishment, and growth of a parasitic
infection.
Considered to be a strategy, host resistance results in a

host fitness gain if a parasite is successfully removed and,
consequently, results in a fitness loss for the individual
parasite (Restif and Koella 2004; Råberg et al. 2007; de
Roode and Lefevre 2012). The defenses that comprise host
resistance can be diverse and may yield different within-
host dynamics. For instance, host barriers result in only
two possibilities for an attacking parasite: either the par-
asite infects (enters) the host or it does not. Internal im-
munological defenses increase this range of possibilities,
from full host recovery to a spectrum of parasite growth
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dynamics that ultimately determine whether the parasite
achieves a patent (transmitting) infection, as well as the
number of parasite infective stages produced. At the pop-
ulation level, either or both of these defenses can influence
transmission (Beldomenico et al. 2008; Beldomenico and
Begon 2010;Halliday et al. 2018; StewartMerrill et al. 2021a).
Host resistance is therefore intimately linked with trans-
mission parameters in epidemiological models (Miller et al.
2007; Hawley and Altizer 2011; VanderWaal and Ezenwa
2016).
Fundamentally, incorporating host resistance into trans-

missionmodels requires one piece of information: How ef-
fective is host resistance at reducing patent infections? This
question condenses host resistance into one comprehen-
sive trait whose average value determines the rate of patent
infection success. But growing recognition of the breadth
of intraspecific variation, alongside its ecological conse-
quences, has challenged the use of average trait values
when modeling interspecific interactions (Bolnick et al.
2011; Des Roches et al. 2018), including host-parasite in-
teractions (Lloyd-Smith et al. 2005; Gog et al. 2015). Build-
ing host variation into parasite transmission models may
therefore require a second piece of information: How var-
iable is host resistance? This second question not only
addresses variation in initial infection success but also en-
compasses when and to what extent parasites are regulated
during the course of infection. The answers to these two
questions are rarely connected empirically. For instance,
theoretical models often empirically parameterize host
resistance, while its variation and distribution are struc-
tured on the basis of a priori assumptions (e.g., normal
or negative binomial distributions). Alternatively, while
substantial empirical effort has addressed genetic and en-
vironmental variation in immunological components of
host resistance, the complexity of immune networks has
made it challenging to link specific immune traits to pat-
ent infection outcomes and transmission (Graham et al.
2011; Downs et al. 2014).
For infectious diseases of both economic and public

health concern, we often have a limited understanding of
how host resistance (and the immunological defenses that
comprise it) regulates disease, and this is particularly true
for invertebrates. Six of nine neglected tropical diseases—
causing more than 1 billion human infections per year—
are transmitted to humans by invertebrates (Hollings-
worth et al. 2015), but the immunological defenses of these
medically important species remain vastly understudied
(fig. 1; see also Loker et al. 2004; Pila et al. 2016; Azambuja
et al. 2017; Sloan and Ligoxygakis 2017). For instance, the
basic characterization of hemocytes in mosquito vectors is
only a recent endeavor (Hillyer et al. 2003; Wang et al.
2011), despite knowledge of these cellular effectors since
the late 1800s (Metschnikoff 1884). While for some in-

vertebrates there is increasing understanding of the so-
phistication of immune mechanisms (e.g., immunological
specificity and memory in snails; Adema and Loker 2015;
Coustau et al. 2015; Pinaud et al. 2016), few studies have
addressed how these mechanisms operate in natural sys-
tems, how sensitive they are to environmental change, and
how they modulate disease risk and transmission (fig. 1).
Determining the relative importance of immune defenses
in the natural world is critical, as invertebrates face novel
environmental stressors that can disrupt or decrease levels
of immunity. Ultimately, a rudimentary understanding of
invertebrate immunity and its variability will hinder at-
tempts to generalize regarding how host resistance con-
tributes to natural disease processes.
Here, we build a stochasticmodel (Allen 2017) thatmea-

sures variation in host resistance through its connections
to infection outcomes. By capitalizing on themultistage in-
teraction of parasites within hosts, we break down host re-
sistance into two key defenses and examine their variation
and importance for patent infections. Because of the sto-
chastic nature of the host-parasite interaction, we use a
Gillespie algorithm (Gillespie 1977) to unveil the within-
host dynamics of the system and identify signatures of host
defense in these dynamics. A sliding divider approach (de-
veloped herein) is then used to determine which internal
stages of infection are the most vulnerable to host defense.
We apply our model to interactions between the inverte-
brate host,Daphnia dentifera, and its fungal parasite,Met-
schnikowia bicuspidata, and find that clonal variation in
host resistance is broad and explains variation in both
within-host dynamics and patent infection outcomes.More-
over, we find that the parasite’s within-host development is
most sensitive to internal clearance during its early stages.
Our model is readily adaptable for a broad array of host-
parasite interactions and, in particular, can be used to quan-
tify host resistance in understudied invertebrate-parasite
interactions.

Methods

Background Biology and Data Collection

We studied a host-parasite system with environmental
transmission, where infection results from consumption
of infective stages. The host, Daphnia dentifera, is a cy-
clically parthenogenetic zooplankton and the parasite,
Metschnikowia bicuspidata, is a common ascomycete fun-
gus. Metschnikowia produces fungal ascospores that are
consumed by filter-feeding Daphnia (Metschnikoff 1884;
Ebert 2005). Ingested spores attack the host’s gut epithe-
lium, and spores that successfully cross the gut and enter
the body cavity develop into a series of morphological
stages that ultimately produce infective ascospores that
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are released on host death (Ebert 2005; StewartMerrill and
Cáceres 2018).
We standardized maternal effects of eight Daphnia

genotypes by rearingDaphnia for at least three generations
under controlled conditions (Lynch and Walsh 1998). Ex-
perimental individuals were collected from standardized
mothers as neonates. At 8 days of age, experimentalDaph-
nia were isolated and inoculated with 500 spores of Met-
schnikowia per milliliter. After a 24-h inoculation period,
Daphnia were transferred to individual tubes containing
spore-free filtered lake water. Exposed Daphnia were then
culled at 2, 4, 6, 8, and 10 days after exposure and assessed
microscopically to determine the Metschnikowia develop-
mental stage possessed (Stewart Merrill and Cáceres 2018).
Stagingwas destructive, and eachday’s examinationwas per-
formed on a new cohort of individuals. Sample sizes varied
because of differential reproduction and mortality among
genotypes (table S1; tables S1–S5 are available online).

Following Stewart Merrill and Cáceres (2018), infec-
tions were classified into seven developmental stages: spore
I (Metschnikowia spores had entered the host gut and had
punctured the gut epithelium without fully crossing into
the Daphnia body cavity), spore II (at least one spore had
crossed into the body cavity), hypha (at least one spore
had emitted hyphae), sporocyst (fungal sporocysts were
detectable), conidium (conidia had been released from
sporocysts and were replicating within the body cavity),
ascus (asci filled the host body cavity), and uninfected.

The Conceptual Model

The achievement of patent infection is a multistage pro-
cess, beginning with exposure and culminating with pro-
duction of infective stages. Several models have broken
this process into a multistage narrative. Combes (2001)

A B

Figure 1: Understudied invertebrate-parasite interactions motivate the development of the host resistance model. The general structure of
our model is intended for application to understudied host-parasite interactions for which we lack information on the forms and importance
of immune defense. To quantify the extent of knowledge gaps in invertebrate immunity, we conducted a systematic literature survey, asking:
What are the large unknowns in the field of invertebrate immunity? And which medically important invertebrates are good candidates for
use of our model? We surveyed the literature for studies of susceptibility and immunity of invertebrate vectors/hosts of six neglected tropical
diseases (NTDs). The invertebrates included snails (schistosomiasis), mosquitoes (lymphatic filariasis), flies (sleeping sickness, leishmaniasis,
and river blindness), and true bugs (Chagas disease). A, Comparison of the cumulative number of publications categorized by type of study:
review papers (orange), studies characterizing functional mechanisms of immunity/susceptibility (purple), laboratory studies measuring im-
munological variability (green), and ecological studies measuring natural variation in immunity/susceptibility (red). Invertebrate immune
defense and susceptibility is understudied in five of six invertebrates, and studies documenting natural variation in invertebrate immunity
are particularly rare. B, Number of studies (all six NTDs combined) per year, by study type. Research on invertebrate immunity accelerated
in the 1980s, with the functional characterization of immune defense representing the dominant form of study. Literature survey methods
are provided in appendix F.
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describes patent infections as the outcome of host-parasite
encounter (in the environment) followed by host-parasite
compatibility (within the host). Likewise, Bertram et al.
(2013) consider these same two transitions from the host’s
perspective: infection is initiated with exposure (in the en-
vironment) and determined by susceptibility (within the
host). In generalizing across consumer-resource systems,
Lafferty et al. (2015) describe the process as parasites tran-
sitioning from questing (in the environment) to attacking
(attempting to enter the host) to consuming (within the
host).
The general narrative of the host-parasite interaction

provides a conceptualmodel for immune defense (LaFonte
and Johnson 2013; Hall et al. 2017; Stutz et al. 2019). First,
when hosts are exposed to parasites, initial infection (en-
try) can be blocked with barriers. Barrier resistance pre-
vents attacking parasites from entering the host and
includes physical and chemical barriers, such as those pres-
ent in midguts of dipteran vectors (Michalski et al. 2010).
Second, if a parasite successfully establishes, the infection
can be eliminated with internal clearance. Internal clear-
ance removes parasites fromwithin the host and comprises
internal immunological defenses, such as killing of trema-
tode sporocysts with snail cellular and humoral responses
(Pinaud et al. 2016).

Model Structure

We constructed a stochastic model (Black and McKane
2012; Allen 2017) to estimate host defenses from infec-
tion outcomes. Our model is a discrete state, continuous
time Markov model (Norris 1997; Hurtado and Kirosingh
2019) with parameters estimated using maximum likeli-
hood with a least squares distance function (Kalbfleisch
et al. 1983). The model’s finite state space consists of four
states: exposed (E), infected (I), uninfected (U), and dead
(D). These four states allow for the estimation of the rates
and probabilities of infection (E to I), barrier resistance (E
to U), internal clearance (I to U), and mortality (any tran-
sition toD ; fig. 2A, 2B). The model is designed for applica-
tion to longitudinal aggregate data, in which the number of
individuals occupying each state is observed at intervals
evenly spaced through time, with separate cohorts of indi-
viduals observed at each time point.
We allow hosts to transition forward in the infection

process and assume no reverse transitions. Reversals to
the exposed state are not possible because the exposure pe-
riod was restricted to 24 h, after which individuals were
transferred to spore-free water. Furthermore, hosts were
maintained in isolation, precluding between-host trans-
mission. However, we emphasize that the uninfected state
is not necessarily an immune state; hosts that recover can

become exposed again if they are reintroduced to the par-
asite (dashed line in fig. 2B).
We allow hosts to transition from exposed to uninfected,

which reflects barrier resistance, and from infected to unin-
fected, which reflects internal clearance (fig. 2B). While
hosts may reduce feeding to minimize parasite exposure
(Strauss et al. 2019), we confirmed that the administered
spore dose was sufficiently high to result in exposure for
all individuals. We examined a subset of hosts (N p 62)
24 h after inoculation and determined that all individuals
had spores attacking their gut epithelia. Finally, we assumed
constant mortality for all states on the basis of prior anal-
yses and knowledge of the system. While Metschnikowia
must kill its host in order to release ascospores, parasite-
induced mortality occurs in time periods later than those
studied in the current experiment (the ascus stage results
in eventual host death, and asci take at least 10 days, on av-
erage, to develop; Rapti and Cáceres 2016).

Model Application

We collapsed the Metschnikowia developmental stages
into our simplified, discrete state space (fig. 2A). By col-
lapsing the seven fungal stages into four states, our model
retains a general structure that can be applied to a diverse
array of host-parasite interactions (Stewart Merrill and
Johnson 2020; for examples of how other host-parasite
interactions can be similarly collapsed, see fig. F3; figs. F1–
F3 are available online). The exposed state (E) consists of
Daphnia that consumed fungal spores, so all hosts were
considered exposed during the 24-h inoculation period.
The infected state (I) consists of Daphnia with established
infections, or those in which a spore had entered the body
cavity and progressed to any of the within-host develop-
mental stages (spore II, hypha, sporocyst, conidium, or as-
cus). The uninfected state (U) represents hosts with no
symptoms of infection, hosts whose infections were suc-
cessfully blocked by the gut epithelium (spore I), and hosts
whose infections had not advanced beyond the spore II
stage by day 8 (spores present 8 days after exposure were
determined to be inactive). The state when Daphnia are
dead (D) is an absorbing state.
From these longitudinal state data, maximum likelihood

(Kalbfleisch et al. 1983) was used to estimate state-to-state
instantaneous transition rates, which produced the ma-
trixQ (app. A; apps. A–G are available online). Specifically,
we consider a continuous time Markov process with state
space fE, I,U ,Dg p f1, 2, 3, 4g. Our Markov process can
be fully specified by a 4#4 transition probability matrix
P(s, t). Element pij(s, t) of this matrix denotes the proba-
bility that a host in state i at time s transitions into state j at
time t, where i, j p 1, 2, 3, 4 and 0 ≤ s ≤ t. Equivalently,
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A B

C D

Figure 2: How host resistance regulates patent infection. A, Raw empirical data representing the progression of hosts across infection states
through time. Four hundred Daphnia individuals were exposed to Metschnikowia fungal spores on day 0, and on days 2, 4, 6, 8, and 10,
Daphnia were culled and observed to determine the parasite developmental stage they possessed (N=day p 80). Developmental stages were
then collapsed into four discrete infection states: exposed (E, green), infected (I, orange), uninfected (U, purple), and dead (D, red). The
longitudinal infection state data show signatures of host recovery at initial exposure and through time. B, Our model is a discrete state,
continuous time Markov model used to estimate two separate forms of host resistance from longitudinal infection state data. Barrier resis-
tance is quantified as the probability of transitioning from exposed to uninfected (E to U). Internal clearance is quantified as the probability
of transitioning from infected to uninfected (I to U). Death is an absorbing state from which hosts cannot transition. Following barrier
resistance or internal clearance, uninfected hosts can become exposed again (gray dashed line), although our experimental structure elim-
inated the possibility of secondary exposure. Standardized probabilities of internal clearance (C) explain variation in patent infections in
Daphnia, but probabilities of barrier resistance (D) do not. Prevalence data were collected empirically by calculating the proportion of live
hosts that had patent infections 10 days after parasite exposure. Barrier resistance and internal clearance probabilities were estimated from
500 simulations with maximum likelihood estimation of the Markov model, followed by standardization to a mortality-free system (app. B).
In C and D, each point represents a unique genotype or population (four genotypes with low sample sizes were apportioned into low sus-
ceptibility [N p 2 genotypes] and medium susceptibility [N p 2 genotypes] populations; see “Methods”). Shading represents the standard
error of the fit regression.



one may use the transition rates qij(t) from state i into state
j, which are defined as qij(t) p limDt→0pij(t, t 1 Dt)=Dt.
We note that the rates qij are such that each row of the tran-
sition matrix sums to zero, since qii(t) p 2

P
j(iqii(t). The

relationship between P and Q for time-homogeneous pro-
cesses—namely, those for which qij(t) p qij—is given by
the forward Kolmogorov equation dP=dt p PQ. Our ma-
trixQ takes the following form:

Q p
E
I
U
D

E I U D
2(b1 r 1 d) b r d

0 2(c1 d) c d
0 0 2d d
0 0 0 0

2
664

3
775:

In thematrixQ, individuals transition from row states into
column states. The infection rate (exposed to infected) is
represented byb, the barrier resistance rate (exposed to un-
infected) is represented by r, the mortality rate (all transi-
tions todead) is representedbyd, and the internal clearance
rate (infected to uninfected) is represented by c.

Model Parameter Estimation

Matrices Q, for each population of Daphnia, were esti-
mated as follows. First, a set of initial transition rates (ini-
tial guesses) were randomly selected from a range of values
spanning 0 to 5. The distribution over states at time in-
stances tl were then evaluated, and their square distance
from the experimental data was calculated. As the number
of estimated parameters increases, arriving at a local mini-
mum becomes more likely. We used simulated annealing
to increase the probability of arriving at the global mini-
mum. Specifically, we used the Matlab (MathWorks, 1994–
2018) command simulannealbnd to find the minimum of
the distance function.
A resulting matrix Q was exponentiated (which amounts

to solving the forward Kolmogorov equation to obtain
P(t) p P(0)eQt ; Kalbfleisch et al. 1983; Norris 1997) to ar-
rive at the probability matrix, or matrix P, which describes
the probabilities of all state-to-state transitions, as previ-
ously explained. In the matrix P, each row sums to 1 and
all elements are nonnegative. Death is the only absorbing
state (state from which individuals do not transition). Our
matrix P takes the following form:

P p

PE,E PE,I PE,U PE,D

0 PI,I PI,U PI,D

0 0 PU ,U PU ,D

0 0 0 1

2
664

3
775:

In this matrix, the elements of biological importance for
our study appear in the first and second rows, where PE,U

(probability of transitioning from exposed to uninfected)
represents the probability of barrier resistance and PI,U

(probability of transitioning from infected to uninfected)
represents the probability of internal clearance.

Simulations to Quantify Average Probabilities

We ran the model on different groupings of Daphnia to
quantify average probabilities of barrier resistance and in-
ternal clearance. To relate these probabilities to variation
in susceptibility, the genotype should be the unit of repli-
cation. However, of the eight genotypes studied, four had
low sample sizes (N examined per observation less than
10), so we aggregated these four genotypes’ raw longitudi-
nal state data into low-susceptibility (genotype N p 2)
and medium-susceptibility (genotype N p 2) “popula-
tions” (table S1). We then ran the model for each geno-
type/population individually to quantify probabilities.
In addition, to assess the generic infection process (par-
ticularly for our sliding divider approach, outlined in
“Analyses”), we also aggregated the raw longitudinal state
data of all genotypes and ran themodel on this more com-
plete “common population.”We ran 500 simulations of the
model for each genotype/population and for the common
population, withmaximum likelihood fits to calculate tran-
sition probabilities, assess convergence, quantify error, and
determine each model’s sensitivity to initial conditions. To
facilitate comparisons among genotypes, we standardized
barrier resistance and internal clearance probabilities by
scaling them to a mortality-free system (app. B). Because
our model is a continuous timeMarkov process, a time pe-
riod must be selected for estimating a particular probabil-
ity. The times over which we estimated probabilities are
provided, along with rationale, in appendix B.

Mean Field Model

We also present a mean field description of our Markov
model. A mean field model averages over a large number
of hosts and describes their mean transitions between
states. We use a system of linear ordinary differential equa-
tions (ODEs), which are analyzed to confirm parameter
identifiability (Eisenberg et al. 2013; app. C). As with the
Markov model, the rates in the mean field ODE include r
(barrier resistance rate), b (infection rate), c (internal clear-
ance rate), and d (death rate). This, for instance, implies that
a host being in state Emay stay there for an average (and, by
assumption, exponentially distributed) amount of time be-
fore transitioning into state U at rate r (for a thorough
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derivation, see Hurtado and Kirosingh 2019). The ODE
system describing the transitions reads as follows:

dE
dt

p 2(r 1 b1 d)E,

dI
dt

p bE2 (c1 d)I,

dU
dt

p rE1 cI 2 dU ,

dD
dt

p dE1 dI 1 dU :

Since this is a linear system, it can be solved explicitly. The
solution is

E(t) p 10e2(r1b1d)t ,

I(t) p
10b

b2 c1 r
(e2(c1d)t 2 e2(r1b1d)t),

U(t)p
10

b2 c1 r
((c2 r)e2(r1b1d)t 2 be2(c1d)t

1 (b2 c1 r)e2dt),

D(t) p 10(12 e2dt):

Simulating Within-Host Dynamics

We used Gillespie simulations to describe the within-host
dynamics of the host-parasite interaction. The Gillespie
simulation is a stochastic simulation that considers a group
of individuals starting in a specific state (stateE in our case)
and tracks the individuals as they move to the other states,
such that the proportion of the population occupying a
given state can be explored through time. Using matrix Q
rates, we ran a standard Gillespie algorithm (Gillespie 1977)
to generate 1,000 sample paths. In all runs of the algorithm,
the initial conditionsmatched those of the experiment: 10 in-
dividuals were placed in the exposed state, with the infected,
uninfected, and dead states having zero individuals each.
We ran each Gillespie simulation until the dead class was
saturated and/or before time reached 10 days. We saved all
transition times and all populations at those times. We then
averaged the populations in each epidemiological state and
collected information on the aggregate dynamics (further
details are provided in app. D).

Experimental Validation

For many internal parasites, detecting infection stages is
destructive to the host, and ourmodel and longitudinal ap-
proach is structured to allow for host destruction. How-
ever, Daphnia have the useful attribute of being transpar-
ent, so we used their transparency to ground-truth the
model-estimated probabilities of barrier resistance and
internal clearance. In a separate experiment, we exposed

33 Daphnia individuals from the same eight genotypes
toMetschnikowia following the previously described inoc-
ulation methods but at a lower spore dose (200 spores/mL).
Following exposure, Daphnia individuals were examined
twice throughout the infection process: once at variable
time points between days 2 and 8 after inoculation, and
once at day 10, when patent infections (the conidia and as-
cus stages) had been achieved. The tracking of individual
Daphnia allowed for the direct confirmation of infection,
barrier resistance, and internal clearance (as performed in
Stewart Merrill et al. 2019; see fig. F1). We also used data
from 554 field-collected Daphnia individuals to track in-
fections (previously published in Stewart Merrill et al. 2019).
Field-collected Daphnia were sampled from six lakes in cen-
tral Indiana and exposed to 200 spores/mL within 24 h of
collection following our standard inoculation methods.
Their infections were staged 1–2 days following experimen-
tal inoculation, and individuals were reexamined at day 10
after inoculation to determine whether they possessed pat-
ent infections (conidia or ascus). Using the complete set of
individuals from the experimental data (N p 33) and the
complete set of field-collected Daphnia (N p 554), we cal-
culated each group’s percentage of exposed Daphnia that
recovered via barrier resistance and the percentage of in-
fected Daphnia that cleared within-host developmental
stages to arrive at empirical probabilities of both phenom-
ena. By comparing these empirical laboratory and empir-
ical field probabilities to themodel-estimated probabilities,
we could see how well the model reflected the true biology
of the system.

Analyses

The Markov model was applied in two ways to address our
three primary aims. We first applied the model to each
genotype’s (or population’s) longitudinal data to generate
genotype-specific probabilities of barrier resistance and
internal clearance.With these values, we assessed how host
resistance regulates patent infections and simulated each
genotype’s within-host dynamics. We then applied the
Markov model to multiple configurations of the common
population’s longitudinal data (using a sliding divider ap-
proach, developed below) to evaluate how internal clear-
ance declines in the later stages of infection.

How Host Resistance Regulates Patent Infection. We first
asked whether barrier resistance or internal clearance bet-
ter explained variation in patent infection prevalence and
used linear regressions and an information theoretic ap-
proach to partition susceptibility into its underlyingmech-
anisms. With two mechanisms of recovery, there are four
possibilities: (i) barrier resistance, but not internal clear-
ance, explains variation in patent infections; (ii) internal
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clearance, but not barrier resistance, explains variation in
patent infections; (iii) both barrier resistance and inter-
nal clearance explain variation in patent infections; or
(iv) neither barrier resistance nor internal clearance explain
variation in patent infections. We tested for relationships
between patent infection prevalence (empirical data; pro-
portion of individuals with patent infections at day 10)
and standardized probabilities of barrier resistance or in-
ternal clearance (model output), with Daphnia genotype
(or population; see “Methods”) as the unit of replication.
We also ran a null intercept-only model. For each of these
three models, we calculated and compared Akaike in-
formation criterion (AIC) values. The lowest AIC value rep-
resents themost likely model given the data, and a deviation
between models of 12 AIC values represents substantially
better fit (Burnham and Anderson 2002).

Within-Host Dynamics and Signatures of Host Resistance.
Next, we examined whether barrier resistance and internal
clearance could be observed in the within-host dynamics;
that is, do the within-host dynamics show signatures of
host defense? Barrier resistance should constrain the pro-
portion of the population that initially becomes infected,
and internal clearance should result in growth of the un-
infected class through time. To evaluate these hypotheses,
we tested for associations among the two defenses and the
Gillespie output. First, we tested for a relationship between
the probability of barrier resistance (model output) and
the peak value for patent infection prevalence (Gillespie
output). Thenwe tested for a relationship between the prob-
ability of internal clearance (model output) and growth of
the uninfected class from peak prevalence to 10 days after
exposure (Gillespie output). We assessed relationships with
linear regressions and an analytical solution (app. D). The
Daphnia genotype (or population) was the unit of replica-
tion in the regressions.

Clearance Decay as a Function of Infection Progression.
Prior work on the Daphnia-Metschnikowia interaction uses
a coarser definition of infection, where only the detectable
ascus stage represents an infection. Ascus infections can-
not be cleared (Ebert 2005; Stewart Merrill et al. 2019), so
models built from this definition do not include param-
eters for recovery (Hall et al. 2007; Bertram et al. 2013;
Rapti et al. 2019). An important consideration, then, is
whether internal clearance probabilities are sensitive to
what is considered an infection. Addressing this question
allowed us to gauge which within-host stages are most vul-
nerable to internal clearance. One means of testing stage-
specific clearance is to build a more complex model that
incorporates all of the developmental stages. However,
suchcomplexity (a9#9matrix inourcase) can lead to issues
with parameter identifiability (Eisenberg et al. 2013). Rather

than add within-host states to our model, we used a sliding
divider approach (developed below) to infuse our results
with within-host complexity while retaining the simple
four-state model structure.

Sliding Divider Approach

In the sliding divider approach, we “slid” the distinction
between the exposed (E) and infected (I) states through
the within-host developmental progression and applied
our Markov model to quantify internal clearance proba-
bilities. Importantly, this approach does not require re-
structuring the Markov model or its mathematical for-
mulation. Rather, we simply changed how hosts were
classified as either E or I in our longitudinal input data.
We provide a step-by-step guide to the process in appen-
dix E. In brief, if one assumes that the early within-host
stages of infection progression canmake up the E state and
that later stages can comprise the I state, we can slide the
point at which we draw the distinction between the two
states to generatemultiple configurations of the input data,
with each successive configuration containing fewer (and
later) stages in the I state. By applying the model to each
configuration and then quantifying the probability of in-
ternal clearance for a given configuration, one can investi-
gate how internal clearance decays as parasite develop-
mental stages are sequentially removed from the infected
state. This approach yields three separate probabilities
for internal clearance in this system: (1) in our standard
configuration, the infected state contains all within-host
stages of the parasite, and the infected to uninfected tran-
sition therefore reflects internal clearance of all within-host
stages; (2) by sliding the divider between E and I to one
stage later, stage spore II becomes reclassified as E, and ap-
plication of the model to this second configuration will
provide a probability of internal clearance for hypha and
later stages; and (3) in one final slide of the E–I divider,
we reclassify hypha infections as stage E, and then applica-
tion of the model to this third configuration provides a
probability of internal clearance referring only to clearance
of sporocyst. We do not consider internal clearance of co-
nidium and ascus infections because Daphnia never re-
cover from these patent stages of infection (Ebert 2005;
Stewart Merrill et al. 2019). This approach allowed us to
examine how the probability of internal clearance changes
as it is restricted to later stages of parasite development.We
applied theMarkovmodel to these three configurations for
the common population of Daphnia (containing all indi-
viduals from all genotypes) and calculated the analogs of
these probabilities with our empirical laboratory data and
empirical field data (percentage of hosts that recovered from
each internal infection; see “Experimental Validation”) to
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determine how well the model results approximated actual
stage-specific clearance.

Results

How Host Resistance Regulates Patent Infection

We found that patent infection prevalence in a Daph-
nia host–fungal parasite system was strongly associated
with clonal variation in internal clearance probabilities
(fig. 2C). In our comparison of AIC values among a model
for barrier resistance, a model for internal clearance, and a
null model, the internal clearance model performed best
(AIC p 210:653), substantially outperforming both the
barrier resistance model (AIC p 1:509) and the null model
(AIC p 2:363). The barrier resistance model did not out-
perform the null by 12 AIC values. Our analyses therefore
support the idea that internal clearance, but not barrier re-
sistance (fig. 2D), best explains variation in patent infection
outcomes. In addition, barrier resistance and internal clear-
ance were not strongly positively or negatively correlated
(r p 0:526, P p :284).
Experimental tests confirmed each defense as impor-

tant for regulating patent infection. The model-estimated
probabilities of barrier resistance and internal clearance

for the complete Daphnia population (all individuals, all
genotypes) were 17.0% and 24.3%, respectively. The anal-
ogous empirical probabilities (obtained through tracking
individual Daphnia hosts) were 27.3% (laboratory reared;
for raw data, see fig. F1) and 11.9% (field collected; pub-
lished in Stewart Merrill et al. 2019) for barrier resistance
(percentage of tracked hosts that moved from exposed to
uninfected) and 25.0% (laboratory reared) and 19.5% (field
collected) for internal clearance (percentage of tracked
hosts that moved from infected to uninfected). The model-
estimated probabilities lie between those from both sets
of empirical data, suggesting that our estimates are biolog-
ically reasonable.

Within-Host Dynamics and Signatures of Host Resistance

We applied a Gillespie algorithm to the Markov model
output to evaluate the movement of hosts through the in-
fection process (fig. 3). Within-host dynamics estimated
with the Gillespie algorithm well approximated the em-
pirical longitudinal data (fig. 2A) and demonstrated that
infections peak early after exposure, decline as hosts clear
infections, and stabilize when infected hosts achieve pat-
ent infections that cannot be cleared (fig. 3A). Visualiz-
ing the within-host dynamics provided key information

A B

Figure 3: Within-host dynamics and signatures of host resistance. A, Application of a Gillespie algorithm for one host genotype (W2)
shows the transition of 10 hosts among the four infection states through time. Each line represents the average from 1,000 simulations
(Gillespie sample paths; see app. D). Hosts quickly transition out of the exposed state (green) as they become infected (orange) or as in-
fections are resisted. The uninfected class (purple) grows with initial barrier resistance and with the clearance of internal infections through
time. Mortality is constant, so dead individuals (red) accumulate through time. B, Proportion of the live population that is infected (orange)
and uninfected (purple) for one host genotype (W2). The early peak in prevalence (intersecting dashed lines) is strongly associated with the
model-estimated probabilities of barrier resistance, while the growth of the uninfected class from this early peak to the end of the parasite’s
development (dashed slope) is strongly associated with the model-estimated probabilities of internal clearance. We provide an analytical
solution demonstrating the relationship between these probabilities and properties of the within-host dynamics in appendix D.
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on how host defenses operate. Peak infection prevalence
(fig. 3B, horizontal dashed line) was constrained by barrier
resistance, with greater probabilities of barrier resistance
resulting in lower prevalence peaks (R2 p 0:99, P ! :0001;
figure and analytical proof are provided in apps. C, D). In-
ternal clearance also regulated the growth of the uninfected
class (fig. 3B, diagonal dashed line); greater probabilities of
clearance resulted in greater growth of the uninfected class
from the time of peak prevalence (fig. 3B, vertical dashed
line) to the end of the parasite’s within-host development
(day 10; R2 p 0:83, P p :012; figure and analytical proof
are provided in apps. C, D). Signatures of host defense could
therefore be observed in the within-host dynamics of the
system.

Clearance Decay as a Function of Infection Progression

Our sliding divider approach revealed that internal clear-
ance occurs predominantly during the early stages of infec-
tion (spore II and hypha). For the common population of
Daphnia (all genotypes and all individuals combined), the
probability of internal clearance decayed from 24.3% to
18.0% to only 2.8% when spore II and hypha were sequen-
tially removed from the infected state and reclassified as ex-
posed (fig. 4, “Model results”). The model estimates of
clearance decay were similar to those empirically observed
in laboratory-reared and field-collected Daphnia (fig. 4,
“Empirical lab results” and “Empirical field results”), high-
lighting the generality of clearance decay across the three
studied populations. While accounting for all seven fungal
stages in aDaphnia-specificmodel (a data-hungry endeavor)
would have provided explicit probabilities of host resis-
tance for each fungal stage, such complexity should not
change our qualitative result that internal clearance best ex-
plains variation in susceptibility (because the internal clear-
ance probability for each independent within-host fungal
stage is nested within the overall probability of internal
clearance). Our sliding divider approach is therefore a data-
efficient means of capturing stage-specific internal clear-
ance from amore generalmodel. Data underlying all results
andfigures have been deposited in theDryadDigital Repos-
itory (https://doi.org/10.5061/dryad.73n5tb2ws; Stewart
Merrill et al. 2021b).

Discussion

We constructed a discrete state, continuous time Markov
model to estimate two forms of host resistance—barrier re-
sistance and internal clearance—from longitudinal infec-
tion state data inDaphnia. By collapsing a fungal parasite’s
complex within-host life cycle into a finite set of states
(which broadly encapsulate the general infection process
across taxa) and then applying our model to separate host

genotypes, we learned that internal clearance is a strong de-
terminant ofDaphnia susceptibility to patent infection. Our
model provided a new depiction of the within-host dynam-
ics of this interaction, within which signatures of barrier
resistance and internal clearance can be directly observed.
Moreover, we found that the earliest within-host stages of
infection are the most vulnerable to internal clearance, such
that hosts have a limited window of time during which re-
coverymayoccur.We align our discussionunder two themes.
We first focus on the general model, exploring the model
framework, the advantages of our methodological approach,
and how the model can be applied to understudied host-
parasite interactions. Then we take a more detailed look
at the biology of Daphnia and Metschnikowia, examining
what our model and approach can tell us about stage-
specific clearance and mechanisms of host defense.

The General Model

Exploring within-host processes entails breaking infection
down into a series of intervals (Hall et al. 2017). While the
largest interval in a host-parasite interaction represents a
host’s instantaneous transition from susceptible to patent
(transmitting) infection, the smallest intervals involve the
complex interplay between host, parasite, and immune re-
sponse. Models that nest complex within-host processes
within between-host transmission have become increasingly
informative over the past two decades. Many early nested
models were considered “inessential”—that is, they refined
our understanding without altering our explicit predictions
(Mideo et al. 2008). But more recently, nested models have
demonstrated that the outcomes of within-host dynamics
can scale up to impart broad consequences on between-host
epidemiology (Park et al. 2013; Hite and Cressler 2018; Hall
2019). These models add to the idea that instantaneous
transitions from uninfected to infected can neglect impor-
tant biological information (McCallum et al. 2017). Unfor-
tunately, many of the values used in nested models (such as
parasite strain abundances and different forms of immuno-
logical effectors and their expression over time) can be chal-
lenging to measure and parameterize, and they are hence
collected from model systems for which we have a strong
mechanistic understanding of within-host processes. Con-
sequently, nested models may not be readily adaptable to
understudied host-parasite systems. Simple models that dis-
till within-host processes into a limited set of variables may
be a powerful compromise between the oversimplicity of in-
stantaneous transmission and the overcomplexity of host-
parasite immune interactions (Gog et al. 2015). For instance,
through tracking infection age and pathogen growth, a
function-valued trait approach can be used to estimate var-
iation in disease life-history traits, like virulence and trans-
mission (Day et al. 2011; Mideo et al. 2011; Hall and Mideo
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2018). Similarly, our modeling approach uses the course of
host-parasite interactions to infer mechanisms of host de-
fense. By breaking the infection process down at an interme-
diate scale—with intervals for parasite exposure, entry, and
establishment—our model provides a simple quantification
for the within-host controls of disease.
The forms of defense we measured have application to

both our theory and our understanding of host-parasite
interactions. On the side of theory, host resistance has been
classically described by two parameters: the transmission

coefficient, b, which describes the rate of infection (and
declines with increasing host resistance), and the coeffi-
cient g, which describes the rate of recovery (and increases
with increasing host resistance; Anderson and May 1981).
Both of these coefficients can be estimated phenomenolog-
ically, although b remains particularly challenging to pa-
rameterize and is often back-calculated from prevalence
data (McCallum et al. 2017). Our model-estimated infec-
tion rates consider the multistage infection process and, by
tracking individuals as they move through states, provide

Figure 4: Clearance decay as a function of infection progression. We developed and implemented a sliding divider approach—in which we
slid the distinction between exposed (E) and infected (I) through the infection stages—to examine how internal clearance decays as early
infection stages are sequentially removed from the infected class (see top diagram and guide in app. E). When the infected state contains all
within-host stages—our standard data configuration where spore II (SpII), hypha (H), and sporocyst (SC) can be cleared by the host—the
probability of internal clearance (probability of transitioning from I to U) falls between 0.20 and 0.25 for the three considered populations.
Sliding the divider once (reclassifying SpII as exposed and thus relegating clearance to only H 1 SC) decreases the probability of internal
clearance to between 0.10 and 0.18. Sliding the divider a second time (reclassifying H as exposed and relegating clearance to only SC) further
decreases the probability of internal clearance to between 0 and 0.05. We do not consider clearance of the conidium (C) or ascus (A) stages
because all prior evidence supports that Daphnia cannot recover from those stages. The probabilities estimated with the model on the com-
mon population (solid line; all genotypes, all individuals) well approximate empirical observations (dashed lines) of these phenomena,
calculated for both laboratory-reared (“Empirical lab results”) and field-collected (“Empirical field results”) Daphnia (see “Experimental
Validation”).
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direct estimates of the recipient portion of b. Likewise, our
model-estimated internal clearance rates provide empiri-
cally derived estimates of g by tracking transitions from
the infected state back to the uninfected state. These rates
likely exceed traditional estimates of g because they incor-
porate the immediate recovery from early infections that
often go undetected. Ultimately, these biologically informed
values can enhance models of host-parasite interactions.
The parameterized rates can be used to deterministically
model infection dynamics over multiple generations, and
the model-estimated probabilities can be incorporated into
stochastic, long-term simulations of the host-parasite inter-
action. In either case, such values can be used to assess the
importance of host defense for influencing long-term host-
parasite dynamics and how variation in defense influences
the dynamics.
For many vector- and invertebrate-transmitted diseases,

we know little about how the invertebrate’s immune system
regulates infection and mediates human risk. Accordingly,
epidemiological models often exclude parameters for inverte-
brate recovery, making the implicit assumption that infection
rates are driven by exposure. Our results, however, demon-
strate that invertebrate infections can be strongly regulated
by factors beyond parasite exposure. Faced with identical ex-
perimental inocula, Daphnia experienced dramatic variation
in infection outcomes. This variation arose from each geno-
type’s host resistance, with probabilities of barrier resistance
ranging from 5% to 40% and probabilities of internal clear-
ance ranging from0% to 50%.Whether parasite success is de-
termined by host exposure or resistance is a simple distinc-
tion, with two important ramifications. First, when host
resistance determines parasite success, the host can play a reg-
ulatory role for the parasite population, removing parasite in-
fection stages and thereby decreasing risk to other susceptible
hosts (Johnson et al. 2013). Indeed, this phenomenon has
formed the basis for broad theory ondisease dilution (Keesing
et al. 2006) and can be directly observed in our simulations of
within-host dynamics. Second, when host defenses represent
the rate-limiting step for parasite populations, our predictions
for transmission are more firmly grounded in the organismal
biology of hosts. Considering how host immune traits fluc-
tuate over environmental gradients can then add to our pre-
dictions of disease (Becker et al. 2019).
Daphnia represent only one of many invertebrates for

which the basis and extent of host resistance has been a black
box (indeed, this remains the case for many vertebrates as
well; StewartMerrill and Johnson 2020).While some key in-
vertebrate immune defenses—such as the melanizing pro-
phenoloxidase response, antimicrobial peptides, and cellular
action—have been well investigated (particularly in model
systems, like Drosophila; Lemaitre and Hoffman 2007), we
have only scratched the surface of invertebrate immunolog-
ical complexity (Loker et al. 2004; Adema et al. 2012; Sloan

and Ligoxygakis 2017; Huang and Ren 2020). We see our
model and methodological approach as a logistically simple
and cost-effective means to begin filling knowledge gaps,
particularly in understudied invertebrate-parasite interac-
tions. Implementing a longitudinal design and calculating
transition probabilities will reveal whether and at what stage
of infection parasites are resisted, as well as how much var-
iation exists in host defense (for an example of within-host
stages of medically important invertebrates, see fig. F3).
Capturing these probabilities can then allow researchers to
hone in on the molecular or physiological mechanisms un-
derlying a particular transition and can guide the search for
immunological markers. In addition to exploring clonal/ge-
notypic variation (as in the current study), the model can be
applied to interactions spanning a broad variety of factors or
treatments, such as different host species, host ages, temper-
ature treatments, or resource availability treatments. With
creative modifications to the study design and model struc-
ture, our approach can also be implemented in the field to
understand natural variation in invertebrate defense. For
example, deploying sentinel hosts over a discrete exposure
period and then housing them in the laboratory for the re-
mainder of the longitudinal study can provide both natu-
ral exposure probabilities and probabilities of host defense.
The ability to quantify these values may be a powerful tool
for exploring how invertebrate immunity constrains the dis-
tribution and spread of parasites.

The Specific Interaction

We found dramatic variation in Daphnia susceptibility,
arising from two distinct forms of host resistance. The first,
barrier resistance, is the generic outcome of any defense
that prevents parasite entry. For instance, in a behavioral
form of barrier resistance (sensu de Roode and Lefevre
2012), ants use prophylactic treatments with tree resin
(which has antimicrobial properties) to prevent infection
of colony members by entomopathogens (Chapuisat et al.
2007; Brütsch and Chapuisat 2014). A more classic immu-
nological form of barrier resistance is the use of physical
barriers within themosquitomidgut (the peritrophicmem-
brane andmidgut epithelium) to prevent malaria ookinetes
(motile infective stages) from traversing themidgut and en-
tering the body cavity (Saraiva et al. 2016). These physical
forms of barrier resistance, together with additional chem-
ical barriers, can winnow down malaria ookinete numbers
from thousands consumed to fewer than 10 successfully
crossing the barrier (Alavi et al. 2003). Indeed, barrier resis-
tance may be commonly employed by midgut attributes
when parasites infect by feeding. This is the case for Daph-
nia and Metschnikowia: attacking fungal spores must
breach the gut to infect the Daphnia body cavity, and prior
research has established that the size and penetrability of
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gut epithelial cells contributes to recovery via barrier resis-
tance (Stewart Merrill et al. 2019). The second form of host
resistance, which well explained variation in Daphnia pat-
ent infections, is internal clearance, which kills and removes
any parasites that infect the host. In invertebrate systems,
internal clearance has long been attributed to inducible
defenses such as phagocytosis and encapsulation, many of
which are affected by hemocytes (Vazquez et al. 2009). In-
deed, hemocytes that attack establishing fungal spores have
been linked with Daphnia recovery (Stewart Merrill et al.
2019). Cellular and humoral defenses are generally rapidly
upregulated following infection (Hillyer et al. 2003), and we
found that the probability of internal clearance declines as
Daphnia hosts advanced to later stages of infection. If inter-
nal clearance is relegated to an early window following in-
fection, then the speed with which a host mounts an im-
mune response may be as important for clearing parasites
as the magnitude of the response.
Our results build on the theory of multistage defense in a

similar host-parasite system,Daphniamagna and its bacte-
rial pathogen, Pasteuria ramosa. Like Metschnikowia, Pas-
teuria must be ingested to infect its host and, following
initial infection, the bacterium possesses a complex within-
host developmental trajectory (Ebert et al. 2016) and can
be internally cleared by the host (Izhar et al. 2020). Breaking
down the Pasteuria infection process has provided consid-
erable insight into the genetic architecture and evolutionary
constraints of Daphnia defense, as well as how sequential
infection processes shape parasite virulence (Ebert et al.
2016; Hall et al. 2017; Hall et al. 2019). Our conceptual
model is similarly designed to capture mechanism through
population processes but achieves a separate goal. While
work on Pasteuria often takes an evolutionary approach,
asking how selection shapes infection, our study takes a
more ecological approach, addressing how the infection
process might shape effective transmission. Despite differ-
ences in our questions and methodological approaches (a
quantitative trait locus approach in Hall et al. [2017] and
a stochastic Markov model in our own), the similarity of
our conceptual models and systems provides a rich com-
mon ground for understanding generality in the multistage
infection process and for linking evolutionary causes with
ecological consequences.
An important considerationmoving forward is how host

resistance varies as a function of dose (Ebert et al. 2000; Gog
et al. 2015). When infection occurs as a multistage process,
the mechanisms of host resistance may alternate in their
importance for infection. For instance, at low levels of expo-
sure barrier resistancemay drive infection prevalence, while
at higher levels of exposure internal clearance may be the
dominant driver. Internal clearance should also become less
effective as the density of established infections achieves a
threshold value above which immune defenses become

overwhelmed. These lines of thinking reveal a potential
connection between barrier resistance and internal clear-
ance: strong investment in barrier resistance should make
internal clearance more effective, by limiting the number
of internal infections a host must clear (however, we found
no evidence for an association between barrier resistance
and internal clearance in Daphnia). Future assessments of
defense as a function of dose may inform our predictions
regarding which defenses dominate under different expo-
sure regimes. In addition, forging connections between dose
and defense will facilitate modeling long-term host-parasite
interactions, where parasite abundance changes dynami-
cally within a system.
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“Of the genus Lota, there are several species. The English Burbolt (Burbot), as described by Yarrell in his work on British fishes, and by
Couch, belongs to this genus, yet probably is a different species from any in our lakes and rivers. Couch says, ‘the Burbolt (Burbot) is the only
one of the extensive family of the codfishes which has its residence in fresh water, where it is distinguished by exhibiting some of the manners
of the eel, by which it has obtained the name of the eel-pout.’ ” From “The Compressed Burbot or Eel-Pout” by William Wood (The American
Naturalist, 1869, 3:17–21).
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