IEEE NFV-SDN 2020 — Doctoral Symposium

Enhancing Performance, Security, and Management
in Network Function Virtualization

Yang Zhang!, Zhi-Li Zhang?
Email: {yazhang, zhzhang}@cs.umn.edu
'PhD Student, 2PhD Supervisor, University of Minnesota, Twin Cities

Abstract—In an era of ubiquitous connectivity, various new
applications, network protocols, and online services (e.g., cloud
services, distributed machine learning, cryptocurrency) have been
constantly creating, underpinning many of our daily activities.
Emerging demands for networks have led to growing traffic
volume and complexity of modern networks, which heavily
rely on a wide spectrum of specialized network functions (e.g.,
Firewall, Load Balancer) for diverse purposes. Although these
(virtual) network functions (VNFs) are widely deployed, they
are instantiated in an uncoordinated manner failing to meet
growing demands of evolving networks. In this dissertation, we
argue that networks equipped with VNFs can be designed in a
fashion similar to how computer software is programmed today.
By following the blueprint of modularization, networks can be
made more efficient, secure, and manageable.

I. INTRODUCTION

The classical description of the Internet architecture is based
on the hourglass model [1]. In this architecture, the only
function in the neck of the hourglass are IP routers which
determine routes and forward packets. Today, networks have
been growing to meet new and sophisticated demands. For
example, demands for securing networks — whether backbone
networks of Internet service providers, campus/enterprise net-
works, data center networks, or even satellite networks — have
been growing rapidly; carrier network keeps track of band-
width consumption to bill users for usage; real-time streaming
service designs new protocols for pursuing extremely low
latency; IP depletion problem has been discussed for decades.
There are many other requirements — load balancing, data com-
pressing and caching, proxing, to name a few, and thus today’s
networks support far beyond merely forwarding packets.

To satisfy these demands for networks, virtual network func-
tions (VNFs) are inserted into networks to perform specialized
functions. VNFs run in one or more virtual machines on top
of hardware networking infrastructure, and provide functions
such as transforming, inspecting, filtering, or otherwise ma-
nipulating traffic for purposes other than packet forwarding.
While VNFs are widely deployed to bring various benefits
such as regulated control and performance enhancement, they
are typically developed and deployed in an isolated way, with-
out interacting with each other. For example, MPTCP proxy
implements its own logic to detect and associate MPTCP
subflows while this logic may also be required by other VNFs.
Parallelism among VNFs can be served as a general framework
to support better service function chain performance. However,
VNFs are programmed as gigantic black-boxes now and

978-1-7281-8159-2/20/$31.00 (©2020 IEEE

instantiated in an uncoordinated manner, failing to meet the
growing demands of evolving networks.

In this thesis, we advocate for modularization in how
VNFs are implemented and operated. Instead of designing and
deploying VNFs as a gigantic black-boxes — where each VNF
has no interaction with others or hosts — we argue that VNF de-
velopment should break barriers among isolated VNFs. Rather,
VNFs should provide necessary interfaces to expose certain
information and to be integrated into networks, allowing VNF
developers or network administrators to fuse them together.
As we will show, VNF modularization is feasible for VNF
development and deployment in networks, and brings better
network performance, security, and manageability.

IT. THESIS RATIONALE: BACKGROUND, KEY
CHALLENGES, AND RELATED WORK

The challenges in realizing the potential of NFV has at-
tracted a plethora of research studies in recent years. In the
following we will use several examples to illustrate the key
challenges in NFV that motivate our thesis.

A. Challenge 1. Parallelizing Network Functions For Accel-
erating Service Function Chains.

A Service Function Chain (SFC) defines a sequence of
VNFs, and stitches them together [2]. SFC has become a
key enabler for network operators to offer diverse services
and an important application for Software Defined Networking
(SDN) [3], [4]. [5]- Recently, operators can create, update, re-
move, or scale out/in network functions (NFs) on demand [6],
[71, [8], construct a sequence of NFs to form a SFC [2],
and steer traffic through it to meet service requirements [9],
[10], [11]. However, virtualization and “softwarization” of NFs
pose many new challenges [12]. In particular, traffic traversing
virtualized NFs suffers from reduced throughput and increased
latency, compared to physical NFs [13], [9], [10], [11]. The
flexibility offered by SDN will enable more complex network
services to be deployed, which will likely lead to longer SFC.
As the length of an SFC (i.e.,, number of NFs) increases, so
does its overhead.

Exploiting parallelism to reduce packet processing latency
and increase the overall system throughput is a classical
approach that is widely used in computer software design.
For example, most of today’s web-based cloud computing
applications take advantage of the stateless HTTP proto-
cols for parallel HTTP transaction processing. Data analytics

126

Authonized licensed use limited to: University of Minnesota. Downloaded on August 31,2021 at 18:32:39 UTC from IEEE Xplore. Restrictions apply.

frameworks such as Map-Reduce and Spark utilize task level
parallelism to speed up massive compute jobs using multiple
servers. In terms of NFV, NF-level parallelism is first explored
in ParaBox [14] and later in NFP [15] by exploiting order
independence of certain NFs for parallel packet processing
within an SFC. Both efforts focus on parallelizing packet
processing for SFCs on a single (multi-core) server. Real-
world NFs, on the other hand, will likely be operating in
edge clouds or data centers with clusters of servers. How
to effectively utilize multiple servers to reduce per-packet
processing latency and increase the overall system throughput
is the main problem we explore.

B. Challenge 2. Making Network Functions Aware of MPTCP.

MPTCP is designed to boost data transmission throughput
by taking advantage of multiple available paths in network. It
is a major extension to TCP and has been standardized by the
Internet Engineering Task Force [16]. MPTCP can not only
increase data throughput, but also seamlessly perform vertical
handover between multiple paths, which makes the data trans-
mission more robust against link failures [17]. Moreover, these
features are obtained without requiring any modification at the
application level. Thus, MPTCP can be deployed in today’s
Internet without much impact on the proper functioning of
the existing network devices [18].

Although MPTCP is designed to be compatible with most
network devices, MPTCP can not be necessarily understood
by these network devices. To the best of our knowledge,
few network devices are designed with explicit consideration
of MPTCP, and little work has been done to investigate
how to better support this new protocol in the network. For
example, MPTCP is designed to be no more aggressive than
a regular TCP on a shared bottleneck link [19]. This implies
that multiple subflows of a MPTCP session can only bring
throughput improvement if the subflows do not share the same
bottleneck link. However, neither end host nor network has
this mechanism to avoid common links being traversed by
MPTCP subflows in the same MPTCP session. If routers could
spread the MPTCP subflows onto disjoint paths, the overall
data goodput could be greatly improved [20].

Furthermore, making network devices MPTCP-aware may
improve the functionality of certain network services. Take
application identification service or intrusion detection service
as an example. If an application/malware signature spans
across multiple MPTCP subflows, the accuracy of the iden-
tification outcome may be improved by assembling subflows
together. Likewise, when a subflow that carries the signature
is identified/blocked, all other subflows belonging to the same
MPTCP session can be identified/blocked too.

Thus, a MPTCP analysis system is developed to associate
MPTCP subflows in the same MPTCP session. The main
difference between our work and mptcptrace [21] is that
mptcptrace works as an offline tool and requires full flow
records; it uses token-based approach to associate MPTCP
flows. On the other hand, our work is designed to be an online
tool that can work with either full or partial flow records.

Sandri et al. [20] have designed a method to improve MPTCP
performance by distributing subflows of the same MPTCP
connection across different paths. An OpenFlow controller
is used to associate MPTCP subflows and hence it relies
on reactive flow processing, which may bring scalability
concerns. In addition, their subflow association algorithm is
based on token only, ignoring MPTCP meta socket. Our work
does not assume a centralized point where all flows would
pass through and hence can be used in a more flexible setting.

C. Challenge 3. Taking Consensus as a Network Service.

SDN simplifies network devices by moving control plane
functions to a logically centralized control plane; therefore
data plane devices become simple programmable forwarding
elements. For scalability and reliability, the logically cen-
tralized control plane (“network OS”) is often realized via
multiple SDN controllers, forming a distributed system. Open
Network Operating System (ONOS) [22] and OpenDayLight
(ODL) [23] are two such Network OS examples supporting
multiple SDN controllers for high availability.

In the distributed network OS such as ONOS and Open-
DayLight, the replicated controllers rely on conventional dis-
tributed system mechanisms such as consensus protocols for
state replication and consistency. Paxos [24] is a widely used
distributed consensus protocol in production software [25],
[26], [27], [28] to ensure liveness and safety. Unfortunately,
Paxos is very difficult to understand and implement in practical
systems [29]. Raft [29] attempts to address these complex-
ities by decomposing the consensus problem into relatively
independent sub-problems: leader election, log replication, and
safety. It implements a more “easy-to-understand” consensus
protocol that manages a replicated log to provide a building
block for building practical distributed systems. Both ONOS
and ODL use certain implementations of Raft to ensure consis-
tency among replicated network states. For example, ONOS
maintains a global network view to SDN control programs
that is logically centralized, but physically distributed among
multiple controllers. It employs Raft to manage the switch-
to-controller mastership and to provide distributed primitives
to control programs such as ConsistentMap, which guarantees
strong consistency for a key-value store.

The reliance of distributed network OS on consensus pro-
tocols to maintain consistent network state introduces an
intricate inter-dependency between the network OS (as a
distributed system) and the network it attempts to control.
This inter-dependency may create new kinds of fault scenarios
or instabilities that have neither been addressed in distributed
systems nor in networking. In particular, it may severely affect
the correct or efficient operations of consensus protocols. The
key issue lies in the fact that the design of fault-tolerant
distributed system mechanisms such as consensus algorithms
typically focuses on server failures alone, while assuming the
underlying network will handle connectivity issues on its own.
For example, the design of Paxos or Raft assumes that the
network may arbitrarily delay or drop messages; however, as
long as the network is not partitioned, messages from one

127

Authonized licensed use limited to: University of Minnesota. Downloaded on August 31,2021 at 18:32:39 UTC from IEEE Xplore. Restrictions apply.

end point will eventually be delivered to another end point.
Such assumptions about the network hold true in classical
IP networks, where distributed routing algorithms running
on routers cooperate with each other to establish new paths
after failures. SDN now creates cyclic dependencies among
control network connectivity, consensus protocols, and control
logic managing the network, where the control logic managing
the network is built on top of a distributed system (e.g.,
ONOS) which relies on consensus protocols for consistency
and control network connectivity for communication, whereas
the network data plane (and control network) hinges on this
distributed system to set up rules to control and enforce “who
can talk to whom™ among networking elements. Consequently,
new failure scenarios can arise in SDN.

D. Challenge 4. Fusing LAN Virtualization with WAN Virtu-
alization.

Many modern enterprises are geographically dispersed
across multiple sites over a wide area network (WAN). Typ-
ically, branch office site networks are connected to a central
office core network or a core data center (private cloud) via
“dedicated” WAN links provisioned by one or more service
providers. For security and privacy, WAN gateways at each
site route enterprise traffic over VPN tunnels connecting
edge networks with core/cloud networks. However, WAN link
failures happen more frequently than expected [30]. Even
with a dedicated WAN, dealing with WAN failures is a key
consideration in Google’s B4&after systems [31], [?]. With in-
creasing complexity in WAN (e.g., WAN managed by different
ISPs; emerging 5G links adopted in WAN), such failures are
likely to occur more frequently than before. More importantly,
WAN failures have a significant impact on enterprises, and
thus dealing with them is a major practical challenge.

Compared to local area network (LAN), WAN connectivity
has become prohibitively expensive to meet the growing de-
mands required by applications. This has led to a shift towards
novel WAN solutions using SDN to better manage bandwidth
intensive traffic traversing private WANs and increase the
utilization of expensive WAN links. SD-WAN solutions [32]
allow multiple WAN links to be logically combined for higher
capacity. When WAN link failures are detected, traffic is
re-distributed from failed links to other available links for
resilience. We argue that a joint/modular design between LAN
and WAN is required for a more resilient SD-WAN solution.

ITII. RESEARCH OVERVIEW: INTELLECTUAL MERITS

We begin by re-considering network equipped with VNFs
from a network administrator’s perspective. A global view
of deployed VNFs brings new opportunities for performance
optimization over the network, and thus we explore parallelism
in service function chains composing a sequence of VNFs
that are typically traversed in-order by data flows. We then
study MPTCP for the purpose of boosting throughput and
enhancing security. Instead of implementing a customized
solution in every VNF to conquer this common challenge
— making VNFs aware of MPTCP, we implement an online

service named SAMPO to be readily integrated into VNFs.
Following the same principle, we make an attempt to take
consensus as a service in software-defined networks. We
illustrate new network failure scenarios that are not explicitly
handled by existing consensus algorithms such as Raft, thereby
severely affecting their correct or efficient operations. Finally,
we present Durga, a system fusing wide area network (WAN)
virtualization on gateway with local area network (LAN) vir-
tualization technology. It seamlessly aggregates multiple WAN
links into a (virtual) big pipe for better utilizing WAN links
and also provides fast fail-over thus minimizing application
performance degradation under WAN link failures. Without the
support from LAN virtualization technology, existing solutions
fail to provide high reliability and performance required by
today’s enterprise applications.

A. HybridSFC: Accelerating Service Function Chains with
Parallelism

We present HybridSFC, a parallelism mechanism to accel-
erate SFCs spanning multiple servers. Instead of parallelizing
NFs as much as possible (e.g., [14], [15]), HybridSFC employs
a controller that converts a sequential chain into a hybrid
chain and parallelizes packet processing only if it is beneficial.
Additionally, the controller adopts traffic level parallelism
to distribute traffic in an optimized way to satisfy service
level objectives of target traffic. The controller programs both
software and hardware switches to activate parallelism across
NFs spanning multiple physical servers. HybridSFC employs
a customized data plane to support hybrid chains without
modifying the implementation of existing NFs. Based on the
instructions from the controller, HybridSFC data plane mirrors
packets to parallelized NFs and then merges their outputs to
ensure correctness — ie, traffic and NF states changed by
a hybrid chain must be identical to what would have been
produced by the original sequential SFC. We evaluate the
performance of HydridSFC and demonstrate that it can reduce
the latency by up to 37.7%.

B. SAMPO: Online Subflow Association for Multipath TCP
with Partial Flow Record

As facilitating VNFs aware of MPTCP is beneficial to
both the performance of MPTCP sessions and the quality
of network services, we take a first step towards making
the network devices MPTCP-aware by investigating how to
associate subflows that belong to the same MPTCP session.
This is relatively easy to achieve at a place where all flow
records are available, e.g., at the end hosts. In this case one can
use MPTCP token in TCP option field carried in the MP_JOIN
message of each subflow to identify a MPTCP session. How-
ever, the problem of associating MPTCP subflows becomes
more challenging in network. For example, it is common that
network monitoring devices perform sampling on the data
streams before processing them in order to reduce processing
load. Moreover, flow paths can also change due to network
dynamics and hence the monitoring device may only see a
portion of the flow. All such complications may cause the

128

Authonized licensed use limited to: University of Minnesota. Downloaded on August 31,2021 at 18:32:39 UTC from IEEE Xplore. Restrictions apply.

MPTCP packets containing the token to be missing from flow
records, and hence a more comprehensive and robust solution
is needed for subflow association in network.

We propose SAMPO, an online subflow association mech-
anism for MPTCP with partial flow record. Our main con-
tribution is a data sequence number (DSN) based algorithm
that can associate subflows based on analysis of DSN values
of each subflow, their range and overlapping pattern. Through
extensive theoretical analysis and experimentation, we find that
the DSN based association is very effective even when a very
small fraction of packets from each subflow are available. For
instance, the algorithm reaches close to 100% accuracy when
only 1% of packets are sampled in.

C. When Raft Meets SDN: How to Elect a Leader and Reach
Consensus in an Unruly Network

We illustrate a few network failure scenarios that may arise
when applying Raft to a distributed SDN control cluster. We
demonstrate how these failure scenarios can severely affect
the correct or efficient operations of Raft: in the best case
they significantly reduce the available “normal” operation time
of Raft; and in the worst case, they render Raft unable to
reach consensus by failing to elect a consistent leader. It is
worth noting that the problems highlighted here are different
from those addressed by, e.g., the celebrated CAP Theorem in
distributed systems [33], [34], which establishes impossibil-
ity results regarding simultaneously ensuring availability and
(strong) consistency under network partitions. This result has
been recently generalized in [35] to SDN networks in terms
of impossibility results regarding ensuring network policy
consistency under network partitions. In contrast, we argue
that due to the inter-dependency between the network OS as a
distributed system and the network it attempts to control, SDN
introduces new network failure scenarios that are not explicitly
handled by existing consensus algorithms such as Raft, thereby
severely affecting their correct or efficient operations.

We then discuss possible “fixes” to circumvent these prob-
lems. In particular, we argue that in order to fundamen-
tally break this inter-dependency, it is crucial to equip the
SDN control network with a resilient routing mechanism
such as PrOG [36] that guarantees connectivity among (non-
partitioned) SDN controllers under arbitrary failures. We then
propose a network-assisted Raft consensus algorithm that
takes advantage of programmable network and offloads certain
Raft [29] functionality to P4 [37] switches. Our goal is to im-
prove the performance of Raft without sacrificing scalability.
Using a vanilla Raft implementation [38], PrOG, and a P4
switch simulator, we provide preliminary evaluation results.

D. Improving SD-WAN Resilience: From Vertical Handoff to
WAN-Aware MPTCP

We develop a novel WAN-awareness mechanism that en-
ables end systems with MPTCP support (even with only one
network interface) to generate multiple MPTCP subflows using
virtual subnet addresses. This mechanism is enhanced at SD-
WAN gateways to load-balance subflows across WAN links

and dynamically reroute them away from failed WAN links in
a scalable manner.

Building on top of WAN-aware MPTCP (WaMPTCP), we
present a novel scalable SD-WAN virtualization framework
which not only can aggregate multiple (heterogeneous) WAN
links into a (virtual) “big pipe”, but is also capable of providing
fast failover with minimal application performance degrada-
tion. The system is designed to handle diverse enterprise
traffic. In addition to WaMPTCP for support of performance
critical applications running on hosts with MPTCP kernel
modules, it also incorporates MPTCP proxies for legacy TCP
connections running on hosts with no MPTCP support as well
as the default tunnel handoff mechanism for non-TCP traffic.
Through extensive evaluation in both emulated testbeds and
real-world deployment, we show the superior performance
over existing SD-WAN solutions.

IV. CONCLUSION, LESSONS LEARNED & THOUGHTS FOR
THE FUTURE

In this dissertation, we have argued that by following the
blueprint of modularization, networks equipped with VNFs
can be made more efficient, secure, and manageable. We
now discuss a few broad lessons learned over the course of
this dissertation, and what they suggest about future VNF
development and deployment.

A. Modularization involves interactions among VNFs and
hence requires unified programming interfaces and platform.

In 2012, the European Telecommunications Standards Insti-
tute issued a proposal named as Network Functions Virtual-
ization (NFV) [39]. The incentives of proposing NFV is that
modern telecoms networks contain an ever increasing variety
of proprietary hardware, and thus the launch of new services
often demands network reconfiguration and on-site installation
of new equipment which in turn requires additional floor space,
power, and trained maintenance staff. NFV accelerates and
requires greater flexibility and dynamism than hardware-based
appliances allow. Hard-wired network with single functions
boxes are tedious to maintain, slow to evolve, and prevent
service providers from offering dynamic services — similar
as the motivation for joint design blueprint proposed in this
dissertation.

Along these lines, several projects were designed to con-
quer the open challenges in the joint design blueprint. For
example, VNF orchestraters [40], [41] were proposed for
automatically instantiating or closing VNF instances as traffic
load changes. The SFC working group in IETF [2] is ac-
tively investigating how to best implement routing through
multi-middlebox topologies and enforce policies about which
traffic receives processing by which VNFs. Many research
studies have been carried out to address statefulness of VNFs,
e.g. [42], [43], [44], [45], [46]. [47]. In terms of NFV behavior
modeling, synthesis, testing as well as policy analysis and
traffic steering, various novel techniques have been proposed,
see, e.g., [48], [49], [50], [51], [52], [53], [3], [5]. [4], [54].
The NFV placement problem has also attracted a plethora of

129

Authonized licensed use limited to: University of Minnesota. Downloaded on August 31,2021 at 18:32:39 UTC from IEEE Xplore. Restrictions apply.

research studies, mostly employing mathematical optimization
techniques [55]. While we can see the benefits brought by
joint design, how to design unified programming interfaces for
supporting interactions among VNFs and implement a general
platform for the integration of VNFs is required.

B. Modularization can be extended to offload certain functions
down to hardware programmable switches.

Several recent projects investigate offloading consensus
algorithms to either switches [56] or FPGA devices [57].
NetPaxos [56] proposes to implement the Paxos consensus
algorithm in network by leveraging programmable switches.
Besides the Paxos roles implemented on servers, NetPaxos
requires one switch serving as a Paxos coordinator and several
others as Paxos acceptors. NetPaxos can be implemented
using P4 [58], a domain specific language that allows the
programming of packet forwarding planes. However, Paxos
consensus algorithm is very difficult to understand and im-
plement due to its notoriously opaque explanation and lack
of details for building practical systems [29]. Thus, offloading
such a complex consensus algorithm to network is error-prone.
Istvédn et al. [57] takes the efforts of implementing the entire
ZAB consensus algorithm [59] on FPGA devices using a low-
level language which is difficult to program. Moreover, this
hardware-based solution may not be scalable as it requires
the storage of potentially large amounts of consensus states,
logic, and even the application data. Even though offloading
VNFs to networks is a promising area to explore, it would
be demanded to formally validate the correctness of such
a decoupled architecture. Moreover, it is also interesting to
compare the solution implemented in real P4 switches with
other existing FPGA-based or RDMA-based solutions.

C. Decomposing VNFs opens the door to pursue further
performance enhancement.

Recent proposals virtualize and decompose NF at different
granularity. For example, EdgePlex [60] assigns a single VM
for the control plane and a dedicated VM for the data plane
of each customer provisioned on a provider edge router.
OpenBox [61] performs fine-grained decomposition at the
software module level of NFs. In this case, the components
of a service chain will be NF modules, instead of VNFs. It
would be more challenging to parallelize packet processing at
a finer grained level in a chain.

D. Enhancing networks equipped with VNFs in the context of
5G technologies.

In the emerging 5G technologies — besides innovations in
radio technologies such as 5G new radio [62], [63], NFV
will be a key enabling technology [64], [65], [66], [67], [68],
[69] underpinning the envisioned 5G “Cloud RANs”, MECs
and packet core networks for support of network slicing and
diverse services ranging from enhanced mobile broadband
to massive machine type communications and ultra-reliable
low latency communications. For example, upon a request
for a service (e.g., from a mobile user or a machine, say,

an autonomous vehicle or an industrial controller), a SFC
will be dynamically constructed using a series of VNFs such
as firewalls, mobility managers, network address translators,
traffic shapers and so forth that are deployed on demand
at appropriate locations within a (dynamic) network slice to
meet the desired service requirements. It would be challenging
to jointly design VNFs in the context of 5G technology,
and leverage various 5G VNFs and SFCs to support the
development of 5G end-to-end facilities, network slicing, 5G
services and vertical trials. Through end-to-end evaluations
and 5G service trials, NFV platforms can be further refined
and expanded.

V. ACKNOWLEDGMENT

This research was supported by various sources of funds:
DoD ARO MURI Award WO9I1INF-12-1-0385, DTRA
grant HDTRA1-09-1-0050, NSF grants CNS-1411636, CNS-
1618339, CNS-1617729, CNS 1814322 and CNS183677.

REFERENCES

[1] N. R. Council, Realizing the Information Future: The Internet and
Beyond. Washington, DC: The National Academies Press, 1994.

[2] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” 2015.

[3] Z. A. Qazi et al., “SIMPLE-fying Middlebox Policy Enforcement Using
SDN.” in Proc. SIGCOMM, 2013.

[4] S. K. Fayazbakhsh et al, “Enforcing Network-Wide Policies in the
Presence of Dynamic Middlebox Actions using FlowTags,” in Proc.
NSDI, 2014.

[5] Y. Zhang et al., “StEERING: A software-defined networking for inline
service chaining,” in Proc. ICNP, 2013.

[6] S.G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic Backpres-
sure and Scheduling for NFV Service Chains,” in Proc. SIGCOMM,
2017.

[7] W. Zhang,]. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood,
“Flurries: Countless Fine-Grained NFs for Flexible Per-Flow Customiza-
tion,” in Proc. CoNEXT, 2016.

[8] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford,
“Dynamic Service Chaining with Dysco,” in Proc. SIGCOMM, 2017.

[9] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service
Function Chaining Use Cases In Data Centers,” IETF, Internet-Draft
draft-ietf-sfc-dc-use-cases-06, 2017.

[10] T. Nadeau and P. Quinn, “Problem Statement for Service Function
Chaining,” RFC 7498, 2015.

[11] 1. Napper et al, “Service Function Chaining Use Cases in Mobile
Networks,” IETFE, Tech. Rep., 2016.

[12] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, 2015.

[13] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High Perfor-

mance and Flexible Networking Using Virtualization on Commodity

Platforms,” in Proc. NSDI, 2014.

Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,

and Z.-L. Zhang, “ParaBox: Exploiting Parallelism for Virtual Network

Functions in Service Chaining,” in Proc. SOSR, 2017.

[15] C. Sun, I. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling Network
Function Parallelism in NFV,” in Proc. SIGCOMM, 2017.

[16] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions
for multipath operation with multiple addresses,” Internet Requests for
Comments, RFC, 2013.

[17] C. Paasch, G. Detal, E Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/wifi handover with multipath tcp,” in Proc. CellNet,
2012.

[18] C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, E Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath tcp,” in Proc. NSDI, 2012.

[14]

130

Authonized licensed use limited to: University of Minnesota. Downloaded on August 31,2021 at 18:32:39 UTC from IEEE Xplore. Restrictions apply.

[19] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath tcp,”
in Proc. NSDI, 2011.

[20] M. Sandri, A. Silva, L. Rocha, and F. Verdi, “On the benefits of using
multipath tcp and openflow in shared bottlenecks,” in Proc. AINA, 2015.

[21] B. Hesmans and O. Bonaventure, “Tracing multipath tcp connections,”
in Proc. SIGCOMM, 2014.

[22] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS.” in
Proc. HotSDN, 2014.

[23] “OpenDaylight: Open Source SDN Platform,” https://fwww.opendaylight.
org/, 2017.

[24] L.g!Lampurt, “The Part-time Parliament,” ACM Transactions on Com-
puter Systems, 1998,

[25] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hilzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally deployed software
defined wan,” in Proc. SIGCOMM, 2013.

[26] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos Made Live: an
Engineering Perspective,” in Proc. PODC, 2007.

[27] A. Lakshman and P. Malik, “Cassandra: a Decentralized Structured
Storage System,” SIGOPS Operating Systems Review, 2010.

[28] M. Burrows, “The Chubby Lock Service for Loosely-coupled Dis-
tributed Systems,” in Proc. OSDI, 2006.

[29] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consen-
sus Algorithm,” in Proc. USENIX ATC, 2014.

[30] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California
fault lines: Understanding the causes and impact of network failures,”
in Proc. SIGCOMM.

[31] C.-Y. Hong et al., “B4 and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in google’s software-defined wan,”
in Proc. SIGCOMM, 2018.

[32] “Comparison of the SD-WAN vendor solutions,”
/fwww.netmanias.com/en/post/oneshot/ 1248 1/sd-wan-sdn-nfv/
comparison-of-the-sd-wan-vendor-solutions, 2017.

[33] E. A. Brewer, “Towards robust distributed systems,” 2000.

[34] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT News,
2002.

[35] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “CAP for
Networks,” in Proc. HotSDN, 2013.

[36] E. Ramadan, H. Mekky, B. Dumba, and Z.-L. Zhang, “Adaptive resilient
routing via preorders in sdn,” in Proc. DCC, 2016.

[37] P. Bosshart et al, “P4: Programming Protocol-Independent Packet
Processors,” SIGCOMM CCR, 2014.

[38] D. Ongaro, “Logcabin: A distributed storage using raft,” https://github.
com/logcabin, 2016.

[39] “ETSI NFV Standard,” http://www.etsi.org/deliverfetsi_gs/nfv/001_099/
001/01.01.01_60/gs_nfv001v010101p.pdf, 2017.

[40] OPNFV, “OPNFV: Open Platform for NFV.” https://www.opnfv.org,
2018.

[41] S. Palkar et al, “E2: A Framework for NFV Applications,” in Proc.
SOSP, 2015.

[42] S. Rajagopalan et al, “Split/Merge: System Support for Elastic Execu-
tion in Virtual Middleboxes,” in Proc. NSDI, 2013.

[43] A. Gember-Jacobson et al., “OpenNF: Enabling Innovation in Network
Function Control,” in Proc. SIGCOMM, 2014.

[44] 1. Khalid, A. Gember-jacobson, R. Michael, A. Abhashkumar, and
L. Nsdi, “Paving the Way for NFV: Simplifying Middlebox Modifications
Using StateAlyzr This paper is included in the Proceedings of the,” in
Proc. NSDI, 2016.

[45] M. Kablan, A. Alsudais, E. Keller, and E Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in Proc.
NSDI, 2017.

[49] D. Joseph and I. Stoica, “Modeling middleboxes,” IEEE Network: The
Magazine of Global Internetworking, 2008.

https:

131

[46] 1. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” in Proc. of SIGCOMM, 2015.

[47] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. NSDI, 2018.

[48] W. Wu, Y. Zhang, and S. Banerjee, “Automatic synthesis of nf models
by program analysis,” in Proc. HotNets, 2016.

[50] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet: Scal-
able symbolic execution for modern networks,” in Proc. of SIGCOMM,
2016.

[51] G. P. Katsikas, M. Enguehard, M. Kuzniar, G. Q. Maguire Jr, and
D. Kostic, “Snf: synthesizing high performance nfv service chains,”
PeerJ Computer Science, 2016.

[52] S. K. Fayaz et al., “Buzz: Testing context-dependent policies in stateful
networks,” in Proc. NSDI, 2016.

[53] R. Hartert et al, “PGA: Using Graphs to Express and Automatically
Reconcile Network Policies,” in Proc. SIGCOMM, 2015.

[54] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming Slick
Network Functions,” in Proc. SOSR, 2015.

[55] X. Li and C. Qian, “A survey of network function placement,” in Proc.
of CCNC, 2016.

[56] H. T. Dang et al., “Netpaxos: Consensus at network speed,” in Proc.
SOSR, 2015.

[57] Z. Istvan et al, “Consensus in a box: Inexpensive coordination in

hardware,” in Proc. NSDI, 2016.

P. Bosshart et al, “P4 Programming Protocol-Independent Packet

Processors,” in CCR, 2014.

P. Hunt et al, “Zookeeper: Wait-free coordination for internet-scale

systems,” in Proc. ATC, 2010.

[60] A. Chiu, V. Gopalakrishnan, B. Han, M. Kablan, O. Spatscheck,
C. Wang, and Y. Xu, “EdgePlex: decomposing the provider edge for
flexibilty and reliability,” in Proc. SOSR, 2015.

[61] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network
Functions,” in Proc. SIGCOMM, 2016.

[62] “Qualcomm-5G-NR,” https://www.qualcomm.com/invention/
technologies/5g-nr, 2018.

[63] S. Yost, “Decoding 5G New Radio: The Latest on 3GPP
and ITU Standards,” https://spectrum.ieee.org/telecom/wireless/
decoding-5g-new-radio, 2018.

[64] C. J. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L. M. Contreras,
H. Jin, and J. C. Zuniga, “An Architecture for Software Defined Wireless
Networking,” in IEEE Wireless Communications Magazine, 2014.

[65] D. Sabella, P. Rost, A. Banchs, V. Savin, M. Consonni, M. Di Girolamo,

M. Lalam, A. Maeder, and I. Berberana, “Benefits and challenges of

cloud technologies for 5G architecture,” in Proc. of Vehicular Technol-

ogy, 2015.

P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste,

C. Mannweiler, M. A. Puente, K. Samdanis, and B. Sayadi, “Mobile

network architecture evolution toward 5G.” in IEEE Communications

Magazine, 2016.

[67] M. Moradi, Y. Lin, Z. M. Mao, S. Sen, and O. Spatscheck, “Softbox: A
customizable, low-latency, and scalable 5g core network architecture,”
IEEE Journal on Selected Areas in Communications, 2018.

[68] Z. A. Qazi, P. K. Penumarthi, V. Sekar, V. Gopalakrishnan, K. Joshi,
and S. R. Das, “KLEIN: A Minimally Disruptive Design for an Elastic
Cellular Core ,” in Proc. SOSR, 2016.

[69] C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas,
M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe, N. Race, and D. Hutchi-
son, “Network service orchestration standardization: A technology sur-
vey,” in Computer Standards and Interfaces, 2017.

[58]

[59]

[66]

Authonized licensed use limited to: University of Minnesota. Downloaded on August 31,2021 at 18:32:39 UTC from IEEE Xplore. Restrictions apply.

