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Abstract—This paper considers a diamond network with two
interfering relays, where the source communicates with the des-
tination via a layer of 2 half-duplex relays that can communicate
with each other. The main focus is on characterizing the 3 relay
receive/transmit configuration states (out of the 4 possible ones)
that suffice to achieve the approximate capacity of the network.
Towards this end, the binary linear deterministic approximation
of the Gaussian noise channel is analyzed, and explicit scheduling
and relaying schemes are presented. These schemes quantify the
amount of information that each relay is responsible for sending
to the destination, as well as the fraction of time each relay should
receive and transmit.

I. INTRODUCTION

Characterizing the Shannon capacity for wireless relay
networks is a long-standing open problem. When the n relays
operate in half-duplex, i.e., at each point in time each relay
can either receive or transmit but not both simultaneously, a
scheduling question naturally arises: How should the n relays
be scheduled for reception and transmission so that rates close
to the Shannon capacity can be guaranteed?

In principle, in an n-relay half-duplex network, there are 2"
possible relay receive/transmit configuration states. However,
in [1], it was surprisingly shown that out of these 2" possible
states, only n + 1 states suffice to achieve the network
approximate capacity, i.e., an additive gap approximation of
the Shannon capacity, where the gap is only a function of
n. This result leads to practically relevant questions, such as
characterizing the set of n+1 critical states for each network.

In this work we provide an answer to this question for
a diamond network with n = 2 interfering relays, where
the source communicates with the destination by hopping
information through one layer of two half-duplex relays that
can communicate with each other. In particular, we analyze
the binary linear deterministic approximation of the Gaussian
noise channel, and we characterize a set of n+1 = 3 states that
suffice to achieve the approximate capacity. Specifically, we
show that among the two states where both relays are receiving
or both relays are transmitting, at most one is active. This
result, as well as the devised scheduling and relaying schemes
can be translated to obtain similar results for the practically
relevant Gaussian noise channel. Although simplistic, the
considered network model captures three inherent aspects of
wireless communication, namely: (i) its broadcast nature; (ii)
signal superposition (at the relays and destination); (iii) and
signal interference (at the relays). This last aspect of signal
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interference — which is not captured by the diamond network
with two non-interfering relays studied in [2] — is particularly
important, and occurs when two signals from the source and
a transmitting relay interfere at a receiving relay. The design
of relaying and scheduling schemes that properly deal with
this interference is therefore of critical importance. We here
show that for n = 2, the source can “neutralize” such inter-
ference at the receiving relay by appropriately precoding its
transmitted information with the one sent by the transmitting
relay. Although as the number of relays increases, i.e., n > 2
it is not clear how to properly deal with such interference, we
believe that the derived results can be used as building blocks
to study larger networks with an arbitrary number of relays.
Related Work. There is a large body of literature [3]-[7] that
has shown that the cut-set bound provides a constant additive
gap approximation for the Shannon capacity for Gaussian relay
networks. Such approximate capacity for Gaussian half-duplex
relay networks can be found by solving a linear program that
involves 2™ cut constraints and 2" variables representing the
receive/transmit configuration states. It turns out that at most
n + 1 of these variables need to be non-zero [1], which are
associated with the critical states. The critical state variables
are known for the following networks: (i) diamond networks
with n = 2 relays [2], where the source communicates with
the destination via two non-interfering relays; (ii) line net-
works [8], where the source communicates with the destination
through a path of n relays; and (iii) diamond networks with an
arbitrary number n of relays under certain network conditions
expressed in [9]. These results imply that the approximate
capacity for these networks can be computed in polynomial
time in n. An additional class of networks for which the
approximate capacity can be computed in polynomial time
is given by layered networks where the number of relays per
layer is at most logarithmic in the number of layers [10].
Paper Organization. Section II introduces the notation, de-
scribes the Gaussian half-duplex 2-relay network with inter-
ference and summarizes known capacity results. Section III
presents the main result of the paper, the proof of which
is in Section IV. Specifically, Section III characterizes a set
of (at most) 3 network states that suffice to characterize the
approximate capacity of the binary-valued linear deterministic
approximation of the Gaussian noise channel.

II. NOTATION, SYSTEM MODEL AND KNOWN RESULTS

Notation: We denote the set of integers {1,...,n} by [n]; 0;x;
is the all-zero matrix of dimension ¢ X j and I, is the identity



matrix of dimension n; for a matrix M, | M| is the determinant
of M, and M 4 5 is the submatrix of M obtained by retaining
all the rows indexed by set A and all the columns indexed
by set B; |-| and [-] are the floor and ceiling operations,
respectively, and [a]" = max{a,0}; f o g(-) is the function
composition of f and g.

The Gaussian half-duplex diamond 2-relay network with
interference, at each time instant, is described as

Y;' = (1 - Sz)(hlsXs + thinj + Zz), (la)

2
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i=1
where in (1a) ¢ € [2] and j € [2]\ {¢}. Here, (i) S; is a binary
variable that indicates the state of relay i € [2], where S; =0
means that relay ¢ is in receive mode, and S; = 1 indicates that
relay 4 is in transmit mode; (ii) X; is the channel input of node
i that satisfies the unit average power constraint E[| X;|?] < 1
for i € {s,1,2}; (iii) h;; with ¢ € {1,2,d} and j € {s,1,2}
with i # j is the time-invariant' complex channel gain from
node j to node i; note that hgs = 0; (iv) Z; ~ CN(0, 1) is the
complex additive white Gaussian noise at node ¢ € {1,2,d};
and finally, (v) Y; is the received signal by node i € {1,2,d}.
The Shannon capacity C& of the network in (1) is not
known, but it can be approximated by C satisfying |C% —C| <
K, where k is a constant, independent of the channel gains.
The approximate capacity C can be obtained by solving the

following optimization problem [1],

(1b)

C = max min As - f(S,9Q) 3, (2a)
ax mmin S%:Q] s f(S,Q)
f(S,Q) = I(Xy, Xans; Y4, Yacnse | Xaens, S), (2b)

where: (i) § C [2] corresponds to the state of the network
in which relay 7 is in transmit mode if and only if i € S;
(ii)) A\s > 0 denotes the fraction of time that the network
operates in state S; note that > SCp2] As = 1; (iii) A is the
vector obtained by stacking together As for all S C [2], and is
referred to as a schedule of the network; (iv) Q C [2] is used
to denote a partition of the relays in the ‘side of the source’,
ie., {s} UQ is a cut of the network; similarly, Q¢ = [2] \ Q
denotes a partition of the relays in the ‘side of the destination’.
In this work, we are interested in characterizing a set of
3 critical receive/transmit configuration states (out of the 4
possible ones) that suffice to characterize the approximate
capacity in (2) under different network conditions. Towards
this end, our approach consists of the following two steps:

Step 1. We characterize a set of critical states under different
network conditions for the binary-valued linear deterministic
approximation of the Gaussian noise channel in (1). This
model, which was introduced in [3], captures — in a simple
deterministic way — the interaction between interfering signals
and neglects the noise.

IThe channel coefficients are assumed to remain constant for the entire
transmission duration, and hence are known to all the nodes in the network.

Fig. 1: System model.

Step 2. We translate the results obtained for the linear
deterministic approximation channel into the original noisy
Gaussian channel model in (1).

Because of the space limitations, we focus on Step 1, which
is critical for the characterization of a set of critical states for
the Gaussian noise network in (1). The binary-valued linear
deterministic approximation of the Gaussian noise network
in (1) has input-output relationship [3] (see also Fig. 1)
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where in (3a) i € [2] and j € [2] \ {i} and where n;;’s
with ¢ € {1,2,d}, j € {s,1,2}, and ¢ # j are such that
ng; = {log\hij|2-|+. In (3), the vectors X, X;,Yy,Y; with
1 € [2] are of length n = max{nls,ngs,nlg,nghndl,ndg},
D is the so-called n x n shift matrix, and S;,i € [2] is the i-
th relay binary-value state random variable. The approximate
capacity in (2) for the linear deterministic channel in (3) —

denoted as C'P — can be found as the solution of the following

optimization problem

C* = max ¢ 4)
pY

S.t.

t<Agmax{nis, nas}t + Ag2ynis + Af13n2s + Ag1,230 £ g,
t<Aonis + Ag2yp + A0 + Af1.23na2 = go,
t<Agnas + A2)0 + A(13¢ + A1 23na1 £ g3,
t<Ap0+ Afaynaz + Af13nar + A2y max{na1, na2} = ga,

g5é Z)\S —1§0,>\5203 vsg[ﬂ’

sC2)
where
p = max{nis + N4z, n12}, ¢ = max{nas + n41,n21}
are obtained by finding the rank of the incidence matrices
corresponding to the linear deterministic model [3].

III. SET OF CRITICAL STATES

In this section, the main result of this paper is presented
in Theorem 1. This result completely characterizes which (at
most) n + 1 = 3 states achieve the approximate capacity C*P
in (4) under different network conditions.



Theorem 1. Let

N2s

P — Ng2 Q — —MNis q — Nog
—p+nis|’ Ng2  —q+na|’

An optimal collection S of at most n + 1 = 3 states, which
suffice to achieve the approximate capacity CFP in (4), is
given as follows.

(1) Case 1: n1s < nog and ng1 < ngs

(i) S ={2,{1},{2}}, if |P| =0,
(ii) S = {{1}’ {2}7 {172}}7 lf ‘Q| >0,
(i) S = {{1}, {2}}, if max{|P, ||} < 0.

(2) Case 2: n1s < nas and ng1 > ng

(i) S= {Q’ {1}7 {2}}5 if |P| >0,
(ii) S = {{1}’{2}a {1a2}}7 lf|P| <0.

(3) Case 3: nis > nos and ngy < Ngs

(i) S:{®7{1}1{2}}7 if _|Q‘ >0,
(ii) S = {{1},{2},{1,2}}, if —1QI <0.

(4) Case 4: nis > naos and ngy > Ngo

(i) S:{@,{l},{?}}, if _|Q| >0,
(i) S = {{1}, {2}, {1,2}}, i —[P| =0,
(iii) S = {{1},{2}}, if max{—[P|,—[Q[} <0.

Remark 1. The states {{1},{2}} are active in all the cases.
The proposed (optimal) relaying scheme only uses one of the
links between the relays to transmit unique information. For
instance, for all the cases where the condition only involves
|P| (respectively, |Q|), only the link from relay 2 to relay 1
(respectively, from relay 1 to relay 2) is used to transmit unique
information. In these cases, we transmit p (respectively, q) bits
of unique information through the cut Q@ = {2} (respectively,
O ={1}) in state S = {2} (respectively, S = {1}).

Remark 2. If p = nis + nge and ¢ = nos + ng1, then
the existence of cross links nis and nsy does not contribute
to the approximate capacity, and the result in Theorem 1
reduces to that for a 2-relay diamond network in [2], namely
if nisnes < nagings then S = {@,{1},{2}}, otherwise
S = {{1}, {2}, {1, 2}}. Moreover, even though communication
schemes might be different, the approximate capacities of the
two networks, i.e., with interfering relays (considered here)

and with non-interfering relays (studied in [2]) are identical.

In the rest of this section, we briefly present two results that
will be used as building blocks for the proof of Theorem 1.

A. Karush-Kuhn-Tucker (KKT) Conditions

Define H = (/Ll, AN ,/L5) and o = (Ug, 0{1}>» 0{2}70{1’2}).
The Lagrangian of the optimization problem in (4) is given by

1
L{p, oA t) ==t 4> wi(t—g:) + ps(gs) — Y oshs.
i=1 5C2)

&)

(a) fL(N).

(b) fm(N).
Fig. 2: Network tranformations.

The KKT conditions to verify the optimality of a given
solution (A*,¢*) for the linear program in (4) are given as:
Primal Feasibility. We show the feasibility of a solution
by presenting a transmission scheme and assessing its rate
performance as well as deriving a network schedule for it.
Stationarity. We show the existence of a solution p and o
such that %ﬂ(u,a’,)\*,t*) = 0 and %L(u,a,k*,t*) =0
for every S C [2].

Complementary Slackness. We show that ¢ and o that
satisfy the stationarity condition are such that u;(t* —g*) =0
for every i € [4], usgt = 0, os g = 0, for every S C [2].
Here, g7 is g; in (4) evaluated at A*, for ¢ € [5].

Dual Feasibility. We show that p; > 0 for ¢ € [5] and 05 > 0
for every S C [2].

B. Network Transformations

In the proof of Theorem 1, we will leverage two transfor-
mations of the network N in Fig. 1, as described below.
Relabelling relay nodes. This network transformation, de-
noted as f| (), relabels relays 1 and 2, to obtain f (V) as
shown in Fig. 2(a). With a slight abuse of notation, we apply
the transformation to the individual network parameters, to
obtain f| (n15) = mnes, fiL(nes) = nis fL(ni2) = no,
fL(TLQl) = MNi2, fL(’I’Ldl) = Ng2, and fL(ndg) = Nq1-. This
implies that f| (p) = ¢ and f| (¢) = p. Moreover, the state
S C [2] in the network N corresponds to the state f (S) in
fL(N), where fi(2) = &, fL({1}) = {2}, fL({2}) = {1},
and f ({1,2}) = {1,2}.

Mirroring. This network transformation, denoted as fy(:),
flips the direction of each link in the network A (thereby
also switching the roles of the source s and the destination
d). The resulting network fy(AN) is shown in Fig. 2(b),

whose channel parameters are given by fm(nis) = na,
fm(nes) = naz, fm(ni2) = not, fm(n21) = ni2, fm(na) =
nis, fm(ng2) = nas. Consequently, we have fy(p) = ¢

and fy(g) = p. Moreover, the transformation fy(-) applied
to the state S C [2] in N is given as fm(@) = {1,2},
fm({1}) = {2}, tm({2}) = {1}, and fm({1,2}) = &.

It is not difficult to verify that the approximate capacity
C'P obtained by solving (4) is invariant to applying any
combination of f| (-) and fy(-) to the network A. Moreover,
any transmission scheme for N can be translated to a scheme
for a network obtained by these transformations.

IV. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1, by show-
ing the achievability and optimality for each separate case.
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Fig. 3: Scheme for the state S = & in Cases 1(i) and 2(i).

B Case 1(i) and Case 2(i). Achievability. We show the
achievability part for these cases, by designing a transmission
scheme and assessing its performance. We consider a block
Markov coding scheme, where symbols decoded by the relays
in block B will be transmitted in block B+ 1. For the proposed
scheme, we characterize the number of unique bits that each
relay is responsible to receive and transmit in each state in
S = {@,{1},{2}}. This, together with flow preservation [9]
constraints at each relay, leads to closed form expressions for
{As : § € S} and the rate t. Next, we describe the operation
of the network in each state S € S.

S = @. The source s broadcasts a total of nos bits. Relay 1
receives the top nis bits. Relay 2 decodes all the no, bits, but
discards the top nis bits and keeps the remaining nos — 115
bits for transmission in the future block (see Fig. 3).

S ={2}. In this state, the source transmits njs bits and
Relay 2 broadcasts a total of p — nis bits. The topmost
ngo bits of X5 are intended for the destination d, and the
remaining p — nys — nge bits will be decoded by Relay 1,
for retransmission in a future block. We can distinguish the
following two sub-cases: (a) if p = nq2, then the bits from the
source and Relay 2 reach Relay 1 at non-overlapping levels,
and can be decoded by Relay 1, as shown in Fig. 4; and (b) if
P = n1s+ng2, then the received sets of bits overlap at Relay 1
in y = min{nys, n12, ng2, p—n12} levels. However, the source
is aware of the content of these y bits sent by Relay 2, and can
neutralize them at Relay 1 by performing a precoding before
transmitting its ni, bits [11]. This is illustrated in Fig. 5.

S = {1}. The source sends ng; bits intended for Relay 2 and
Relay 1 broadcasts n4; bits intended for the destination. There
is no flow of information from Relay 1 to Relay 2, and any
potential interference caused by Relay 1 at Relay 2 can be
neutralized by a precoding at the source.

Note that the number of bits sent by each relay cannot
exceed the number of received ones. At an optimal point,
however, we have preservation of information, i.e., the number
of received and decoded bits (excluding the discarded ones) at
each relay is equal to the number of bits transmitted by that
relay. This and the fact that Ay + A1) + A2y =1 lead to

nis —ng1  (p— naz) Ag 0
(n2s - nls) Nas _(p - nls) )‘{1} = {0f. (6)
1 1 1 PV !

H

Therefore, we have

Ay = |H{1,2},{2,3}‘ _ ﬂ
|H| |HY|'
“IHp2y 03l 1H{1.2)01.23]
H H
It is not difficult to verify that the conditions of Cases 1(i)
and 2(i) imply that Az, Ag1y and Agoy in (7) are non-negative.
The total rate ¢ achieved by this scheme is hence given by

)

My = May =

t = A{1ynd1 + A{2ynd2 = Agnas + A21n1s + Af1ynas. (8)

Note that among these bits, (Ag +A{2})n15 bits go through the
path s - 1 — d, )\{Q}ndg bits traverse the path s — 2 — d,
and Agoy[n12 —n1s—ng2| ™ bits are delivered to the destination
via the path s -2 — 1 — d.

Optimality/Converse. In order to prove the optimality of the
solution given by (7)-(8), we show that the KKT conditions
are satisfied. Setting us = og = of1y = Of23 = 0, and
equating the partial derivatives of the Lagrangian in (5) to zero,
we obtain a system of five linear equations in five variables,
namely p1, o, (4, p5, and o2y It is not difficult to verify
that the solution of this linear system satisfies the stationarity,
complementary slackness and dual feasibility constraints.

B Case 1(ii). Applying the mirroring transformation on the
network A, we get fy(N), for which we have

—fu(na)  fmp) —fm(na2) |
[fu(P)] = fm(nzs)  —fm(p) +fm(nis)| @=0.
Therefore, fy(N) satisfies the conditions of Case 1(i), where
the set of critical states is given by S = {&, {1}, {2} }. Hence,
as described in Section III, the set of critical states of N
is given by f,,'(S) = {{1,2},{2},{1}}. The approximate
capacity and the relaying scheme can be immediately obtained
by translating those of Case 1(i).
B Case 1(iii). Achievability. We start by describing the net-
work operation for each state S € S = {{1}, {2}}.
S ={i},7 € [2]. The source s broadcasts n;, bits that are
decoded by Relay j € [2] \ {¢}. In the same time, Relay ¢
broadcasts a total of ng; + x; bits, among which the topmost
ng; bits are intended for d (and will be discarded by Relay j)
and z; bits should be decoded at Relay j. Note that Relay j
can decode nj, bits from s and x; bits from Relay 7 only if

i F ©))
Similar to Case 1(i), a potential interference at Relay j can be
neutralized by precoding at the source.

Using the information preservation principle as we did for
Case 1(i) and the fact that A{1y + A2y = 1, we can write

0 < z; <nj; —ng; — njs,

—(ng1 + x1) N1s + T2 A 0
nos +a1 —(na2 + ) h“ﬂo (10)
1 1 2} 1
This implies that
Ng2 — Nis
Ay = >0,
= (n2s — nis) + (na2 — na1) — a1
Nas — Nd1
Afor = >0,
@ (nas — ni1s) + (g2 — na1) —
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Fig. 4: Scheme for the state S = {2} in Cases 1(i) and 2(i):
no precoding at source is needed.

where the inequalities hold since |P| < 0 and |@| < 0 in this
case. The total achievable rate ¢ is then given by

t = A{1yna1 + Afoynaz = A{13n2s + Ag2ynas- (12)

To conclude the proof of primal feasibility, we need to show
that there exist some x; and xo satisfying (9).
Using the conditions of Case 1(iii), it is easy to verify that

[Na1nde — nisnes| ™

N2s — Nd1

o [n1sn2s — Na1nagz]* .
1= 2=
Ng2 — Nis

13)

are non-negative and satisfy (9). Moreover, it can be readily
seen from (13) that we always have either ;1 = 0 or 2 = 0.
Finally, we note that since z; is the number of bits sent
from Relay 7 to Relay j, it should be an integer, which is not
necessarily the case in (13). However, since n;; —ng; —njs is
integer, if x; satisfies (9), so does [z;]. Therefore, in order to
send z; bits from Relay ¢ to Relay j, we time share between
sending [z;] bits and |x; ] bits.
Optimality/Converse. In order to show the optimality of the
solution given by (11)-(12), we prove that it satisfies the
KKT conditions. Setting po = puz = oq13 = oy = 0
and equating the partial derivatives of the Lagrangian in (5)
to zero, we obtain a system of five linear equations in five
variables, namely 1, 4, is, 0g, of1,2)- It is not difficult to
show that the solution to this system satisfies the stationarity,
complementary slackness and dual feasibility constraints.
B Case 2(ii). Applying the transformation f| ofy(-) to the
network A, we get f ofy(N'), which still lies in Case 2.
Moreover, we have that |f| o f\(P)| can be evaluated as

f|_ OfM(p> — f|_ OfM (’ndg)
—fLofm(p) + fL ofm(nas)

Hence, | ofy(N) satisfies the conditions of Case 2(i) with
critical states S = {&, {1}, {2}}. Therefore, the set of critical
states of N is given by fy,' of *(S) = {{1,2},{1},{2}}.
Finally, by applying the mirroring followed by the relabelling
transformations, the approximate capacity and the relaying
scheme for Case 2(i) can be translated to Case 2(ii).

B Case 3. This case can be converted to Case 2 using the trans-
formation f| (). Note that we have | f| (P)| = —|Q|, and hence
the set of critical states is f, ' ({@, {1}, {2}}) = {2, {2}, {1}}

— f|_ [¢] fM (ndl)

=—|P|>0.
fi o fm(nes) Pl =

o m H H}nl? %} dec. & discard
N é noise floor
P el l®lo| = o
‘z 0
e Y1
noise floor

n—nq2

Xo

Fig. 5: Scheme for the state S = {2} in Cases 1(i) and 2(i):
precoding at source is needed.

when —|Q| > 0, and it is f_'({{1},{2},{1,2}}) =
{{2},{1},{1,2}} when —|Q| < 0. The approximate capac-
ity and the relaying scheme can be found by applying the
described relabelling transformation on those used for Case 2.
B Case 4. Similarly, a network in Case 4 can be converted
to one in Case 1 using the relabelling transformation f (-).
Noting that |f (P)] = —|Q]| and | (Q)] = —|P|, the
set of critical states can be found as f, ' ({@, {1},{2}}) =

{2,{2},{1}} for —|Q| > 0, and as f " ({1}, {2},{1,2}}) =
{{2},{1},{1,2}} when —|P| > 0. Finally, for —|P| < 0 and
—|Q]| < 0 the critical states are given by f, '({{1},{2}}) =
{{2},{1}}. Applying f| (-) on the approximate capacity and
the relaying scheme for Case 1, we can find those for Case 4.

REFERENCES

[1] M. Cardone, D. Tuninetti, and R. Knopp, “On the optimality of simple
schedules for networks with multiple half-duplex relays,” IEEE Trans.
Inf. Theory, vol. 62, no. 7, pp. 4120-4134, July 2016.

[2] H. Bagheri, A. S. Motahari, and A. K. Khandani, “On the capacity of the
half-duplex diamond channel,” in 2010 IEEE International Symposium
on Information Theory, 2010, pp. 649-653.

[3] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network
information flow: A deterministic approach,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 1872-1905, April 2011.

[4] A. Ozgiir and S. N. Diggavi, “Approximately achieving Gaussian relay
network capacity with lattice-based QMF codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 12, pp. 8275-8294, December 2013.

[5] S. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy network
coding,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3132 -3152, 2011.

[6] S. H. Lim, K. T. Kim, and Y. H. Kim, “Distributed decode-forward
for multicast,” in JEEE International Symposium on Information Theory
(ISIT), June 2014, pp. 636-640.

[71 M. Cardone, D. Tuninetti, R. Knopp, and U. Salim, “Gaussian half-
duplex relay networks: improved constant gap and connections with the
assignment problem,” IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3559
— 3575, June 2014.

[8]1 Y. H. Ezzeldin, M. Cardone, C. Fragouli, and D. Tuninetti, “Efficiently
finding simple schedules in Gaussian half-duplex relay line networks,”
in IEEE International Symposium on Information Theory (ISIT), June
2017, pp. 471-475.

[9] S. Jain, M. Elyasi, M. Cardone, and S. Mohajer, “On simple scheduling
in half-duplex relay diamond networks,” in IEEE International Sympo-
sium on Information Theory (ISIT), July 2019.

[10] R. H. Etkin, F. Parvaresh, I. Shomorony, and A. S. Avestimehr, “Com-
puting half-duplex schedules in Gaussian relay networks via min-cut
approximations,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7204—
7220, November 2014.

[11] S. Mohajer, S. N. Diggavi, C. Fragouli, and D. Tse, “Transmission
techniques for relay-interference networks,” in 46th Annual Allerton
Conf. on Commun., Control, and Comp. 1EEE, 2008, pp. 467—474.



