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Abstract— Power-efficient Data Center Networks (DCNs) have
been proposed to save power of DCNs using OpenFlow. In these
DCNs, the OpenFlow controller adaptively turns on/off links
and OpenFlow switches to form a minimum-power subnet that
satisfies the traffic demand. As the subnet changes, flows are
dynamically routed and rerouted to the routes composed of
active switches and links. However, existing flow scheduling
schemes could cause undesired results: (1) power inefficiency:
due to unbalanced traffic allocation on active routes, extra
switches and links may be activated to cater to bursty traffic
surges on congested routes, and (2) Quality of Service (QoS)
fluctuation: because of the limited flow entry processing ability,
switches may not be able to timely install/delete/update flow
entries to properly route/reroute flows. In this paper, we propose
AggreFlow, a dynamic flow scheduling scheme that achieves
power efficiency and QoS improvement using three techniques:
Flow-set Routing, Lazy Rerouting, and Adaptive Rerouting. Flow-
set Routing achieves load balancing with a small number of
flow entry operations by routing flows in a coarse-grained flow-
set fashion. Lazy Rerouting spreads rerouting operations over a
relatively long period of time, reducing the burstiness of entry
operation on switches. Adaptive Rerouting selectively reroutes
flow-sets to maintain load balancing. We built an NS3 based fat-
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tree network simulation platform to evaluate AggreFlow’s per-
formance. The simulation results show that AggreFlow reduces
power consumption by about 18%, yet achieving load balancing
and improved QoS (low packet loss rate and reducing the number
of processing entries for flow scheduling by 98%), compared with
baseline schemes.

Index Terms— Flow scheduling, power-efficient data center
networks, power saving, OpenFlow.

I. INTRODUCTION

THE popularity of cloud services accelerates the expanding
of data centers. The high power consumption of data

centers has become one of the most important concerns of
their operators. Some recent studies present power-efficient
DCNs, which enable network components (e.g., switches and
links) to consume power proportionally to the varying traffic
demand [2]–[5]. With ElasticTree [2], a key enabler of power-
efficient Data Center Networks (DCNs), traffic flows are
consolidated on a subnet of the DCN called the minimum-
power subnet, which is composed of the minimum number
of switches and links to sustain the current network traffic
demand. Thus, unused network components are turned off or
put into the sleep mode to save power [6]. When the traffic
demand exceeds the current subnet’s capacity, more switches
and links will be powered on to expand the subnet for a larger
capacity.

These power-efficient DCNs usually employ Software-
Defined Networking (SDN) (e.g., OpenFlow [7]) to consol-
idate and schedule flows. While saving power is the first
priority of the power-efficient DCNs, it can be argued that
practically deploying power-efficient DCNs requires an effi-
cient flow scheduling scheme to achieve good Quality of
Service (QoS) and load balancing for a minimum-power
subnet. Otherwise, additional power could be wasted. For
example, when a bursty traffic surges on congested routes,
extra switches and links may be activated to cater to the traffic
growth, increasing the power consumption of DCNs. However,
existing flow scheduling schemes fail to achieve the above two
goals at the same time. ElasticTree proposes balance-oblivious
flow-level scheduling schemes to consolidate flows in the DCN
without the load balancing consideration [2].

To achieve load balancing on active routes, the SDN con-
troller must take into account the load of each flow and
conduct fine-grained flow-level scheduling. In particular, when
some switches and links are about to be turned off to save
power, the controller has to reroute many existing flows to
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maintain reachability and load balancing [2]. Since rerouting
an existing flow requires the controller to generate multiple
control messages to set up flow tables in the switches along
this flow’s old and new routes, a control message storm occurs
if a large number of flows are rerouted simultaneously. The
control message storm could impose a high processing burden
on switches to install/delete/update flow entries used for flow
scheduling. Current OpenFlow switches suffer from traditional
hardware design and have a limited processing ability (e.g.,
at most processing 200 entries per second) [8], [9]. Since the
minimum-power subnet must change with the time-varying
traffic demand [10]–[12], switches cannot timely update their
flow tables to properly schedule a large number of flows,
resulting in QoS fluctuation. The above problems will be
detailed in Sections II-B and II-C.

In this paper, we propose a dynamic flow scheduling scheme
named AggreFlow to achieve high power efficiency and load
balancing in DCNs with improved QoS. AggreFlow mainly
employs three techniques listed below:

1) Flow-set routing. It aggregates flows into a small number
of flow-sets and achieves load balancing by conducting
routing in a coarse-grained flow-set fashion, which thus
reduces the number of control messages for routing
flows.

2) Lazy rerouting. At each time when the minimum-power
subnet changes, a flow-set will not be rerouted until a
packet belonging to the flow-set enters the network. Lazy
rerouting amortizes the rerouting operations on flow-
sets over a relatively long time, relieving switches from
the control message storms. In addition, lazy rerouting
reroutes a few flow-sets to maintain load balancing
and allows the majority of flows still to be forwarded
on their original routes. Hence, the amount of con-
trol messages for rerouting operations is significantly
reduced.

3) Adaptive rerouting. The traffic in DCNs exhibits high
bursty, and the load of active routes could also dynam-
ically change. Adaptive rerouting selects some flow-
sets on unbalanced routes and adjusts their routes to
achieve a good load balancing performance on active
routes.

We built an NS3 based fat-tree network simulation platform
to evaluate AggreFlow’s performance. The simulation results
show that AggreFlow reduces power consumption by about
18%, and achieves load balancing and improved QoS (i.e.,
low packet loss rate and reduced control messages by 98%),
compared with baseline schemes.

The rest of this paper is organized as follows: Section II
provides the background of power-efficient DCNs and their
problems. In Section III, we give an overview of AggreFlow
and exemplify how it works. Section V details modules of
AggreFlow. In Section VI, we evaluate AggreFlow’s perfor-
mance with baseline schemes. In Section VII, we discuss
several issues related to AggreFlow. Section VIII reviews the
related work, and Section IX concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Power-Efficient DCNs
Fig. 1 shows the logical structure of a power-efficient DCN,

which is composed of a DCN (including servers, switches, and
links) and a power consumption adapting system. The power
consumption adapting system enables network components to

Fig. 1. Logical structure of a power-efficient DCN.

consume power proportionally to traffic demand in the DCN
by using the following two components: power optimizer
and flow scheduling [2], [3]. Both components reside in an
OpenFlow controller with global network information. The
power optimizer component calculates the number of active
network components based on current network traffic demand,
configures power status of switches and links in the DCN, and
notifies the flow scheduling component of the current subnet
structure [2], [3]. Upon receiving the subnet structure, the flow
scheduling component consolidates flows by adaptively rout-
ing and rerouting flows in the given subnet.

B. Imbalanced Loads on Active Routes
Fat-tree topology is the most representative topology of

data center networks in real world (e.g., Baidu, Microsoft,
DidiChuxing, Texas Advanced Computing Center, National
University of Defense Technology, Oak Ridge National
Laboratory, and Lawrence Livermore National Laboratory).
ElasticTree [2] focuses on the fat-tree and proposes a simple
balance-oblivious flow-level scheduling to consolidate flows.
Typically, the load balancing is measured at the link level by
calculating the maximum load of all links based on the traffic
information, which is periodically pulled by OpenFlow from
edge switches’ meter entries. In a fat-tree network, the route
of each flow is chosen in a deterministic left-to-right order.
Only when the capacity of the leftmost route is insufficient
for a flow, the second left route then will be evaluated for
the flow, and so forth. Thus, the left routes could have more
traffic loads than other routes, suffering from a higher chance
of congestion. If a bursty traffic surges on highly loaded
links, these links’ loads may exceed the given threshold. Then,
the controller is requested to turn on more switches and links
to cater to the traffic growth, increasing the power consumption
of DCNs, while other links are still under low utilization.
Since the DCN traffic variation exhibits bursty [10]–[12],
it could lead to unbalanced traffic allocation and degrade
power efficiency. Our experiments in Section VI show the
unbalanced load allocation needs about 18% more power
consumption on average than the balanced load allocation.

C. QoS Fluctuation
In a subnet, we can achieve load balancing by rerouting

flows to the least loaded route [13]: the OpenFlow controller
uses its global network view to conduct flow-level scheduling.
We name this scheme the balance-aware flow-level schedul-
ing. However, flow-level scheduling schemes could impose a
high burden on switches and the controller [48]. First, flow-
level scheduling schemes require multiple control messages
to reroute an existing flow by setting up flow tables of the
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Fig. 2. Flow rerouting using the flow-level scheduling scheme in a fat-tree
network. Flow f1 is forwarded on routef1.

switches along this flow’s old and new routes. The scheduler
in the SDN controller can calculate the number of control
messages for flow scheduling. Fig. 2 shows an example to
reroute an existing flow with flow-level scheduling schemes.
Flow f1 is originally forwarded on route es0 → a1 → c3 →
a7 → es7 (red dash line). At time t1, switches c3 and a7

are turned off to save power, and the controller immediately
updates f1’s route to routef1: es0 → a0 → c0 → a6 → es7

(blue line). The rerouting operation consumes five control
messages: one message to delete flow f1’s entry on switch
a1, one message to update flow f1’s entry on switch es0, and
three messages to install flow f1’s entries on switches a0, c0,
and a6. 1 At time t2, the subsequent packets of flow f1 enter
the DCN and are forwarded on routef1. In the worst case
(i.e., switch a7 is not turned off in the above example), six
control messages (i.e., control message to switches es0, a0,
a1, c0, a6, and a7) are needed to reroute an existing flow.

Second, at every time the minimum-power subnet changes,
flow-level scheduling schemes would reroute many flows
(i.e., all flows on the soon-to-be-closed routes and many
flows on routes that will remain open) to maintain reach-
ability and load balancing. Reports show that a commer-
cial data center can consist of millions of flows [14], [15].
To improve QoS, the rerouting operations require switches to
install/delete/update entries in a very short period. We call this
phenomenon the control message storm. The traffic variation in
DCNs exhibits highly bursty [10], [11], [12], [16], [49], [50],
and the subnet reconfiguration occurs consequently to save
power or accommodate traffic demand variation, leading to
frequent control message storms. However, current OpenFlow
switches suffer from hardware design (e.g., flow entries must
be organized in the TCAM in a priority order for correct
and efficient matching; control messages must contend for
limited bus bandwidth between a switch’s CPU and ASIC [8]),
and they have limited capacities to process entry update (e.g.,
the time of installing/updating/deleting a flow entry is usually
in the order of milliseconds [8]). Therefore, the switches would
not be able to timely update entries for all rerouting flows and
thus degrade packet loss rate, which can be collected from
servers.

D. Design Principles for Efficient Flow Scheduling Schemes
Based on the above analysis, we have the following con-

siderations to design an efficient flow scheduling scheme for
power-efficient DCNs:

1) High power efficiency: as traffic varies, flows should be
dynamically consolidated and rerouted to as few links as

1The controller does not send control messages to delete flow f1’s entries at
switches c3 and a7 because they are closed and their flow tables are emptied.

Fig. 3. An example of explanation term definitions. f10 and f20 denote
two flows, and fs denotes the flow-set that includes the two flows.

possible so that unused switches and links can be turned
off or put into to sleep mode for power saving.

2) Good load balancing: in the minimum-power subnet,
a good load balancing among active routes can pre-
vent activating extra switches and links to accommo-
date bursty traffic surges and save more power. Thus,
we should take into account the traffic load of active
routes to schedule flows.

3) Preventing control message storms: the main reason of
the control message storm is that the flow-level schedul-
ing scheme reroutes a large number of flows at the
same time when the minimum-power subnet changes.
To prevent control storms, we should (1) reduce the
number of rerouted flows, (2) avoid conducting rerouting
operations simultaneously, and (3) decrease the number
of control messages for route configuration.

III. AGGREFLOW OVERVIEW

A. Term Definition

We first highlight some important terms used for AggreFlow
and exemplify them in Fig. 3.

Minimum-power subnet: a subnet of the DCN that is
composed of the minimum number of switches and links to
sustain the current network traffic demand.

Flow-set fs: a set of flows that are aggregated together
based on their hash values.

Ingress edge switch ein: an edge switch that connects to a
flow’s source server.

Egress edge switch eout: an edge switch that connects to
a flow’s destination server.

Forwarding route route: a route from a flow’s ingress edge
switch to its egress edge switch.

Turning-point switch ts: a switch that is at the turning
point of a flow’s (or flow-set’s) forwarding route. In the fat-
tree topology, a turning-point switch is either a core switch
for inter-pod flows (which traverse different pods) or an
aggregation switch for intra-pod flows (which only traverse
aggregation switches in the same pod).

Upstream route routeup: an upstream route that is directed
from a flow-set’s ingress edge switch to its turning-point
switch.

Downstream route routedown: a downstream route that is
directed from a flow’s turning-point switch to its egress edge
switch.

Only the switches and links on the routes of flows should
be activated to forward these flows. Fig. 3 shows an example.
In this figure, the entire network only consists of two flows:
yellow flow f10 from s0 to s15 and blue flow f20 from s0 to
s12. The two flows share the same source switch es0, but f10
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Fig. 4. Examples of flow-set routing and adaptive rerouting.

and f20’s destination switch is es7 and es6, respectively. The
minimum-power subnet consists of switches es0, a0, c0, a6,
es6, and es7, and links (es0, a0), (a0, c0), (c0, a6), (a6, es6),
and (a6, es7). The two flows belong to the same flow-set with
the turning-point switch c0 and have the same red uplink
route routeup

fs : es0 → a0 → c0. Since the two flows are
destined to different servers, f10’s downlink route is blue
routedown

f10 : c0 → a6 → es7, and f20’s downlink route is
yellow routedown

f20 : c0 → a6 → es6.

B. AggreFlow Techniques
In this paper, power saving has a higher priority than load

balancing. To maintain high power-efficiency, a minimum
subnet is first generated, which is composed of the minimum
number of switches and links to sustain the current network
traffic demand. For a newly generated subnet, load balancing
is further achieved by dynamically rerouting certain flow-sets.
When traffic demand changes, the minimum subnet may be
updated to accommodate traffic variation, and then flow-sets
need to be rerouted to maintain load balancing. AggreFlow
employs three techniques to efficiently schedule flows: Flow-
set Routing, Lazy Rerouting, and Adaptive Rerouting.

1) Flow-set Routing: Flow-set Routing conducts a coarse-
grained control on flows to reduce the number of control
messages for route configuration. In DCNs, we can aggregate
flows with the same hash value into a flow-set, and conduct
routing in a coarse-grained flow-set fashion. Once we select
a route for a flow-set, the new coming flows that belong to
the flow-set can be forwarded on the flow-set’s route without
querying the controller. In this paper, the main design trade-
off is the load balancing performance and the number of
flow-sets. Routing/rerouting a flow-set requires the flow entry
operation of the controller to change the flow-set’s route.
If we use a huge number of small flow-sets, the controller
can achieve better load balancing but with more flow entry
operations.

Example of the Flow-set Routing: We use an example
in Fig. 4 to illustrate the Flow-set Routing. Flow-set Routing
can be simply viewed as a ball-bin-room mapping problem:
a flow with a rate, a flow-set, and a route can be viewed as
the ball with a weight, a bin, and a room, respectively; balls

with different weights come and go; the goal is to maintain
the balance of rooms. We first assign the balls into different
bins using a hash function and then place bins into different
rooms base on bin-room mappings in the mapping table to
achieve load balancing of rooms. In Fig. 4, we have three
types of balls (red balls with weight 4, purple balls with weight
2, and green balls with weight 1), bins a and b, and rooms
1 and 2 with the weight capacity of 8. Balls come and go at
different time, and each ball arrives at a specific bin based on
its hash value. In Fig. 4(a), the four balls are hashed into two
bins. The weight of two bins is 9, which exceeds the room’s
weight capacity. Therefore, we need two rooms. To achieve
load balancing of two rooms, we place bin a into room 1, and
bin b into room 2. Thus, the weight of room 1 and room 2 is
5 and 4, respectively.2

2) Lazy Rerouting: Lazy Rerouting avoids conducting
rerouting operations simultaneously. The DCN traffic analysis
shows a flow’s packet arrivals exhibit an ON/OFF pattern [11],
[12], [15], [17]. For instance, in DCNs, there is an interval
between a flow’s two adjacent packets [15], [17]. Thus, every
time the subnet changes, Lazy Rerouting updates the route of a
ready-to-be-rerouted flow-set 3 only when a packet belonging
to the flow-set enters the network. Such a rerouting spreads
rerouting operations over a relatively long period of time,
reducing the bursitness of flow entry operation on switches.

Example of the Lazy Rerouting: Fig. 4(b) illustrates the
Lazy Rerouting. In the figure, purple ball 1 and red ball 2
leave. The two rooms’ weights become 1 and 2, respectively.
Since one room’s weight capacity can fit all bins, we move bin
a from room 1 to room 2. Purple ball 5 arrives and is placed
into bin a. Sequentially, green ball 6 arrives and is assigned to
bin b, and then bin a is lazily moved to room 2. Since room 1
is empty, we close it.

3) Adaptive Rerouting: Adaptive Rerouting maintains load
balancing on active routes in the subnet. As flows enter
and exit the network, flow-sets’ sizes may vary randomly.
We monitor active routes’ loads and adaptively reroute some
flow-sets from high-loaded routes to low-loaded routes to
maintain load balancing.

C. AggreFlow Processing Examples

In Fig. 5, we give an example that uses AggreFlow to
schedule the same flow f1 as in Fig. 2. For simplicity, we use a
switch ID to represent the switch’s address in packets’ headers.

1) New Flow Routing: AggreFlow routes new flows as
follows: In Fig. 5(a), (1) the first packet of flow f1 enters the
network from switch es0. The packet’s header is encapsulated
with a blank header and address es7, the address of its egress
edge switch. (2) Switch es0 cannot find flow f1’s flow-set,
and then sends the routing request to the controller. (3) The
controller informs switch es0 of flow f1′s flow-set fs, which
is associated with hash value h and route es0 → c3. (4) Switch
es0 inserts address c3 into the packet’s header. (5) Using
address c3, the packet is forwarded on routeup

fs : es0 →
a1 → c3 to switch c3. At switch c3, the address c3 is removed
from the packet’s header. (6) Using address es7, the packet
is forwarded on routedown

f1 : c3 → a7 → es7 to switch

2We just use the ball-bin-room example to help readers easily understand our
problem. However, in some cases (e.g., different routes share some common
links), our problem cannot be fully mapped to the ball-bin-room.

3In this paper, we use rerouting and route update interchangeably.
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Fig. 5. Flow scheduling using AggreFlow in a fat-tree network. routeup
fs is flow-set fs’s route; routedown

f1 and routedown
f2 are flows f1 and f2’s

downstream routes, respectively.

es7. Switch es7 removes the packet’s header and forwards
the packet to its destination server s15.

In Fig. 5(b), new flow f2 with hash value h arrives at
switch es0. Switch es0 finds that flow f2 belongs to flow-
set fs and then encapsulates c3 into the packet’s header
without querying the controller. After the encapsulation, flow
f2 is forwarded on flow-set fs’s routeup

fs and its downstream
route routedown

f2 . In the routing procedure, the controller sends
one control message to switch es0 to initialize flow-set fs
by configuring fs’s route routeup

fs . After the initialization,
no control messages are needed to configure routes for flows
belonging to fs.

2) Existing Flow Rerouting: Fig. 5(c) shows a process that
uses AggreFlow to reroute flow f1 in the same minimum-
power subnet as Fig. 2. The process is explained below: At
time t1, switches c3 and a7 are put into sleep mode to save
power, and the controller notifies all edge switches about the
subnet change. (1) At time t2, a packet of flow f1 enters
the network (assume it is the first packet that belongs to
flow-set fs and enters the network at the subnet change).
(2) Switch es0 finds that flow-set fs’s route is closed and
sends the rerouting request to the controller. (3) The controller
tells switch es0 to update flow-set fs’s route to es0 → c0.
(4) Switch es0 inserts address c0 into the packet’s header.
(5) and (6) Packet is forwarded via updated routes routeup

fs

and routedown
f1 to destination server s15.

In the rerouting procedure, AggreFlow reroutes flow-set
fs at time t2. Compared with the flow-level scheduling that
conducts rerouting operation at time t1, AggreFlow postpones
the operation by a period of t2−t1 and thus reduces switches’
instant entry update overhead at t1. Besides, the controller
only sends one control message to switch es0 to reroute flow-
set fs. Assume flow-set fs contains N flows. For the worst
case, flow-level scheduling consumes N ∗ 6 control messages
to reroute the N flows, while AggreFlow needs only one.
Therefore, AggreFlow not only spreads rerouting operations
over a relatively long time but also reduces the number of
control messages for configuring rerouted flows.

IV. PROBLEM FORMULATION

A. Network Description
The network can be described as a graph G = (V , E),

where V denotes the set of switches, and E denotes the
set of directed links between switches in V . The power
consumption of link e ∈ E and switch v ∈ V are
pe and pv, respectively. In the network operation duration
t ∈ [1, T ], flow f has the following characteristics: flow
rate ratef , ingress edge switch’s address esin

f , egress edge

switch’s address esout
f , starting time stf ∈ [1, T ), and ending

time etf ∈ (stf , T ]. Hence, flow f can be expressed as
f =

[
ratef , esin

f , esout
f , stf , etf

]
. The set of edge switches

is ES . Edge switch es ∈ ES has L forwarding routes and
K flow-sets. The set of es’s forwarding routes is routees =
{route1

es, route2
es, . . . , route!

es, . . . , routeL
es}, and the set of

es’s flow-sets is FSes = {fs1
es, fs2

es, . . . , fsk
es, . . . , fsK

es}.
Each route has the same of load, which is denoted as C.
If node v ∈ V is on route route!

es, α!,v
es = 1; otherwise,

α!,v
es = 0. If link e is on route route!

es, β!,e
es = 1; otherwise,

β!,e
es = 0. We aggregate flows into flow-sets, and route/reroute

flows in the flow-set fashion. Let Mk
es denote the set of

flows assigned to flow-set fsk
es. Then, at time slot t, flow-

set fsk
es’s total rate is rate(fsk

es, t) =
∑

f∈Mk
es

ratesf ∗
1{stf≤t≤etf}. Here, 1{.} is the indicator function and is
equal to one if the condition in the subscript is satisfied,
otherwise zero. We use xk,!

es = 1 to denote flow-set fsk
es is

assigned on route!
es (i.e., the #-th route of edge switch es);

otherwise, xk,!
es = 0.

B. Constraints
1) Flow-Set Selection Constraint: Each flow-set can only

be assigned to one route. Thus, we have
L∑

!=1

xk,!
es = 1, ∀ k ∈ [1, K]. (1)

2) Link Utilization Constraint: At any time slot, the load
utilization of each route should not exceed its maximum
utilization r. That is

K∑

k=1

rate(fsk
es, t) ∗ xk,!

es ≤r ∗ C, ∀ #∈ [1, L], ∀ t ∈ [1, T ].

(2)

C. Objective Functions
We have three objective functions.
1) Power Consumption: The first goal is to achieve the min-

imum power consumption of a DCN, which consists of power
consumption of links and switches. The power consumption of
links/switches is proportional to the number of links/switches.
Thus, we have

obj1 = plinks + pswitches

= pe ∗
K∑

k=1

∑

es∈ES

L∑

!=1

∑

e∈E

(
xk,!

es ∗ β!,e
es

)

+ pv ∗
K∑

k=1

∑

es∈ES

L∑

!=1

∑

v∈V

(
xk,!

es ∗ α!,v
es

)

Authorized licensed use limited to: University of Minnesota. Downloaded on August 31,2021 at 17:03:29 UTC from IEEE Xplore.  Restrictions apply.



22 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 6. AggreFlow processing procedure. Blue line: routing existing flows; blue line + purple dotdash line: routing new flows; red dash line: lazy flow-set
rerouting; green dotted line: adaptive flow-set rerouting.

2) Load Balancing: The second goal is to achieve load
balancing on active routes in the power-efficient DCN. The
load balancing performance of an edge switch is decided by
the maximum load of routes connected to the switch. Thus,
our object is to minimize the maximum load utilization of
routes connected to an edge switch by appropriately assigning
flow-sets during at time t ∈ [1, T ]. The maximum utilization
of active routes at time t is

obj2 = r

3) QoS: The QoS is measured by two metrics: the number
of control messages and packet loss rate. The QoS degradation
occurs when flow-sets are rerouted. Thus, if we can reduce
the number of rerouting flow-sets, we can mitigate QoS
degradation. We use x̃k,!

es to denote the selected route of flow-
set fsk

es in the last time slot. The number of changed route
for all flow-sets can be formulated as follows:

obj3 =
K∑

k=1

∑

es∈ES

L∑

!=1

∣∣xk,!
es − x̃k,!

es

∣∣

D. Problem Formulation

The goals of our problem is three folded: (1) generating the
minimum-power subnet, which minimizes the power consump-
tion of DCN and accommodates to traffic load; (2) achieving
load balancing on active routes of each edge switch in the
minimum-power subnet; and (3) maintaining good QoS by
appropriately selecting the minimum number of links and
switches and assigning flow-sets to the active routes at each
time t ∈ [1, T ]. The problem is formulated as follows:

min
x,r

(w1 ∗ obj1 + w2 ∗ obj2 + w3 ∗ obj3)

subject to
Eqs.(1), (2),
xk,!

es ∈ {0, 1}, r ∈ [0, 1], k ∈ [1, K], # ∈ [1, L],
where all

{
xk,!

es

}
and r are design variables, w1, w2, w3 > 0

are three constants that give different weights of the objectives.
The problem is a mixed integer linear programming, which is
generally NP-hard.

V. AGGREFLOW DESIGN

In this section, we detail AggreFlow’s processing procedure
and its modules.

A. AggreFlow Structure and Processing Procedure

Fig. 6 shows AggreFlow’s structure and processing pro-
cedure. AggreFlow consists of three components: subnet

generation, AggreFlow scheduler, and AggreFlow agents. Sub-
net generation considers the topology and traffic to determine
the number and location of active switches and links in the
DCN. With the subnet’s structure, AggreFlow scheduler and
AggreFlow agents work together to efficiently schedule flows.

The input of an AggreFlow agent is an AggreFlow packet
(including the address of the egress edge switch address eout

and a packet), and the output is the route of a flow-set that
the packet belongs to. The route of a flow-set is stored in
the flow-set routing table in the form of the address of the
flow-set’s turning-point switch ts. 4 The address of ts is then
encapsulated into the AggreFlow packet. The addresses of
two switches indicate the packet’s upstream and downstream
routes. Switches use the two headers to forward the packet in
the DCN. In Fig. 6, each packet contains two headers when
it enters a switch. In the DCN, each server is equipped with
a system that stores the mapping relationship between servers
and edge switches connected to the servers. Thus, before a
packet leaves its source server, it is encapsulated with its
header eout. Considering MTU packets injected in the DCN
cannot easily be expanded, we insert a blank header in advance
and will change it to address ts after the processing. The
header ts is selected by the AggreFlow scheduler. The details
are shown in Sections V-C, V-E, and V-D.

In Fig. 6, AggreFlow has four processing cases: (1) blue
line: routing existing flows; (2) blue line + purple dotdash
line: routing new flows; (3) red dash line: lazily rerouting
flows; (4) green dotted line: adaptively rerouting flows. In case
(1), an AggreFlow agent calls FlowsetObtainment function
to find the flow-set of a packet from its flow-set routing
table and then encapsulates the route of the flow-set into
the packet. In case (2), if the AggreFlow agent cannot find
the flow-set for a packet, it will ask the controller, which
will call FlowsetCreation function to create a new flow-set
for the packet. In case (3), if a new subnet is generated,
the scheduler conveys the change to AggreFlow agent in
each edge switch, which will call LazyRerouting function via
FlowsetObtainment function to change the route of the flow-set
when it receives flows. In case (4), when the load balancing
performance does not satisfy the requirement, the controller
uses AdaptiveRerouting function to reroute some flow-sets to
improve the performance.

B. Subset Generation
A fat-tree topology exhibits high regularity. Particularly,

links have the same capacity, switches have the same size, and

4In this paper, we use a turning-point switch ts and a flow-set’s route
interchangeably.
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Algorithm 1 FlowsetObtainment(packetAF
f )

Input: packetAF
f : an AggreFlow packet of flow f that enters

the network from edge switch es;
Output: route(fsk

es): the route of flow-set fsk
es.

1: k = Hash(packetAF
f );

// Tablees: flow-set routing table of edge switch e;
2: fsk

es = FlowsetSearch(k, Tablees);
// fsk

es :
[
rate(fsk

es, t), route(fsk
es)

]
;

// routees: the set of activated routes connected to edge
switch e;

3: if fsk
es == ∅ then

4: route(fsk
es) = FlowsetCreation(k, Tablees, routees);

// Algorithm 2
5: else if fsk

es '= ∅ and IsSubnetChanged == TRUE and
ChangeRoute(fsk

es) == TRUE then
6: route(fsk

es) = LazyRerouting(fsk
es, T ablees, routees);

// Algorithm 3
7: end if
8: return route(fsk

es).

the topology is regular. We can take advantage of the regularity
of a fat-tree network to determine whether to turn on/off
switches or links with much less computational burden. Specif-
ically, in the fat-tree network, we activate all edge switches to
accommodate traffic from servers. In each pod, the number
of active aggregation switches equals to the number of active
links that support the aggregated uplink and downlink traffic.
For example, in Fig. 2, assume the rate of each link is
1 Gbps, and the link’s safety margin (i.e., additional capacity
beyond normal levels to handle unpredictable traffic surges) is
0.8 Gbps. If edge switch es0 sends 1.5 Gbps of traffic up to
the aggregation layer over two links, we must enable aggre-
gation switches a0 and a1 to satisfy that demand. Similarly,
the number of active core switches can be calculated based
on the aggregated traffic between aggregation switch layer
and core switch layer. Existing works (e.g., ElasticTree [2],
Carpo [3]) proposed solutions to efficiently generate the min-
imum subnet, and we use the solution similar to ElasticTree
in our work.

C. Flow-Set Routing

Flow-set Routing is achieved by Flow-set Obtainment
and Flow-set Creation modules. Flow-set Obtainment module
routes a packet by obtaining the flow-set that has the same
hash value with the packet. If a packet does not belong to
any exiting flow-sets, Flow-set Creation module will assign
a flow-set to the flow, and the flow-set’s route becomes the
flow’s route.

1) Flow-Set Obtainment: Algorithm 1 shows the pseudo
code of Flow-set Obtainment. The algorithm works for each
flow that arrives at network. In line 1, edge switch e receives
an AggreFlow packet of flow f and uses hash function Hash()
to compute flow f ’s hash value hf . We use the hash function
because of its consistency, randomness and efficiency. A hash
function can always map packets of a flow to the same flow-
set and provide the trade-off between search time and data
storage space. The computation includes two steps: (1) using
CRC32 checksum algorithm to hash flow f ’s packet packetf ’s
five tuples (i.e., source IP address, destination IP address,

Algorithm 2 FlowsetCreation(k, Tablees, routees)

Input: k: packetAF
f ’s hash value;

Tablees: flow-set routing table of edge switch es;
Routeactive

es : the set of active routes connected to edge switch
es;
Output: route(fsk

es): the route of flow-set fsk
es.

1: routef = LeastLoadRoute(Routeactive
es );

2: rate(fsk
es, t) = 0, route(fsk

es) = routef ,
fsk

es =
[
rate(fsk

es, t), route(fsk
es)

]
;

3: Tablees ← Tablees
⋃

(k, fsk
es);

4: ChangeRoute(fsk
es) = FALSE;

5: return route(fsk
es).

source port number, destination port number, and protocol
field), (2) doing the mod operation on the result of the first
step with K , where K is the capacity of the flow-set routing
table Tablees at edge switch e, 5 and an entry stores the route
and load of a flow-set. The route of a flow-set is stored in
the form of its turning-point switch address, and the load of a
flow-set records the number of packets that hit a flow-set entry
in a period of time. It is used by Lazy Rerouting and Adaptive
Rerouting modules to achieve load balancing. When the idle
timeout of an entry in the flow-set routing table expires,
it will be removed. Here we assume hf equals k. In line 2,
we use k to find flow f ’s flow-set fsk

es from flow-set routing
table Tablees.

Lines 3 to 4 handle the case that flow f is a new flow that
does not belong to any existing flow-sets. If flow-set fsk

es’s
route does not exist, switch e will request the scheduler. The
scheduler calls Flow-set Creation module (Algorithm 2) to
create a new flow-set fsk

es for flow f and assigns a turning-
point switch for the flow-set based on the current network
status.

Lines 5 to 7 concern the case that the minimum-power
subnet has changed, and the routes of flow-sets should be
updated. In line 5, IsSubnetChanged is a Boolean variable
with default value FALSE, indicating an unchanged subnet.
When the subnet changes, the scheduler sends the message
IsSubnetChanged = TRUE to each edge switch. Upon
receiving the message, edge switches change Boolean variable
ChangeRoute of each flow-set to TRUE, which states a
flow-set’s route should be updated. If both Boolean variables
IsSubnetChanged and ChangeRoute(fsk

es) are TRUE,
Lazy Rerouting module (Algorithm 3) is called to change
its flow-set fsk

es’s route based on the current network sta-
tus. In line 8, after the above process, flow-set fsk

es’s
route route(fsk

es) is returned, and the turn-point switch in
route(fsk

es) is encapsulated into packetAF
f .

2) Flow-Set Creation: Algorithm 2 describes the pseudo
code of Flow-set Creation module. In line 1, the least loaded
route in Routeactive

es , the set of active routes connected to edge
switch e, is selected as the route of flow f . In line 2, flow-
set fsk

es is generated. In fsk
es, flow-set fsk

es’s rate counter
rate(fsk

es, t) is initialized to 0, and flow-set fsk
es’s route

equals to flow f ’s route. In line 3, flow f ’s hash value k
is mapped to flow-set fsk

es, and this mapping is stored in
flow-set routing table Tablees. In line 4, ChangeRoute(fsk

es)

5In this paper, we use a flow-set and an entry in the flow-set routing table
interchangeably.
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Algorithm 3 LazyRerouting(fsk
es, T ablees, Routeactive

es )
Input: Tablees: flow-set routing table of edge switch es;
fsk

es: the k-th flow-set of edge switch es;
Routeactive

es : the set of active routes connected to switch es;
Output: tsk

es: the turning-point switch address of flow-set
fsk

es that contains flow f .
1: new_route(fsk

es) = ∅;
// route(fsk

es) : es → tsk
es → eout

f ;
2: if (route(fsk

es) /∈ Routeactive
es ) then // close existing

routes
3: new_route(fsk

es) = LeastLoadRoute(routees);
// new_route(fsk

es) : es → new_ts → eout
f ;

4: loadnew_route(fsk
es) = loadnew_route(fsk

es) +
rate(fsk

es, t);
5: ChangeRoute(fsk

es) = FALSE;
6: else if (loadroute(fsk

es) > loadave
es and

ReroutingDecision(route(fsk
es)) == TRUE) then

// open new routes
7: new_route(fsk

es) = LeastLoadRoute(routees);
// new_route(fsk

es) : es → new_ts → eout
f ;

8: loadnew_route(fsk
es) = loadnew_route(fsk

es) +
rate(fsk

es, t),
loadroute(fsk

es) = loadroute(fsk
es) − rate(fsk

es, t);
9: ChangeRoute(fsk

es) = FALSE;
10: end if
11: if new_route(fsk

es) '= ∅ then
12: route(fsk

es) = new_route(fsk
es);

13: end if
14: return route(fsk

es).

changes to FALSE, indicating that flow-set fsk
es’s route is

updated. In line 5, flow-set fsk
es’s route is returned to Flow-set

Obtainment module.
3) Flow-set Routing’s Advantages: Flow-set routing not only

reduces the controller’s routing load but also maintains low
latency. First, it reduces the route establishment for multiple
flows. The forwarding route of a flow-set is established only
when the first packet of the first flow in the flow-set enters
the network. Once the route is created, the rest packets of the
flow and the following flows belonging to the flow-set can
be immediately forwarded. Second, the cost of establishing a
route is minimized. The route creation/update only requires an
action on an edge switch, and other entries in aggregation and
core switches are proactively installed. Third, flow-set routing
requires a switch to do the hash and table lookup, which are
basic packet processing functions in the switch and do not
incur much latency.

D. Lazy Rerouting
1) Solution: Algorithm 3 describes the pseudo code of

Lazy Rerouting module. In line 1, we initialize its new route
new_route(fsk

es) as empty. Lines 2 to 5 are concerned with
the case that the existing route of flow-set fsk

es is closed. When
the minimum-power subnet changes to save power, the existing
route does not exist in the set of active routes Routeactive

es .
Thus, in line 3, the least loaded route in Routeactive

es is selected
as the flow-set’s new route. In line 4, the traffic load of flow-set
fsk

es is added to the traffic load of its new route. In line 5, after

the route update, ChangeRoute(fsk
es) changes to FALSE to

state the flow-set’s route has been updated.
Lines 6 to 9 handle the case that one or more new routes are

available for flow-set fsk
es. When the minimum-power subnet

changes to accommodate to the increasing traffic demand,
flow-set fsk

es’s route will be updated if it meets two require-
ments listed below: (1) the load of route(fsk

es) exceeds the
balancing counter threshold loadave; (2) flow-set fsk

es satis-
fies the rerouting probability: ReroutingDecision(route(fsk

es))
== TRUE. Requirement (1) ensures each active route
with approximately equal traffic load. The balancing counter
threshold loadave is the average traffic load of active routes
connected to e, and it is calculated by the sum of traffic loads
of the active routes connected to e divided by the number of
the active connected to e.

Requirement (2) prevents traffic starvation on existing-
activated routes during flow-set rerouting. If we only consider
the first requirement to reroute flow-sets, flow-sets are kept
rerouting to the newly activated route(s) until the traffic loads
of those newly activated routes reach the balancing counter
threshold. Under such a situation, a few existing-activated
routes could have no traffic for a transient time and experience
traffic starvation, leading to a short time load balancing perfor-
mance degradation. In order to prevent the undesired situation,
ReroutingDecision function sets the probabilities for rerouting
flow-sets from their original existing-activated routes to newly
activated routes. The rerouting probability of flow-sets on an
existing-activated route equals the number of newly activated
routes divided the total number of activated routes. A flow-
set is rerouted only when it is selected by ReroutingDecision
function. Fig. 7 shows examples that compare traffic on routes
without and with the RerouteDecision function. In Fig. 7(a),
edge switch e has one existing route route0 and a new
route route1. After the new route is activated, four existing
flows arrive the edge switch. In Fig. 7(b), all the four flows
(and their flow-sets) are rerouted to route1, and route0
does not have traffic for a while, resulting in unbalancing
traffic loads on the two routes. In Fig. 7(c), we use the
RerouteDecision function and set each flow-set with 50%
rerouting probability. Thus, two flows (and their flow-sets)
are rerouted to route1 based on the result of ReroutingDe-
cision function, and other two flows (and their flow-sets) are
still forwarded on route0. Thus, the traffic loads on route0
and route1 are still statistically balanced during flow-set
rerouting.

If flow-set fsk
es meets all the two requirements, the least

loaded route in routees is selected as the flow-set’s new
route. The load of flow-set fsk

es is removed from route(fsk
es)

to new_route(fsk
es), and ChangeRoutefsk

es changes to
FALSE to state flow-set’s route has been updated. In lines
11 to 13, if new_route(fsk

es) is selected, it is updated to
route(fsk

es). In line 14, route(fsk
es) is sent back to Flow-set

Obtainment module.
2) Performance analysis: In this subsection, we first intro-

duce one theorem for deterministic load balancing, and then
introduce and prove one theorem for our lazy rerouting.

(1) Deterministic load balancing. For the load balancing
with deterministic variables, Graham has proven the following
rule [18]:

Graham’s rule All jobs are given size and arranged in
an arbitrary order. These jobs are assigned one by one and
allocated to the bin which has currently the smallest load.
This scheme’s performance is a 2−1/L approximation of the
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Fig. 7. Examples of not using and using ReroutingDecision function.

optimum value of deterministic load balancing problem, where
L denotes the number of bins.

Replacing job and bin with flow-set and route in the above
theorem, we can have Theorem 1.

Theorem 1 All flow-sets are given size and arranged in an
arbitrary order. These flow-sets are assigned one by one and
allocated to the route which has currently the smallest load.
This scheme’s performance is a 2−1/L approximation of the
optimum value of deterministic load balancing problem, where
L denotes the number of routes.

(2) Stochastic load balancing. Given the variation of flow’s
size, the goal of Lazy Rerouting is to realize the load balancing
with variables following stochastic distribution. This problem
is usually called stochastic load balancing. We assume the
size of each flow follows Poisson distribution. A flow-set
consists of multiple flows, and its size also follows Poisson
distribution. Our stochastic load balancing problem can be
stated as follows:

K flow-sets are allocated on L routes. The size of the k-
th flow-set is ratek, where rateks are independent random
variables and follow Poisson distribution. zkl = 1 denotes k-
th flow-set is assigned to routel; otherwise zkl = 0. Our goal
is to allocate flow-sets to routes such that the expected value
of the maximum load on a route is minimized. The objective
function can be mathematically formulated as follows:

minE

[
max

l∈[1,L]

K∑

k=1

(ratek ∗ zkl)

]

Lazy Rerouting is to place the flow-set one by one to the
least loaded route to realize the stochastic load balancing
with variables following Poisson distribution. The natural
equivalent of Theorem 1 for Poisson variables is to replace
each variable by a deterministic variable with the same mean.
Here we first introduce one definition and prove some lemmas
from [19] to analyze the performance of Lazy Rerouting.

Definition 1: X and Y are two random variables. X is said
to stochastically dominate Y (i.e., Y ≤sd X) if for each x,
Pr[Y ≤ x] ≥ Pr[X ≤ x].

Lemma 2.1: Let x1 > x2 and 2δ ≤ x1 − x2.
Let M1 = max (P (x1 − δ) ,P (x2 + δ)) and M2 =
max (P (x1) ,P (x2)). Then, M1 ≤sd M2.

Proof: Let M(x, y) = max(P(x),P(y)) and ft(x) =
Pr[P(x) ≤ t]. Then Pr[M(x, y) ≤ t] = ft(x)ft(y) =
elog ft(x)+log ft(y). We now show that log ft(x) is concave of
x. Recall that ft(x) = e−x

∑t
k=0

xk

k! . A simple computation
shows that

d log ft(x)
dx

=
dft(x)

dx

ft(x)
= − xt/t!

∑t
k=0 (xk/k!)

However, xt/t!
t
k=0(x

k/k!)
is the Erlang-B formula [20], which is

known to be monotonically increasing in x. Hence d log ft(x)
dx

is monotonically decreasing. Thus, log ft(x) is concave of x.
If x + y is fixed, log ft(x) + log ft(y) increases as |y − x|

decreases. Therefore, Pr [M1 ≤ t] ≥ Pr [M2 ≤ t] for all t.
With Definition 1, we can have M1 ≤Sd M2. !

Let Sl be the sum of the means of the size of flow-
set allocated to routel. Let xl be the size of the last flow-
set allocated to routel. Let yl = Sl−xl. Let M∗ represent the
optimum value of the objective function. Define µ̄ =

K
k=1 µk

L
where µk denotes the size of k-th flow-set. From the definition,
it follows that yl ≤ µ̄.

Lemma 2.2: E [max (P (y1) , . . . ,P (yL))] ≤ M∗

Proof: With Lemma 2.1 and Expectations of maximum
order statistics, we can have E[max(P(µ̄),P(µ̄),
. . . , repeated L times )] ≤ M∗. Further, yl ≤ µ̄ ⇒
P (yl) ≤Sd P (µ̄), or E [max (P (y1) , . . . ,P (yL))] ≤
E[max(P(µ̄),P(µ̄), . . . repeated L times )] ≤ M∗. !

Lemma 2.3: E [max (P (x1) , . . . ,P (xL))] ≤ M∗

With the above lemmas, we can have the following theorem
for the Lazy rerouting:

Theorem 2: Each flow-set’s size follows Poisson distribution,
and all flow-sets are arranged in an arbitrary order. These
flow-sets are assigned one by one and allocated to the route
which has currently the smallest load. The lazy rerouting’s
performance is a 2 approximation for the optimum value of
the stochastic load balancing problem with Poisson variables.

Proof: E [max (P (S1) , . . . ,P (SL))]
= E [max (P (x1 + y1) , . . . ,P (xL + yL))]
≤ E [max (P (x1) , . . . ,P (xL))]
+E [max (P (y1) , . . . ,P (yL))]
≤ 2 M∗ !
3) Lazy Routing’s Latency: When the minimum-power sub-

net changes, lazy rerouting sends the rerouting request for the
first packet of a to-be-rerouted flow-set to the controller, which
needs one control message to change the route. The rerouting
request process increases latency. However, a flow-set can
consist of hundreds or thousands of flows, each of which
can have hundreds or thousands of packets, the increased
latency due to lazy rerouting only applies to the first
packet of each flow-set after rerouting and therefore is very
minor.

4) Discussion: In our problem, we consider that the process-
ing time of a flow is not known in advance, and flows come and
go randomly. Since a flow-set consists of multiple flows, it may
always have some flows for processing and does not have the
end time of processing. Thus, we cannot use existing flow-
based processing time algorithms (e.g., Longest Processing
Time rule) to schedule flow-sets. Under this condition, lazy
rerouting is a good solution since it greedily assigns flow-sets
one by one to the route, which has currently the smallest load,
and can achieve 2−1/L approximation of the optimum value
of deterministic load balancing problem, where L denotes the
number of routes.

E. Adaptive Rerouting
Adaptive Rerouting module monitors the traffic load of

active routes and adaptively reroutes some flow-sets to main-
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tain load balancing. This module solves the Flow-set Load
Balancing Problem (FSLB) to find the mappings between
flow-sets and routes. Next, we present the problem formulation
and our solution.

1) Problem Formulation: The goal of FSLB problem is to
achieve load balancing on active routes of each edge switch in
the minimum-power subnet by appropriately assigning flow-
sets to the active routes at each time t ∈ [1, T ]. The load
balancing performance of an edge switch is decided by the
maximum load of routes connected to the switch. Thus, our
object is to minimize the maximum load of routes connected
an edge switch. The problem is formulated as follows:

min
x,r

r

subject to
Eqs.(1), (2)
xk,!

es ∈ {0, 1}, r ∈ [0, 1], k ∈ [1, K], # ∈ [1, L],
where all

{
xk,!

es

}
and r are design variables.

2) Problem Solution: The above FSLB problem is a binary
linear program, which is generally NP-hard. To efficiently
solve the problem, we can transform the problem into the
Simplified FSLB (SFSLB) by using the linear programming
relaxation technique.

The solution of the SFSLB problem are a set of decimal
values, denoted xes. We use a customized rounding technique
to get the final binary solution. We first sort xes in the
descending order of its values. For each xn

es ∈ xes, we find
its flow-set fsk

es, the flow-set’s previous route route!0
es, and

its new route route!1
es. If the flow-set is not rerouted, and its

flow-set’s new route can accept the flow-set to improve its load
balancing performance, the flow-set is decided to rerouted to
the new route; otherwise, the flow-set is still forwarded on its
previous route.

3) Adaptive Rerouting Algorithm: Algorithm 4 describes the
pseudo code of the Adaptive Rerouting module. The traffic
load of active route route!

es, denoted by load!
es, is periodically

calculated and equals the total traffic load of flow-sets on
the route. AggreFlow scheduler can use OpenFlow meters to
periodically pull flow entries’ meters from edge switches [21]
to get the traffic.

In line 1, we sort routees in the ascending order of the
route’s load. Lines 2 to 13 evaluate the load balancing perfor-
mance of routes in routees. In lines 3 to 8, if the load of a route
lies in the interval [loadAve

es − loadThd
es , loadAve

es + loadThd
es ],

we think that the route has a good performance and will check
the next route; otherwise, based on the route’s load, we put
the route into RouteOverThd

es , the set of routes whose loads
exceed the average load, or RouteBelowThd

es , the set of routes
whose loads are lower than the average load. Using loadThd

es
can guarantee the performance in a small range and prevent
the frequent flow-set rerouting, which comes from achieving
the absolute load balancing on active routes.

In lines 9 to 10, if this switch’s load balancing performance
is good, we do not need to reroute any flow-sets on it.
Otherwise, in lines 12 to 13, we generate Ωes, the set of routes
to be balanced. If the number of routes in RouteOverThd

es
and RouteBelowThd

es are significantly different, it is diffi-
cute to reroute flow-sets to maintain load-balancing. Thus,
we generate the auxiliary sets of routes to solve the problem.
In line 12, we generate Route∗BelowThd

es for RouteOverThd
es

and Route∗OverThd
es for RouteBelowThd

es . Fig. 8 shows an
example of generating the set of routes Ω. In the figure, if we

Algorithm 4 AdaptiveRerouting(es)
Input: es: edge switch es

1: sort routees in the ascending order of the route’s load;
2: for route!

es ∈ routees do
3: if (load!

es > loadAve
es + loadThd

es ) then
4: RouteOverThd

es ← RouteOverThd
es ∪ route!

es;
5: else if load!

es < loadave
es − loadthd

es then
6: RouteBelowThd

es ← RouteBelowThd
es ∪ route!

es;
7: end if
8: end for
9: if (RouteOverThd

es == ∅ and routeBelowThd
es == ∅ ) then

10: return;
11: end if
12: Route∗BelowThd

es = {route!
es|# ∈ [1, |RouteOverThd

es |]},
Route∗OverThd

es = {route!
es|# ∈ [|RouteBelowThd

es |, L]};
13: Ωes = RouteOverThd

es ∪ RouteBelowThd
es ∪

Route∗BelowThd
es ∪ Route∗OverThd

es ;
14: Γes = {fsk

es|fsk
es on route!

es ∈ Ωes),
ChangeRoute(fsk

es) == True (fsk
es ∈ Γes);

15: xes = {xn
es, n ∈ [1, |Γes| ∗ L]} is obtained by solving

the SFSLB problem for Γes and sorting the results in the
descending order;

16: for xn
es ∈ xes do

17: find xn
es’s flow-set fsk

es, new route route!1
es, and previ-

ous route route!0
es;

18: if route!1
es == route!0

es then
19: ChangeRoute(fsk

es) = FALSE, continue;
// test the next route

20: end if
21: if ChangeRoute(fsk

es) == TRUE and (load!1
es +

rate(fsk
es, t) < loadave

es + loadthd
es ) then

22: load!1
es = load!1

es + rate(fsk
es, t),

load!0
es = load!0

es − rate(fsk
es, t),

23: end if
24: end for
25: update the routes of flow-sets in Γes on edge switch es;

do not have Route∗BelowThd
es , we only have one route and

cannot reroute flow-sets in the route.
After getting the set of routes for rerouting, we will decide

how to reroute flow-sets to improve the load balancing per-
formance. In line 14, we generate Γes, the set of flow-sets
of routes in Ωes, and each flow-set in Γes should update its
corresponding route. In line 15, we generate the set of decimal
results. In lines 16 to 24, we use a customized rounding
technique to get the final rerouting result and update the load
of related routes similar to the lines 7 to 9 in Algorithm 3.
In line 25, the new routes of flow-sets are updated to the
switch.

VI. SIMULATION

This section evaluates AggreFlow’s performance in the fat-
tree network simulation platform.

A. Comparison Schemes
We compare AggreFlow with two flow-level scheduling

schemes.
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Fig. 8. An example of generating the set of routes Ω.

Balance-oblivious flow-level scheduling [2]: The controller
consolidates every flow to the leftmost route with sufficient
capacity for the flow. For a single flow, a routing operation or
a rerouting operation requires multiple control messages from
the controller.

Balance-aware flow-level scheduling [7]: In a given
minimum-power subnet, the controller routes each new flow
to the least loaded route. As the subnet changes, the controller
reroutes existing flows to the least loaded route one by one.
Section II-C explains its details.

AggreFlow: AggreFlow employs Flow-set Routing, Lazy
Rerouting, and Adaptive Rerouting to efficiently schedule
flows. The details are described in Section III-B. We let
T(K) denote a flow-set routing table with K entries and
AggreFlow(K) denote AggreFlow scheme using T(K).

B. Simulation Setup

We designed a packet-mode simulation platform on a NS-3
based fat-tree testbed. In the DCN, each link has the same
rate, and each server sends a certain number of flows to all
other servers. To emulate flow arrivals and terminations, each
flow is given two states: ON and OFF. The ON status of a
flow lasts a duration with an exponentially distributed random
variable, which is determined when the flow is generated. The
OFF status of a flow is the idle time of the flow and also lasts
a duration of an exponentially distributed random variable,
decided when the previous ON status finishes. The power of
the DCN is the total power consumed by active switches and
links/ports.

Generally speaking, DCNs usually incorporate some level
of capacity safety margin to prepare for traffic surges [2].
In such cases, the network could allocate more capacity
than essential for normal workload. To implement capacity
safety margin φ, we monitor the utilization of each outgoing
port/link of a switch. A new port on the same side of the
switch will be enabled when the utilization exceeds 1-φ. Then,
the corresponding port in another switch will be activated to
establish the new link.

In our simulation, we use 3-layer 32-pod fat-tree network.
Each link’s rate is 1 Gbps, and the size of each packet is
1.5 KB. Each output port of a switch has a buffer space
of 1,200 KB. The average ratio of ON period to OFF period
is 5 [6]. Each flow is an inter-pod flow. The power status
change of core switches causes flow rerouting. Traffic flows
are generated in two separate slot intervals. In the first interval
(0,60), each flow’s arrival slot is a random variable in slot
interval (0,40), and its termination slot is a random variable in
slot interval (40,60). In the second slot interval (60,124), each
flow’s arrival slot is a random variable in interval (60,100),
and its termination slot is a random variable in slot interval
(100,124). No new flows are generated in slot intervals (40,60)
and (100,124). Fig. 9 shows the DCN’s utilization in our
simulation. In slot intervals (0,40) and (60,100), the DCN’s

Fig. 9. Data center network’s utilization.

utilization grows as the number of new flows increases.
In slot intervals (40,60) and (100,124), the DCN’s utilization
decreases as the existing flows terminate transmission. We take
the power parameters of a switch from [2]. The capacity safety
margin φ is set at 0.2. We test two AggreFlows: AF(160)
with 160 entries and AF(40) with 40 entries. The install-
ment/update/deletion process of a flow entry in existing SDN
switches requires the time in the order of milliseconds [8].
Thus, the two AggreFlows do not exceed the processing
ability of the switch, and the switch can timely process flow
entries.

C. Simulation Results
In our simulation, we evaluate three aspects for each

scheme: load balancing performance, power consumption, and
QoS performance.

1) Load balancing Performance: The load balancing per-
formance is evaluated in the form of Root Mean Squared
Error (RMSE) of active routes in the DCN [13].

RMSE =

√∑N
i=1(loadi−loadave)2

N
(3)

where i denotes the i-th link in the network. The network
consists of N links, loadi denotes the i-th link’s load, and
loadave denotes the average link load of N links in the
network.

Fig. 10 shows the load balancing performance of different
flow scheduling schemes. The smaller RMSE, the better per-
formance. If all active routes have the same load, RMSE is 0.
In the figure, the box represents the center half of the data, and
the red line represents the median data. The whiskers include
1-25-50-75-95-th percentiles of the data, and red crosses are
5% outliers.

Balance-oblivious flow-level performs worst since it greed-
ily consolidates flows to the left routes in each switch
layer. Balance-aware flow-level presents the best performance
because it conducts fine-grained flow-level routing and rerout-
ing based on its global visibility. AggreFlow achieves the mean
RMSE comparable to Balance-aware flow-level. AggreFlow’s
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Fig. 10. Load balancing performance of different flow scheduling schemes.

Fig. 11. Power saving. The number of ports in the switch is used to denote
the scale of the DCN. Flow-level schemes achieve the optimal result.

load balancing performance can be further improved by using
large flow-set routing tables. AggreFlow(160)’s load balancing
performance is more close to Balance-aware flow-level than
AggreFlow(40). However, the better performance is at cost of
higher control messages for rerouting more flow-sets.

2) Power Consumption: In our simulation, every 1 slot,
the scheduler collects traffic statistics from switches and
decides power status of switches and links. Each scheme
selects active switches and links in a deterministic left-to-right
order, so that unused switches and links are then turned off
in a deterministic right-to-left order to save power. With such
an active switch selection order, a specific number of active
switches and links is coupled with only one minimum-power
subnet.

For each scheme, the power consumption includes the power
consumption of active switches and links. In a fat-tree network
with k port switches, the number of aggregation switches and
core switches are k2/2 and k2/4, respectively. Thus, we use
the number of ports in the switch to denote the scale of a DCN.
Fig. 11 shows the power consumption of ports and switches of
the schemes with the original fat-tree network using different
switches. In our simulation, each scheme schedules flows
and turns off the links/ports of corresponding switches to
reduce power consumption. When all links/ports of a switch
are turned off, this switch will be turned off to save power
consumption.

For the metric of power consumption, we can divide flow
scheduling schemes into two categories: the balance-oblivious
scheme (i.e, Balance-oblivious flow-level) and the balance-
aware scheme (i.e, all schemes except Balance-oblivious
flow-level). In the entire simulation, both flow-level balance-
aware schemes and AggreFlow consume the same power.
In the figure, as the number of switches’ ports increases,
the power saving increases and reaches the threshold 67%
for the balance-aware schemes and 85% for the balance-

oblivious scheme. Good load balancing performance reduces
power consumption by about 18% on average, while the
unbalanced load allocation degrades power efficiency as the
DCN’s scale expands. Balance-oblivious flow-level scheduling
scheme enables the controller to consolidate every flow to the
leftmost route that has sufficient capacity for the flow. How-
ever, this scheme does not support load balancing and active
routes could be allocated with unbalanced traffic. When bursty
traffic surges on congested routes, this scheme will require
extra switches and links to accommodate the traffic variation
and thus consume more power than Balance-aware schemes.
Balance-aware flow-level scheduling presents good perfor-
mance of power saving. However, it works in a fine-grained
per-flow fashion and thus has much higher complexity in terms
of flow table storage and management than AggreFlow, which
manage flows in the manner of sets, as shown in Fig. 17.

3) QoS Performance: We use four metrics to evaluate the
QoS performace for each scheme: packet loss rate, rout-
ing overhead, rerouting overhead, and cumulative scheduling
overhead.

(1) Packet Loss Rate. Packet loss comes from the procedure
of the minimum-power subnet reconfiguration. As traffic load
increases, links have to accommodate more flows and become
congested. When the load on the most congested link exceeds a
pre-determined threshold (1-φ), a new minimum-power subnet
is generated to relieve the current network congestion.

In our simulation, packet loss mainly comes from slots
15 and 75. As shown in Fig. 9, traffic load increases equally
at each slot interval. However, at the two slots, the subnet
is small and thus performs worse than a large subnet to
prevent packet loss when traffic surges occur. For the same
subnet, the load balancing performance impacts packet loss
rate. Compared with the imbalanced load allocation, a bal-
anced traffic allocation not only postpones the time that links
reach the pre-determined thresholds, but also reduces the
number of packets lost on the most congested links. Packet
loss rate of Balance-aware flow-level, AggreFlow(40) and
AggreFlow(160) are 0.19%, 0.193% and 0.193%, respectively.
Although these AggreFlow schemes do not achieve the same
load balancing performance as Balance-aware flow-level does,
their load balancing performance is good enough to handle
traffic surges on congested links.

(2) Flow Routing Overhead. We define the flow routing
overhead as the number of control messages used for routing
new flows at a single slot. In the following figures, we do
not present the results of Balance-oblivious flow-level since
it has the same result of Balance-aware flow-level. Fig. 12
shows flow routing overhead of Balance-aware flow-level,
AggreFlow(40), and AggreFlow(160). In the figure, Balance-
aware flow-level consumes the highest overhead. In the two
intervals (0,40) and (60,100), Balance-aware flow-level’s over-
head maintains about 1,500 control messages per slot since
new flows arrive at the network in an approximate similar rate.
In slot intervals (40,60) and (100,120), no new flows enter the
network, and Balance-aware flow-level does not route any new
flow.

AggreFlow(40)’s routing overhead is about 99% less than
Balance-aware flow-level and only comes from the intervals
(0,5) and (61,68). In intervals (0,5) and (61,68), AggreFlow
creates new flow-sets as new flows enter the DCN. Specifically,
in slot interval (0,5), the flow-set routing tables on different
edge switches are initialized when the first flow of each
flow-set enters the network. AggreFlow(40)’s highest overhead
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Fig. 12. Flow routing overhead of different flow scheduling schemes. The
balancing-aware and balancing-oblivious flow-level schemes have the same
performance.

Fig. 13. Flow rerouting overhead of different flow scheduling schemes. The
balancing-aware and balancing-oblivious flow-level schemes have the same
performance.

comes from slot 1, the first slot to initialize flow-set routing
tables, but it is still about 87.4% less than Balance-aware
flow-level. As the number of initialized flow-sets increases,
AggreFlow(40)’s overhead decreases. At the end of slot 5,
the initialization completes. After the initialization, each flow-
set is assigned with a route. Thus, in the slot interval (6,40),
when an edge switch receives new flows, it finds a new
flow’s route from its flow-set routing table. In interval (40,60),
no new flows enter the network, and some existing flows
terminate transmission. As a result, a few flow-set entries
are disabled from flow-set routing tables when their timeouts
expire. Similarly, in slot interval (61,68), new flows enter
the network and the DCN utilization increases. Under such a
condition, some flow-set entries are initialized again in flow-
set routing tables. AggreFlow(160)’s overhead is a little higher
than that of AggreFlow(40) and comes from two longer slot
intervals (0,18) and (61,83). AggreFlow(160) uses larger flow-
set tables so that it requires more control messages and longer
time to initialize its tables than AggreFlow(40) does.

(3) Flow Rerouting Overhead. The number of control mes-
sages used for rerouting existing flows at slot t is named flow
rerouting overhead at slot t. Fig. 13 shows flow rerouting over-
head of Balance-aware flow-level, AggreFlow(40) and Aggre-
Flow(160). In the figure, the overheads of all schemes vary as
the DCN utilization changes shown in Fig. 9. Balance-aware
flow-level performs worst and consumes 36,067 messages at
slot 96. This is because when each subnet changes, it reroutes
a large number of flows, and each rerouting operation requires
multiple control messages.

AggreFlow(40) reduces the overhead by about 99% com-
pared with Balance-aware flow-level. Since the controller can
reroute a set of flows by sending one control message to
an edge switch, AggreFlow(40) requires much less control

Fig. 14. Flow rerouting overhead in interval (26,26.006).

Fig. 15. Composition of AggreFlow(40)’s flow rerouting overhead.

messages to reroute the same number of flows than Balance-
ware flow-level does.

AggreFlow conducts rerouting operations in a relative long
time. There are two reasons. First, using Lazy Rerouting,
an AggreFlow agent reroutes a flow-set when it receives a
packet belonging to the flow-set. Fig. 14 shows the overhead
consumed by rerouting operations in the interval (26,26.006).
At slot 26, the minimum-power subnet changes, and Balance-
aware low-level reroute flows immediately, whereas Aggre-
Flow(40) spreads its rerouting operation over two separate
slot intervals (26,26.0001) and (26.0011,26.0028). Second,
using Adaptive Rerouting, as long as the scheduler detects
imbalanced traffic loads on active routes, AggreFlow then
will dynamically reroute some flow-sets to maintain load
balancing. Compared with Balance-aware flow-level that only
does the rerouting operations at a specific time, AggreFlow’s
rerouting operations are conducted as the network status
changes.

Fig. 15 shows the composition of AggreFlow(40)’s flow
rerouting communication overhead. In the figure, Aggre-
Flow(40) conducts 18 adaptive rerouting operations, and
each rerouting operation consumes 1-13 control messages.
In Fig. 16, Adaptive Rerouting only consumes 9.2% of the
total flow rerouting communication overhead.

In Fig. 13, AggreFlow(160)’s overhead is larger than that
of AggreFlow(40). AggreFlow(160) uses large flow-set routing
tables and requires more control messages in each rerouting
operation than AggreFlow(40) does. Fig. 16 shows the flow
rerouting overhead of AggreFlow(40) and AggreFlow(160)
from Adaptive Rerouting. In the figure, AggreFlow(160)
consumes more control messages than AggreFlow(40) in
each adaptive rerouting operation. However, AggreFlow(160)’s
overhead is still much less than Balance-aware flow-level.

(4) Cumulative Scheduling Overhead. Fig. 17 shows cumu-
lative overhead of different flow scheduling schemes. Com-
pared with Balance-aware flow-level, AggreFlow(40) and
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Fig. 16. Flow rerouting overhead from Adaptive Rerouting.

Fig. 17. Cumulative scheduling overhead of different flow scheduling
schemes.

AggreFlow(160) reduce cumulative overhead by about 99%
and 98% on average, respectively.

VII. DISCUSSION

In this section, we discuss some issues related to AggreFlow.
1) Prevent out-of-order Packets: In practice, we apply some

actions to ensure a flow’s packets arrive in-order after each
rerouting operation. For a to-be-rerouted flow, the ingress edge
switch uses a bit to make a sign on the last packet of the
flow and sets the packet with a high priority to make sure
it is delivered to the egress switch. If some packets of the
flow arrives earlier at egress edge switch from newly open
routes, they are buffered until the signed packet is delivered.
The actions prevent out-of-order packets and maintain good
latency.

2) Header Encapsulation: Similarly to VL2 [11], Aggre-
Flow can use an IP-in-IP encapsulation to insert the switch
addresses. For a small DCN, we can give each switch a specific
number to represent its address and reuse VLAN field to insert
switch address [22]. Besides existing encapsulation techniques,
we can also use state-of-the-art techniques (e.g., POF [23],
PIF [24]) to design flexible packet headers.

3) AggreFlow Application Scenario: In DCNs, some net-
work applications may pay attention to specific information
contained in each packet of every flow. For example, in the
applicaiton of network firewall, the packet is forwarded or
dropped based on the rules that match the packet’s source IP
address, destination IP address and port numbers. AggreFlow
can also be applied to such applications with small modifica-
tion. For instance, we can conduct access control for each flow
on edge switches (e.g., context-aware detection on packets of
flows) before the flows are aggregated into flow-sets. We leave
this issue for our future work.

VIII. RELATED WORK

A. Data Center Cost Saving

In recent years, many studies have been conducted
to optimize data center cost. Some studies propose to
dynamic adjust devices to save the power consump-
tion of a data center (e.g., servers [25], [51], cool-
ing system [26], [27]). Some other works propose to
reduce the electricity cost of distributed data centers con-
sidering practical factors, such as time-of-use electricity
rates [28]–[33], renewable energy availability [34]–[36].

Some recent studies consider the power consumption of
network devices. ElasticTree [2] turns on and off switches
and links based on the current traffic demand and consolidates
traffic on a minimum-power subnet. CARPO [3] consolidates
low-correlation flows together to further save power based
on an observation that bandwidth demands of low-correlation
flows usually do not peak at the same time in real DCNs.
Widjaja et al. [6] explore the impacts of stage and switch
size on power saving of a DCN. In [37], the authors further
reduce power by considering the correlation between the DCN
and servers. PowerFCT [38] considers the requirements of
flows and traffic consolidation with a component throttling to
reduce Flow Completion Time (FCT) and energy consumption.
FCTcon [5] works along with both a FCT control augment
factor and a traffic consolidation module to dynamically adjust
the FCT of delay-sensitive flows to meet their deadlines while
saving energy. The similar idea is also proposed in [39].
SmartFCT [40] employs Deep Reinforcement Learning (DRL)
to improve the power efficiency of DCNs and guarantee FCT.
Our work considers the impact of load balancing on power
efficiency and solves the scalability problem to deploy a
power-efficient DCN with time-varying traffic loads.

B. Flow Scheduling in DCNs

In Hedera [10], new flows are recognized as mice flows
and routed by edge switches with oblivious static schemes.
When a flow’s transmission rate grows past a threshold rate,
it is detected as an elephant flow and rerouted to a new route
with less load. In DevoFlow [41], flows are classified into
mice and elephant flows based on their transferred volumes.
Mice flow routing are achieved by matching the exact-match
flow entries, whereas DevoFlow controller reroutes elephant
flows to the least congested path between the flows’ end-
hosts. Mahout [42] also focuses scheduling elephant flows,
which are detected at end-hosts by looking at the TCP buffer
of outgoing flows. The above schemes are designed for static
DCNs, where all switches and links are always turned on.
As the minimum-power subnet changes frequently, they may
lead to imbalanced load on active routes or frequent control
message storms. DISCO [43] schedules flows in a distributed
fashion and considers flow correlation and delay constraints.

Compared with the state-of-the-art load balancing schemes
in DCNs (i.e., LetFlow [44], CONGA [45], Hermes [46], and
HULA [47], AggreFlow has several different aspects. First,
most of the aforementioned schemes (e.g., [44], [45], [47])
work on a granularity of flowlet, which requires dedicated
hardware and is inflexible due to the fixed flowlet timeout
(e.g., 500µs). By contrast, AggreFlow only relies on SDN
to perform load balancing strategies. Second, thanks to the
SDN controller, AggreFlow can perform much accurate load
balancing strategies because of the global network traffic
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information and global decisions compared with distributed
schemes like [46].

IX. CONCLUSION AND FUTURE WORK

In this paper, we identify two practical issues for deploying
power-efficient DCNs: unbalanced traffic allocation of active
routes could degrade power efficiency; frequent control mes-
sage storms would overwhelm OpenFlow switches. To achieve
power saving and load balancing with a low overhead, we pro-
pose a dynamic flow scheduling scheme named AggreFlow.
AggreFlow schedules flows in a coarse-grained flow-set fash-
ion, employs lazy rerouting to amortize a huge number of
simultaneous rerouting operations over a relatively long period
of time, and adaptively reroutes flow-sets to maintain load
balancing on active routes. Simulation results show that,
compared with baseline schemes, AggreFlow achieves a good
power efficiency and a good load balancing performance with
a lower overhead. Sophisticated aggregating flow design can
construct better flow-sets at the cost of higher processing load
and delay on switches. In future, we will consider the efficient
aggregating flow design.
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