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ABSTRACT

This work presents ideation and preliminary results of using con-

textual information and information of the objects present in the

scene to query applicable social navigation rules for the sensed

context. Prior work in socially-Aware Navigation (SAN) shows its

importance in human-robot interaction as it improves the inter-

action quality, safety and comfort of the interacting partner. In

this work, we are interested in automatic detection of social rules

in SAN and we present three major components of our method,

namely: a Convolutional Neural Network-based context classifier

that can autonomously perceive contextual information using cam-

era input; a YOLO-based object detection to localize objects with a

scene; and a knowledge base of social rules relationships with the

concepts to query them using both contextual and detected objects

in the scene. Our preliminary results suggest that our approach

can observe an on-going interaction, given an image input, and use

that information to query the social navigation rules required in

that particular context.

CCS CONCEPTS

• Human-centered computing → Social navigation.
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1 INTRODUCTION

As mobile robots keep growing and foster human-robot collab-

orative activities in public places, they must navigate efficiently,

reliably, and socially around individuals. To successfully accept

these robots in human environments, we need to explore robot nav-

igation in the social contexts in which we live. Navigating through

a crowded environment using a collision-free path is challenging

and has long been a solved problem [15]. However, in human-robot

environments, the challenge is no longer about navigating from

one point to the other efficiently; it is more about social awareness

in navigation behaviors [3–5, 21]. Social navigation in a single con-

text or a few contexts is insufficient for real-world deployments in

collaborative environments such as hospitals, shopping malls, and

airports. Autonomously detecting the scene/context and adapting

an appropriate social navigation strategy is vital for social robots’

long-term applicability in dense human environments.

In prior studies, context-aware navigation may have considered

object detection using pre-defined rules to define their navigation

behavior. We are interested in using environmental context and

object information for more appropriate social navigation. We in-

troduce a novel approach to use context recognition and object

detection to execute context-appropriate social rules. For example,

a robot’s social navigation strategy in an art gallery or a museum

differs from the social navigation strategy for hallway navigation.

Similarly, the social rules within the same context vary based on

other factors in the environment. For example, social navigation

rules in a gallery with a person are different from social navigation

in a gallery with a person viewing artwork. In the former case, the

robot may only need to account for the proxemic rules around the

person, whereas in the latter case, the robot has to account for both

proxemic rules and rules associated with activity space (the space

between human and the artwork).

2 RELATEDWORK

Previous studies have investigated ways for robot navigation in an

indoor context with the presence of a human. We can classify this

body of work in two broad areas: context-aware navigation and

knowledge base for robot navigation.

2.1 Context-Aware Navigation

Research in HRI, socially-aware navigation, codified these unspo-

ken rules into robot path planning algorithms using both analyti-

cal [8, 19] and learning-based approaches [16, 21]. However, most

of the approaches to social navigation codifies rules for a single
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context, such as appropriate hallway behaviors [8, 21], not pass-

ing in between two conversing people [19], and avoiding activity

zones [16]. With an increased interest in the social navigation re-

search community, researchers have identified the need for a unified

socially-aware navigation (USAN) [2, 12], i.e., social navigation not

just for a single context but for multiple contexts.

Prior work in SAN deals only with a single context; to the best of

our knowledge, nomethod can handle multiple SAN contexts on the

fly. Lu et al. work on layered costmaps is an approach that closely

relates to the goals of USAN [14]. However, this approach does not

include a method to sense a context autonomously; hence, costmaps

associated with a specific context cannot be selected automatically.

In a similar work [3], researchers used a non-linear multi-objective

optimization approach to socially-aware navigation that enabled

socially appropriate navigation behaviors inmultiple scenarios such

as hallways, art galleries, O-formations, and standing in a line. In

follow-up work [1], an image classification based context classifier

(for hallways and art galleries) along with a based-based classifier

using linear SVM (for O-formations and standing in line) enabled

autonomous selection of cardinal objectives that matter most for

an autonomously sensed context thereby enabled the optimization-

based planner to work in multiple contexts.

Inverse Reinforcement Learning (IRL)-based approaches [10, 11,

16, 18] are promising in a single context and can be trained to

handle multi-context SAN but will require a lot of human train-

ing data for each context. Even though the work on multi-context

socially-aware navigation [1] generates social trajectories for an au-

tonomously sensed context, it is constrained and does not maintain

a knowledge base that can scale.

Figure 1: A sample of images from the internet that consti-

tute images of hallways, artwork, vending machines, and

other categories used for training our model.

2.2 Knowledge Base For Robot Navigation

There has been a growing interest in the knowledge-based methods

and their application in robotics, such as socially aware naviga-

tion [13]. Semantic awareness has presented new frontiers in robot

navigation, enabling more powerful tools for abstraction in rep-

resenting information [7]. A location-based mobile service was

developed and evaluated to study an indoor navigation service [22],

which helped people to navigate around with physical difficulties.

This work uses navigation context to enhance navigation behav-

ior similar to our work, but our application is autonomous robot

navigation instead of an online service for people with disabilities.

In another work [20], authors propose a knowledge engine that

learns and shares knowledge representations for robots to complete

various responsibilities. This work presented system structure and

how it supports different tools for users and robots to interact with

the knowledge engine. The authors extensively discussed the role

and need of such knowledge engines in the real-world application

in three major research areas: training natural language, perception,

and planning, which are all critical in many robotic tasks.

3 APPROACH

3.1 Context Classification

3.1.1 Dataset. We trained a CNN model to distinguish between

four contexts (classes), art galleries, hallway, vending machines,

and others (anything that is not a hallway, art gallery, or vending

machine - we utilized images of kitchens, living rooms, and dining

rooms). We collected a total of 4773 images from the internet, as

shown in Figure 1 and split them into training (.75), validation

data (.25) and 400 test images. The images collected were all in

color, resized to 256x256, and normalized before feeding to the

network. Data augmentation was incorporated to ensure model

generalization as the dataset is small. Augmentation includes image

manipulations like zoom, shear, a shift in width, a shift in height and

horizontal and vertical flip. Apart from the training, validation, and

test data, we also collected real-world data at a mid-sized university

in the United States to further test the model.

3.1.2 Model. Our approach to a context classifier is a CNN ar-

chitecture that resembles VGGnet [6] but with a shallow depth

(only eight convolution layers, three max-pooling layers, and four

fully-connected layers). The CNN takes a 3-channel color image as

input and outputs a probability that the image belongs to one of the

four classes. The proposed CNN model consists of 8 convolution

layers, each with 32 filters, a kernel size of 3, a stride of 1x1, same

padding, and ReLU activation. There are three max-pooling layers

with a pool size of 2x2 to downsample between layers 2-3, 5-6,

8-9. The network also includes dropout regularization with every

max-pooling layer and between layers 9 and 10 (between the first

two fully connected layers). All the fully connected layers use ReLU

activation except for the last layer, which uses soft-max activation

to make the predictions.

3.2 Object/Person Detection

The input images for context classification were also used with

YOLOv3 to perform object detection and localization. The ’You Only

Look Once’ v3 (YOLOv3) method is among the most broadly used

deep learning-based object detection approaches [23]. We need to

detect objects and persons because understanding context alone is

not enough to extract related rules as the objects within the context

and the interactions between them play a vital role. For example, in
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an empty gallery, the agent does not observe activity space unless a

person and objects like artwork are detected. Similarly, in a hallway

context, general rules to navigate the right side of the hallway

applies, but the strategy can be different when a person is also in

the scene as the robot should also account for the human’s personal

space. In other words, more specific rules can be added to a context

on top of general contextual social rules by detecting objects and

people in the environment (see Figure 2).

Figure 2: A social navigation ontology illustration, showing

the relationship between context, objects, and rules.

3.3 Knowledge Base Representation

To share a common understanding of the information of the envi-

ronment, we developed a social navigation ontology. An ontology

is a way of describing knowledge as a collection of concepts in a

domain and the relationships among them. An ontology can formal-

ize high-level representations of knowledge of various concepts [9].

The authors use OWL language to build and expand a knowledge

graph of concepts and relationships between them. We used con-

text, objects, and rules associated with them to form an ontology

in our approach. Relationships between contexts, objects are repre-

sented as a knowledge graph. A sample of related rules based on

the observed context and detected objects can be seen in Table 1.

Environment Social Rules

Gallery Do not get too close to the artwork

Respect peoples’ personal space

Respect activity zones if any

Hallway Stay on the right

Respect peoples’ personal space

Vending Machine Respect peoples’ privacy

Wait in line

Table 1: Sample social rules for specific environments.

3.4 Extracting Social Rules

With the output label from the context classifier and the objects

detected, we query the knowledge base to extract applicable social

rules associated with the context, given the objects within the

detected context, i.e., the relationships between the objects and the

context are used to get the associated social rules. We used the

SPARQL language, a protocol using RDF query language, which is

a semantic query language for databases to retrieve and manipulate

data stored in Resource Description Framework (RDF) format.

4 RESULTS

In this section first we present results of each component of our

method and then the outcome of the whole package. For our context

classifier, the model was trained on the training set and validated

on the validation set over 500 epochs. Our model achieved a 96.44%

training accuracy and 94.33% accuracy on validation data. The

model generalized to real-world images (collected on campus) that

it has not seen; the accuracy for an art gallery (15 samples), hallway

(33 samples), and vending machine (12 samples) categories are

93.33%, 100.0%, and 91.66%, respectively. Table 2 shows performance

on the real-world data.

Class Precision Recall F1-Score

Art Gallery 1.0 0.93 0.97

Hallway 0.97 1.0 0.99

Vending Machine 1.0 0.92 0.96

Table 2: Performance of the CNN based context classifier on

real-world images collected on campus.

For object detection, YOLO-v3 outputs detected objects along

with their confidence score; however, in this work, we used the

confidence score to filter the noise by thresholding at 50%, and the

label data is used with the query system. These outcomes are used

as text information for making SPARQL queries to extract social

rules.

Figure 3: In a sample of images from the internet used to

test the approach, we found "gallery, hallway, and vending

machine" as context. "Person" was also detected in these con-

texts, which made differences in executed rules.
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Figure 3 presents sample results on images of three categories:

an art gallery, hallway, and the vending machine. Image (a) is an art

gallery context with a person in it so, our system extracted do not

get too close to the artwork, respect peoples’ personal space, and respect

activity zones as social rules for this situation. Similarly, image (b) is

a vending machine (ATMs) situation where the robot would apply

general rules like wait in line (even when others are not waiting, in

which case it is called approach behavior); however, when people

are using the ATMs, other specific social rules like respect privacy

and respect peoples’ personal space should be considered. To illustrate

this, consider images (c) and (d) both are hallway context; however,

one of the images is just a hallway without any people; in this case,

the general rule of stay on the right side is applicable. In the other

case, a hallway context with people in it, specific rule of respecting

peoples’ personal space is also extracted by our system along with

the general rule of stay on the right, as shown in Table 3.

Context Social Rules

Empty hallway (c) Stay on the right

Person in hallway (d) Stay on the right

Respect peoples’ personal space

Table 3: Results of extracted social rules in various environ-

ments. Most importantly, this table shows the extraction of

general and specific social rules depending on the context

and the objects detected in the contexts.

5 DISCUSSION

This paper presented the ideation and preliminary results of our ap-

proach towards deep reasoning of social rules for social navigation

applications. Our results show that using deep learning methods

such as image classification and object detection can query a knowl-

edge base to extract both general and specific social rules pertaining

to the detected context and the observed objects within the sensed

context. We also showed how specific rules could apply depending

on the objects detected in a context. Our preliminary results show

evidence that our approach could be used as an objective selection

mechanism for a unified socially-aware navigation system.

5.1 Limitations/Future Work

Some of our work’s limitations are that we used a few contexts,

and therefore, the knowledge base is small. However, our ongoing

efforts include building a broader knowledge base using MIT In-

door Scenes dataset [17]. Future work will augment our system to

autonomously build a knowledge graph by learning the relation-

ships between contexts and objects within the context. Once we

have this high-level knowledge graph system, we will integrate

it with an optimization-based social navigation planner [3, 8]. In

the aftermath of the COVID-19 pandemic, we plan to develop the

system and validate our proposed method on a real-world robot.
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