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Abstract

Estimating an optimal individualized treatment rule (ITR) based on patients’ information
is an important problem in precision medicine. An optimal ITR is a decision function that
optimizes patients’ expected clinical outcomes. Many existing methods in the literature are
designed for binary treatment settings with the interest of a continuous outcome. Much
less work has been done on estimating optimal ITRs in multiple treatment settings with
good interpretations. In this paper, we propose angle-based direct learning (AD-learning)
to efficiently estimate optimal ITRs with multiple treatments. Our proposed method can
be applied to various types of outcomes, such as continuous, survival or binary outcomes.
Moreover, it has an interesting geometric interpretation on the effect of different treatments
for each individual patient, which can help doctors and patients make better decisions. Finite
sample error bounds have been established to provide a theoretical guarantee for AD-learning.
Finally, we demonstrate the superior performance of our method via an extensive simulation

study and real data applications.
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1 Introduction

Precision medicine, which recommends different treatments for individual patients, has been
a popular research area in the scientific community. Compared with traditional “one-size-fits-all”
medical procedures, precision medicine provides an individualized decision for each patient based
on their information, such as clinical covariates, genetics, in order to maximize the outcome of
each patient. There are different types of outcomes such as time to event, health index or the
disease indicator.

There are a number of existing statistical methods for estimating optimal ITRs in the lit-

erature. These methods can be roughly characterized into two types. The first type includes

value-based methods such as Q-learning (Watkins and Dayan (1997), Wafkind (I98Y), Murphy

(2005), Qian and Murphy (2011) and A-learning (Murphy (2003), Robins (2004)). Q-learning

estimates optimal I'TRs via modeling the conditional outcome function based on covariates while
A-learning models the contrast between rewards of two treatments. The second type of methods
directly targets the decision rules. One major approach of this type is to recast the estimating
ITRs problem as weighted classification problems and use machine learning techniques to estimate
optimal ITRs (Zhang et all (2012), Zhao et all (201%), Zhou et all (2017), Zhao et all (2015a),
(2016)). In order to enhance interpretability of decision rules, tree based meth-
ods were also proposed ((Zhang et all, PUTS; [Foster_ef all, 20T, [Laber_and Zhad, P0T5)). Other
direct-search methods include Mian"ef all (2014) and Direct Learning (D-learning) (Q1i and Liu

(2017)), which directly estimate the decision function that leads to optimal ITRs by regression
techniques. Recently, a general statistical framework to estimate optimal I'TRs was proposed by
Chen_ef all (2017).

Censored data are commonly seen in practice. Thus, it is also important to develop methods

to estimate optimal ITRs for the survival outcome. Various methods have been proposed in the

literature to estimate optimal ITRs for survival outcomes, such as Goldberg and Kosorok (201%),

Zhao et all (P0T56) and Ciietall (2017). Recently, Baief all (2016) and Jiang et al] (2016)

proposed several methods to estimate the optimal ITR that can maximize the survival probability
of patients. However, for general I'TR problems, most of these existing methods are designed for
binary treatment settings only. There are many multi-armed ITR problems in pratice (Baron

efall (P013)). To the best of our knowledge, not much has been done for estimating the optimal



ITR for the multi-armed treatment settings with various outcomes, such binary and survival
outcomes. Thus it is essential to develop methods to take multiple treatments into consideration
simultaneously and estimate optimal I'TRs for various outcomes, which can help to improve the
estimating efficiency and the classification accuracy.

Besides the accurate estimation of ITRs, good interpretations are also important for multi-
armed treatment settings. For binary treatment settings, value-based methods can report a
single value difference function between two treatments to illustrate the relative effectiveness.
For classification based methods such as O-learning (Zhao ef"all (201%)), interpretation of the
decision rule for binary treatment settings may not be as clear. Meanwhile for K-armed treatment

K(KT_I) pairwise value difference functions need to be estimated to illustrate the

settings, at least
relative performance of treatments for each patient. Although such an extension can be simple
to implement, it does not use the data simultaneously and consequently may yield suboptimal

rules.
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Figure 1: Graphical illustration of the estimated ITR for a given patient in a three-treatment
setting. Vertices A, B and C represent 3 treatments. The estimated ITR of the patient has the
least angle with treatment B which is thus more preferable than the other two treatments.

To get accurate estimation of optimal I'TRs and obtain a good interpretation jointly under the
multi-armed setting, we consider a K-vertex simplex structure in an Euclidean space, where each
vertex represents one treatment. The simplex lies in a K — 1 dimensional space with the origin
as the center and has equal inner products among vertices. Using the expression of the optimal
ITR, we transform the problem of finding the optimal ITR maximizing the value function into

maximizing the inner product between the decision function vector and the corresponding vertex



in the simplex space. Such a transformation allows us to estimate the optimal ITR using multiple
response regression methods. In particular, for each patient, our estimated decision function
vector maps the covariates into this K — 1 dimensional space. The angle between each treatment
vertex and the estimation function vector can be interpreted as a measure of preference to this
treatment. We recommend a patient to take the corresponding treatment having the least angle
with our estimated decision function vector. Figure [ shows an example with our estimated I'TR
for a given patient. In this case, we recommend treatment B as the best option for this patient.
In addition, we can see treatment C' is more preferable than treatment A for this patient based
on their angles.

We call our method angle-based direct learning (AD-learning) which can directly estimate
optimal ITRs under multi-armed treatment settings using multiple response regression techniques.
Furthermore, our proposed AD-learning can be extended to various types of outcome such as
binary and survival responses. Compared with existing methods, our proposed AD-learning enjoys
several advantages. In particular, our method is robust in the sense that it is not necessary to
model the main effect function of the conditional outcome. Due to direct learning scheme, our
method does not suffer from the mismatch problem between minimizing prediction errors and
maximizing value functions in model based methods such as {1-PLS (Qian and Murphyl (2017T))
and can perform better in high dimensional settings. Moreover, by representing each treatment as
a vertex of a standard simplex in the Euclidean space, our proposed method provides an attractive
geometric interpretation of the relative effectiveness of all treatments for a given patient. The
resulting relative effectiveness of different treatments can be interpreted as the angles between the
decision function vector for the patient and each vertex corresponding to the treatment. These
angles can be scaled between [0, 7]. In addition, flexible structures such as group and low rank
sparsity can be also incorporated to further improve the model interpretation and simplicity,
which can be applied in high dimensional settings. Finally, our proposed method is easy to
implement with efficient algorithms.

The remainder of this paper is organized as follows. In Section 2, we introduce our AD-
learning to estimate optimal ITRs in multiple treatment settings. In Section 3, we discuss how
to extend our proposed method to binary and survival outcomes. In Section 4, we provide
a theoretical guarantee for our AD-learning under some mild assumptions. In Section 5, we

conduct an extensive simulation study to evaluate the finite sample performance of our method



with implementation details including algorithms. Furthermore, we illustrate our method using
the AIDS data in Section 6. We conclude our paper with some discussions and possible future

extensions in Section 7.

2 Angle Based Direct Learning

For notation of the paper, we use boldface capital and lowercase symbols to denote matrices
and vectors respectively. For a matrix B, we define a mixed ; and I norm as ||Bl[21 = ) [|Bj]|2,
where B is the j-th row vector of B. We use Tr(B) to denote the sum of the diagonal value of
the matrix B.

We consider a randomized treatment framework for estimating optimal ITRs. For each pa-
tient, we observe a triplet random vector (x, A, R). In particular, x = (1,X;,---,X,) € X
denotes patients’ p-dimensional covariates with an intercept. The random variable A represents
the randomized treatment that a patient receives. Here we consider the K-treatment-armed set-
ting where A € {1,2,--- , K} with a known prior probability distribution 7(A4,x), which is the
conditional probability depending on x. In a general setting other than the randomized trial
study, m(A, x) denotes the propensity score and can be estimated by the generalized linear mod-
els such as multinomial logistic regression. The variable R is a patient’s outcome after receiving
the treatment A. Without loss of generality, we assume that the outcome R is bounded and the
larger R is, the better the treatment works for this patient.

One of the most important goals of our problem is to estimate the optimal ITR that can
maximize the expected clinical outcome of each patient under this ITR. Mathematically speaking,
an ITR is a decision function d(x) : X — A, mapping from the covariate space into the treatment
space. According to Qian and Murphy (2001) and Zhao et"all (20017), the value function under
the ITR d can be expressed as

RI(A = d(x)

V() = BIRI() = A] = B[ =05 (1)

where I(e) is the indicator function. Then the optimal ITR is defined as
do(x) = argmax,cpV (d) (2)

within a pre-specified class of treatment rules D. Before introducing our proposed AD-learning,



we first discuss the direct learning framework.
2.1 The Direct Learning Framework

Consider a binary problem with K = 2. We encode treatment A to be 1 or —1. Then from
the value function and optimal ITRs defined in () and (2) respectively, we can further represent

the optimal ITR as
do(x) = sign(E[R|x, A = 1] — E[R|x, A = —1])

3)
— sign (Bl fx) = sgn(fo(x).

Using Equation (B), similarly in Mian_efall (2004), the ITR problem becomes to estimate the
optimal decision function fy(x) = E[W(RT‘?xﬂx] via various regression methods such as [y penalized
regression (LASSO). The final decision rule is determined by the sign of the estimator.

Binary D-learning directly estimates the decision rule. It is very different from the outcome
weighted learning (OWL) proposed by Zhao et all (2012) because binary D-learning uses regres-
sion methods to estimate the optimal ITR directly. Note that binary D-learning can be simply

extended to the K-treatment-arm setting by rewriting the optimal I'TR as

do(x) = argmax E[R|x, A = k]

ke{l, K}
K
= argmax KE[R|x,A=k] - Y E[R[x,A =i
K
= argmax ER|x,A=k] - E[R|xA =1
g S {E{R A = H = E{Rxd = i) "
K
RAi :
= argmax El——————|x,A=kori
ke{l, K} ; [Wki(AkiaX)’ |
K
‘= argmax Zf;“(x) = argmax fi(x),
kefl, K} iZp ke{l, K}

where Ay; € {—1, 1} represents treatments k and 4, and fi;(x) is defined as the optimal decision
function between treatment k and i¢. KEach pairwise decision function can be estimated by a
binary D-learning method. The final treatment decision rule is to compare the cumulative sum
of pairwise decison functions fi(x) for k = 1,--- , K, and select the largest one. We refer this
pairwise method as pairwise D-learning.

Binary D-learning gives us a directed way to estimate optimal ITRs. However, pairwise D-



learning, which is based on binary D-learning, focuses only on pairwise comparisons between
treatments without considering all treatments simultaneously. Although the proposed effect
measure fi(x) can capture the relative strength of a treatment for a given patient, it may be
suboptimal.

To handle multi-armed ITR problems with various outcomes, we propose AD-learning that
considers all treatments together to estimate the optimal ITR. Moreover, the AD-learning can

provide a more effective measure of treatments for patients with a good interpretation.
2.2 Angle Based D-learning for Continuous Outcomes

For a K-armed ITR problem, one natural approach is to estimate K functions for all treat-
ments. Since only one function is needed for the binary ITR problem, one indeed only needs
K — 1 functions for a K-armed problem. Instead of using K functions with a constraint on these
functions, we aim to directly estimate K — 1 functions. To that end, we project the treatment A
into K simplex vertices defined on R¥ 1. Specifically, we encode the j-th treatment as a vector

w; € RE-! with

(K —1)"Y215_q, ifA=1
W = (5)

~(1+VE)/(K =131 1 + (£5)Y%ea-1, if2<A<K,

where e; is a K — 1 dimensional vector with every element being 0, except the i-th location being
1. Define w as a random vector with P[w = w;|x] = P[A = j|x]|. This simplex encoding scheme
has several properties. In particular, the center of these vertices is the origin of the space, that is
ZKzl w; = 0 with ||wj|]a =1 for j = 1,---, K. The angle between each pair of vertices is equal,

J
T

that is w; w; = C(K) < 1 for i # j, where the constant C' only depends on K. Interestingly, we



can then express the optimal ITR as

do(x) = argmax E[R|x, A = k]
ke{l,- K}

= argmax (1 — ¢(K))E[R|x, A = k]

ke{l,- K}
K
= argmax {(1 — ¢(K))E[R|x, A = k] + ¢(K) ZE[R[X,A =jl}
ke{l,- K} j=1
K (6)
= argmax {E[R|x, A = k| + ¢(K) ) _E[R|x, A = j]}
ke{l,- K} Ak

K
— argmax {w} E[Rw|x, A = k] + w} ZE[RW|X, A=j|}

ke{l, K} o
T Rw T
= argmax wi E[ |x] := argmax wyj, fo(x),
ke{l, K} m(A, x) ke{l, K}

where fy(x) is a function vector from RP*! to RE~! with some abuse of notation. Then the
optimal ITR is given by comparing the inner product between wy and fy(x) for each treatment
k. We define the angle between each pair of vertices in [0, 7]. Then w] fy(x) is the largest if and
only if the angle between wy and fjy(x) is the least, for k = 1,--- , K. Thus we call our proposed
method as Angle based D-learning (AD-learning). Note that the simplex coding is unique up to
the orthogonal rotation.

Our proposed AD-learning has an attractive geometric interpretation. In particular, this least
angle decision rule can be understood through newly defined treatment regions for each patient.
For example, when K = 3, as shown in Figure B (b), vectors wy; kK = 1,--- |, K form an equilateral
triangle in the R? space, where each divided region represents a treatment region. The decision
function vector fp(x) maps from the covariate space into the treatment region. One can observe
that the angles between vertices are the same, and consequently each treatment is treated equally.
Such a simplex coding scheme does not require a balanced group size for each treatment since
treatment proportions are taken into account by the term m(A,x) in Equation (B). We name the
angle between each wy and fy(x) as the treatment score which lies in a bounded interval [0, 7].
If a patient has the angle of 0 with the i-th treatment, then the i-th treatment is a perfect fit
for this patient compared with other treatments. Figure B gives a geometric explanation of our

AD-learning.
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Figure 2: Geometric interpretation of our least angle decision rule. When K = 3 or K = 4, the
estimate f has the smallest angle with treatment 1 so we recommend treatment 1 as the optimal
treatment. When K = 2, we can see f has the smallest angle with vector ws and the optimal
rule for this patient is treatment 2.

To further illustrate our AD-learning, we propose the following alternative interpretation.

Suppose the clincal outcome R can be modeled as

R=p(x)+ Y 6i(x)I(A=1i)+e (7)

where p(x) is main effect function, d;(x) is the interaction effect between covariates and the i-th

treatment, and € is mean zero random error. Then we can get

K _ w
E[W(iv’vx)lx] = u(x)ﬂ%\x] +)° 5i(x)iE[%\x] + E[m|x]E[e\x]

p = 8)
= Z (51 (X)WZ
=1

Furthermore, the optimal ITR is

Rw
dp(x) = argmaxke{l,...,K}WgE[m’X]
K
= argmaxye(q, ... ,K}Wg Z di (x)w;
i=1 9
) (9)
= argmaxye(y ... 3 C(K) Z Ji(x) + (1 — C(K))ok(x)
i=1

= argiaxXpefy ... ,K}5k (%),



which is exactly to compare each treatment interaction effect with the covariates.

As a remark, we note that extensions of methods for binary treatment settings to multiple
treatment settings using all treatments jointly can be nontrivial since we need to account for
multiple treatment effect comparisons without sacrificing too much efficiency. Our proposed AD-
learning achieves this by first projecting treatments into a K — 1 dimensional space. A simplex
with K vertices is used to represent the K treatments. Then Equation (B) provides an innovative
but direct way to efficiently estimate the decision function vector and considers all the data
simultaneously. Inherited from the simplex structure, our proposed method has an attractive
geometric interpretation to show the relative effectiveness of different treatments for a patient.
Thus it provides an informative comparison of all treatments for patients and doctors to make
decisions.

Note that the simplex coding scheme was previously used by Wu and Langé (2010) and Zhang
and Liu (2014) for classification problems. However, our proposed AD-learning is very different
because it is not a classification method. Consequently, our method is not an extension of O-
learning proposed by Zhao et all (2012). Instead, by transforming the problem (B) into (B),
our goal is to estimate the decision function fy(x) directly, using multiple response regression

introduced in Section PZ3.
2.3 Estimation Procedures of AD-learning
In order to estimate the optimal ITR, it is equivalent to estimating fy(x) from Section P72

The next lemma provides us a way for estimation of fy(x).

Lemma 1. Under the exchange of differential and expectation condition, fy(x) is an optimal

solution to

argmin E| ! (KRw — f(x))I'S(KRw — f(x))], (10)

FERK-1 (A, x)
where ¥ can be any invertible matriz that characterizes the dependency among responses. Without

knowing any prior knowledge, one could simply let X = Ix_.

Assume we observe independent identically distributed data {(x;, A;, R;),i =1,--- ,n}. Then

we can estimate fy(x) via empirical average approximation

n

. 1 1 w, — f(x: N, wi — f(x;
arfgen]}_m ’I’L(Kl);ﬂ'(Ai,Xi)(KRZ ¢ = Flou)) (B Rews = () an




where F is a pre-specified class of decision functions. For simplicity, we first consider the class
of linear decision rules, that is, F := {f(x) = BTx,B € RP*(K-11 By observing KR;w; as
multivariate responses, one can apply ordinary least square estimates for each of the responses
separately. However, since the responses share the same clinical outcome R; for the i-th sample,
it is clear that pooling multivariate responses together can efficiently improve the estimation of
fo(x) (Breiman and Friedman (1997)). This motivates us to incorporate shrinkage and selection

strategies that explore the correlations among different responses by

n

1 1
argmin KRiw; — BTx)) T (K Ryw; — BTx;) + \J(B), 19
Berox (k-1 (K —1) ; W(Ai,xi)( ) ( ) (B) (12)

where A is a positive tuning parameter. Then our final least angle decision rule becomes dy(x) =
argmaxye(y ... K}wgBTx. In this decision rule, the corresponding coefficient for the j-th variable

of x is w;{Bj, for j =1,---,p, where B; is the j-th row vector of B. Note that for any orthogonal

P P
IBL|l2 = _|IBIT|l, =) \/BITTTB;
j=1

j=1

matrix I,

; (13)
=Y IBjlla =|Bl21,
j=1

which implies that ||B||2;; remains to be the same under any orthogonal transformation of w.
This is essential since our simplex coding is unique up to the orthogonal rotation. In addition,
B, = 0x_; implies the j-th variable has no effect on our least angle decision rule. These motivate

us to use the group sparsity penalty, i.e., the mixed l; /I3 norm as follows

1

KRyw; — B'x))T(KR;w; — B'x;) + \||B
W(Ai,Xi)( Riw x;)" (KR;w x;) + A||B|

. 1
argmin

2,1 14
BeRpx(K—1) n(K—l) ( )

i=1
Model (0@) is best suited for the case that all treatments share the common interaction covariates.
The group sparsity structure of B will not change under any orthogonal transformation of w.
In the literature, it is known that group sparsity of a matrix is a special case of a low rank
matrix. If B = UVT such that U € RP*" and V € R™*(E~1 with » < min(p, K — 1). Then
B”x = V(U”x) implies potential r orthogonal latent factors in the covariates. Hence we can

also use the nuclear norm penalty to control the complexity of coefficient matrix B if there is a

10



low rank structure or exists latent factors in the covariates by

n

1 1
argmin KRyw; — BTx))T (KR;w; — B'x;) + \||B|l+, 15
Berpx (k-1 (K —1) ; W(Ai,xi)( ) ( ) ||B]| (15)

where the ||B||. is the sum of all singular values of coefficient matrix B. The nuclear norm penalty,
unlike the rank constraint, provides soft and stable shrinkage on the singular values. Similar to
the penalty ||B||2,1, other penalties including ||B||, that are invariant to any orthogonal rotation
of w can be applied for our methods.

So far, we have only focused on linear decision rules. If fy(x) belongs to some classes of
nonlinear functions, we can adapt our method to nonlinear learning via kernel learning or basis
function expansions. For kernel learning, we can apply kernel ridge regression for each response
separately, using Equation (). However, it may lose some efficiency since it does not consider
the dependence among the responses. How to perform kernel learning with multiple responses in
our setting is an interesting future research direction. For basis function expansions, depending
on the problem, we can use spline basis functions, interaction functions, wavelet functions, etc.
to approximate the nonlinear decision function.

To summarize, Models (@) and ([(3) are proposed to control the complexity of coefficient
matrix B and consequently enhance the estimation and prediction. As our proposed AD-learning
directly targets on the decision function fy(x), it does not suffer the mismatch problem between
minimizing prediction errors and maximizing value functions happened for model-based methods
such as [1-PLS. Thus our proposed method tends to perform better in high dimensional settings.
If there are group signals in the covariates for optimal ITRs, we recommend to use Model (I4).
If there are latent factors in the covariates for optimal ITRs, we recommend to use Model (I3).
One can also use the cross-validation procedure to choose Model (@) or (IH) that maximizes the
empirical value function on the validation dataset. The computation of these models involves

convex optimization and thus can be solved efficiently.

3 Extensions to Other Types of Outcomes

In Sections 2, we proposed AD-learning for continuous outcomes. In practice, especially in
clinical studies, other types of outcomes such as binary, count responses, or survival time can also
be used. In this section, we extend our AD-learning to more general types of outcomes motivated

by the following lemma.

11



Lemma 2. Under the exchange of differential and expectation condition, fy(x) is an optimal

solution to

. 1 K
argg__@n E[W(A,x)(ﬁR_WTf(X))z]' (16)

Based on the optimization problem (IB), one can write a corresponding working model as

K .,
ﬁR =w f(x)+e, (17)

where ¢ is the random error. Note that when f € F, wf(x) = w/BTx = Tr(B? (xw?)). Then
xw! can be regarded as modified covariates. Then the multiple response regression model in (IT)
can be extended to a more general model, namely trace regression model (Rohde ef all (2011)).

Motivated by the optimization problem (IG) and the corresponding working model, we can
extend our proposed AD-learning to more general settings. In particular, instead of the least

squared loss for continuous outcome in (@), we can use other loss functions for corresponding

outcomes.
3.1 Binary Outcomes

When R is binary, motivated by Lemma B and the connection between (IB) and working
model (IC7), we consider to replace the least squared loss in (@) by the deviance loss of logistic

regression models. Then we have the following lemma.
Lemma 3. Under the exchange of differential and expectation condition, an optimal solution to

RwTf  log(1+ exp(w’f))

argmin E|— 18
fgef [ W(A,X) W(A,X) ] ( )
is the function fy(x) satisfying
T
PR = 1x, A = i] = W o)) (19)

1+ exp(wlfy(x))

Analogous to (17), solving (18) is equivalent to fitting a logistic regression working model

(I9). Based on Lemma B, we can derive the optimal decision rule for the binary outcome as

do(x) = argmaxyeq ... gy P[R =1[x, A =] (20)
T 20
= argmaXgeyy .. ,K}WszO (x),

12



which can be also interpreted as the least angle decision rule. Then we can fit a weighted logistic

regression with modified covariates x* = xw’ by modeling

exp(Tr(BTx*))
PR=1|x,A] = 21
[ [x, 4] 1 + exp(Tr(BTx*))’ (21)
and estimate the coefficient matrix B by maximum likelihood estimation
) 1 <= RTr(BTx?) 1 & log(1 + exp(Tr(BTx?)))
argmin  [(B) = — — I 22+ AJ(B), 22
BeRpx(K-1) (B) n ; m(Aq, ;) n ; m(Ai, ;) (B) (22)

where J(B) is either the mixed l;/l2 penalty or the nuclear norm penalty under different model
assumptions. We can use the accelerated proximal gradient method to solve this problem (Beck
and_Tehoullé (2009)). However, the gradient of the exponential loss function for this model
may need relatively large computational time. Efficient group coordinate descent proposed by
Breheny and Huang (201H) can be an alternative to solve Model (22) with the mixed l; /l2 penalty

by vectorizing the modified covariates.
3.2 Survival Outcomes

When R is the survival outcome, due to the potential censoring of observations, we do not
always observe the exact outcomes of patients in clinical studies. Thus R becomes a pair of
random variables defined as R = (Y, 68) = (Y A C,§), where Y is the patient’s survival time, C' is
the censoring time, and § is an indicator about whether this patient is censored or not. Motivated
by Lemma B and a similar derivation as in Section 3.1, we can replace squared error loss in (IH)
for continuous outcomes by the negative log-likelihood of the Cox model for survival outcomes.

Then we have the following lemma for survival outcomes.

Lemma 4. Under the exchange of differential and expectation condition, an optimal solution to

, TlogE[ef VI(Y >u)]  fTw
argmin E — dN (u 23
grin B[ SRS (A ) (23)
1s the function £* satisfying
exp(wl FE[AN (Y D)x, A =i] = P[6 = 1]x, A = 1] (24)

for a monotone nondecreasing function A*(u), where N(u) = I(Y < u)d, and 7 is a fized time

13



point with P[ff > 7] > 0. If the censoring time is non-informative and the censoring rate for

each treatment group s the same, then
argmazic(y,... gy — wlf* = argmazic(y .. k3 EAY)|x, A =i]. (25)
Using Lemma B, the optimal decision rule for the survival outcome can be written as
do(x) = argmaxyeqr .. ey w! (~£°). (26)

This is equivalent to fitting a weighted Cox Proportional Hazard (CPH) model with modified

covariates x* = xw?, by defining the hazard function as
A(t]x, A) = Ao(t)e B, (27)

where \g(t) is a baseline hazard function. Then we can estimate the coefficient matrix B by

maximum likelihood estimation such as

. Y, Tr(BTx}) 1 T «
argmin {- + log exp(Tr(B*x;))} + AJ(B),
BeRpXx(K—1) 152—1 Alaxl) F(Ai,Xi) jYJZ>Yz

(28)
where J(B) is either the mixed [y /l2 penalty or the nuclear norm penalty under different model
assumptions. As the gradient of the Cox loss function for this model requires heavy computation,
similar to Section B, efficient group coordinate descent (Breheny and Huang (2015)) can be used
to optimize (ER) with the mixed [y /ls penalty through vectorizing the modified covariates.

Note that the modified covariates x* in Equation (27) contain the treatment information that
can be incorporated into the baseline hazard function. Thus baseline hazard functions can be
different for different treatments. For Lemma B, we assume the censoring rate to be equal for all
treatment groups so that our proposed method can be directly extended to the survival outcome.
This assumption can possibly be removed by estimating the censoring rate for each group and

then adjusting Equation (£4).

4 Theoretical Properties of AD-learning

In this section, we show our proposed AD-learning is consistent under some mild conditions

and establish finite value reduction bounds for our method. We first state the generalized margin

14



condition used in our theory.

Assumption 1. For any € > 0, there exists some constants C' > 0 and o > 0 such that
Pl|(w; —w;) fo(x)| < ¢ < Ce (29)

for everyi,j=1,--- | K.

Assumption 0 is an extension of margin condition used in binary classification problems to
obtain sharper bounds on the excess 0-1 risk (Audiberf et all (2007)). For our ITR problems,
this generalized margin condition characterizes the behavior of the decision function vector fy(x)
around the boundary among different treatment regions, thus the level of difficulty in finding the
optimal ITR. In the literature, Zhao ef all (2012) used a similar assumption in the binary ITR

problem. Using Assumption [, we have the following theorem for the value reduction bound.

Theorem 1. For the estimator f'n by our proposed AD-learning and the corresponding ITR cfn,
we have

Vi) - V() < T il - £l (30)

Furthermore, if Assumption 0 holds, we can improve the bound by
V(do) — V(dn) < C1(K, @) (Ellfy — £a13) 7% (31)

where C1(K, «) is the constant that only depends on K and «.

Remark 1. Based on (BI), we can see that when o =0 and C = 1, Assumption (0) always holds
for any € > 0. In this case, (BD) reduces to (80). Based on (B9), if o increases, the outcomes cor-

responding to various treatments become more different. As a result, the corresponding exponent

14+«

24o becomes larger, and consequently a sharper bound in (BI) can be obtained.

Theorem [ gives an upper bound for the value function reduction in terms of the prediction
error. For simplicity, we first consider Model (@) with equal w(A;,x;) for each treatment. Then

we can use the main idea from Lounicief all (2009). We first vectorize the multiple responses

and the coefficient B so that the model becomes

K1
argmin Z Yk — XB)" (yi — XBr) + N|Bll2.1, (32)
peretc-n UK k=1
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where vector yp = KRwg € R" for k = 1,--- K — 1 and X is a design matrix with the i-
th row being the i-th patient covariates x;. Denote each column of the coefficients B as 3y, for
k=1,--- ,K—1. Then 3 € RP(ED) g formed by stacking the coefficient B, for k=1, --- , K —1.
We further define the (K — 1)n x p(K — 1) block diagonal matrix Z with its k-th block formed
by the design matrix X.

We assume the underlying true fj is linear with coefficient By. Define S(8) = {j : Br; # 0,k =
1,---, K —1} and the cardinality of S(3) as ||S(8)||o- We make the following two assumptions as
in Lounicief all (2009). The first one is the Restricted Eigenvalue (RE) assumption considered

by Bickelef all (2009) with an extension to the mixed [; /I3 norm.

Assumption 2. [RE(s)] For any nonzero (3 with ||S||o < s and ||Bge

l2.1 < 3||Bsl|2,1, there exists

a positive real number p(s) such that

\/BEB > p(s)|Bs]l, (33)

where S denotes the short notation of S(8) and 3 = 1777.

The next assumption is to control the stochastic error term in Model () with the bounded

variance assumption.

Assumption 3. (1) Assume that the random error ex; = (ypi — X Bg); i = 1,---,n, k =
1,--- , K —1, are independent among different i with mean zero and finite variance E[e%i] <

2

o“.

(2) There exists a constant ¢ such that max;<j<, maxi<;<p || < c.
With the assumptions in place, we have the following theorem.

Theorem 2. Consider Model (0IA), for p > 3 and K,n > 1. Assume S(By) < s, Assumptions B
and @ and the RE(2s) assumption hold. Let

(log p)+9
n(K —1)’

for any & > 0. Then with probability at least 1 — %, for the solution B to the Model

(), we have

V(do) — V(dﬂ) < K — 1K (K —1) 4/10c S(Ing)l‘HS.

ST 1ok 2’V s (34)
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Furthermore, if Assumption O is satisfied, we can improve the bound by

Vido) — V(dy) < O, )22 210827 e (35)

205) n

where C(K, ) only depends on K and the margin condition constant c.

Theorem B gives us the value reduction bound of order nearly % as long as « is large enough.
This value bound is consistent with {1-PLS proposed by Qian and Murphyl (2011) if we assume
the underlying true function is linear. For a general function approximation, an additional ap-
proximation error to fo(x) needs to be considered.

For Model (I3), Rohde et all (2017) has obtained the same rate O(1) for the prediction error
and thus the order of value reduction bound for Model (IH) is the same as Theorem B. For Model
(22), it can be regarded as usual logistic regression with modified covariates. If we consider the
mixed [ /I3 penalty, error bounds of the same order were developed in Meier et all (2008). These
results are applicable to our proposed AD-learning. However, to the best of our knowledge, the

finite sample properties of other settings such as CPH models with the mixed l; /Iy penalty or

low rank penalty require further developments and we leave it as the future work.

5 Simulation Study

In this section, we perform an extensive simulation study to investigate the finite sample
performance of AD-learning for various types of outcomes. For all simulation settings, we consider
four-armed (K = 4) randomized trials with equal probabilities of patients being assigned to each
treatment group. For the low dimensional simulation setting, we set the sample size n to be 200,
400, and 800. The number of covariates p is set to be 20 and 40. For high dimensional simulation
settings, we let the sample size be 400 and p be 1000. Each simulation is repeated for 120 times.
Additional simulation results are in the supplementary material, such as settings with n = 200,
low rank decision function simulation studies, etc.

For the implementation details of AD-learning, two types of algorithms can be applied. The
first one is the accelerated proximal gradient method. In particular, Models ([4) and (I3) can be
represented as

min F(B) := L(B) + \J(B), (36)

where L(B) is a smooth convex function with its gradient being Lipschitz continuous and J(B)
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is a non-smooth convex function, of which the proximal operator can be computed efficiently.
Then we can use the accelerated proximal gradient method to solve it with low computational
complexity. It achieves the optimal converge rate O(#) for gradient methods, where m is the
number of iterations for the algorithm. More details can be found in Nesferov (2013) and [Toh
and Yun (2010).

In binary and survival outcome settings, the gradient of function L(B) may need large com-
putational cost to calculate. To address the problem, the stochastic block coordinate decent
algorithm can be applied instead when J(B) is the mixed {1 /l2 penalty. By using this algorithm,
each gradient decent iteration can be efficiently computed. Thus the stochastic block coordinate
decent algorithm may cost less time than the accelerated proximal gradient method.

The tuning parameter A is selected based on the cross-validation procedure. The criterion is
to select A that maximizes the average of estimated value functions on the validation data set
defined as

V(d) = : (37)

where E,, denotes the empirical average.
5.1 Study of Continuous Outcomes
When the clinical outcome R is continuous, we generate our data from Model (@). Specifically,

fori=1,---,n, let

R; = p(xi) +6(x;) + €,

where 0(x;) = Zle (xI'B1)I(A = k), each covariate is generated by the uniform distribution from
—1 to 1, and ¢; follows from the standard normal distribution. For each simulation scenario, we
consider u(x) = 1+ X7+ X5 and consider other types of main effect functions in the supplementary
material. We design the following three interaction functions similar to those in Zhou et all (2017)

and [Zhang et all (2015):

Lox)=1+X1+Xo+Xs+XPI(A=1)+(1+X1 —Xo—Xz3+ XI[(A=2)+(1+ X; —
X2+X3—X4)H(A:3)+(1—X1 —X2+X3+X4)H<A:4);

2. 6(x) = (3I(X; < 0.5)(I(Xy > —0.6) — 1)I(A = 1) + ((I(X3 < 1))(20(X4 < —0.3) — DI(A =
2) + (41(X5 < 0) — 2)I(A = 3) + (4I(Xg < 0) — 2)I(A = 4);

3.0(x) =(02+X{+ X3 - X3 - X)DI(A=1)+(02+ X3+ X3 — X3 - X)[(A=2)+ (0.2 +
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X2+ X3 -X2-XHU(A=3)+(02+ X3+ X2 - X? - XD(A=4).

The first scenario corresponds to linear interaction effects. For the second scenario, we consider
tree-type interaction effects. The last scenario includes polynomial interaction effects and we use
degree 2 polynomials as basis functions for all methods. For each simulation scenario, we compare

our proposed AD-learning using the group sparsity penalty with the following methods:
(1) 1;-PLS proposed by Qian and Murphyl (2001) with basis (1,x,xA);

(2) pairwise D-learning;

(3) the decision list (DL) method proposed by Zhang et all (2015);

(4) adaptive contrast weighted learning (ACWL-1 and ACWL-2) methods proposed by [Tac

and Wang (2016);
(5) the method of virtual twins (VT) proposed by Foster et all (2011),

where we use degree 2 polynomials as basis functions for all methods in the last scenario. Addi-
tional simulation study results on AD-learning using the low rank sparsity penalty are included in
the supplementary material. In addition, we also perform the comparison between group [;-PLS
and [;-PLS in the supplementary material, which shows little differences between [;-PLS and
group [1-PLS in our simulation studies. This confirms our appropriate use of [1-PLS instead of
group [1-PLS unless there are some prior information about strong group sparsity structures.
All the tuning parameters are selected via 10-fold cross-validation. We report the value
functions and misclassification errors for p = 40 on 10000 independently generated test data in
Table M. From Table O, we can see that our AD-learning has competitive performance among
all methods. When we consider linear interaction effect, it is expected that our proposed AD-
learning and [1-PLS perform the best compared with other methods. In particular, our method
will potentially be better than [;-PLS because [1-PLS suffers the mismatch problem discussed
previously. For the second simulation scenario that corresponds to simple tree type interaction
effect, while those tree based methods such as VT, DL and ACWL perform well, our method
is still competitive. Similar results for p = 20 are included in the supplementary material. An
interesting observation for this scenario is that although VT has the largest empirical value

function among all methods, its misclassification rate is similar to that of our proposed method
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when n = 400. One potential reason is that VT is focused on model fitting while our method
directly targets on decision rules. For the last scenario, since the basis functions we used correctly
identify the interaction effect, our proposed AD-learning and /1-PLS enjoy some advantages over
other methods.

Table 1: Results of average means (standard deviations) of empirical value functions and mis-
classification rates for four continuous-outcome simulation scenarios with 40 covariates. The best
value functions and misclassification rates are in bold.

n = 400 n = 800
Value Misclassification Value Misclassification

Scenario 1
Pair-D 2.67(0.06) 0.49(0.02) 3.01(0.02) 0.32(0.02)
[,-PLS 3.05(0.04) 0.24(0.01) 3.15(0.01) 0.16(0.01)
DL 2.6(0.04) 0.54(0.01) 2.78(0.02) 0.47(0.01)
ACWL-1 2.69(0.05) 0.46(0.01) 2.9(0.02) 0.37(0.01)
ACWL-2 2.77(0.05) 0.43(0.01) 3.02(0.01) 0.31(0.01)
VT 2.66(0.03) 0.5(0.01) 2.81(0.02) 0.45(0.01)
Group-AD  3.06(0.05) 0.22(0.02) 3.14(0.03) 0.15(0.02)

Scenario 2
Pair-D 2.84(0.12) 0.32(0.04) 2.93(0.1) 0.3(0.03)
[,-PLS 2.93(0.11) 0.36(0.04) 3.01(0.1) 0.32(0.04)
DL 2.89(0.12) 0.34(0.04) 3.04(0.11) 0.28(0.04)
ACWL-1  2.76(0.11) 0.38(0.02) 2.96(0.11) 0.32(0.02)
ACWL-2 2.81(0.11) 0.38(0.02) 3.03(0.1) 0.29(0.03)
VT 3.07(0.09) 0.31(0.02) 3.12(0.1) 0.27(0.02)
Group-AD  2.97(0.1) 0.31(0.03) 2.97(0.1) 0.3(0.03)

Scenario 3
Pair-D 1.2(0.03) 0.75(0.03) 1.2(0.03) 0.75(0.03)
[,-PLS 1.42(0.18) 0.61(0.13) 1.58(0.22) 0.47(0.18)
DL 1.38(0.08) 0.64(0.06) 1.5(0.08) 0.57(0.06)
ACWL-1 1.29(0.08) 0.7(0.04) 1.49(0.07) 0.56(0.05)
ACWL-2 1.3(0.07) 0.69(0.04) 1.57(0.06) 0.51(0.05)
VT 1.39(0.05) 0.64(0.03) 1.44(0.04) 0.6(0.03)
Group-D  1.57(0.14) 0.5(0.11) 1.76(0.04) 0.3(0.05)

5.2 Study of Binary and Survival Outcomes

For the binary outcome R, the dataset is independently generated by the logistic regression

model

K
logit(P[R; = 1]) = pu(xi) + > _(x] Be)I(A = k),
k=1

where the link function logit(z) = log ==. We consider same interaction effects as the first two
scenarios of the continuous outcome simulation study.

Since pairwise D-learning and ACWL are not intended for the binary outcome, after modifying
the [1-PLS by using [ penalized logistic regression (I;-PLR), we compare [;-PLR, DL and VT
with our AD-learning. Table B shows the value functions and misclassification rates for p = 40

and n = 400,800. We can see that our proposed AD-learning has largest value functions and
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lowest misclassification rates in both scenarios. Moreover, there are some mismatches in model
based methods such as [1-PLS, where the misclassification rates and the value functions are both
high. One potential reason is the mismatch between the optimization criterion and the tuning
procedure in [1-PLS. The other potential reason is the mismatch between minimizing prediction
error and maximizing value function in model based methods.

Table 2: Results of average means (standard deviations) of empirical value functions and misclas-

sification rates for two binary-outcome simulation scenarios with 40 covariates. The best value
functions and misclassification rates are in bold.

n =400 n = 800
Value Misclassification Value Misclassification
Scenario 1
1;-PLR 0.88(0.01) 0.58(0.02) 0.91(0) 0.45(0.02)
DL 0.85(0.01) 0.67(0.01) 0.87(0.01) 0.61(0)
vT 0.84(0.01) 0.68(0.01) 0.84(0) 0.69(0)
Binary-AD  0.9(0.01) 0.44(0.02) 0.92(0) 0.32(0.02)
Scenario 2
I;-PLR 0.83(0.01) 0.66(0.05) 0.86(0) 0.61(0.05)
DL 0.81(0.01) 0.53(0.01) 0.85(0.01) 0.44(0.01)
VT 0.83(0.01) 0.43(0.01) 0.83(0.01) 0.51(0)
Binary-AD  0.86(0.01) 0.43(0.04) 0.87(0.01) 0.4(0.04)

Next we consider R to be the outcome of time to event. The simulated data are generated by

the following model with the exponential distribution
Ri = exp()\i),

where exp denotes the exponential distribution and \; = pu(x;) + Sre (x7 Br)I(A = k) for
i =1,---,n. The censoring time Cj;i = 1,--- ,n, are generated from an exponential distribution
with mean 6 to induce around 25% censoring rate. We consider the same settings as those in
the binary case. For comparisons, we apply the [; penalized CPH models and compare it with
AD-learning, since other methods we use previously are not designed for the survival outcome.
From Table B with p = 40, we can see that our proposed AD-learning has clear advantages over

[1-CPH. In addition, we also observe the mismatch phenomena of [1-CPH in Scenario 2 of Table

3.
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Table 3: Results of average means (standard deviations) of empirical value functions and misclas-
sification rates for two survival-outcome simulation scenarios with 40 covariates. The best value
functions and misclassification rates are in bold.

n = 400 n = 800
Value Misclassification Value Misclassification
Scenario 1
,-CPH  41.35(2.2) 0.33(0.04) 45.05(1.1) 0.21(0.02)
Surv-AD  43.91(1.3) 0.25(0.02) 45.56(1.06)  0.18(0.01)
Scenario 2
,-CPH  21.95(0.63) 0.57(0.04) 23.21(0.59) 0.5(0.04)
Surv-AD  22.1(0.62) 0.46(0.02) 22.78(0.53) 0.44(0.02)

5.3 Study of High Dimensional Problems

We evaluate our AD-learning performance for high dimensional settings. We consider the
sample size n = 400 so that each treatment group has roughly 100 patients and number of co-
variates p = 800. Scenarios 1-2, 3-4, 5-6 correspond to continuous, binary, and survival outcomes
respectively. The interaction effects considered here are the same as the first two scenarios in the
continuous setting in Section 5.1.

From Table B, we can find that our proposed AD-learning performs better than I;-PLS. One of
the possible reasons is that our proposed method tends to select right covariates for the interaction
effect function due to the direct learning of the decision rule. An interesting observation is that
although pairwise D-learning has the lowest misclassification rate in Scenario 2, its corresponding
value function is the lowest. This mismatch comes from the potential sub-optimality of pairwise

comparisons.

Table 4: Results of average means (standard deviations) of empirical value functions and mis-
classification rates for six high dimensional simulation scenarios. The best value functions and
misclassification rates are in bold.

Method Value Misclassification
Scenario 1 11-PLS 5.3(0.02) 0.17(0.01)
Pair-D 4.51(0.14) 0.47(0.03)
Group-AD 5.31(0.04) 0.15(0.02)
Scenario 2 1;-PLS 5.64(0.03) 0.22(0.01)
Pair-D 5.51(0.02) 0.2(0.01)
Group-AD  5.65(0.04) 0.21(0.01)
Scenario 3 [;-PLR 0.88(0.02) 0.64(0.04)
Binary-AD 0.92(0.02) 0.46(0.06)
Scenario4  [;-PLR 0.84(0.01) 0.7(0.02)
Binary-AD  0.87(0.01) 0.45(0.03)
Scenario 5 l;-CPH 771.35(126.2) 0.41(0.09)
Surv-AD  1004.57(40.19) 0.2(0.02)
Scenario 6 1;-CPH 150.87(7.71) 0.63(0.02)
Surv-AD  158.92(4.73) 0.45(0.02)
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6 Real Data Applications

In this section, we perform a real data analysis to further evaluate our proposed AD-learning.
We consider a clinical trial dataset from “AIDS Clinical Trials Group (ACTG) 175” in Hamme
ef“all (I996) to study whether there is a subgroup of patients suitable for different combina-
tion treatments of AIDS. In this study, with equal probabilities, a total number of 2139 pa-
tients with HIV infection were randomly assigned into four treatment groups: zidovudine (ZDV)
monotherapy, ZDV combined with didanosine (ddI), ZDV combined with zalcitabine (ZAL), and
ddI monotherapy.

We choose 12 baseline covariates in our model: age (year), weight(kg), CD4+T cells amount
at baseline, CD8 amount at baseline, Karnofsky score (scale at 0-100), gender (1 = male, 0 =
female), race (1 = non white, 0 = white), homosexual activity (1 = yes, 0 = no), history of
intravenous drug use (1 = yes, 0 = no), symptomatic status (1=symptomatic, 0=asymptomatic),
antiretroviral history (1=experienced, O=naive) and hemophilia (1=yes, 0=no). The first five
covariates are continuous and have been scaled before estimation. The remaining seven covariates
are binary categorical variables.

We consider two outcomes for our analysis. The first outcome is the difference between the
early stage (around 25 weeks) CD4+ T (cells/mm?) cell amount and the baseline CD4+ T cells
prior to the trial. This was also studied in Luefall (2013) and Fan_ef all (P016). Using this short
term outcome, our goal is to use AD-learning to find the short term optimal ITR for each patient
with AIDS among four treatment groups. We report the estimator of the coefficient WiTBT for

each treatment in Table B.

Table 5: Results of coeflicients estimation for comparison functions.

| Variable Name (1-7) | ZDV | ZDV+ddl | ZDV+Zal | ddI |
Intercept —49.86 44.66 —3.53 8.73
Age —0.47 4.33 —3.34 —0.52
Weight 0 0 0 0
Karnofsky Score 0 0 0 0
CD4 baseline 3.58 —14.79 —14.78 9.46
Days pre-anti-retroviral therapy 0 0 0 0
Hemophilia 0 0 0 0
Homosexual activity —0.28 —3.96 0.65 3.60
History of drug use —2.50 8.20 4.03 —9.74
Race 0 0 0 0
Gender 0 0 0 0
Antiretroviral history 0 0 0 0
Symptomatic indicator 0 0 0 0
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In Table B, we can see that four covariates including Age, CD4 baseline, homosexual activity
and history of drug use, are identified to play an important role in our estimated optimal ITRs.
These variables were also identified in the previous literature such as Ln“ef all (2013) and Fan
et all (20016). According to the analysis in Hammer et all (T996), ZDV alone is inferior to the other
treatments, which is also confirmed in our estimated I'TR. Based on the CD4 change in the early
stage, Zal treatment is generally not recommended in our finding with one possible reason that
Zal has the most serious adverse event compared with ZDV and ddI (Kakudal (2000)). According
to our estimated ITRs, those old patients with small amount of CD4 T cell baseline and having
history of drug use but not homosexual activity, are recommended to take ZDV + ddI. The
patients with large amount of CD4 T cell baseline and history of homosexual activity but not
drug use history, are more advisable to take ddI alone.

To evaluate the performance of our proposed AD-learning, we randomly split the data into
five folds and use four folds to train the model. We evaluate our method on the remaining one
fold of data based on the empirical value function. We repeat this procedure for 1000 times.

From Table B, we can see our AD-learning has the largest value.

Table 6: Results of empirical value functions on one fold of testing data. The best empirical value
function is in bold.

[1-PLS Pair-D DL ACWL-1 ACWL-2 VT AD low rank  AD group
53.73 (0.33) 57.17 (0.40) 53.25 (0.47) 52.74 (0.45) 54.04 (0.45) 54.84 (0.45) 50.48 (0.38) 59.69(0.39)

The second outcome is patients’ time to event. Using this long term outcome, our second goal
is to find the long term optimal ITR for patients among four treatment groups. The AIDS data
consist of 2139 patient time to event responses with around 75% censor rate during the four-year
long trial study. We use our proposed Model (23) to estimate the optimal ITR. We report the
estimates of the coefficient w; B” for each treatment of 12 covariates in Table @. We can see that
all covariates, except the indicator of homosexual activity and symptomatic, play an important
role in the estimated optimal ITR. It may not be surprising because it is a long term study and
thus more complicated. Since we model via the hazard function, the smaller the coefficient is,
the longer the survival time is.

Compared with the previous finding based on the short term CD4 T cells amount, covariates
including age, CD4 baseline and history of drug use have the similar effect on the ZDV + ddI

and ddI alone treatments. In addition, we also find that ZDV + Zal treatment may not be good
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to take for the female patients with hemophilia, but may be suitable for the male patients with
high Karnosky score and history of drug use. The estimated optimal ITR for other treatments
can be interpreted in the similar way. In general, ZDV alone is always the least preferable among
other treatments for patients and ZDV+ddl is always preferable for patients. Based on time to
event outcome, ZDV + Zal is relatively more preferable than ddI alone. In addition, we evaluate
our AD-learning with /1-CPH using the same scheme based on value functions. Our AD-learning

has an average value of 911.20, compared with the average value 905.02 for I;-CPH.

Table 7: Results of coeflicient estimation for survival time of failure.

Variable Name (1-7) ZDV | ZDV+ddl | ZDV+Zal | ddl
Age 0.04 —0.11 0.04 0.03
Weight 0.11 0.02 0.02 —0.14
Karnofsky Score 0.06 0.03 —0.09 0.01
CD4 baseline —0.04 0.04 —0.00 0.00
Days pre-anti-retroviral therapy | 0.09 -0.07 -0.04 0.02
Hemophilia 0.05 —0.06 0.16 —0.15
Homosexual activity 0.00 0.00 0.00 0.00
History of drug use 0.04 —0.11 —0.12 0.18
Race 0.03 —0.04 0.01 0.01
Gender 0.31 —0.08 —0.16 —0.07
Antiretroviral history 0.17 —0.15 0.04 —0.06
Symptomatic Indicator 0.00 0.00 0.00 0.00

7 Conclusion

In this article, we propose a AD-learning method to estimate the optimal ITRs in multiple
treatment settings for various types of outcomes. Our proposed method provides a clear geomet-
ric interpretation about the relative effectiveness of treatments for patients, which is quantified
by angles in the Euclidean space. Our proposed AD-learning is robust to model misspecification.
By incorporating group or low rank sparsity, our AD-learning can further improve the estimation
of decision rules and interpretation, especially for high dimensional settings. The competitive
performance of our method has been demonstrated via the simulation studies and data applica-
tions.

Several possible extensions can be explored for future study. Our proposed method for the
survival outcome is based on the non-informative censoring and Cox proportional hazard assump-
tion. It will be interesting to develop methods for more complex settings. In order to use nonlinear
functions to approximate fy(x), we can use different types of basis functions such polynomials
or wavelet functions. It will be also interesting to develop kernel methods for our AD-learning,

such as multiple kernel learning (Bach ef all (2004)). Finally, the current AD-learning focuses on
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a single decision point. It will be worthwhile to develop the corresponding methods for multiple

decision points (Zhao et all, 2015a; Liu et all, 2016).
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Appendix

Proof of Lemma 1

Let g(f) = E[ﬁ(KRW —f(x))T'S(K Rw —f(x))]. Taking the derivative over f and setting

it to zero, we get

20(/) _ KRW ()
of 2EEX{E[(W(A,X) W(A,X))’ I
RW

Proof of Lemma 2

Let g(f) = E[m(%R —wlf(x))?(£5 R — wTf(x))]. Taking the derivative over f and

setting it to zero, we get

ag(f) KR ILGVICONS
of EX{E[W((K— (A, x) 7(A,x) JIx]}
= Bl Bl M~ g /0l =0

where the second equality holds because E[Z[(/TW:)\X] = & Ik by definition. Thus fo(x) is an
optimal solution.
Proof of Lemma 3

Let g(f) = E[- ﬁvX,Tx]; + log(ljr(a‘;(:)ﬂf ))]. Taking the derivative over f and setting it to zero,
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we get
o9(f) RW  Wexp(w'/f) .
of 2EX{E[(7T(A,X) 1+ exp(WTf))W(A,x))’ I

= 2Ex{§: w;P[R=1|x,A=1] — iwiexp(Win)}
i=1 —~ 1+ exp(w] f)

=0.

T £x
IfPR=1x,A=1i] = %, then f* is an optimal solution to (IR).

Proof of Lemma 4

TW
Let g(f) = E[[, logE[i:(AigYZ“)] - f;:’:() dN (u)]. Taking the derivative over f and setting it

(

to zero, we get

29l1) _ B > W s A ] _ MBI > WY > Ml
-Bd] Z P e A= Blexp(W )Y = ) "

= Ex{/ Zwl I(Y > u)Ai(u, x)|x, A = i] — exp(wl f)A*(YD))du}
-0,

where \;(u,x) is the hazard function for the i-th treatment and A*(Y') is the cumulative hazard
function. Then we get a sufficient condition that if exp(w? f)A*(Y®)) = P[§ = 1|x, A = i], then
f* is an optimal solution. If the censoring time in each treatment group is the same, then we get
(23).

Proof of Theorem 1
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For any ITR d, we have

K
V(d) =E[>_E[R|x, A = kJI(d(x) = k)]
k=1

1 K

=Bl {;u — C(K)BIR}x, A = KI(d(x) = k)
+ 3 CK)BIR]x, A = =J

j=1 )=

K
_ E[l_é(K){; E[R|x, A = KI(d(x) = k)

K K
+ Zl C(K)E[R[x, A = j] ; I(d(x) =)} — A
1 X ]
- E[m{; E[R|x, A = k]I(d(x) = k) (38)

+21§C E[R|x, A = jlI(d(x) = i)}] - A
K
= Bli—r (L (BlRx A= K

k=1

+Zc E[R|x, A = kDI(d(x) = k)}] — A
J#k

K
E[%{Zwmﬂmmd(x) — k) - A

i fo(x =k} - A,

where A = E[C(K) Z]K:1 E[R|x, A = j]] that does not depend on the ITR d. Then we can obtain
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the value reduction bound between the optimal ITR dg and our estimated ITR d by using (88):

A

<TGy B Wi h () I(d(x) = k) ~ 1(d(x) = k)]

k=1
<o B W B ) = wf B0 = i) = )]

1#]
1 R .
Sl—C(K)E[{; \wi fo(x) — w]TfO(X)“I(Wszo(X) - ijfo(X))(win(x) - wJTf(x) < 0)}] )
1 A .
S C(K)E[{; wi (fo(x) — (%)) —w] (fa(x) — f(x))|

I(w (fo(x) — f(x))w] (fo(x) — f(x)) < 0)}]

S S (BI(x) ~ £+ Bl - Fl
< B0 - i),

where the second to last inequaltiy holds by using the Hoélder and Minkowski inquality together
with ||w;|| =1 for ¢ = 1,--- , K. Furthermore, if we assume Assumption 0 holds, then we can

further bound the value reduction by

V(do) = V(d)
< Ty PI 00 — B o) = o ) 9 <))
S1C (13'(K) EH; ell(|(wi — w)) o ()] < )I((wi — w)) o (x)) (Wi — w))” f(x)) < 0)}]

T o 04500~ B0 = )T (v~ ) F00) < 0 w
T 2 PlOv ) B0l <+ LB — Sl + Bl - Fl

1 a+1 4 ¢ 2
§1—0(K);C€ Bl x) - f)113),

for any € > 0. We can then minimize right hand side above over ¢ and get the desired bound

V(do) = V(dn) < C1(K, @) (E|lfo — £/3)5.
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Proof of Theorem 2
Define 37 = (Bgj, k=1, ,(K —1)T, and let A = o (logp) ™% yyith probability at least

n(K-1) °
1-— %, we have the following inequality

1B~ B+ NIB — Blla <
n(K —1) 0 21 = )

1 A ) 41

< ———[|Z(B-Bo)l*+4x > I8/ -8,
n(K —1) .
jes(B)

for any 3. This was previously shown in Theorem 5.2 by Louniciefall (2009). Let 3 = 3. Then
with probability at least 1 — %, we have

! 3 2 . .
mHZ(ﬂ—ﬂo)ll §4)\.Z 187 — 3|
J€S(B)

< 4\s/(8 - B)sl|

and

18 — Bll21 < 4/1(8 - B)sl],

which implies ||8 — B||se < 3]|/(8 — B)s||. Then by the RE(s) assumption, with probability at

(2elog p—e)c

W, we have

least 1 —

1

m,‘z(g — Bo)II?> < 4\35||(B - B)s]]

126 - Bo)|
PV

such that we can bound the empirical error by

)
Liz(8 - Byl < OE =D (logp)™"
n p(s) n

With the RE(2s) assumption, we can further show that with the same probability

1 A 44/10 s(log p)1+o
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Combining with Theorem [, we get the value reduction bound

. K —1K(K —1)4V10c  [s(logp)l*o
V(do) — V(dy) < o) R .

Together with our margin condition, we can directly get the corresponding improved bound (BT).
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