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Abstract

Estimating an optimal individualized treatment rule (ITR) based on patients’ information

is an important problem in precision medicine. An optimal ITR is a decision function that

optimizes patients’ expected clinical outcomes. Many existing methods in the literature are

designed for binary treatment settings with the interest of a continuous outcome. Much

less work has been done on estimating optimal ITRs in multiple treatment settings with

good interpretations. In this paper, we propose angle-based direct learning (AD-learning)

to efficiently estimate optimal ITRs with multiple treatments. Our proposed method can

be applied to various types of outcomes, such as continuous, survival or binary outcomes.

Moreover, it has an interesting geometric interpretation on the effect of different treatments

for each individual patient, which can help doctors and patients make better decisions. Finite

sample error bounds have been established to provide a theoretical guarantee for AD-learning.

Finally, we demonstrate the superior performance of our method via an extensive simulation

study and real data applications.

Keywords: Modified Matrix; Multivariate responses regression; Multi-armed treatments; Person-

alized medicine
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1 Introduction

Precision medicine, which recommends different treatments for individual patients, has been

a popular research area in the scientific community. Compared with traditional “one-size-fits-all”

medical procedures, precision medicine provides an individualized decision for each patient based

on their information, such as clinical covariates, genetics, in order to maximize the outcome of

each patient. There are different types of outcomes such as time to event, health index or the

disease indicator.

There are a number of existing statistical methods for estimating optimal ITRs in the lit-

erature. These methods can be roughly characterized into two types. The first type includes

value-based methods such as Q-learning (Watkins and Dayan (1992), Watkins (1989), Murphy

(2005), Qian and Murphy (2011) and A-learning (Murphy (2003), Robins (2004)). Q-learning

estimates optimal ITRs via modeling the conditional outcome function based on covariates while

A-learning models the contrast between rewards of two treatments. The second type of methods

directly targets the decision rules. One major approach of this type is to recast the estimating

ITRs problem as weighted classification problems and use machine learning techniques to estimate

optimal ITRs (Zhang et al. (2012), Zhao et al. (2012), Zhou et al. (2017), Zhao et al. (2015a),

Tao and Wang (2016)). In order to enhance interpretability of decision rules, tree based meth-

ods were also proposed ((Zhang et al., 2015; Foster et al., 2011; Laber and Zhao, 2015)). Other

direct-search methods include Tian et al. (2014) and Direct Learning (D-learning) (Qi and Liu

(2017)), which directly estimate the decision function that leads to optimal ITRs by regression

techniques. Recently, a general statistical framework to estimate optimal ITRs was proposed by

Chen et al. (2017).

Censored data are commonly seen in practice. Thus, it is also important to develop methods

to estimate optimal ITRs for the survival outcome. Various methods have been proposed in the

literature to estimate optimal ITRs for survival outcomes, such as Goldberg and Kosorok (2012),

Zhao et al. (2015b) and Cui et al. (2017). Recently, Bai et al. (2016) and Jiang et al. (2016)

proposed several methods to estimate the optimal ITR that can maximize the survival probability

of patients. However, for general ITR problems, most of these existing methods are designed for

binary treatment settings only. There are many multi-armed ITR problems in pratice (Baron

et al. (2013)). To the best of our knowledge, not much has been done for estimating the optimal
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ITR for the multi-armed treatment settings with various outcomes, such binary and survival

outcomes. Thus it is essential to develop methods to take multiple treatments into consideration

simultaneously and estimate optimal ITRs for various outcomes, which can help to improve the

estimating efficiency and the classification accuracy.

Besides the accurate estimation of ITRs, good interpretations are also important for multi-

armed treatment settings. For binary treatment settings, value-based methods can report a

single value difference function between two treatments to illustrate the relative effectiveness.

For classification based methods such as O-learning (Zhao et al. (2012)), interpretation of the

decision rule for binary treatment settings may not be as clear. Meanwhile forK-armed treatment

settings, at least K(K−1)
2 pairwise value difference functions need to be estimated to illustrate the

relative performance of treatments for each patient. Although such an extension can be simple

to implement, it does not use the data simultaneously and consequently may yield suboptimal

rules.
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Figure 1: Graphical illustration of the estimated ITR for a given patient in a three-treatment
setting. Vertices A,B and C represent 3 treatments. The estimated ITR of the patient has the
least angle with treatment B which is thus more preferable than the other two treatments.

To get accurate estimation of optimal ITRs and obtain a good interpretation jointly under the

multi-armed setting, we consider a K-vertex simplex structure in an Euclidean space, where each

vertex represents one treatment. The simplex lies in a K − 1 dimensional space with the origin

as the center and has equal inner products among vertices. Using the expression of the optimal

ITR, we transform the problem of finding the optimal ITR maximizing the value function into

maximizing the inner product between the decision function vector and the corresponding vertex
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in the simplex space. Such a transformation allows us to estimate the optimal ITR using multiple

response regression methods. In particular, for each patient, our estimated decision function

vector maps the covariates into this K − 1 dimensional space. The angle between each treatment

vertex and the estimation function vector can be interpreted as a measure of preference to this

treatment. We recommend a patient to take the corresponding treatment having the least angle

with our estimated decision function vector. Figure 1 shows an example with our estimated ITR

for a given patient. In this case, we recommend treatment B as the best option for this patient.

In addition, we can see treatment C is more preferable than treatment A for this patient based

on their angles.

We call our method angle-based direct learning (AD-learning) which can directly estimate

optimal ITRs under multi-armed treatment settings using multiple response regression techniques.

Furthermore, our proposed AD-learning can be extended to various types of outcome such as

binary and survival responses. Compared with existing methods, our proposed AD-learning enjoys

several advantages. In particular, our method is robust in the sense that it is not necessary to

model the main effect function of the conditional outcome. Due to direct learning scheme, our

method does not suffer from the mismatch problem between minimizing prediction errors and

maximizing value functions in model based methods such as l1-PLS (Qian and Murphy (2011))

and can perform better in high dimensional settings. Moreover, by representing each treatment as

a vertex of a standard simplex in the Euclidean space, our proposed method provides an attractive

geometric interpretation of the relative effectiveness of all treatments for a given patient. The

resulting relative effectiveness of different treatments can be interpreted as the angles between the

decision function vector for the patient and each vertex corresponding to the treatment. These

angles can be scaled between [0, π]. In addition, flexible structures such as group and low rank

sparsity can be also incorporated to further improve the model interpretation and simplicity,

which can be applied in high dimensional settings. Finally, our proposed method is easy to

implement with efficient algorithms.

The remainder of this paper is organized as follows. In Section 2, we introduce our AD-

learning to estimate optimal ITRs in multiple treatment settings. In Section 3, we discuss how

to extend our proposed method to binary and survival outcomes. In Section 4, we provide

a theoretical guarantee for our AD-learning under some mild assumptions. In Section 5, we

conduct an extensive simulation study to evaluate the finite sample performance of our method
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with implementation details including algorithms. Furthermore, we illustrate our method using

the AIDS data in Section 6. We conclude our paper with some discussions and possible future

extensions in Section 7.

2 Angle Based Direct Learning

For notation of the paper, we use boldface capital and lowercase symbols to denote matrices

and vectors respectively. For a matrix B, we define a mixed l1 and l2 norm as ||B||2,1 =
∑

||Bj ||2,

where Bj is the j-th row vector of B. We use Tr(B) to denote the sum of the diagonal value of

the matrix B.

We consider a randomized treatment framework for estimating optimal ITRs. For each pa-

tient, we observe a triplet random vector (x, A,R). In particular, x = (1, X1, · · · , Xp) ∈ X

denotes patients’ p-dimensional covariates with an intercept. The random variable A represents

the randomized treatment that a patient receives. Here we consider the K-treatment-armed set-

ting where A ∈ {1, 2, · · · ,K} with a known prior probability distribution π(A,x), which is the

conditional probability depending on x. In a general setting other than the randomized trial

study, π(A,x) denotes the propensity score and can be estimated by the generalized linear mod-

els such as multinomial logistic regression. The variable R is a patient’s outcome after receiving

the treatment A. Without loss of generality, we assume that the outcome R is bounded and the

larger R is, the better the treatment works for this patient.

One of the most important goals of our problem is to estimate the optimal ITR that can

maximize the expected clinical outcome of each patient under this ITR. Mathematically speaking,

an ITR is a decision function d(x) : X → A, mapping from the covariate space into the treatment

space. According to Qian and Murphy (2011) and Zhao et al. (2012), the value function under

the ITR d can be expressed as

V (d) =: E[R|d(x) = A] = E[
RI(A = d(x)

π(A,x)
], (1)

where I(•) is the indicator function. Then the optimal ITR is defined as

d0(x) = argmaxd∈DV (d) (2)

within a pre-specified class of treatment rules D. Before introducing our proposed AD-learning,
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we first discuss the direct learning framework.

2.1 The Direct Learning Framework

Consider a binary problem with K = 2. We encode treatment A to be 1 or −1. Then from

the value function and optimal ITRs defined in (1) and (2) respectively, we can further represent

the optimal ITR as

d0(x) = sign(E[R|x, A = 1]− E[R|x, A = −1])

= sign(E[
RA

π(A|x)
|x]) := sign(f0(x)).

(3)

Using Equation (3), similarly in Tian et al. (2014), the ITR problem becomes to estimate the

optimal decision function f0(x) = E[ RA
π(A|x) |x] via various regression methods such as l1 penalized

regression (LASSO). The final decision rule is determined by the sign of the estimator.

Binary D-learning directly estimates the decision rule. It is very different from the outcome

weighted learning (OWL) proposed by Zhao et al. (2012) because binary D-learning uses regres-

sion methods to estimate the optimal ITR directly. Note that binary D-learning can be simply

extended to the K-treatment-arm setting by rewriting the optimal ITR as

d0(x) = argmax
k∈{1,··· ,K}

E[R|x, A = k]

= argmax
k∈{1,··· ,K}

KE[R|x, A = k]−
K∑
i=1

E[R|x, A = i]

= argmax
k∈{1,··· ,K}

K∑
i ̸=k

{E[R|x, A = k]−E[R|xA = i]}

= argmax
k∈{1,··· ,K}

K∑
i ̸=k

E[
RAki

πki(Aki,x)
|x, A = k or i]

:= argmax
k∈{1,··· ,K}

K∑
i ̸=k

fki(x) := argmax
k∈{1,··· ,K}

fk(x),

(4)

where Aki ∈ {−1, 1} represents treatments k and i, and fki(x) is defined as the optimal decision

function between treatment k and i. Each pairwise decision function can be estimated by a

binary D-learning method. The final treatment decision rule is to compare the cumulative sum

of pairwise decison functions fk(x) for k = 1, · · · ,K, and select the largest one. We refer this

pairwise method as pairwise D-learning.

Binary D-learning gives us a directed way to estimate optimal ITRs. However, pairwise D-
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learning, which is based on binary D-learning, focuses only on pairwise comparisons between

treatments without considering all treatments simultaneously. Although the proposed effect

measure fk(x) can capture the relative strength of a treatment for a given patient, it may be

suboptimal.

To handle multi-armed ITR problems with various outcomes, we propose AD-learning that

considers all treatments together to estimate the optimal ITR. Moreover, the AD-learning can

provide a more effective measure of treatments for patients with a good interpretation.

2.2 Angle Based D-learning for Continuous Outcomes

For a K-armed ITR problem, one natural approach is to estimate K functions for all treat-

ments. Since only one function is needed for the binary ITR problem, one indeed only needs

K − 1 functions for a K-armed problem. Instead of using K functions with a constraint on these

functions, we aim to directly estimate K − 1 functions. To that end, we project the treatment A

into K simplex vertices defined on RK−1. Specifically, we encode the j-th treatment as a vector

wj ∈ RK−1 with

wj =


(K − 1)−1/21K−1, if A = 1

−(1 +
√
K)/(K − 1)3/21K−1 + ( K

K−1)
1/2eA−1, if 2 ≤ A ≤ K,

(5)

where ei is a K− 1 dimensional vector with every element being 0, except the i-th location being

1. Define w as a random vector with P[w = wj |x] = P[A = j|x]. This simplex encoding scheme

has several properties. In particular, the center of these vertices is the origin of the space, that is∑K
j=1wj = 0 with ||wj ||2 = 1 for j = 1, · · · ,K. The angle between each pair of vertices is equal,

that is wT
i wj = C(K) < 1 for i ̸= j, where the constant C only depends on K. Interestingly, we
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can then express the optimal ITR as

d0(x) = argmax
k∈{1,··· ,K}

E[R|x, A = k]

= argmax
k∈{1,··· ,K}

(1− c(K))E[R|x, A = k]

= argmax
k∈{1,··· ,K}

{(1− c(K))E[R|x, A = k] + c(K)

K∑
j=1

E[R|x, A = j]}

= argmax
k∈{1,··· ,K}

{E[R|x, A = k] + c(K)
K∑
j ̸=k

E[R|x, A = j]}

= argmax
k∈{1,··· ,K}

{wT
k E[Rw|x, A = k] +wT

k

K∑
j ̸=k

E[Rw|x, A = j]}

= argmax
k∈{1,··· ,K}

wT
k E[

Rw

π(A,x)
|x] := argmax

k∈{1,··· ,K}
wT

k f0(x),

(6)

where f0(x) is a function vector from Rp+1 to RK−1 with some abuse of notation. Then the

optimal ITR is given by comparing the inner product between wk and f0(x) for each treatment

k. We define the angle between each pair of vertices in [0, π]. Then wT
k f0(x) is the largest if and

only if the angle between wk and f0(x) is the least, for k = 1, · · · ,K. Thus we call our proposed

method as Angle based D-learning (AD-learning). Note that the simplex coding is unique up to

the orthogonal rotation.

Our proposed AD-learning has an attractive geometric interpretation. In particular, this least

angle decision rule can be understood through newly defined treatment regions for each patient.

For example, when K = 3, as shown in Figure 2 (b), vectors wk; k = 1, · · · ,K form an equilateral

triangle in the R2 space, where each divided region represents a treatment region. The decision

function vector f0(x) maps from the covariate space into the treatment region. One can observe

that the angles between vertices are the same, and consequently each treatment is treated equally.

Such a simplex coding scheme does not require a balanced group size for each treatment since

treatment proportions are taken into account by the term π(A,x) in Equation (6). We name the

angle between each wk and f0(x) as the treatment score which lies in a bounded interval [0, π].

If a patient has the angle of 0 with the i-th treatment, then the i-th treatment is a perfect fit

for this patient compared with other treatments. Figure 2 gives a geometric explanation of our

AD-learning.
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Figure 2: Geometric interpretation of our least angle decision rule. When K = 3 or K = 4, the
estimate f̂ has the smallest angle with treatment 1 so we recommend treatment 1 as the optimal
treatment. When K = 2, we can see f̂ has the smallest angle with vector w2 and the optimal
rule for this patient is treatment 2.

To further illustrate our AD-learning, we propose the following alternative interpretation.

Suppose the clincal outcome R can be modeled as

R = µ(x) +
K∑
i=1

δi(x)I(A = i) + ϵ, (7)

where µ(x) is main effect function, δi(x) is the interaction effect between covariates and the i-th

treatment, and ϵ is mean zero random error. Then we can get

E[
Rw

π(A,x)
|x] = µ(x)E[

w

π(A,x)
|x] +

K∑
i=1

δi(x)iE[
wI(A = i)

π(A,x)
|x] + E[

w

π(A,x)
|x]E[ϵ|x]

=

K∑
i=1

δi(x)wi.

(8)

Furthermore, the optimal ITR is

d0(x) = argmaxk∈{1,··· ,K}w
T
k E[

Rw

π(A|x)
|x]

= argmaxk∈{1,··· ,K}w
T
k

K∑
i=1

δi(x)wi

= argmaxk∈{1,··· ,K}C(K)
K∑
i=1

δi(x) + (1− C(K))δk(x)

= argmaxk∈{1,··· ,K}δk(x),

(9)
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which is exactly to compare each treatment interaction effect with the covariates.

As a remark, we note that extensions of methods for binary treatment settings to multiple

treatment settings using all treatments jointly can be nontrivial since we need to account for

multiple treatment effect comparisons without sacrificing too much efficiency. Our proposed AD-

learning achieves this by first projecting treatments into a K − 1 dimensional space. A simplex

with K vertices is used to represent the K treatments. Then Equation (6) provides an innovative

but direct way to efficiently estimate the decision function vector and considers all the data

simultaneously. Inherited from the simplex structure, our proposed method has an attractive

geometric interpretation to show the relative effectiveness of different treatments for a patient.

Thus it provides an informative comparison of all treatments for patients and doctors to make

decisions.

Note that the simplex coding scheme was previously used by Wu and Lange (2010) and Zhang

and Liu (2014) for classification problems. However, our proposed AD-learning is very different

because it is not a classification method. Consequently, our method is not an extension of O-

learning proposed by Zhao et al. (2012). Instead, by transforming the problem (2) into (6),

our goal is to estimate the decision function f0(x) directly, using multiple response regression

introduced in Section 2.3.

2.3 Estimation Procedures of AD-learning

In order to estimate the optimal ITR, it is equivalent to estimating f0(x) from Section 2.2.

The next lemma provides us a way for estimation of f0(x).

Lemma 1. Under the exchange of differential and expectation condition, f0(x) is an optimal

solution to

argmin
f∈RK−1

E[
1

π(A,x)
(KRw − f(x))TΣ(KRw − f(x))], (10)

where Σ can be any invertible matrix that characterizes the dependency among responses. Without

knowing any prior knowledge, one could simply let Σ = IK−1.

Assume we observe independent identically distributed data {(xi, Ai, Ri), i = 1, · · · , n}. Then

we can estimate f0(x) via empirical average approximation

argmin
f∈F

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi − f(xi))

T (KRiwi − f(xi)), (11)
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where F is a pre-specified class of decision functions. For simplicity, we first consider the class

of linear decision rules, that is, F := {f(x) = BTx,B ∈ Rp×(K−1)}. By observing KRiwi as

multivariate responses, one can apply ordinary least square estimates for each of the responses

separately. However, since the responses share the same clinical outcome Ri for the i-th sample,

it is clear that pooling multivariate responses together can efficiently improve the estimation of

f0(x) (Breiman and Friedman (1997)). This motivates us to incorporate shrinkage and selection

strategies that explore the correlations among different responses by

argmin
B∈Rp×(K−1)

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi −BTxi)

T (KRiwi −BTxi) + λJ(B), (12)

where λ is a positive tuning parameter. Then our final least angle decision rule becomes d0(x) =

argmaxk∈{1,··· ,K}w
T
k B

Tx. In this decision rule, the corresponding coefficient for the j-th variable

of x is wT
k Bj , for j = 1, · · · , p, where Bj is the j-th row vector of B. Note that for any orthogonal

matrix Γ ,

||BΓ||2,1 =
p∑

j=1

||BT
j Γ||2 =

p∑
j=1

√
BT

j ΓΓ
TBj

=

p∑
j=1

||Bj ||2 = ||B||2,1,
(13)

which implies that ||B||2,1 remains to be the same under any orthogonal transformation of w.

This is essential since our simplex coding is unique up to the orthogonal rotation. In addition,

Bj = 0K−1 implies the j-th variable has no effect on our least angle decision rule. These motivate

us to use the group sparsity penalty, i.e., the mixed l1/l2 norm as follows

argmin
B∈Rp×(K−1)

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi −BTxi)

T (KRiwi −BTxi) + λ||B||2,1. (14)

Model (14) is best suited for the case that all treatments share the common interaction covariates.

The group sparsity structure of B will not change under any orthogonal transformation of w.

In the literature, it is known that group sparsity of a matrix is a special case of a low rank

matrix. If B = UVT such that U ∈ Rp×r and V ∈ Rr×(K−1) with r < min(p,K − 1). Then

BTx = V(UTx) implies potential r orthogonal latent factors in the covariates. Hence we can

also use the nuclear norm penalty to control the complexity of coefficient matrix B if there is a
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low rank structure or exists latent factors in the covariates by

argmin
B∈Rp×(K−1)

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi −BTxi)

T (KRiwi −BTxi) + λ||B||∗, (15)

where the ||B||∗ is the sum of all singular values of coefficient matrixB. The nuclear norm penalty,

unlike the rank constraint, provides soft and stable shrinkage on the singular values. Similar to

the penalty ||B||2,1, other penalties including ||B||∗ that are invariant to any orthogonal rotation

of w can be applied for our methods.

So far, we have only focused on linear decision rules. If f0(x) belongs to some classes of

nonlinear functions, we can adapt our method to nonlinear learning via kernel learning or basis

function expansions. For kernel learning, we can apply kernel ridge regression for each response

separately, using Equation (11). However, it may lose some efficiency since it does not consider

the dependence among the responses. How to perform kernel learning with multiple responses in

our setting is an interesting future research direction. For basis function expansions, depending

on the problem, we can use spline basis functions, interaction functions, wavelet functions, etc.

to approximate the nonlinear decision function.

To summarize, Models (14) and (15) are proposed to control the complexity of coefficient

matrix B and consequently enhance the estimation and prediction. As our proposed AD-learning

directly targets on the decision function f0(x), it does not suffer the mismatch problem between

minimizing prediction errors and maximizing value functions happened for model-based methods

such as l1-PLS. Thus our proposed method tends to perform better in high dimensional settings.

If there are group signals in the covariates for optimal ITRs, we recommend to use Model (14).

If there are latent factors in the covariates for optimal ITRs, we recommend to use Model (15).

One can also use the cross-validation procedure to choose Model (14) or (15) that maximizes the

empirical value function on the validation dataset. The computation of these models involves

convex optimization and thus can be solved efficiently.

3 Extensions to Other Types of Outcomes

In Sections 2, we proposed AD-learning for continuous outcomes. In practice, especially in

clinical studies, other types of outcomes such as binary, count responses, or survival time can also

be used. In this section, we extend our AD-learning to more general types of outcomes motivated

by the following lemma.
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Lemma 2. Under the exchange of differential and expectation condition, f0(x) is an optimal

solution to

argmin
f∈F

E[
1

π(A,x)
(

K

K − 1
R−wT f(x))2]. (16)

Based on the optimization problem (16), one can write a corresponding working model as

K

K − 1
R = wT f(x) + ϵ, (17)

where ϵ is the random error. Note that when f ∈ F , wT f(x) = wTBTx = Tr(BT (xwT )). Then

xwT can be regarded as modified covariates. Then the multiple response regression model in (11)

can be extended to a more general model, namely trace regression model (Rohde et al. (2011)).

Motivated by the optimization problem (16) and the corresponding working model, we can

extend our proposed AD-learning to more general settings. In particular, instead of the least

squared loss for continuous outcome in (16), we can use other loss functions for corresponding

outcomes.

3.1 Binary Outcomes

When R is binary, motivated by Lemma 2 and the connection between (16) and working

model (17), we consider to replace the least squared loss in (16) by the deviance loss of logistic

regression models. Then we have the following lemma.

Lemma 3. Under the exchange of differential and expectation condition, an optimal solution to

argmin
f∈F

E[− RwT f

π(A,x)
+

log(1 + exp(wT f))

π(A,x)
] (18)

is the function f0(x) satisfying

P[R = 1|x, A = i] =
exp(wT

i f0(x))

1 + exp(wT
i f0(x))

. (19)

Analogous to (17), solving (18) is equivalent to fitting a logistic regression working model

(19). Based on Lemma 3, we can derive the optimal decision rule for the binary outcome as

d0(x) = argmaxk∈{1,··· ,K}P[R = 1|x, A = i]

= argmaxk∈{1,··· ,K}w
T
i f0(x),

(20)
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which can be also interpreted as the least angle decision rule. Then we can fit a weighted logistic

regression with modified covariates x∗ = xwT by modeling

P[R = 1|x, A] =
exp(Tr(BTx∗))

1 + exp(Tr(BTx∗))
, (21)

and estimate the coefficient matrix B by maximum likelihood estimation

argmin
B∈Rp×(K−1)

l(B) =− 1

n

n∑
i=1

RiTr(B
Tx∗

i )

π(Ai,xi)
+

1

n

n∑
i=1

log(1 + exp(Tr(BTx∗
i )))

π(Ai,xi)
+ λJ(B), (22)

where J(B) is either the mixed l1/l2 penalty or the nuclear norm penalty under different model

assumptions. We can use the accelerated proximal gradient method to solve this problem (Beck

and Teboulle (2009)). However, the gradient of the exponential loss function for this model

may need relatively large computational time. Efficient group coordinate descent proposed by

Breheny and Huang (2015) can be an alternative to solve Model (22) with the mixed l1/l2 penalty

by vectorizing the modified covariates.

3.2 Survival Outcomes

When R is the survival outcome, due to the potential censoring of observations, we do not

always observe the exact outcomes of patients in clinical studies. Thus R becomes a pair of

random variables defined as R = (Y, δ) = (Ỹ ∧ C, δ), where Ỹ is the patient’s survival time, C is

the censoring time, and δ is an indicator about whether this patient is censored or not. Motivated

by Lemma 2 and a similar derivation as in Section 3.1, we can replace squared error loss in (16)

for continuous outcomes by the negative log-likelihood of the Cox model for survival outcomes.

Then we have the following lemma for survival outcomes.

Lemma 4. Under the exchange of differential and expectation condition, an optimal solution to

argmin
f∈F

E[

∫ τ

0

logE[ef
TwI(Y ≥ u)]

π(A,x)
− fTw

π(A,x)
dN(u)] (23)

is the function f∗ satisfying

exp(wT
i f

∗)E[Λ∗(Y (i))|x, A = i] = P[δ = 1|x, A = i] (24)

for a monotone nondecreasing function Λ∗(u), where N(u) = I(Ỹ ≤ u)δ, and τ is a fixed time
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point with P[Ỹ ≥ τ ] > 0. If the censoring time is non-informative and the censoring rate for

each treatment group is the same, then

argmaxi∈{1,··· ,K} −wT
i f

∗ = argmaxi∈{1,··· ,K}E[Λ(Y )|x, A = i]. (25)

Using Lemma 4, the optimal decision rule for the survival outcome can be written as

d0(x) = argmaxk∈{1,··· ,K}w
T
i (−f∗). (26)

This is equivalent to fitting a weighted Cox Proportional Hazard (CPH) model with modified

covariates x∗ = xwT , by defining the hazard function as

λ(t|x, A) = λ0(t)e
Tr(BTx∗), (27)

where λ0(t) is a baseline hazard function. Then we can estimate the coefficient matrix B by

maximum likelihood estimation such as

argmin
B∈Rp×(K−1)

l(B) =
1

n

∑
i:δi=1

{−YiTr(B
Tx∗

i )

π(Ai,xi)
+

1

π(Ai,xi)
log

∑
j:Yj≥Yi

exp(Tr(BTx∗
i ))}+ λJ(B),

(28)

where J(B) is either the mixed l1/l2 penalty or the nuclear norm penalty under different model

assumptions. As the gradient of the Cox loss function for this model requires heavy computation,

similar to Section 3.1, efficient group coordinate descent (Breheny and Huang (2015)) can be used

to optimize (28) with the mixed l1/l2 penalty through vectorizing the modified covariates.

Note that the modified covariates x∗ in Equation (27) contain the treatment information that

can be incorporated into the baseline hazard function. Thus baseline hazard functions can be

different for different treatments. For Lemma 4, we assume the censoring rate to be equal for all

treatment groups so that our proposed method can be directly extended to the survival outcome.

This assumption can possibly be removed by estimating the censoring rate for each group and

then adjusting Equation (24).

4 Theoretical Properties of AD-learning

In this section, we show our proposed AD-learning is consistent under some mild conditions

and establish finite value reduction bounds for our method. We first state the generalized margin
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condition used in our theory.

Assumption 1. For any ϵ > 0, there exists some constants C > 0 and α > 0 such that

P[|(wi −wj)
T f0(x)| ≤ ϵ] ≤ Cϵα (29)

for every i, j = 1, · · · ,K.

Assumption 1 is an extension of margin condition used in binary classification problems to

obtain sharper bounds on the excess 0-1 risk (Audibert et al. (2007)). For our ITR problems,

this generalized margin condition characterizes the behavior of the decision function vector f0(x)

around the boundary among different treatment regions, thus the level of difficulty in finding the

optimal ITR. In the literature, Zhao et al. (2012) used a similar assumption in the binary ITR

problem. Using Assumption 1, we have the following theorem for the value reduction bound.

Theorem 1. For the estimator f̂n by our proposed AD-learning and the corresponding ITR d̂n,

we have

V (d0)− V (d̂n) ≤
2K(K − 1)

1− C(K)
(E||f0 − f̂n||22)

1
2 . (30)

Furthermore, if Assumption 1 holds, we can improve the bound by

V (d0)− V (d̂n) ≤ C1(K,α)(E||f0 − f̂n||22)
1+α
2+α , (31)

where C1(K,α) is the constant that only depends on K and α.

Remark 1. Based on (31), we can see that when α = 0 and C = 1, Assumption (1) always holds

for any ϵ > 0. In this case, (31) reduces to (30). Based on (29), if α increases, the outcomes cor-

responding to various treatments become more different. As a result, the corresponding exponent

1+α
2+α becomes larger, and consequently a sharper bound in (31) can be obtained.

Theorem 1 gives an upper bound for the value function reduction in terms of the prediction

error. For simplicity, we first consider Model (14) with equal π(Ai,xi) for each treatment. Then

we can use the main idea from Lounici et al. (2009). We first vectorize the multiple responses

and the coefficient B so that the model becomes

argmin
β∈Rp(K−1)

1

n(K − 1)

K−1∑
k=1

(yk −Xβk)
T (yk −Xβk) + λ||β||2,1, (32)
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where vector yk = KRwk ∈ Rn for k = 1, · · · ,K − 1 and X is a design matrix with the i-

th row being the i-th patient covariates xi. Denote each column of the coefficients B as βk, for

k = 1, · · · ,K−1. Then β ∈ Rp(K−1) is formed by stacking the coefficient βk, for k = 1, · · · ,K−1.

We further define the (K − 1)n × p(K − 1) block diagonal matrix Z with its k-th block formed

by the design matrix X.

We assume the underlying true f0 is linear with coefficient β0. Define S(β) = {j : βkj ̸= 0, k =

1, · · · ,K−1} and the cardinality of S(β) as ||S(β)||0. We make the following two assumptions as

in Lounici et al. (2009). The first one is the Restricted Eigenvalue (RE) assumption considered

by Bickel et al. (2009) with an extension to the mixed l1/l2 norm.

Assumption 2. [RE(s)] For any nonzero β with ||S||0 ≤ s and ||βSc ||2,1 ≤ 3||βS ||2,1, there exists

a positive real number ρ(s) such that

√
βΣ̂β ≥ ρ(s)||βS ||, (33)

where S denotes the short notation of S(β) and Σ̂ = 1
nZ

TZ.

The next assumption is to control the stochastic error term in Model (14) with the bounded

variance assumption.

Assumption 3. (1) Assume that the random error eki = (yki − xT
i βk); i = 1, · · · , n, k =

1, · · · ,K−1, are independent among different i with mean zero and finite variance E[e2ki] ≤

σ2.

(2) There exists a constant c such that max1≤i≤nmax1≤j≤p |xij | ≤ c.

With the assumptions in place, we have the following theorem.

Theorem 2. Consider Model (14), for p ≥ 3 and K,n ≥ 1. Assume S(β0) ≤ s, Assumptions 2

and 3 and the RE(2s) assumption hold. Let

λ = σ

√
(log p)1+δ

n(K − 1)
,

for any δ > 0. Then with probability at least 1 − (2e log p−e)c2

(log p)1+δ , for the solution B̂ to the Model

(14), we have

V (d0)− V (d̂n) ≤
√
K − 1K(K − 1)

1− C(K)

4
√
10c

ρ2(2s)
σ

√
s(log p)1+δ

n
. (34)
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Furthermore, if Assumption 1 is satisfied, we can improve the bound by

V (d0)− V (d̂n) ≤ C(K,α)
32

ρ2(s)
σ2s(

(log p)1+δ

n
)
1+α
2+α , (35)

where C(K,α) only depends on K and the margin condition constant α.

Theorem 2 gives us the value reduction bound of order nearly 1
n as long as α is large enough.

This value bound is consistent with l1-PLS proposed by Qian and Murphy (2011) if we assume

the underlying true function is linear. For a general function approximation, an additional ap-

proximation error to f0(x) needs to be considered.

For Model (15), Rohde et al. (2011) has obtained the same rate O( 1n) for the prediction error

and thus the order of value reduction bound for Model (15) is the same as Theorem 2. For Model

(22), it can be regarded as usual logistic regression with modified covariates. If we consider the

mixed l1/l2 penalty, error bounds of the same order were developed in Meier et al. (2008). These

results are applicable to our proposed AD-learning. However, to the best of our knowledge, the

finite sample properties of other settings such as CPH models with the mixed l1/l2 penalty or

low rank penalty require further developments and we leave it as the future work.

5 Simulation Study

In this section, we perform an extensive simulation study to investigate the finite sample

performance of AD-learning for various types of outcomes. For all simulation settings, we consider

four-armed (K = 4) randomized trials with equal probabilities of patients being assigned to each

treatment group. For the low dimensional simulation setting, we set the sample size n to be 200,

400, and 800. The number of covariates p is set to be 20 and 40. For high dimensional simulation

settings, we let the sample size be 400 and p be 1000. Each simulation is repeated for 120 times.

Additional simulation results are in the supplementary material, such as settings with n = 200,

low rank decision function simulation studies, etc.

For the implementation details of AD-learning, two types of algorithms can be applied. The

first one is the accelerated proximal gradient method. In particular, Models (14) and (15) can be

represented as

minF (B) := L(B) + λJ(B), (36)

where L(B) is a smooth convex function with its gradient being Lipschitz continuous and J(B)
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is a non-smooth convex function, of which the proximal operator can be computed efficiently.

Then we can use the accelerated proximal gradient method to solve it with low computational

complexity. It achieves the optimal converge rate O( 1
m2 ) for gradient methods, where m is the

number of iterations for the algorithm. More details can be found in Nesterov (2013) and Toh

and Yun (2010).

In binary and survival outcome settings, the gradient of function L(B) may need large com-

putational cost to calculate. To address the problem, the stochastic block coordinate decent

algorithm can be applied instead when J(B) is the mixed l1/l2 penalty. By using this algorithm,

each gradient decent iteration can be efficiently computed. Thus the stochastic block coordinate

decent algorithm may cost less time than the accelerated proximal gradient method.

The tuning parameter λ is selected based on the cross-validation procedure. The criterion is

to select λ that maximizes the average of estimated value functions on the validation data set

defined as

V̂ (d) =
En[RI(A = d(x))/π(A,x)]

En[I(A = d(x))/π(A,x)]
, (37)

where En denotes the empirical average.

5.1 Study of Continuous Outcomes

When the clinical outcome R is continuous, we generate our data from Model (7). Specifically,

for i = 1, · · · , n, let

Ri = µ(xi) + δ(xi) + ϵi,

where δ(xi) =
∑K

k=1(x
T
i βk)I(A = k), each covariate is generated by the uniform distribution from

−1 to 1, and ϵi follows from the standard normal distribution. For each simulation scenario, we

consider µ(x) = 1+X1+X2 and consider other types of main effect functions in the supplementary

material. We design the following three interaction functions similar to those in Zhou et al. (2017)

and Zhang et al. (2015):

1. δ(x) = (1 +X1 +X2 +X3 +X4)I(A = 1) + (1 +X1 −X2 −X3 +X4)I(A = 2) + (1 +X1 −

X2 +X3 −X4)I(A = 3) + (1−X1 −X2 +X3 +X4)I(A = 4);

2. δ(x) = (3I(X1 ≤ 0.5)(I(X2 > −0.6)− 1))I(A = 1) + ((I(X3 ≤ 1))(2I(X4 ≤ −0.3)− 1)I(A =

2) + (4I(X5 ≤ 0)− 2)I(A = 3) + (4I(X6 ≤ 0)− 2)I(A = 4);

3. δ(x) = (0.2+X2
1 +X2

2 −X2
3 −X2

4 )I(A = 1)+ (0.2+X2
2 +X2

3 −X2
2 −X2

4 )I(A = 2)+ (0.2+
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X2
1 +X2

4 −X2
2 −X2

3 )I(A = 3) + (0.2 +X2
2 +X2

3 −X2
1 −X2

4 )I(A = 4).

The first scenario corresponds to linear interaction effects. For the second scenario, we consider

tree-type interaction effects. The last scenario includes polynomial interaction effects and we use

degree 2 polynomials as basis functions for all methods. For each simulation scenario, we compare

our proposed AD-learning using the group sparsity penalty with the following methods:

(1) l1-PLS proposed by Qian and Murphy (2011) with basis (1,x,xA);

(2) pairwise D-learning;

(3) the decision list (DL) method proposed by Zhang et al. (2015);

(4) adaptive contrast weighted learning (ACWL-1 and ACWL-2) methods proposed by Tao

and Wang (2016);

(5) the method of virtual twins (VT) proposed by Foster et al. (2011),

where we use degree 2 polynomials as basis functions for all methods in the last scenario. Addi-

tional simulation study results on AD-learning using the low rank sparsity penalty are included in

the supplementary material. In addition, we also perform the comparison between group l1-PLS

and l1-PLS in the supplementary material, which shows little differences between l1-PLS and

group l1-PLS in our simulation studies. This confirms our appropriate use of l1-PLS instead of

group l1-PLS unless there are some prior information about strong group sparsity structures.

All the tuning parameters are selected via 10-fold cross-validation. We report the value

functions and misclassification errors for p = 40 on 10000 independently generated test data in

Table 1. From Table 1, we can see that our AD-learning has competitive performance among

all methods. When we consider linear interaction effect, it is expected that our proposed AD-

learning and l1-PLS perform the best compared with other methods. In particular, our method

will potentially be better than l1-PLS because l1-PLS suffers the mismatch problem discussed

previously. For the second simulation scenario that corresponds to simple tree type interaction

effect, while those tree based methods such as VT, DL and ACWL perform well, our method

is still competitive. Similar results for p = 20 are included in the supplementary material. An

interesting observation for this scenario is that although VT has the largest empirical value

function among all methods, its misclassification rate is similar to that of our proposed method
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when n = 400. One potential reason is that VT is focused on model fitting while our method

directly targets on decision rules. For the last scenario, since the basis functions we used correctly

identify the interaction effect, our proposed AD-learning and l1-PLS enjoy some advantages over

other methods.

Table 1: Results of average means (standard deviations) of empirical value functions and mis-
classification rates for four continuous-outcome simulation scenarios with 40 covariates. The best
value functions and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

Pair-D 2.67(0.06) 0.49(0.02) 3.01(0.02) 0.32(0.02)
l1-PLS 3.05(0.04) 0.24(0.01) 3.15(0.01) 0.16(0.01)
DL 2.6(0.04) 0.54(0.01) 2.78(0.02) 0.47(0.01)
ACWL-1 2.69(0.05) 0.46(0.01) 2.9(0.02) 0.37(0.01)
ACWL-2 2.77(0.05) 0.43(0.01) 3.02(0.01) 0.31(0.01)
VT 2.66(0.03) 0.5(0.01) 2.81(0.02) 0.45(0.01)
Group-AD 3.06(0.05) 0.22(0.02) 3.14(0.03) 0.15(0.02)

Scenario 2

Pair-D 2.84(0.12) 0.32(0.04) 2.93(0.1) 0.3(0.03)
l1-PLS 2.93(0.11) 0.36(0.04) 3.01(0.1) 0.32(0.04)
DL 2.89(0.12) 0.34(0.04) 3.04(0.11) 0.28(0.04)
ACWL-1 2.76(0.11) 0.38(0.02) 2.96(0.11) 0.32(0.02)
ACWL-2 2.81(0.11) 0.38(0.02) 3.03(0.1) 0.29(0.03)
VT 3.07(0.09) 0.31(0.02) 3.12(0.1) 0.27(0.02)
Group-AD 2.97(0.1) 0.31(0.03) 2.97(0.1) 0.3(0.03)

Scenario 3

Pair-D 1.2(0.03) 0.75(0.03) 1.2(0.03) 0.75(0.03)
l1-PLS 1.42(0.18) 0.61(0.13) 1.58(0.22) 0.47(0.18)
DL 1.38(0.08) 0.64(0.06) 1.5(0.08) 0.57(0.06)
ACWL-1 1.29(0.08) 0.7(0.04) 1.49(0.07) 0.56(0.05)
ACWL-2 1.3(0.07) 0.69(0.04) 1.57(0.06) 0.51(0.05)
VT 1.39(0.05) 0.64(0.03) 1.44(0.04) 0.6(0.03)
Group-D 1.57(0.14) 0.5(0.11) 1.76(0.04) 0.3(0.05)

5.2 Study of Binary and Survival Outcomes

For the binary outcome R, the dataset is independently generated by the logistic regression

model

logit(P[Ri = 1]) = µ(xi) +

K∑
k=1

(xT
i βk)I(A = k),

where the link function logit(x) = log x
1−x . We consider same interaction effects as the first two

scenarios of the continuous outcome simulation study.

Since pairwise D-learning and ACWL are not intended for the binary outcome, after modifying

the l1-PLS by using l1 penalized logistic regression (l1-PLR), we compare l1-PLR, DL and VT

with our AD-learning. Table 2 shows the value functions and misclassification rates for p = 40

and n = 400, 800. We can see that our proposed AD-learning has largest value functions and
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lowest misclassification rates in both scenarios. Moreover, there are some mismatches in model

based methods such as l1-PLS, where the misclassification rates and the value functions are both

high. One potential reason is the mismatch between the optimization criterion and the tuning

procedure in l1-PLS. The other potential reason is the mismatch between minimizing prediction

error and maximizing value function in model based methods.

Table 2: Results of average means (standard deviations) of empirical value functions and misclas-
sification rates for two binary-outcome simulation scenarios with 40 covariates. The best value
functions and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification
Scenario 1

l1-PLR 0.88(0.01) 0.58(0.02) 0.91(0) 0.45(0.02)
DL 0.85(0.01) 0.67(0.01) 0.87(0.01) 0.61(0)
VT 0.84(0.01) 0.68(0.01) 0.84(0) 0.69(0)
Binary-AD 0.9(0.01) 0.44(0.02) 0.92(0) 0.32(0.02)

Scenario 2

l1-PLR 0.83(0.01) 0.66(0.05) 0.86(0) 0.61(0.05)
DL 0.81(0.01) 0.53(0.01) 0.85(0.01) 0.44(0.01)
VT 0.83(0.01) 0.43(0.01) 0.83(0.01) 0.51(0)
Binary-AD 0.86(0.01) 0.43(0.04) 0.87(0.01) 0.4(0.04)

Next we consider R to be the outcome of time to event. The simulated data are generated by

the following model with the exponential distribution

Ri = exp(λi),

where exp denotes the exponential distribution and λi = µ(xi) +
∑K

k=1(x
T
i βk)I(A = k) for

i = 1, · · · , n. The censoring time Ci; i = 1, · · · , n, are generated from an exponential distribution

with mean θ to induce around 25% censoring rate. We consider the same settings as those in

the binary case. For comparisons, we apply the l1 penalized CPH models and compare it with

AD-learning, since other methods we use previously are not designed for the survival outcome.

From Table 3 with p = 40, we can see that our proposed AD-learning has clear advantages over

l1-CPH. In addition, we also observe the mismatch phenomena of l1-CPH in Scenario 2 of Table

3.
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Table 3: Results of average means (standard deviations) of empirical value functions and misclas-
sification rates for two survival-outcome simulation scenarios with 40 covariates. The best value
functions and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification
Scenario 1

l1-CPH 41.35(2.2) 0.33(0.04) 45.05(1.1) 0.21(0.02)
Surv-AD 43.91(1.3) 0.25(0.02) 45.56(1.06) 0.18(0.01)

Scenario 2

l1-CPH 21.95(0.63) 0.57(0.04) 23.21(0.59) 0.5(0.04)
Surv-AD 22.1(0.62) 0.46(0.02) 22.78(0.53) 0.44(0.02)

5.3 Study of High Dimensional Problems

We evaluate our AD-learning performance for high dimensional settings. We consider the

sample size n = 400 so that each treatment group has roughly 100 patients and number of co-

variates p = 800. Scenarios 1-2, 3-4, 5-6 correspond to continuous, binary, and survival outcomes

respectively. The interaction effects considered here are the same as the first two scenarios in the

continuous setting in Section 5.1.

From Table 4, we can find that our proposed AD-learning performs better than l1-PLS. One of

the possible reasons is that our proposed method tends to select right covariates for the interaction

effect function due to the direct learning of the decision rule. An interesting observation is that

although pairwise D-learning has the lowest misclassification rate in Scenario 2, its corresponding

value function is the lowest. This mismatch comes from the potential sub-optimality of pairwise

comparisons.

Table 4: Results of average means (standard deviations) of empirical value functions and mis-
classification rates for six high dimensional simulation scenarios. The best value functions and
misclassification rates are in bold.

Method Value Misclassification

Scenario 1 l1-PLS 5.3(0.02) 0.17(0.01)
Pair-D 4.51(0.14) 0.47(0.03)

Group-AD 5.31(0.04) 0.15(0.02)

Scenario 2 l1-PLS 5.64(0.03) 0.22(0.01)
Pair-D 5.51(0.02) 0.2(0.01)

Group-AD 5.65(0.04) 0.21(0.01)

Scenario 3 l1-PLR 0.88(0.02) 0.64(0.04)
Binary-AD 0.92(0.02) 0.46(0.06)

Scenario 4 l1-PLR 0.84(0.01) 0.7(0.02)
Binary-AD 0.87(0.01) 0.45(0.03)

Scenario 5 l1-CPH 771.35(126.2) 0.41(0.09)
Surv-AD 1004.57(40.19) 0.2(0.02)

Scenario 6 l1-CPH 150.87(7.71) 0.63(0.02)
Surv-AD 158.92(4.73) 0.45(0.02)
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6 Real Data Applications

In this section, we perform a real data analysis to further evaluate our proposed AD-learning.

We consider a clinical trial dataset from “AIDS Clinical Trials Group (ACTG) 175” in Hammer

et al. (1996) to study whether there is a subgroup of patients suitable for different combina-

tion treatments of AIDS. In this study, with equal probabilities, a total number of 2139 pa-

tients with HIV infection were randomly assigned into four treatment groups: zidovudine (ZDV)

monotherapy, ZDV combined with didanosine (ddI), ZDV combined with zalcitabine (ZAL), and

ddI monotherapy.

We choose 12 baseline covariates in our model: age (year), weight(kg), CD4+T cells amount

at baseline, CD8 amount at baseline, Karnofsky score (scale at 0-100), gender (1 = male, 0 =

female), race (1 = non white, 0 = white), homosexual activity (1 = yes, 0 = no), history of

intravenous drug use (1 = yes, 0 = no), symptomatic status (1=symptomatic, 0=asymptomatic),

antiretroviral history (1=experienced, 0=naive) and hemophilia (1=yes, 0=no). The first five

covariates are continuous and have been scaled before estimation. The remaining seven covariates

are binary categorical variables.

We consider two outcomes for our analysis. The first outcome is the difference between the

early stage (around 25 weeks) CD4+ T (cells/mm3) cell amount and the baseline CD4+ T cells

prior to the trial. This was also studied in Lu et al. (2013) and Fan et al. (2016). Using this short

term outcome, our goal is to use AD-learning to find the short term optimal ITR for each patient

with AIDS among four treatment groups. We report the estimator of the coefficient wT
i B

T for

each treatment in Table 5.

Table 5: Results of coefficients estimation for comparison functions.

Variable Name (1-7) ZDV ZDV+ddI ZDV+Zal ddI

Intercept −49.86 44.66 −3.53 8.73
Age −0.47 4.33 −3.34 −0.52

Weight 0 0 0 0
Karnofsky Score 0 0 0 0
CD4 baseline 3.58 −14.79 −14.78 9.46

Days pre-anti-retroviral therapy 0 0 0 0
Hemophilia 0 0 0 0

Homosexual activity −0.28 −3.96 0.65 3.60
History of drug use −2.50 8.20 4.03 −9.74

Race 0 0 0 0
Gender 0 0 0 0

Antiretroviral history 0 0 0 0
Symptomatic indicator 0 0 0 0
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In Table 5, we can see that four covariates including Age, CD4 baseline, homosexual activity

and history of drug use, are identified to play an important role in our estimated optimal ITRs.

These variables were also identified in the previous literature such as Lu et al. (2013) and Fan

et al. (2016). According to the analysis in Hammer et al. (1996), ZDV alone is inferior to the other

treatments, which is also confirmed in our estimated ITR. Based on the CD4 change in the early

stage, Zal treatment is generally not recommended in our finding with one possible reason that

Zal has the most serious adverse event compared with ZDV and ddI (Kakuda (2000)). According

to our estimated ITRs, those old patients with small amount of CD4 T cell baseline and having

history of drug use but not homosexual activity, are recommended to take ZDV + ddI. The

patients with large amount of CD4 T cell baseline and history of homosexual activity but not

drug use history, are more advisable to take ddI alone.

To evaluate the performance of our proposed AD-learning, we randomly split the data into

five folds and use four folds to train the model. We evaluate our method on the remaining one

fold of data based on the empirical value function. We repeat this procedure for 1000 times.

From Table 6, we can see our AD-learning has the largest value.

Table 6: Results of empirical value functions on one fold of testing data. The best empirical value
function is in bold.

l1-PLS Pair-D DL ACWL-1 ACWL-2 VT AD low rank AD group
53.73 (0.33) 57.17 (0.40) 53.25 (0.47) 52.74 (0.45) 54.04 (0.45) 54.84 (0.45) 50.48 (0.38) 59.69(0.39)

The second outcome is patients’ time to event. Using this long term outcome, our second goal

is to find the long term optimal ITR for patients among four treatment groups. The AIDS data

consist of 2139 patient time to event responses with around 75% censor rate during the four-year

long trial study. We use our proposed Model (23) to estimate the optimal ITR. We report the

estimates of the coefficient wT
i B

T for each treatment of 12 covariates in Table 7. We can see that

all covariates, except the indicator of homosexual activity and symptomatic, play an important

role in the estimated optimal ITR. It may not be surprising because it is a long term study and

thus more complicated. Since we model via the hazard function, the smaller the coefficient is,

the longer the survival time is.

Compared with the previous finding based on the short term CD4 T cells amount, covariates

including age, CD4 baseline and history of drug use have the similar effect on the ZDV + ddI

and ddI alone treatments. In addition, we also find that ZDV + Zal treatment may not be good
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to take for the female patients with hemophilia, but may be suitable for the male patients with

high Karnosky score and history of drug use. The estimated optimal ITR for other treatments

can be interpreted in the similar way. In general, ZDV alone is always the least preferable among

other treatments for patients and ZDV+ddI is always preferable for patients. Based on time to

event outcome, ZDV + Zal is relatively more preferable than ddI alone. In addition, we evaluate

our AD-learning with l1-CPH using the same scheme based on value functions. Our AD-learning

has an average value of 911.20, compared with the average value 905.02 for l1-CPH.

Table 7: Results of coefficient estimation for survival time of failure.

Variable Name (1-7) ZDV ZDV+ddI ZDV+Zal ddI
Age 0.04 −0.11 0.04 0.03

Weight 0.11 0.02 0.02 −0.14
Karnofsky Score 0.06 0.03 −0.09 0.01
CD4 baseline −0.04 0.04 −0.00 0.00

Days pre-anti-retroviral therapy 0.09 −0.07 -0.04 0.02
Hemophilia 0.05 −0.06 0.16 −0.15

Homosexual activity 0.00 0.00 0.00 0.00
History of drug use 0.04 −0.11 −0.12 0.18

Race 0.03 −0.04 0.01 0.01
Gender 0.31 −0.08 −0.16 −0.07

Antiretroviral history 0.17 −0.15 0.04 −0.06
Symptomatic Indicator 0.00 0.00 0.00 0.00

7 Conclusion

In this article, we propose a AD-learning method to estimate the optimal ITRs in multiple

treatment settings for various types of outcomes. Our proposed method provides a clear geomet-

ric interpretation about the relative effectiveness of treatments for patients, which is quantified

by angles in the Euclidean space. Our proposed AD-learning is robust to model misspecification.

By incorporating group or low rank sparsity, our AD-learning can further improve the estimation

of decision rules and interpretation, especially for high dimensional settings. The competitive

performance of our method has been demonstrated via the simulation studies and data applica-

tions.

Several possible extensions can be explored for future study. Our proposed method for the

survival outcome is based on the non-informative censoring and Cox proportional hazard assump-

tion. It will be interesting to develop methods for more complex settings. In order to use nonlinear

functions to approximate f0(x), we can use different types of basis functions such polynomials

or wavelet functions. It will be also interesting to develop kernel methods for our AD-learning,

such as multiple kernel learning (Bach et al. (2004)). Finally, the current AD-learning focuses on
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a single decision point. It will be worthwhile to develop the corresponding methods for multiple

decision points (Zhao et al., 2015a; Liu et al., 2016).
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Appendix

Proof of Lemma 1

Let g(f) = E[ 1
π(A,x)(KRw− f(x))TΣ(KRw− f(x))]. Taking the derivative over f and setting

it to zero, we get
∂g(f)

∂f
= 2ΣEx{E[(

KRW

π(A,x)
− f(x)

π(A,x)
)|x]}

= 2ΣEx{KE[
RW

π(A,x)
|x]− f(x)|x]} = 0.

Proof of Lemma 2

Let g(f) = E[ 1
π(A,x)(

K
K−1R−wT f(x))T ( K

K−1R−wT f(x))]. Taking the derivative over f and

setting it to zero, we get

∂g(f)

∂f
= Ex{E[W (

KR

(K − 1)π(A,x)
− W T f(x)

π(A,x)
)|x]}

= Ex{
K

K − 1
E[

RW

π(A,x)
|x]− K

K − 1
f(x)|x]} = 0,

where the second equality holds because E[WWT

π(A,x) |x] =
K

K−1IK−1 by definition. Thus f0(x) is an

optimal solution.

Proof of Lemma 3

Let g(f) = E[−RwT f
π(A,x) +

log(1+exp(wT f))
π(A,x) ]. Taking the derivative over f and setting it to zero,
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we get
∂g(f)

∂f
= 2Ex{E[(

RW

π(A,x)
− W exp(wT f)

1 + exp(wT f))π(A,x)
)|x]}

= 2Ex{
K∑
i=1

wiP[R = 1|x, A = i]−
K∑
i=1

wi
exp(wT

i f)

1 + exp(wT
i f)

}

= 0.

If P[R = 1|x, A = i] =
exp(wT

i f∗)

1+exp(wT
i f∗)

, then f∗ is an optimal solution to (18).

Proof of Lemma 4

Let g(f) = E[
∫ τ
0

logE[ef
TwI(Y≥u)]

π(A,x) − fTw
π(A,x)dN(u)]. Taking the derivative over f and setting it

to zero, we get

∂g(f)

∂f
= Ex{

∫ τ

0

K∑
i=1

wiE[I(Y ≥ u)λi(u,x)|x, A = i]− wi exp(w
T
i f)I(Y (i) ≥ u)E[I(Y ≥ u)λ(u,x)|x]
E[exp(WT f)I(Y ≥ u)]

du}

= Ex{
∫ τ

0

K∑
i=1

wi(E[I(Y ≥ u)λi(u,x)|x, A = i]− exp(wT
i f)Λ

∗(Y (i)))du}

= 0,

where λi(u,x) is the hazard function for the i-th treatment and Λ∗(Y ) is the cumulative hazard

function. Then we get a sufficient condition that if exp(wT
i f)Λ

∗(Y (i)) = P[δ = 1|x, A = i], then

f∗ is an optimal solution. If the censoring time in each treatment group is the same, then we get

(25).

Proof of Theorem 1
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For any ITR d, we have

V (d) = E[

K∑
k=1

E[R|x, A = k]I(d(x) = k)]

= E[
1

1− C(K)
{

K∑
k=1

(1− C(K))E[R|x, A = k]I(d(x) = k)

+

K∑
j=1

C(K)E[R|x, A = j]} − C(K)

1− C(K)

K∑
j=1

E[R|x, A = j]]

= E[
1

1− C(K)
{

K∑
k=1

E[R|x, A = k]I(d(x) = k)

+

K∑
j=1

C(K)E[R|x, A = j]

K∑
i ̸=j

I(d(x) = i)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

E[R|x, A = k]I(d(x) = k)

+

K∑
i=1

K∑
j ̸=i

C(K)E[R|x, A = j]I(d(x) = i)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

(E[R|x, A = k]

+

K∑
j ̸=k

C(K)E[R|x, A = k])I(d(x) = k)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

wT
k E[

RW

π(A,x)
|x]I(d(x) = k)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

wT
k f0(x)I(d(x) = k)}]−∆,

(38)

where ∆ = E[C(K)
∑K

j=1E[R|x, A = j]] that does not depend on the ITR d. Then we can obtain
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the value reduction bound between the optimal ITR d0 and our estimated ITR d̂ by using (38):

V (d0)− V (d̂)

≤ 1

1− C(K)
E[{

K∑
k=1

wT
k f0(x)(I(d(x) = k)− I(d̂(x) = k)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i f0(x)− wT

j f0(x)|I(d(x) = i, d̂(x) = j)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i f0(x)− wT

j f0(x)|I(wT
i f0(x)− wT

j f0(x))(w
T
i f̂(x)− wT

j f̂(x) < 0)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i (f0(x)− f̂(x))− wT

j (f0(x)− f̂(x))|

I(wT
i (f0(x)− f̂(x))wT

j (f0(x)− f̂(x)) < 0)}]

≤ 1

1− C(K)

∑
i ̸=j

(E||f0(x)− f̂(x)||2 +E||f0(x)− f̂(x)||2)

≤2K(K − 1)

1− C(K)
(E||f0(x)− f̂(x)||22)

1
2 ,

(39)

where the second to last inequaltiy holds by using the Hölder and Minkowski inquality together

with ||wi|| = 1 for i = 1, · · · ,K. Furthermore, if we assume Assumption 1 holds, then we can

further bound the value reduction by

V (d0)− V (d̂)

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i f0(x)− wT

j f0(x)|I(wT
i f0(x)− wT

j f0(x)(w
T
i f̂(x)− wT

j f̂(x) < 0)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

ϵI(|(wi − wj)
T f0(x)| < ϵ)I((wi − wj)

T f0(x))((wi − wj)
T f̂(x)) < 0)}]

+
1

1− C(K)ϵ
E[{

∑
i ̸=j

(wT
i f0(x)− wT

j f0(x))
2I((wi − wj)

T f0(x))((wi − wj)
T f̂(x)) < 0)}]

≤ 1

1− C(K)

∑
i ̸=j

ϵP[|(wi − wj)
T f0(x)| < ϵ] +

2

ϵ
(E||f0(x)− f̂(x)||22 +E||f0(x)− f̂(x)||22)

≤ 1

1− C(K)

∑
i ̸=j

Cϵα+1 +
4

ϵ
E||f0(x)− f̂(x)||22),

(40)

for any ϵ > 0. We can then minimize right hand side above over ϵ and get the desired bound

V (d0)− V (d̂n) ≤ C1(K,α)(E||f0 − f̂n||22)
1+α
2+α .
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Proof of Theorem 2

Define βj = (βkj , k = 1, · · · , (K − 1))T , and let λ = σ
√

(log p)1+δ

n(K−1) . With probability at least

1− (2e log p−e)c
(log p)1+δ , we have the following inequality

1

n(K − 1)
||Z(β̂ − β0)||2 + λ||β̂ − β||2,1 ≤

≤ 1

n(K − 1)
||Z(β − β0)||2 + 4λ

∑
j∈S(β)

||β̂j − βj ||,
(41)

for any β. This was previously shown in Theorem 5.2 by Lounici et al. (2009). Let β = β0. Then

with probability at least 1− (2e log p−e)c
(log p)1+δ , we have

1

n(K − 1)
||Z(β̂ − β0)||2 ≤ 4λ

∑
j∈S(β)

||β̂j − βj ||

≤ 4λ
√
s||(β̂ − β)S ||

and

||β̂ − β||2,1 ≤ 4||(β̂ − β)S ||,

which implies ||β̂ − β||Sc ≤ 3||(β̂ − β)S ||. Then by the RE(s) assumption, with probability at

least 1− (2e log p−e)c
(log p)1+δ , we have

1

n(K − 1)
||Z(β̂ − β0)||2 ≤ 4λ

√
s||(β̂ − β)S ||

≤ 4λ
√
s
||Z(β̂ − β0)||

ρ(s)
√
n

,

such that we can bound the empirical error by

1

n
||Z(β̂ − β0)||2 ≤

16(K − 1)

ρ(s)
σ2s

(log p)1+δ

n
.

With the RE(2s) assumption, we can further show that with the same probability

1√
K − 1

||β̂ − β0|| ≤
4
√
10

ρ2(2s)
σ

√
s(log p)1+δ

n
.
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Combining with Theorem 1, we get the value reduction bound

V (d0)− V (d̂n) ≤
√
K − 1K(K − 1)

1− C(K)

4
√
10c

ρ2(2s)
σ

√
s(log p)1+δ

n
.

Together with our margin condition, we can directly get the corresponding improved bound (31).
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