Self-Assembly of Complementary Components Using a Tripodal Bismuth Compound: Pnictogen Bonding or Coordination ${ }^{\text {Chemistry? }}$

${ }_{4}$ Shiva Moaven, Brandon T. Watson, Thomas J. Polaske, Brian M. Karl, Daniel K. Unruh, ${ }_{5}$ Nathan P. Bowling,* and Anthony F. Cozzolino*

Cite This: https://doi.org/10.1021/acs.inorgchem.1c01232

Read Online

6 ABSTRACT: Triple pnictogen bonding refers to the ability of a pnictogen atom to engage in three simultaneous pnictogen bonds 7 (PnBs) to a complementary partner through a single pnictogen atom. This supramolecular strategy was recently introduced as a 8 unique facet of pnictogen bonding as compared to other named supramolecular interactions. Here, the ability of bismuth to 9 participate in this phenomenon is demonstrated using $\mathrm{Bi}\left(\left(\mathrm{NC}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{CH}_{3}\right)$. The study reveals that Bi engages in stronger PnBs than 0 the analogous Sb system. The results have been contrasted with Bi systems that form strong coordination bonds, and analysis of the 1 electron density along the bond path reveals key differences. The solution behavior of these newly synthesized supramolecules were 12 studied by PFGSE NMR spectroscopy and they are found to remain intact in solution. Molecular design strategies that allow for triple pnictogen bonding should find use in the fields of molecular recognition and crystal engineering.

INTRODUCTION

5 Pnictogen bonding (PnB) refers to the pnictogen-centered 6 secondary bonding interactions (SBIs) that dominate the supramolecular chemistry of the heavy p-block elements. ${ }^{1-4}$ In analogy to halogen (HaB) and chalcogen bonding (ChB), it can be defined as a net attractive interaction between an electrophilic region associated with a pnictogen element in a molecular entity (the donor) and a nucleophilic region in a molecular entity (the acceptor). ${ }^{5,6}$ Pnictogen bonding categorizes a subset of interactions that are part of a continuum that ranges from nondirectional London dispersion interactions to more formal dative covalent bonds, and the exact boundaries are difficult to define. ${ }^{7}$ Pnictogen bonding is widely observed in the solid-state structures of the heavier pnictogen atoms in their trivalent state but, when compared to halogen or chalcogen bonding, have not seen much purposeful employment as a supramolecular interaction. Some recent efforts to design functional molecules around pnictogen bonding include anion binding and transport, ${ }^{8-12}$ noncovalent catalysis, ${ }^{13-17}$ self-assembly of reversed bilayer vesicles, ${ }^{18,19}$ and molecular
recognition. ${ }^{20-23}$ The paucity of examples may be a result of 34 the differences in synthetic approaches and VSEPR geometries 35 as compared with hydrogen and halogen bonding. An 36 important corollary of these differences is the unique ability 37 of pnictogen bond donors to engage in (up to) three 38 simultaneous interactions as shown in Figure 1. Formation of 39 f1 three simultaneous PnBs involving three separate acceptors can 40 lead to 2D or 3D self-assembly. When these interactions occur 41 between a single donor and a single acceptor, the descriptor of 42 a triple pnictogen bond can be applied and this triple PnB can be 43 used to direct molecular recognition between two units with a 44 high degree of specificity.

[^0]

vs.

Figure 1. Comparison between three separate $\mathrm{PnBs}\left(\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{Py}_{3}\right.$: CSD code OKOLUV) ${ }^{24}$ and triple pnictogen bonding $\left(\mathrm{BiCl}_{3}\right.$. $\mathrm{Me}_{3}[9] \mathrm{aneN}_{3}$: CSD code YOTYEL). ${ }^{25}$ The color of H, C, N, F, S, Cl , and Bi atom in this figure is white, gray, blue, yellow-green, yellow, green, and dark green, respectively. pounds of Bi are shown in Figure 2. ${ }^{23,26,27}$ Bismuth structures containing the tris-thioether ligand used by Benkó and Heift nicely illustrate these ideas (Figure 2). ${ }^{20,23}$ When it binds to $\mathrm{BiX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, the $\mathrm{Bi} \cdots \mathrm{S}$ distances (3.047(9)-3.136(8) \AA)

(Richardson, 2000)

$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
(Zaitseva, 2002)

(Davidson and Wilson, 2006)

$\mathrm{Pn}=\mathrm{Sb}(1)$ (Cozzolino 2019) $\mathrm{Pn}=\mathrm{Bi}(2)$ (This work)
(Benkő and Heift, 2019)

(Benkő and Heift, 2020)

(Burford, 2013)

$\left(3^{3+}\right)$ (Burford, 2015)

Figure 2. Examples of previously reported neutral $\mathrm{Bi}(\mathrm{III})$ compounds and the new compound $\mathbf{2}$ in this work (above the line). Examples of cationic Bi (III) coordination complexes (below the line).
are significantly longer than a covalent bond and occur nearly 68 opposite to a pre-existing $\mathrm{Bi}-\mathrm{X}$ bond. In the case of $\mathrm{Bi}(\mathrm{OTf})_{3}, 69$ the $\mathrm{Bi}-\mathrm{S}$ distances match those of a covalent bond (2.749(9) 70 \AA) and they do not geometrically correlate with a pre-existing 71 bond. It is useful to distinguish these two situations, the former 72 weak coordination bonds being described here as PnBs and the 73 latter as coordination bonds. The other implication of these 74 classifications is a difference in strength regime, the former 75 behaving more like a noncovalent interaction and the latter 76 more like a covalent bond. While there is no hard and fast 77 dividing line between bonds that are molecular in nature and 78 those that behave more like a supramolecular interaction, 79 generally covalent bond strengths are greater than $150 \mathrm{~kJ} / \mathrm{mol} 80$ (with most greater that $200 \mathrm{~kJ} / \mathrm{mol}$) whereas, for instance, 81 hydrogen bonds range in strength from $2 \mathrm{~kJ} / \mathrm{mol}-170 \mathrm{~kJ} / 82$ mol. ${ }^{28-30}$

83
In our recent study demonstrating the self-assembly directed 84 by a triple PnB , we observed that the antimony pnictogen 85 bond donor 1 (Figure 2) was capable of forming a triple $\mathrm{PnB}, 86$ but only when partnered with an appropriately designed triple 87 PnB acceptor. ${ }^{21}$ Computationally, it was found that the 88 formation of each PnB decreased the strength of the 89 subsequent pnictogen bond; significant negative cooperativity 90 was associated with multiple PnB bond formation in this 91 system. The origin of this was determined to be the increasing 92 stereochemical activity of the pnictogen lone pair with each 93 additional pnictogen bond, which in turn reduces the value of 94 the positive electrostatic potential associated with the region 95 where the PnB will form. Building positive cooperativity into 96 the acceptor allowed for a strong and symmetrical triple 97 pnictogen bond to form. This behavior is in contrast to that of 98 antimony alkoxide cages that readily self-recognize and form 99 three PnBs at each antimony. ${ }^{31,32}$ A recent computational 100 study that considers intramolecular PnBs identified a similar 101 phenomenon. ${ }^{33}$ For the alkoxide cages, no analogous bismuth 102 alkoxide cage could be isolated, but density functional theory 103 (DFT) calculations suggested that it should form the strongest 104 pnictogen bonds. This is a result of three important 105 considerations: 1) there is increased stereochemical inactivity 106 of the bismuth lone pair, 2) the σ^{*}-orbitals involved in PnB 107 formation are lower in energy, and 3) there is an increase in 108 polarizability. From this it follows that a bismuth analogue (2 109 in Figure 2) should not be as susceptible to negative 110 cooperativity upon pnictogen bond formation and is therefore 111 expected to be a more efficient triple PnB donor than $\mathbf{1 . ~} 112$

While examples of triple-pnictogen bonding with bismuth 113 can be observed in crystal structures (see Benkő and Heift 114 2019 in Figure 2, for example), ${ }^{20}$ no examples have been 115 observed with tripodal bismuth compounds. Tripodal $\mathrm{Bi}(\mathrm{III}) 116$ compounds that have been reported (Figure 2) either have 117 bulky groups around the potential PnB sites or have a 118 geometry that does not allow for ready formation of a PnB 119 opposite to an existing primary bond. ${ }^{34-36}$ In some cases, 120 transannular $\mathrm{Bi} \cdots \mathrm{N}$ interactions are observed. While these are 121 not necessarily PnBs , they reflect the Lewis acidity of the Bi 122 center in these tripodal systems and are probably best 123 characterized as coordination bonds. ${ }^{34-36}$ Compound $3^{3+}{ }^{124}$ was selected as a good example of coordination bonding 125 with bismuth(III) involving pyridyl groups and will be used in 126 this study to contrast its bonding properties with those of 127 compound 2.

- RESULTS AND DISCUSSION

Synthesis and Characterization of 2. Similar to the 131 preparation of the antimony congener, 2 was prepared by 132 treating $2,2^{\prime}, 2^{\prime \prime}$-triskatylmethane, suspended in anhydrous 133 benzene, with 1.1 equiv of bismuth(III) dimethylamide

Scheme 1. Synthesis of 2

the colorless suspension turned into an orange homogeneous solution (see Figure S1). Solvent was removed under vacuum, and the recovered orange solid was suspended in anhydrous hexanes, vacuum filtered, and then dried under vacuum in an inert atmosphere. This product was fully characterized by different spectroscopic methods (for more information see SI). Unlike with 1, no single crystals of 2 were obtained; however, loss of NH signal at 7.71 ppm in ${ }^{1} \mathrm{H}$ NMR (Figure S7) and its stretching frequency at $3398 \mathrm{~cm}^{-1}$ in FTIR (Figure S24) are consistent with the spectroscopic evidence established for $\mathbf{1}$ and support formation of $\mathbf{2}$. Comparison of the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1}$ and 2 shows both compounds share similarities in integrated values with slight shifts on the chemical shifts of the protons in the solution. Additionally, the ${ }^{13} \mathrm{C}$ NMR chemical shifts and FTIR modes for compound 2 show similar features to compound 1.
In the absence of crystallographic data, DFT calculations (B97-D3, def2-TZVPP, ZORA) were used to estimate the structural parameters of $\mathbf{2}$. Atoms in molecules (AIM) analysis has proven to be a reliable method for evaluation of hydrogen bonding. ${ }^{37,38}$ Recently, many studies have employed AIM analysis to evaluate the nature of noncovalent interactions. This method has proven its applicability for the evaluation of PnBs as well. ${ }^{23,39,40}$
Given the similarity in spectroscopic features, calculations were carried starting from the crystal structure of 1 by substituting a Bi in place of the Sb atom. The geometry optimizes to a $\mathrm{C}_{3 v}$ symmetrical structure, consistent with calculations of 1 . The $\mathrm{Bi}-\mathrm{N}$ bond lengths ($2.168 \AA$) are close to previously reported $\mathrm{Bi}-\mathrm{N}$ bond lengths for Bi compounds. ${ }^{41-43}$ The electrostatic potential energy (ESP) (Figure 3) and the Fukui function integrated from above $\left(f^{+}(r)\right.$) (See Figure S3) were separately mapped onto the electron density of 2 (0.001 au isosurface). Similar to $\mathbf{1},{ }^{21}$ each maximum in the electrostatic potential $\left(V_{\max }\right)$ is located opposite to a $\mathrm{Bi}-\mathrm{N}$ primary bond in a pocket created by the rigid cage motif and has a value of $187 \mathrm{~kJ} / \mathrm{mol}$. Each $V_{\max }$ overlaps with the regions predicted to be susceptible to nucleophilic attack according to the Fukui function (Figure S3). The $V_{\max }$ values are comparable with $V_{\max }$ values calculated on the 0.001 au molecular surface of strong neutral halogen (HaB) and chalcogen (ChB) bond donors that have been used for different purposes such as catalysis, molecular recognition, and anion recognition. ${ }^{4-46}$

1

2
-63 197

Figure 3. Electrostatic potential (ESP) maps of 1 (left) and 2 (right) on the electron density surface (0.001 au isosurface). Red and black spheres on ESP maps are locations of $V_{\max }$ and $V_{\min }$ respectively.

Compared to 1, the potential associated with each $V_{\max }$ in 2179 has increased by $40 \mathrm{~kJ} / \mathrm{mol}$. The value for the $V_{\min }$, which is 180 coincident with the pnictogen lone pair, displayed a more 181 dramatic change. An increase of $72 \mathrm{~kJ} / \mathrm{mol}$ compared with $\mathbf{1}$ is 182 calculated, which is consistent with the increasing stereo- 183 chemical inertness of the lone pair down the group. ${ }^{32,47,48}$ It is 184 important to note that sufficient anisotropy still remains in the 185 electrostatic potential to direct the PnBs. Analysis of the 186 frontier orbitals (HOMO-9) of $\mathbf{1}$ and 2 (illustrated in Figure 187 $\mathrm{S} 4)$ indicates the Bi lone pair orbital in $2(-7.76 \mathrm{eV})$ is more 188 energetically inaccessible than the Sb lone pair on $\mathbf{1}(-7.70189$ eV), consistent with the difference in the $V_{\min }$ values (Figure 190 3). This further serves to illustrate the role that the pnictogen 191 lone pair plays in tuning the strength and directionality of the 192 pnictogen bonding with trivalent molecules. ${ }^{21,32}$ Another 193 important factor is the increased size of Bi as compared to 194 Sb . This Bi atom sits $1.358 \AA$ above the plane that contains the 195 three nitrogen atoms, compared with $1.251 \AA$ for the Sb atom 196 in 1. This removal from the electron rich triskatylmethane will 197 necessarily reduce the Pauli repulsion with an incoming PnB 198 acceptor. Given the very promising electrostatic poential, the 199 PnB ability was probed computationally by introducing 200 pyridine (Py) molecules as PnB acceptors. The behavior of 2201 was contrasted with $\mathbf{1}$ to determine if the introduction of Bi 202 could mitigate the negative cooperativity that was previously 203 observed when trying to achieve a triple pnictogen bond. An 204 initial probe of negative cooperativity was performed by 205 comparing the ESP maps of $\mathbf{2} \cdot \mathrm{Py}, \mathbf{2} \cdot \mathrm{Py}_{2}$, and $\mathbf{2} \cdot \mathrm{Py}_{3}$. As shown 206 in Figure 4, a decrease in the values of the remaining $V_{\max }$ and 207 ft $V_{\min }$ occurs with each additional Py molecule. Notably, the 208 decrease observed for $\mathbf{2}$ is not as steep as observed with $\mathbf{1}$ and 209 the final $V_{\max }$ on $2 \cdot \mathrm{Py}_{2}$ still has a value of $134 \mathrm{~kJ} / \mathrm{mol}$ (ca. 53210 $\mathrm{kJ} / \mathrm{mol}$ in $1 \cdot \mathrm{Py}_{2}$). Another feature of note is the residual 211 electrostatic potential on $2 \cdot \mathrm{Py}_{3}$ which is sufficiently large to 212 allow an additional interaction.

To complement observations from the ESP maps and 214 further understanding of the differences between addition of 215 Py molecules to $\mathbf{1}$ and 2, binding energies were evaluated 216 (Table 1). The binding energy for the addition of the first 217 tl pyridine molecule to 2 only differs by $8 \mathrm{~kJ} / \mathrm{mol}$ compared to $\mathbf{1}$. 218 These values also indicate that the bonds fall in the strength 219 regime of supramolecular interactions. The stepwise binding 220 energy becomes an important consideration. Binding of the 221 third Py molecule to $\mathbf{1}$ and $\mathbf{2}$ allows for the third stepwise 222 binding energy to be determined and it highlights the critical 223 difference between the two systems. In essence, once the 224

Figure 4. Electrostatic potential of $2 \cdot \mathrm{Py}$ (left), $\mathbf{2} \cdot \mathrm{Py}_{2}$ (middle), and $\mathbf{2} \cdot \mathrm{Py}_{3}$ (right) mapped onto the electron density surface (0.001 au isosurface). Position of $V_{\max }$ and $V_{\min }$ are indicated by red and black spheres and units are in $\mathrm{kJ} / \mathrm{mol}$.

Table 1. Binding Energy of Addition of 1-3 Py Molecules to 1 or 2^{d}

	$\Delta E(\mathrm{~kJ} / \mathrm{mol})^{a}$		
	$n=1$	$n=2$	$n=3$
$\mathbf{1} \cdot \mathrm{Py}_{\mathrm{n}}{ }^{b}$	-70	-136	-192
$\mathbf{2} \cdot \mathrm{Py}_{\mathrm{n}}{ }^{c}$	-78	-153	-220

${ }^{a} \Delta E=\Delta E_{\text {Binding }}+\Delta E_{\text {ZPE }}+\Delta E_{\text {BSSE }} \cdot{ }^{b} \mathbf{1}+\mathrm{nPy} \rightarrow \mathbf{1} \cdot$ Py $_{\mathrm{n}} \cdot{ }^{c} \mathbf{2}+\mathrm{nPy} \rightarrow$ $2 \cdot \mathrm{Py}_{\mathrm{n}}$. ${ }^{d} 2$ Energy units are in $\mathrm{kJ} / \mathrm{mol}$.
stepwise binding energy lies below a certain value, the probability of formation of the next PnB decreases. Here, it appears that dividing line is somewhere between $-56 \mathrm{~kJ} / \mathrm{mol}$ ($1 \cdot \mathrm{Py}_{3}$ is not observed experimentally) and $-66 \mathrm{~kJ} / \mathrm{mol}\left(2 \cdot \mathrm{Py}_{3}\right.$ is observed experimentally) for binding of Py to $\mathbf{1}$ and 2 . This indicates that $2 \cdot \mathrm{Py}_{3}$ should be experimentally isolable in the solid state.

Binding to Pyridine. An orange suspension of 2, in benzene, was treated with excess Py resulting in the formation of a clear yellow solution. Yellow block-shaped X-ray quality 3 single crystals formed upon sitting at $21^{\circ} \mathrm{C}$ for 24 h . The 236 structure revealed that, in contrast to $\mathbf{1 , 2}$ can form three PnBs 237 with three individual Py molecules in the solid state (Figure 5).

Figure 5. Ball and stick representation of 2•Py. Hydrogen atoms and solvent molecules were omitted for clarity.

This is fully consistent with the DFT calculations (Table 2) 238 t 2 and demonstrates the effectiveness of Bi over Sb in forming 239 three simultaneous PnBs with pyridyl-based PnB acceptors . 240 The $\mathrm{Bi}-\mathrm{N}$ distances range from $2.217-2.235 \AA$. These are 241 notably longer than those measured in the DFT model of 2, 242 but they are very well reproduced by the DFT model of $2 \cdot \mathrm{Py}_{3} .243$ DFT models of with $1-3$ pyridine molecules reveal that $\mathrm{Bi}-\mathrm{N} 244$ bond elongation occurs opposite each PnB (Table 3). This is 245 t 3 consistent with what has been previously observed in $\mathbf{1} \cdot \mathrm{Py}_{3}$ and 246 other pnictogen bonded systems. ${ }^{21,31,32}$ Within an orbital 247 model, this elongation can be rationalized by the population of 248 a low-lying $\mathrm{Bi}-\mathrm{N} \sigma^{*}$ orbital by the pyridine lone pair. The $\mathrm{Bi} \cdots 249$ N distances (Table 3) range from 2.742(2)-2.782(2) \AA which 250 are on average 76% of the $\sum \mathrm{r}_{\mathrm{vdW}} .{ }^{49}$ These interactions are 251 quite short yet still represent a 26% elongation over the $\mathrm{Bi}-\mathrm{N}{ }_{252}$ single bonds and are therefore clearly distinguished from 253 typical single or strong coordination bonds. Compound $3^{3+}{ }_{254}$ was used as a point of comparison. On average, the $\mathrm{Bi}-\mathrm{N} 255$ distances in 3^{3+} were 111% of the $\sum \mathrm{r}_{\text {cov }}$ of Bi and N . ${ }^{50}{ }_{256}$ Comparing this distance to the $\mathrm{Bi} \cdots \mathrm{N}$ distances of the 257 supramolecules shows that they are shorter and closer to a 258 covalent bond rather than a strong PnB. To further 259 characterize the differences in the BiN bonding in these 260 systems an AIM analysis was employed. Values for electron 261 density (ρ), total electronic energy density $(H),{ }^{51}$ and the $|V| / 262$ G indicator ${ }^{52}$ at the bond critical points (BCP) of 2263 supramolecules and 3^{3+} are presented in Table 2. V refers to 264 the electronic potential energy density (always negative) and $G 265$ refers to the kinetic energy density (always positive). The value 266 of the ρ at the BCP is related to the bond order for a given pair 267 of atoms. ${ }^{53}$ Comparison of the ρ values at BCPs for $3^{3+}{ }_{268}$ (0.0745 on average) showed that this value was 2.7 times 269 larger than those calculated for the PnBs involving 2 (0.0273270 on average), closer to the values for the $\mathrm{Bi}-\mathrm{N}$ single bonds in 271 2. This significant difference can be considered as an indication 272 of greater covalency between Bi and N atoms in $\mathbf{3}^{3+}$. For 2, 273 addition of each subsequent Py molecule results in a slight 274 decrease in the overall ρ at the PnB BCP, consistent with the 275 changes in the ESP maps and the binding energies.

Bonds in which electrostatics dominate have values of $H>0277$ and $|V| / G<1$ at the BCP. ${ }^{51,52}$ A purely electrostatic model is 278 often applied in order to rationalize the bonding in $\mathrm{HaB}, \mathrm{ChB}, 279$

Table 2. DFT Calculated Parameters and AIM Analysis of Coordination Compound 3^{3+}, 2 and Its Supramolecules

	2.Py	2. Py_{2}	$2 \cdot \mathrm{Py}_{3}$	2.TPA	$2 \cdot 5^{a}$	2	3^{3+}
$\mathrm{Bi}-\mathrm{N}(\AA)$	2.214	2.235	2.243	2.264	2.213	2.168	2.391
	2.189	2.241	2.243	2.271	2.224	2.168	2.305
	2.191	2.198	2.242	2.267	2.215	2.168	2.391
							2.305
$\mathrm{Bi} \cdots \mathrm{N}(\AA)$	2.772	2.836	2.847	2.867	2.882		
		2.807	2.846	2.889	2.801		
			2.846	2.808	2.737		
				3.064			
$\rho\left(\mathrm{Bi}-\mathrm{N}, \mathrm{e} \AA^{-3}\right)$						0.1043	0.0680
						0.1041	0.0810
						0.1042	0.0681
							0.0810
$\rho\left(\mathrm{Bi} \cdots \mathrm{N}, \mathrm{e} \AA^{-3}\right)$	0.0313	0.0273	0.0269	0.0251	0.0253		
		0.0291	0.0270	0.0262	0.0290		
			0.0270	0.0289	0.0327		
				0.0192			
$H(\mathrm{Bi}-\mathrm{N})$						-0.0347	-0.01475
						-0.0346	-0.02159
						-0.0347	-0.01477
							-0.02160
$H(\mathrm{Bi} \cdots \mathrm{N})$	-0.00149	-0.00071	-0.00060	-0.00040	-0.00029		
		-0.00104	-0.00063	-0.00056	-0.00092		
			-0.00061	-0.00101	-0.00164		
$\|V\| / G^{b}(\mathrm{Bi}-\mathrm{N})$						1.393	1.301
						1.392	1.370
						1.392	1.301
							1.370
$\|V\| / G^{b}(\mathrm{Bi} \cdots \mathrm{N})$	1.078	1.044	1.037	1.027	1.019		
		1.059	1.038	1.035	1.051		
			1.038	1.057	1.078		
				0.978			

${ }^{a}$ Only hydrogen positions were optimized, see Figure S5. ${ }^{b}$ Calculated at $\mathrm{Bi}-\mathrm{N} / \mathrm{Bi} \cdots \mathrm{N} \mathrm{BCP}$.

Table 3. $\mathrm{Bi}-\mathrm{N}$ and $\mathrm{Bi} \cdots \mathrm{N}$ Distances (\AA) of the Supramolecules of 2

compound	$\mathrm{Bi}-\mathrm{N}_{1-3}$	$\mathrm{Bi} \cdots \mathrm{N}_{\mathrm{n}}$
2. Py_{3}	$\mathrm{Bi}-\mathrm{N}_{1} 2.235(2)$	$\mathrm{Bi} \cdots \mathrm{N}_{4} 2.782(2)$
	$\mathrm{Bi}-\mathrm{N}_{2} 2.230$ (2)	$\mathrm{Bi} \cdots \mathrm{N}_{5} 2.742(2)$
	$\mathrm{Bi}-\mathrm{N}_{3} 2.218(2)$	$\mathrm{Bi} \cdots \mathrm{N}_{6} 2.751(2)$
2.TPA	$\mathrm{Bi}-\mathrm{N}_{1} 2.264(4)$	$\mathrm{Bi} \cdots \mathrm{N}_{4} 2.975$ (5)
	$\mathrm{Bi}-\mathrm{N}_{2} 2.253(4)$	$\mathrm{Bi} \cdots \mathrm{N}_{5} 2.784(5)$
	$\mathrm{Bi}-\mathrm{N}_{3} 2.248(5)$	$\mathrm{Bi} \cdots \mathrm{N}_{6} 2.798$ (5)
		$\mathrm{Bi} \cdots \mathrm{N}_{7} 2.751(5)$
2.4	$\mathrm{Bi}-\mathrm{N}_{1} 2.213(2)$	Bi $\cdots \mathrm{N}_{4} 2.737(2)$
	$\mathrm{Bi}-\mathrm{N}_{2} 2.215(3)$	$\mathrm{Bi} \cdots \mathrm{N}_{5} 2.801(2)$
	$\mathrm{Bi}-\mathrm{N}_{3} 2.224(2)$	$\mathrm{Bi} \cdots \mathrm{N}_{6} 2.751(2)$

280 and PnB . Indeed, positive values for H are observed at the 281 BCPs for halogen bonded systems. ${ }^{54}$ It is important to note 282 that the strength of the pnictogen bonds discussed here is 283 much larger than those of typical halogen bonds. For the PnBs 284 between 2 and Py, values of $H<0$ and $|V| / G>1$ are observed. 285 The value of H is quite small and $|V| / G$ is close to 1 , indicating 286 that the role of covalency in stabilizing the interaction cannot 287 be ignored. In contrast, values of $H=-0.01817$ and $|V| / G=$ 2881.335 (on average) were determined for 3^{3+} which supports 289 significant covalency between Bi and N atoms, best described 290 as strong coordinate covalent bonds. This compares well with
the values for the covalent $\mathrm{Bi}-\mathrm{N}$ primary bonds in 2. These 291 PnBs are weak coordination bonds, that lay in the strong 292 regime of the named noncovalent interactions. ${ }^{4}$

Triple Pnictogen Bond Acceptors. The ability of 2 to 294 simultaneously bind to three Py molecules through strong 295 PnBs suggested that 2 could successfully form a triple PnB to 296 tris(2-methylpyridine)amine (TPA), where 1 had failed. ${ }^{21} 297$ Single crystals of $\mathbf{2}$ and TPA were grown by dissolving a 1:1 298 ratio of the two compounds in toluene. After sitting at room 299 temperature ($\sim 21^{\circ} \mathrm{C}$) for 24 h , yellow blade shaped X-ray 300 quality single crystals of $\mathbf{2}$.TPA were recovered and analyzed. 301 The structure of 2.TPA is depicted in Figure 6 and reveals that 302 f6 all three pyridyl groups of TPA formed short PnBs with 2303 resulting in the anticipated triple PnB . The $\mathrm{Bi} \cdots \mathrm{N}$ PnB 304 distances for the pyridyl groups ranged from 2.784 to $2.789 \AA 305$ which is an average of 77% of the $\sum r_{v d W}$ and 127% of the 306 $\sum \mathrm{r}_{\text {cov }}$ of Bi and N. These distances are very similar to the ones 307 found for $2 \cdot \mathrm{Py}_{3}$ indicating a near perfect geometric match 308 between the two units. An AIM analysis yields BCPs indicating 309 presence of strong PnB along the $\mathrm{Bi} \cdots \mathrm{N}_{1-3}$ paths, with values 310 of $0.0251-0.0289$ e \AA^{-3} for the electron densities $(\rho) .311$ Interestingly, a fourth short $\mathrm{Bi} \cdots \mathrm{N}$ distance is observed 312 involving N_{4}. The distance is 82% of the $\sum \mathrm{r}_{\mathrm{vdW}}$ ($136 \% 313$ $\left.\sum \mathrm{r}_{\mathrm{cov}}\right)$. While the electrostatic potential surface indicates that 314 this could be a true attractive interaction, an AIM analysis was 315 performed to evaluate the nature of this possible contact and 316

Figure 6. Ball and stick representation of 2•TPA. Hydrogen atoms and solvent molecules are omitted for clarity.
indeed the electron density at the BCP was 0.0192 e \AA^{-3}, which was sufficiently large that this could be considered as a medium to strong PnB. To further analyze the nature of this fourth interaction and probe the role that the constrained geometry of the TPA molecule plays, a model similar to $2 \cdot$ TPA was chosen. This model (which will be denoted as $2 \cdot \mathrm{Py}_{3}$. TMA) was developed from the geometry optimized $2 \cdot \mathrm{Py}_{3}$ supramolecule where a trimethylamine (TMA) molecule was placed at a distance and similar position as the amine group in 2.TPA. Energetics and AIM parameters were analyzed on the optimize $2 \cdot \mathrm{Py}_{3} \cdot$ TMA (see Table S 2 and S 3). The final structure of $2 \cdot \mathrm{Py}_{3} \cdot \mathrm{TMA}$ appeared more distorted compared to $2 \cdot$ TPA which appears to be the product of steric repulsion between the methyl groups on the TMA and the pyridine rings. An AIM analysis revealed an electron density of 0.0086 e \AA^{-3} at the BCP of $\mathrm{Bi} \cdots \mathrm{N}$ in between 2 and TMA which is consistent with a weak to medium PnB. Energy calculations also revealed a binding energy of $-29 \mathrm{~kJ} / \mathrm{mol}$ between $2 \cdot \mathrm{Py}_{3}$ and TMA. This is smaller than the average binding energy for each Py molecule in $2 \cdot \mathrm{Py}_{3}(-73.3 \mathrm{~kJ} / \mathrm{mol}$, Table 1). Overall, calculations suggested that even with loss of the rigidity in TPA Bi atom is still capable of forming a stabilizing interaction with a fourth N . This fourth PnB highlights the residual electrophilicity of the Bi atom even after it forms a triple PnB . We were curious if this would affect the self-assembly of the molecular capsule observed between 2 and the ditopic, tridentate PnB acceptor 4 that we had used previously to achieve a triple PnB with 1 .
Single crystals of $\mathbf{2}_{2} \cdot 4$ were grown by mixing a $2: 1$ ratio of $\mathbf{2}$ and 4 in benzene and dissolving under mild heating. After the solution was stored at room temperature $\left(\sim 21^{\circ} \mathrm{C}\right)$ for 24 h , yellow octahedral-shaped crystals, suitable for single crystal diffraction, were formed. The crystal structure, depicted in Figure 7, shows that half of the atoms of $\mathbf{2}_{2} \cdot 4$ were related to each other by a C_{2} rotation axis. On average the $\mathrm{Bi} \cdots \mathrm{N}$ PnBs are $2.763 \AA$ which is 77% of the $\sum \mathrm{r}_{\mathrm{vdW}}$ and 127% of the $\sum \mathrm{r}_{\mathrm{cov}}$ of Bi and N . In contrast to $\mathbf{1}_{2} \cdot \mathbf{4}$, a noticeable torsion between planes containing the arylethynyl arms of 4 and the central ring of 4, was observed. Measurements revealed torsion angles between $22^{\circ}-30^{\circ}$ between these planes. Similar measurements were performed on $\mathbf{1}_{2} \cdot \mathbf{4}$ and torsion angles were found to range between $1^{\circ}-5^{\circ}$. As a result of the torsion, the $\mathrm{Bi}-\mathrm{Bi}$

Figure 7. Ball and stick representation of $\mathbf{2}_{2} \cdot \mathbf{4}$. Hydrogen atoms and solvent molecules are omitted for clarity.
distance in $2_{2} \cdot \mathbf{4}$ is $0.428 \AA$ shorter than the average $\mathrm{Sb}-\mathrm{Sb} 359$ distance in $(\alpha$ and $\beta)-\mathbf{1}_{2} \cdot \mathbf{4}$. Similar to $\mathbf{1}_{2} \cdot \mathbf{4}$, two pseudote- 360 trahedral cavities are formed in $\mathbf{2}_{2} \cdot \mathbf{4}$. In the structure, benzene 361 molecules penetrate inside the cavities, but the small aperture 362 appears to prevent the solvent molecules from becoming 363 completely encapsulated. Like $\mathbf{2} \cdot \mathrm{Py}_{3}$ and $\mathbf{2} \cdot \mathrm{TPA}$, AIM analysis 364 was performed on one-half of $\mathbf{2}_{2} \cdot \mathbf{4}$ supramolecule denoted as 2. 365 5 (see Figure S5). The large size, and corresponding 366 computational demand required the use of this truncated 367 model. The values at the bond critical points were in-line with 368 those observed for $2 \cdot \mathrm{Py}_{3}$ and 2.TPA.

Pulsed-field Gradient Spin Echo (PFGSE) NMR ($\left.{ }^{1} \mathrm{H}\right) 370$ Spectroscopy. To study the integrity and behavior of the 371 supramolecules in the solution state, diffusion coefficients of 2, 372 $\mathbf{2} \cdot \mathrm{Py}_{3}, \mathbf{2} \cdot \mathrm{TPA}$, and $\mathbf{2}_{2} \cdot \mathbf{4}$ were studied via pulsed-field gradient 373 spin echo (PFGSE) ${ }^{1} \mathrm{H}$ NMR spectroscopy in a benzene- $d_{6} 374$ solution. All diffusion coefficients were measured by fitting 375 experimental values collected from PFGSE NMR experiments 376 (for details, see S2.3 in the SI). In order to compare the values 377 obtained from these experimental series, only the most intense 378 nonoverlapping ${ }^{1} \mathrm{H}$ peaks (indicated in red in Figure 8) were 379 f 8 analyzed. The diffusion coefficient of $\mathbf{2}_{\mathrm{Me}}$ was $6.06 \times 10^{-10} \mathrm{~m}^{2} \cdot{ }^{380}$ s^{-1} (based on the methyl proton peak shown in Figure 8), and 381 this value was used as a reference to follow the solution 382 behavior of the supramolecules with 2. A summary of the 383 PFGSE NMR study is shown in Table 4. Using the Stokes- 384 t 4 Einstein equation (see equation S2 in the SI) the Stokes radii 385 $\left(R_{\mathrm{H}}\right)$ of 2 and the other supramolecules was evaluated (Table 386 4). A hydrodynamic volume $\left(\mathrm{V}_{\mathrm{H}}\right)$ was determined by treating 387 each species as spherical. These values were compared with the 388 van der Waals volumes ($\mathrm{V}_{\mathrm{vdW}}$) estimated from the crystal 389

Figure 8. Diffusion coefficients measured in benzene-d6 solution of 2, $\mathbf{2} \cdot \mathrm{Py}_{3}, 2 \cdot \mathrm{TPA}, \mathbf{2}_{2} \cdot \mathbf{4}$. Solid markers represent diffusion coefficients fitted for protons of the methyl groups of 2 (bolded values on left side of the markers) and hollow dotted markers represent diffusion coefficients fitted for the most intense nonoverlapping proton signals of the pyridyl PnB acceptor molecules (italicized values on the right side of the markers).

Table 4. Chemical Shifts (δ), Diffusion Coefficients (D), and Stokes Radii (R_{H}) of $2,2 \cdot \mathrm{Py}_{3}, 2 \cdot \mathrm{TPA}$, and $2 \cdot 4$ Studied by PFGSE NMR Spectroscopy of ${ }^{1} \mathrm{H}$ Nuclei

Compound	$\delta(\mathrm{ppm})$	$D\left(\mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}\right)$	$R_{\mathrm{H}}(\mathrm{nm})$	$\mathrm{V}_{\mathrm{H}}\left(\AA^{3}\right)^{a}$	$\mathrm{~V}_{\mathrm{vdW}}\left(\AA^{3}\right)^{b}$
$\mathbf{2}_{\mathrm{Me}}$	2.51	6.06×10^{-10}	0.56	735	533^{c}
$\mathbf{2}_{\mathrm{Me}} \cdot \mathrm{Py}_{3}$	2.57	5.28×10^{-10}	0.73	1629	893
$\mathbf{2} \cdot \mathrm{Py}_{3(\mathrm{H} 2)}$	8.18	13.2×10^{-10}	0.29	102	
$\mathbf{2} \cdot \mathrm{Py}_{3(\mathrm{H} 3)}$	6.80	13.4×10^{-10}	0.29	102	
$\mathbf{2}_{\mathrm{Me}} \cdot \mathrm{TPA}$	2.93	5.34×10^{-10}	0.63	1047	951
$\mathbf{2} \cdot \mathrm{TPA}_{\mathrm{Me}}$	3.46	5.31×10^{-10}	0.64	1097	951
$\mathbf{2}_{2(\mathrm{Me}} \cdot \mathbf{4}$	2.92	3.59×10^{-10}	1.07	5129	3680
$\mathbf{2} \cdot \mathbf{4}_{t-\mathrm{Bu}}$	1.14	3.74×10^{-10}	1.03	4575	3680

${ }^{a}$ Hydrodynamic volume calculated based on measured R_{H} of each supramolecule. Volumes were calculated for a spheres. ${ }^{b}$ van der Waals volume of each supramolecule based on subtraction of solvent molecule volume from the unit cell volume measured by X-ray diffraction. ${ }^{c}$ Volume was calculated based on the crystal structure of $\mathbf{1}$.

390
structure of each compound (the crystal structure of 1 was used as a surrogate for estimating the volume of 2). The $\mathrm{V}_{\mathrm{vdW}}$ of any interstitial solvents was subtracted to give the final tabulated values. It is essential to emphasize that the derived $\mathrm{V}_{\text {vdW }}$ should be expected to be smaller than V_{H} due to contraction at lower temperatures (100 K for crystal data collection) and lack of a solvation sphere.
As shown in Figure 8, the PFGSE characterization of $\mathbf{2} \cdot \mathrm{Py}_{3}$ indicates a rapid exchange between 2 and Py molecules in the benzene- d_{6} solution. The fitted value for proton peaks belonging to methyl groups of $2\left(2_{\mathrm{Me}} \cdot \mathrm{Py}_{3}\right)$ in solution had a diffusion coefficient ($5.28 \times 10^{-10} \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$) that was smaller compared to that of 2. A larger diffusion coefficient was observed for the pyridine molecules in $2 \cdot \mathrm{Py}_{3}\left(13.3 \times 10^{-10} \mathrm{~m}^{2}\right.$. equilibrium with free Py molecules. Meaningful comparison of
V_{H} and $\mathrm{V}_{\mathrm{vdW}}$ was not possible due to the presence of different 408 species.

The solution behavior of $\mathbf{2} \cdot$ TPA and $\mathbf{2}_{2} \cdot \mathbf{4}$ were different 410 compared to $2 \cdot \mathrm{Py}_{3}$. Evaluation of the PFGSE NMR data 411 revealed that all components of the supramolecules diffuse at 412 similar rates in solution (Figure 8). The diffusion coefficient 413 values obtained for 2.TPA are very close to the value measured 414 for $\mathbf{2}_{\mathrm{Me}}$ in $\mathbf{2} \cdot \mathrm{Py}_{3}$. This can be rationalized through the fact that 415 both supramolecules are quite similar in size (Figure 6. The 416 supramolecule $\mathbf{2}_{2} \cdot \mathbf{4}$ is significantly larger than the other 417 supramolecules that were investigated earlier, and it had the 418 slowest rate of diffusion. The most important result of these 419 experiments is the fact that both components of the 420 supramolecules of $\mathbf{2} \cdot \mathrm{TPA}$ and $\mathbf{2}_{2} \cdot \mathbf{4}$ diffuse together indicating 421 that the equilibrium favors the self-assembled construct in the 422 solution. Analysis of the V_{H} and $\mathrm{V}_{\mathrm{vdW}}$ of both supramolecules 423 (2.TPA and $\mathbf{2}_{2} \cdot \mathbf{4}$) shows a good correlation between the 424 volumes of both compounds indicating that they are diffusing 425 as aggregates that resemble those found in the crystal. This 426 highlights the utility of employing a triple pnictogen bond for 427 predictable molecular recognition and self-assembly, both in 428 the solid state as well as in solution.

CONCLUSION

A new bismuth(III) PnB donor molecule was synthesized and 431 characterized. The supramolecular chemistry was compared 432 with the Sb congener, and it was found that the Bibased 433 molecule can form three strong PnBs with a larger variety of 434 PnB acceptors. This was established by solid-state and 435 computational studies. Solution studies via PFGSE NMR 436 spectroscopy showed that using more rigid PnB acceptor 437 molecules can result in strongly interacting supramolecules 438 that can keep their integrity in benzene solution. Lastly, 439 analysis of the Bi PnBs reveal that they are highly directional 440 but weak coordination bonds that support their categorization, 441 in this case, as supramolecular interactions.

ASSOCIATED CONTENT

443
(5i) Supporting Information
444
The Supporting Information is available free of charge at 445 https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01232. 446

Full synthetic procedures, characterization data, X-ray 447 data analysis, computational methods, and diffusion 448 NMR fits (PDF) 449
NMR jdf files (ZIP) 450
$x y z$ coordinates (ZIP) 451

Accession Codes

CCDC 2073571-2073573 contain the supplementary crys- 453 tallographic data for this paper. These data can be obtained 454 free of charge via www.ccdc.cam.uk/data_request/cif, or by 455 emailing data_request@ccdc.cam.uk, or by contacting The 456 Cambridge Crystallographic Data Centre, 12 Union Road, 457 Cambridge CB2 1 EZ, UK; fax: + 441223336033.

AUTHOR INFORMATION

Anthony F. Cozzolino - Department of Chemistry and 461 Biochemistry, Texas Tech University, Lubbock, Texas 79409- 462 1061, United States; © orcid.org/0000-0002-1100-0829; 463 Email: anthony.f.cozzolino@ttu.edu 464
Nathan P. Bowling - Department of Chemistry, University of 465 Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481, 466

United States; © orcid.org/0000-0002-6930-1333; Email: nbowling@uwsp.edu

Authors

Shiva Moaven - Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States; © orcid.org/0000-0002-9846-2961
Brandon T. Watson - Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 794091061, United States
Thomas J. Polaske - Department of Chemistry, University of Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481, United States
Brian M. Karl - Department of Chemistry, University of Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481, United States
Daniel K. Unruh - Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 794091061, United States; © orcid.org/0000-0002-2594-5786
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.inorgchem.1c01232

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

TTU group would like to acknowledge research funding (CHE 1847878) and instrument funding (NMR: CHE 1048553) from the National Science Foundation. The UWSP group would like to acknowledge research funding (CHE 1903581 and CHE 1606558) and instrument funding (NMR: CHE 0957080) from the National Science Foundation and research funding from the Henry Dreyfus Teacher-Scholar Awards Program.

- REFERENCES

(1) Alcock, N. W. Secondary Bonding to Nonmetallic Elements. Adv. Inorg. Chem. Radiochem. 1972, 15, 1-58.
(2) Cozzolino, A. F.; Elder, P. J. W.; Vargas-Baca, I. A Survey of Tellurium-Centered Secondary-Bonding Supramolecular Synthons. Coord. Chem. Rev. 2011, 255 (11-12), 1426-1438.
(3) Pitt, M. A.; Johnson, D. W. Main Group Supramolecular Chemistry. Chem. Soc. Rev. 2007, 36 (9), 1441-1453.
(4) Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Naming Interactions from the Electrophilic Site. Cryst. Growth Des. 2014, 14 (6), 2697-2702.
(5) Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the Halogen Bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85 (8), 1711-1713.
(6) Aakeroy, C. B.; Bryce, D. L.; Desiraju, G. R.; Frontera, A.; Legon, A. C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P.; Resnati, G. Definition of the Chalcogen Bond (IUPAC Recommendations 2019). Pure Appl. Chem. 2019, 91 (11), 1889-1892.
(7) Pascoe, D. J.; Ling, K. B.; Cockroft, S. L. The Origin of Chalcogen-Bonding Interactions. J. Am. Chem. Soc. 2017, 139 (42), 15160-15167.
(8) Qiu, J.; Unruh, D. K.; Cozzolino, A. F. Design, Synthesis, and Characterization of a Bisantimony(III) Compound for Anion Binding and the Density Functional Theory Evaluation of

Halide Binding through Antimony Secondary Bonding Interactions. J. 528 Phys. Chem. A 2016, 120 (46), 9257-9269.
(9) Qiu, J.; Song, B.; Li, X.; Cozzolino, A. F. Solution and Gas Phase 530 Evidence of Anion Binding through the Secondary Bonding 531 Interactions of a Bidentate Bis-Antimony(III) Anion Receptor. Phys. 532 Chem. Chem. Phys. 2018, 20 (1), 46-50.
(10) Lee, L. M.; Tsemperouli, M.; Poblador-Bahamonde, A. I.; Benz, 534 S.; Sakai, N.; Sugihara, K.; Matile, S. Anion Transport with Pnictogen 535 Bonds in Direct Comparison with Chalcogen and Halogen Bonds. J. 536 Am. Chem. Soc. 2019, 141 (2), 810-814.
(11) Christianson, A. M.; Gabbaï, F. P. A Lewis Acidic, π - 538 Conjugated Stibaindole with a Colorimetric Response to Anion 539 Binding at Sb (III). Organometallics 2017, 36 (16), 3013-3015. 540
(12) Park, G.; Brock, D. J.; Pellois, J.-P.; Gabbaï, F. P. Heavy 541 Pnictogenium Cations as Transmembrane Anion Transporters in 542 Vesicles and Erythrocytes. Chem. 2019, 5 (8), 2215-2227. 543
(13) Gini, A.; Paraja, M.; Galmés, B.; Besnard, C.; Poblador- 544 Bahamonde, A.; Sakai, N.; Frontera, A.; Matile, S. Pnictogen-Bonding 545 Catalysis: Brevetoxin-Type Polyether Cyclizations. Chem. Sci. 2020, 546 11 (27), 7086-7091.
(14) Hao, X.; Li, T.-R.; Chen, H.; Gini, A.; Zhang, X.; Rosset, S.; 548 Mazet, C.; Tiefenbacher, K.; Matile, S. Bioinspired Ether Cyclizations 549 within a π-Basic Capsule Compared to Autocatalysis on π-Acidic 550 Surfaces and Pnictogen-Bonding Catalysts. Chem. - Eur. J. 2021, 548551 DOI: 10.1002/chem. 202101548.
(15) Paraja, M.; Gini, A.; Sakai, N.; Matile, S. Pnictogen-Bonding 553 Catalysis: An Interactive Tool to Uncover Unorthodox Mechanisms 554 in Polyether Cascade Cyclizations. Chem. - Eur. J. 2020, 26 (67), 555 15471-15476.
(16) Yang, M.; Hirai, M.; Gabbaï, F. P. Phosphonium-Stibonium 557 and Bis-Stibonium Cations as Pnictogen-Bonding Catalysts for the 558 Transfer Hydrogenation of Quinolines. Dalton Trans. 2019, 48 (20), 559 6685-6689.

560
(17) Zhang, J.; Wei, J.; Ding, W.-Y.; Li, S.; Xiang, S.-H.; Tan, B. 561 Asymmetric Pnictogen-Bonding Catalysis: Transfer Hydrogenation by 562 a Chiral Antimony(V) Cation/Anion Pair. J. Am. Chem. Soc. 2021, 563 143 (17), 6382-6387.
(18) Moaven, S.; Yu, J.; Vega, M.; Unruh, D. K.; Cozzolino, A. F. 565 Self-Assembled Reversed Bilayers Directed by Pnictogen Bonding to 566 Form Vesicles in Solution. Chem. Commun. 2018, 54 (64), 8849- 567 8852.
(19) Moaven, S.; Watson, B. T.; Thompson, S. B.; Lyons, V. J.; 569 Unruh, D. K.; Casadonte, D. J.; Pappas, D.; Cozzolino, A. F. Self- 570 Assembly of Reversed Bilayer Vesicles through Pnictogen Bonding: 571 Water-Stable Supramolecular Nanocontainers for Organic Solvents. 572 Chem. Sci. 2020, 11 (17), 4374-4380.

573
(20) Mokrai, R.; Barrett, J.; Apperley, D. C.; Batsanov, A. S.; Benkő, 574 Z.; Heift, D. Weak Pnictogen Bond with Bismuth: Experimental 575 Evidence Based on $\mathrm{Bi}-\mathrm{P}$ Through-Space Coupling. Chem. - Eur. J. 576 2019, 25 (16), 4017-4024.
(21) Moaven, S.; Andrews, M. C.; Polaske, T. J.; Karl, B. M.; Unruh, 578 D. K.; Bosch, E.; Bowling, N. P.; Cozzolino, A. F. Triple-Pnictogen 579 Bonding as a Tool for Supramolecular Assembly. Inorg. Chem. 2019, 580 58 (23), 16227-16235.

581
(22) Scilabra, P.; Terraneo, G.; Daolio, A.; Baggioli, A.; Famulari, A.; 582 Leroy, C.; Bryce, D. L.; Resnati, G. 4,4'-Dipyridyl Dioxide•SbF3 583 Cocrystal: Pnictogen Bond Prevails over Halogen and Hydrogen 584 Bonds in Driving Self-Assembly. Cryst. Growth Des. 2020, 20 (2), 585 916-922.

586
(23) Mokrai, R.; Barrett, J.; Apperley, D. C.; Benkő, Z.; Heift, D. 587 Tweaking the Charge Transfer: Bonding Analysis of Bismuth(III) 588 Complexes with a Flexidentate Phosphane Ligand. Inorg. Chem. 2020, 589 59 (13), 8916-8924.
(24) Anderson, K. M.; Baylies, C. J.; Jahan, A. H. M. M.; Norman, 591 N. C.; Orpen, A. G.; Starbuck, J. Coordination Complexes of the 592 Bismuth(III) Thiolates $\mathrm{Bi}(\mathrm{SC} 6 \mathrm{~F} 5) 3$ and $\mathrm{Bi}(\mathrm{SC} 6 \mathrm{Cl} 5) 3$ with Pyridine 593 Ligands. Dalton Trans. 2003, No. 16, 3270-3277.

594
(25) Willey, G. R.; Daly, L. T.; Rudd, M. D.; Drew, M. G. B. 595 Azamacrocyclic Complexation of Bismuth(III): Formation and 596

600 (26) Chitnis, S. S.; Burford, N.; Decken, A.; Ferguson, M. J. 601 Coordination Complexes of Bismuth Triflates with Tetrahydrofuran 602 and Diphosphine Ligands. Inorg. Chem. 2013, 52 (12), 7242-7248.
603 (27) Chitnis, S. S.; Robertson, A. P. M.; Burford, N.; Patrick, B. O.; 604 McDonald, R.; Ferguson, M. J. Bipyridine Complexes of E3+ (E = P, 605 As, Sb, Bi): Strong Lewis Acids, Sources of E(OTf)3 and Synthons for 606 EI and EV Cations. Chem. Sci. 2015, 6 (11), 6545-6555.
607 (28) Sanderson, R. Chemical Bonds and Bonds Energy; Elsevier: 2012.
608 (29) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond: In 609 Structural Chemistry and Biology; Oxford University Press: 2001.
610 (30) Dolgonosov, A. M. The Universal Relationship between the 611 Energy and Length of a Covalent Bond Derived from the Theory of 612 Generalized Charges. Russ. J. Inorg. Chem. 2017, 62 (3), 344-350.
613 (31) Moaven, S.; Yu, J.; Yasin, J.; Unruh, D. K.; Cozzolino, A. F. 614 Precise Steric Control over 2D versus 3D Self-Assembly of 615 Antimony(III) Alkoxide Cages through Strong Secondary Bonding 616 Interactions. Inorg. Chem. 2017, 56 (14), 8372-8380.
617 (32) Trubenstein, H. J.; Moaven, S.; Vega, M.; Unruh, D. K.; 618 Cozzolino, A. F. Pnictogen Bonding with Alkoxide Cages: Which 619 Pnictogen Is Best? New J. Chem. 2019, 43 (36), 14305-14312.
620 (33) Scheiner, S. Coordination of a Central Atom by Multiple 621 Intramolecular Pnicogen Bonds. Inorg. Chem. 2020, 59, 9315.
622 (34) Mason, M. R.; Phulpagar, S. S.; Mashuta, M. S.; Richardson, J. 623 F. Synthesis and Characterization of Chelating Triamide Complexes 624 of Bismuth and Antimony. Inorg. Chem. 2000, 39 (17), 3931-3933.
625 (35) Shutov, P. L.; Karlov, S. S.; Harms, K.; Tyurin, D. A.; 626 Churakov, A. V.; Lorberth, J.; Zaitseva, G. S. Synthesis and 627 Characterization of the First Azastibatranes and Azabismatranes. 628 Inorg. Chem. 2002, 41 (23), 6147-6152.
629 (36) Turner, L. E.; Davidson, M. G.; Jones, M. D.; Ott, H.; Schulz, 630 V. S.; Wilson, P. J. Bis(Bismuth)Toluene Inverted-Sandwich Complex 631 Supported by Aminetris(Phenoxide) Ligands. Inorg. Chem. 2006, 45 632 (16), 6123-6125.
633 (37) Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond 634 Strengths Revealed by Topological Analyses of Experimentally 635 Observed Electron Densities. Chem. Phys. Lett. 1998, 285 (3), 170636173.

637 (38) Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydro638 gen Bonding without Borders: An Atoms-in-Molecules Perspective. J. 639 Phys. Chem. A 2006, 110 (10), 3349-3351.
640 (39) Lu, L.; Lu, Y.; Zhu, Z.; Liu, H. Pnictogen, Chalcogen, and 641 Halogen Bonds in Catalytic Systems: Theoretical Study and Detailed 642 Comparison. J. Mol. Model. 2020, 26 (1), 16.
643 (40) Li, Y.; Meng, L.; Sun, C.; Zeng, Y. Organocatalysis by Halogen, 644 Chalcogen, and Pnictogen Bond Donors in Halide Abstraction 645 Reactions: An Alternative to Hydrogen Bond-Based Catalysis. J. Phys. 646 Chem. A 2020, 124 (19), 3815-3824.
647 (41) Nekoueishahraki, B.; Samuel, P. P.; Roesky, H. W.; Stern, D.; 648 Matussek, J.; Stalke, D. Organobismuth(III) and Dibismuthine 649 Complexes Bearing $\mathrm{N}, \mathrm{N}^{\prime}$-Disubstituted 1,8-Diaminonaphthalene 650 Ligand: Synthesis, Structure, and Reactivity. Organometallics 2012, 65131 (18), 6697-6703.
652 (42) Schwamm, R. J.; Lein, M.; Coles, M. P.; Fitchett, C. M. Bi-P 653 Bond Homolysis as a Route to Reduced Bismuth Compounds and 654 Reversible Activation of P4. Angew. Chem., Int. Ed. 2016, 55 (47), 655 14798-14801.
656 (43) Schwamm, R. J.; Coles, M. P.; Fitchett, C. M. Neutral and 657 Cationic Bismuth Compounds Supported by Bis(Amidodimethyl)658 Disiloxane Ligands. Dalton Trans. 2017, 46 (12), 4066-4074.
659 (44) Benz, S.; Poblador-Bahamonde, A. I.; Low-Ders, N.; Matile, S. 660 Catalysis with Pnictogen, Chalcogen, and Halogen Bonds. Angew. 661 Chem., Int. Ed. 2018, 57 (19), 5408-5412.
662 (45) Lohrman, J. A.; Deng, C.-L.; Shear, T. A.; Zakharov, L. N.; 663 Haley, M. M.; Johnson, D. W. Methanesulfonyl-Polarized Halogen 664 Bonding Enables Strong Halide Recognition in an Arylethynyl Anion 665 Receptor. Chem. Commun. 2019, 55 (13), 1919-1922.
(46) Biot, N.; Bonifazi, D. Concurring Chalcogen- and Halogen- 666 Bonding Interactions in Supramolecular Polymers for Crystal 667 Engineering Applications. Chem. - Eur. J. 2020, 26 (13), 2904-2913. 668 (47) Pyykko, P. Relativistic Effects in Structural Chemistry. Chem. 669 Rev. 1988, 88 (3), 563-594.

670
(48) Lisac, K.; Topić, F.; Arhangelskis, M.; Cepić, S.; Julien, P. A.; 671 Nickels, C. W.; Morris, A. J.; Friščić, T.; Cinčić, D. Halogen-Bonded 672 Cocrystallization with Phosphorus, Arsenic and Antimony Acceptors. 673 Nat. Commun. 2019, 10 (1), 61.
(49) Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; 675 Truhlar, D. G. Consistent van Der Waals Radii for the Whole Main 676 Group. J. Phys. Chem. A 2009, 113 (19), 5806-5812.
(50) Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; 678 Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii 679 Revisited. Dalton Trans. 2008, No. 21, 2832-2838.

680
(51) Cremer, D.; Kraka, E. Chemical Bonds without Bonding 681 Electron Density - Does the Difference Electron-Density Analysis 682 Suffice for a Description of the Chemical Bond? Angew. Chem., Int. Ed. 683 Engl. 1984, 23 (8), 627-628. 684
(52) Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From Weak to 685 Strong Interactions: A Comprehensive Analysis of the Topological 686 and Energetic Properties of the Electron Density Distribution 687 Involving $\mathrm{X}-\mathrm{H} \cdots \mathrm{F}-\mathrm{Y}$ Systems. J. Chem. Phys. 2002, 117 (12), 688 5529-5542

689
(53) Popelier, P. Atoms in Molecules: An Introduction; Prentice Hall: 690 Essex, England, 2000. (54) Ai-Guo, Z. Dissecting the Nature of Halogen Bonding 692 Interactions from Energy Decomposition and Wavefunction Analysis. 693 Monatsh. Chem. 2017, 148 (7), 1259-1267.

[^0]: Received: April 21, 2021

