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Abstract

In recent years, change point detection for a high dimensional data sequence has become in-
creasingly important in many scientific fields such as biology and finance. The existing literature
develops a variety of methods designed for either a specified parameter (e.g. mean or covariance)
or a particular alternative pattern (sparse or dense), but not for both scenarios simultaneously. To
overcome this limitation, we provide a general framework for developing tests suitable for a large
class of parameters, and also adaptive to various alternative scenarios. In particular, by generalizing
the classical cumulative sum (CUSUM) statistic, we construct the U -statistic-based CUSUM matrix
C. Two cases corresponding to common or different change point locations across the components
are considered. We then propose two types of individual test statistics by aggregating C based on
the adjusted Lp-norm with p ∈ {1, . . . ,∞}. Combining the corresponding individual tests, we
construct two types of data-adaptive tests for the two cases, which are both powerful under various
alternative patterns. A multiplier bootstrap method is introduced for approximating the proposed
test statistics’ limiting distributions. With flexible dependence structure across coordinates and mild
moment conditions, we show the optimality of our methods theoretically in terms of size and power
by allowing the dimension d and the number of parameters q being much larger than the sample
size n. An R package called AdaptiveCpt is developed to implement our algorithms. Extensive
simulation studies provide further support for our theory. An application to a comparative genomic
hybridization (CGH) dataset also demonstrates the usefulness of our proposed methods.

Keyword: Change point detection; Data-adaptive tests; High dimensions; Minimax optimality; Multi-
plier bootstrap and Gaussian approximation; U -statistics

1 Introduction

In modern statistical applications, high dimensional data are ubiquitous in many scientific fields such
as finance, genetics, and engineering. Testing the homogeneity of such data sequences is a challenging
yet important problem. In particular, high dimensional data with complex generating mechanism often
present structural changes before and after a possible (unknown) change point. It is typically unrealistic
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to assume stationarity for the high dimensional data sequence. As a result, methods designed for station-
ary data can be invalid. Furthermore, detecting and identifying these change points also have various
real applications. For example, in biology (Zhang et al. (2010)), change points exist for the DNA copy
number variants among multiple biological samples in the chromosomes; in finance, abrupt economic
announcements or changes can disrupt the network among the stocks; in functional Magnetic Resonance
Imaging (fMRI) data studies (Zhong and Li (2016)), we can regard the abrupt changes for measurement
of blood oxygen level-dependent responses as change points.

Motivated by the broad applications, in this paper, we consider a general framework for high dimen-
sional change point detection problems. More specifically, let X = (X1, . . . , Xd)

> be a d-dimensional
random vector. We are interested in a q-dimensional parameter θ = (θ1, . . . , θq)

> with θs = EΦs(X
′
1, . . . ,

X ′m), where Φs(x
′
1, . . . ,x

′
m) : Rd × · · · × Rd → R is a measurable, symmetric kernel with order m,

and X ′1, . . . ,X
′
m are independent copies with the same distribution as X . Denote X1, . . . ,Xn as n

ordered independent observations from X with Xi = (Xi,1, . . . , Xi,d)
>. We aim to detect whether

there is a change point of θ1, . . . ,θn during n observations, where θi = (θi,1, . . . , θi,q)
> for 1 ≤ i ≤ n.

Therefore, we consider the following hypothesis:

H0 : θ1,s = · · · = θn,s, for 1 ≤ s ≤ q, v.s.

H1 : ∃s ∈ {1, . . . , q} and t̃s ∈ (0, 1), s.t. θ1,s = · · · = θbnt̃sc,s 6= θbnt̃sc+1,s = · · · = θn,s,

(1.1)

where t̃s is the relative change point location for θs. In our setting, the dimension d and the number of
parameters q can be much larger than the sample size n. Under our testing framework, many existing
works are special cases of (1.1) by choosing a specified kernel:

Case 1: For θs = EXs with 1 ≤ s ≤ d, the parameter θ ∈ Rd is the mean vector by letting Φs(X) =

Xs with m = 1. Therefore, the high dimensional mean change point detection problem falls
into our general framework in (1.1) (Horváth and Hušková (2012); Aston and Kirch (2018); Jirak
(2015); Cho et al. (2016); Wang and Samworth (2018)).

Case 2: For θi,j = E
(
(Xi − X ′i)(Xj − X ′j)/2

)
with 1 ≤ i, j ≤ d, the parameter θ ∈ Rd(d+1)/2 is

the covariance matrix Cov(X) by letting Φi,j(X,X ′) = (Xi − X ′i)(Xj − X ′j)/2 with m = 2.
Therefore, the general testing framework can deal with the high dimensional covariance change
point detection problem (See Aue et al. (2009); Avanesov and Buzun (2018); Wang et al. (2017)).

Case 3: For θi,j = E
(
sign(Xi−X ′i)sign(Xj−X ′j)

)
with 1 ≤ i < j ≤ d, the parameter θ ∈ Rd(d−1)/2

is the Kendall’s tau correlation matrix by letting Φi,j(X,X ′) = sign(Xi−X ′i)sign(Xj−X ′j) with
m = 2. In this case, the hypothesis (1.1) includes the high dimensional Kendall’s tau correlation
matrix change point problem.

In low dimensions, i.e. a case of fixed d with d < n, change point detection has been a well-
established problem since the early works in Page (1954, 1955). There is also a large number of papers
for various testing problems. For example, the methods developed for the mean vector include Srivas-
tava and Worsley (1986); Horváth et al. (1999); Lung-Yut-Fong et al. (2011); papers on the variance or
covariance include Inclan and Tiao (1994); Gombay et al. (1996); Berkes et al. (2009). In addition, there
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are also some papers based on the non-parametric methods (Csörgő and Horváth (1988); Hušková and
Meintanis (2006); Quessy et al. (2013); Matteson and James (2014); Tan et al. (2016)). For a compre-
hensive review of the low dimensional methods and their theoretical properties, we refer to Csörgő and
Horváth (1997); Chen and Gupta (2011); Hušková and Prášková (2014), and the references therein.

Driven by the contemporary statistical applications, high dimensional data are commonly available,
where the dimension d and the number of parameters q can be comparable with or even much larger
than the sample size n. Examples include genetics, image analysis, and risk management. Compared
with the low dimensional case, much less development has been made in the literature on the high
dimensional change point detection. Most existing papers focus on the mean vector problem. To review
the related literature, we introduce the well-known cumulative sum (CUSUM) (Csörgő and Horváth
(1997)) statistic for each coordinate s at the time point k (1 ≤ k ≤ n− 1) as:

Cs(k) =
√
n
k

n

(
1− k

n

)
σ−1/2
s,s

(1

k

k∑
j=1

Xj,s −
1

n− k

n∑
j=k+1

Xj,s

)
, with 1 ≤ s ≤ d, (1.2)

where σs,s = Var(Xs). Based on (1.2), we define the CUSUM matrix C = (Cs(k))1≤s≤d,1≤k≤n−1. One
challenge for high dimensional change point detection is how to propose a test based on the aggregation
of C. To this end, many authors investigate various aggregations of C under different model assumptions.
For independent observations and components, Zhang et al. (2010); Horváth and Hušková (2012) inves-
tigated the L2 aggregations of C with and without the Gaussian assumption, respectively. Based on the
L2 aggregation, Enikeeva and Harchaoui (2019) proposed linear and scan statistics for the independent
and identically distributed (i.i.d) Gaussian distributions with the identity covariance matrix. They also
derived a detection boundary under sparse alternatives. Instead of the L2 aggregation, by taking the
element maximum of C, Jirak (2015) proposed the L∞-based test statistic. Allowing for both tempo-
ral and cross-sectional dependence, Jirak (2015) obtained the critical value of the test by the Gumbel
distribution. To improve the convergence rate, Jirak (2015) also considered a bootstrap approximation
for their test statistic. Based on the hard thresholded L1 aggregation of C, Cho and Fryzlewicz (2015)
investigated a sparse binary segmentation method for the second-order structure change point estima-
tion of high dimensional time series. Cho et al. (2016) proposed a class of double CUSUM statistics by
aggregating the ordered CUSUM statistics at each time point. They also explored the high dimensional
asymptotic relative efficiency. In different settings, Aston and Kirch (2018); Wang and Samworth (2018)
investigated the high dimensional change point detection and estimation using projection methods, and
Chen et al. (2015) adopted a graph-based method to detect and identify change points. Recently, Dette
and Gösmann (2018) considered the relative change point detection problem in high dimensions.

In view of the existing methods mentioned above, aggregations of C fall into 2 categories: L2-type
versus L∞-type tests. For each time point k (1 ≤ k ≤ n − 1), on one hand, by accumulating small
deviations of all coordinates, the L2-type tests aim to detect relative dense signals; on the other hand,
the L∞-type tests are more sensitive to sparse signals with strong perturbations on a small number of
coordinates. Either L2 or L∞-based method only works well for a particular alternative pattern. How-
ever, in real applications, the alternative structure (sparse or dense) is usually unknown. Theoretically,
Cox and Hinkley (1979) showed that there is no uniformly powerful test under all alternative scenarios.
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Hence, it is of great interests to construct data-adaptive tests. Furthermore, Zhang et al. (2010); Horváth
and Hušková (2012); Jirak (2015); Enikeeva and Harchaoui (2019) also required strong spatial depen-
dency structures among the components (e.g. the identity covariance matrix) or specific distributional
assumptions (e.g. the Gaussian assumption) to guarantee the validity of their theories. It is shown that
those methods are no longer applicable once their model assumptions are not satisfied. Moreover, most
exiting works only consider the high dimensional change point detection for a particular parameter such
as mean. In some real problems, however, many other parameters such as the covariance and Kendall’s
tau correlation matrices may be of interest. To overcome this limitation, we propose a general frame-
work for solving a wider range of problems and also adaptive to various alternative scenarios, which are
robust with respect to the population distributions and the covariance structures. Our main contributions
of this paper can be summarized as follows:

• We provide a general framework using U -statistics for change point detection in high dimensions.
Our framework covers many existing methods for high dimensional change point problems such
as mean or covariance as special cases. Because of the flexibility of U -statistics, our general
framework can also solve many other problems such as the Kendall’s correlation coefficient or
one sample Wilcoxon’s rank test, which have not been studied for high dimensional settings.

• We construct two types of new individual test statistics T(s0,p) and W(s0,p) (1 ≤ p ≤ ∞), by
considering the change point locations and the alternative patterns simultaneously. Our two new
statistics aggregate the U -statistic-based CUSUM matrix in a different way, using the (s0, p)-
norm∗ proposed by Zhou et al. (2018). We investigate the theoretical properties of these two types
of statistics in terms of size and power. By definition, T(s0,p) considers the scenario where the
change point occurs at a common time point across the components; W(s0,p) allows that different
coordinates can have different change points of time. With the above flexible aggregations, many
existing techniques can be viewed as special cases of our individual test statistics by choosing a
particular s0 or p. Moreover, both T(s0,p) and W(s0,p) can capture the alternative pattern by choos-
ing a particular p. In other words, there is at least one test in T(s0,p) (or W(s0,p)) with 1 ≤ p ≤ ∞
powerful under a given alternative scenario. Theoretically, for the two types of individual test
statistics, we introduce a high dimensional multiplier bootstrap method in Algorithm 1 to approx-
imate their limiting distributions, respectively. The proposed bootstrap method only requires mild
conditions on the covariance structures and the population distributions, and is free of tuning pa-
rameters. Fundamentally, it is a nontrivial extension of the low dimensional bootstrap method in
Gombay and Horváth (1999); Bücher and Kojadinovic (2016) to the high dimensional case. It
is shown that both two types of individual tests can control the type I error under the nominal
significance level and reject the null hypothesis with probability tending to one asymptotically.

• Combining the corresponding individual tests in T(s0,p) (or W(s0,p)) with 1 ≤ p ≤ ∞, we fur-
ther construct the data-adaptive test statistic Tad (or Wad) for the general hypothesis (1.1). The
proposed data-adaptive methods Tad and Wad choose the best test within their combinations ac-
cording to the data and enjoy simultaneously high power across various alternative scenarios.

∗For v = (v1, . . . , vd)
> ∈ Rd, ‖v‖(s0,p) := (

∑d
j=d−s0+1 |v(j)|p)1/p, where |v(1)| ≤ · · · ≤ |v(d)| are the ordered statistic

for |v1|, . . . , |vd|.
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Theoretically, we adopt a low-cost bootstrap method for approximating their limiting distribu-
tions. Consequently, the two data-adaptive tests have the prespecified significance level asymptot-
ically. The power results show that our data-adaptive tests enjoy optimality in the sense that the
signal-noise ratio for rejecting H0 reaches the minimax separation rate derived in Enikeeva and
Harchaoui (2019) under sparse alternatives. To the best of our knowledge, this is the first power
results for U -statistic-based change point detection problems. We also investigate the numeri-
cal performance of the proposed methods using both simulated and real datasets. The numerical
studies illustrate the wider applicability and better adaptivity of our methods than the existing
techniques under various model settings and alternative scenarios. Furthermore, an R package
called AdaptiveCpt is available to implement our new data-adaptive tests.

Note that our paper is related to Zhou et al. (2018), which considered the one- or two-sample in-
ference of high dimensional parameters based on U -statistics. However, our paper focuses on change
point detection, which requires careful handling of the unknown change point in the data stream as
well as nuisance parameters derived from model misspecifications. Furthermore, the construction of the
CUSUM matrix C results in a sequence of dependent random vectors. Hence, our two types of individ-
ual test statistics, designed for the change point analysis, require substantial modifications for Gaussian
approximations developed for i.i.d cases in Chernozhukov et al. (2017); Zhou et al. (2018), which also
really differentiates this work from Zhou et al. (2018).

The rest of this paper is organized as follows. In Section 2, we present our new methodology for the
general hypothesis (1.1). In Section 3, we first introduce some definitions and assumptions, and then dis-
cuss the theoretical properties of our methods in terms of size and power. In Section 4, we investigate the
numerical performance of our proposed methods under various model settings and alternative scenarios.
In Section 5, we apply our methods to a comparative genomic hybridization (CGH) dataset for the seg-
mentation of DNA copy-number variation. Some discussions are provided in Section 6. Supplementary
materials include both proofs of the theoretical results and additional numerical examples.

2 Methodology

We present our new methodology for the general hypothesis (1.1). In Section 2.1, we introduce
some notations used for this paper. In Section 2.2, with known variances, the U -statistic-based CUSUM
matrix C̃ is constructed. In Section 2.3, we propose two types of oracle individual test statistics T̃(s0,p)

and W̃(s0,p) with 1 ≤ p ≤ ∞, by considering the change point locations and alternative patterns simul-
taneously. In order to estimate the unknown variances in T̃(s0,p) and W̃(s0,p), we propose a jackknife
estimator in Section 2.4. The high dimensional multiplier bootstrap method is introduced in Section 2.5
to obtain the limiting distributions of T(s0,p) and W(s0,p) with 1 ≤ p ≤ ∞. In real applications, the
alternative patterns are unknown. Consequently, it is desirable to construct data-adaptive methods. In
Section 2.6, we combine the individual tests in T(s0,p) (or W(s0,p)) with 1 ≤ p ≤ ∞ and propose the
data-adaptive test statistic Tad (or Wad). A low-cost bootstrap method is adopted to efficiently approxi-
mate the limiting distribution of Tad (or Wad).

Before presenting our methodology, we first introduce our setting for the general high dimensional
change point model. Denote γ ∈ {1, . . . , q} as the total number of coordinates with a change point. We
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set Πγ = {si ∈ {1, . . . , q} : there is a change point for θsi with 1 ≤ i ≤ γ} as the set of coordinates
with a change point. We assume that the relative change point location t̃s is bounded away from the
beginning or the end of the dataset, which is a common assumption in the literature. In other words,
there exists τ0 ∈ (0, 0.5) such that τ0 ≤ t̃s ≤ 1− τ0 for s ∈ Πγ .

2.1 Notations

We define the Lp norm as ‖v‖p = (
∑d

j=1 |vj |p)1/p for v = (v1, . . . , vd)
> ∈ Rd. For p = ∞,

‖v‖∞ = max1≤j≤d |vj |. For p = 0, ‖v‖0 := #{j : vj 6= 0}, where #{S} denotes the cardinality of
a set S. For two real numbered sequences an and bn, we set an = O(bn) if there exits a constant C
such that |an| ≤ C|bn| for a sufficiently large n; an = o(bn) if an/bn → 0 as n → ∞; an � bn if
there exists constants c and C such that c|bn| ≤ |an| ≤ C|bn| for a sufficiently large n. For a sequence
of random variables (r.v.s) {ξ1, ξ2, . . .}, we set ξn

P−→ ξ if ξn converges to ξ in probability as n → ∞.
We also denote ξn = op(1) if ξn

P−→ 0. For a p × q-dimensional matrix A = (ai,j) with 1 ≤ i ≤ p

and 1 ≤ j ≤ q, denote vec(A) = (a1,1, . . . , a1,q, . . . , ap,1, . . . , ap,q)
> as the vectorized form of A. We

define bxc as the largest integer less than or equal to x for x ≥ 0.

2.2 U -statistic-based CUSUM matrix

We now introduce our methodology for the general hypothesis (1.1). We are interested in the q-
dimensional parameter θ = (θ1, . . . , θq)

> with θs = EΦs(X
′
1, . . . ,X

′
m), where Φs is a measurable and

symmetric kernel with an order m, andX ′1, . . . ,X
′
m are independent copies with the same distributions

ofX . Given the sample observationsX1, . . . ,Xn, for each coordinate s, under H0, we can estimate θs
by the following U -statistics

θ̂n,s =

(
n

m

)−1 ∑
1≤k1<···<km≤n

Φs(Xk1 , . . . ,Xkm), with s = 1, . . . , q.

Let Ψs(X1, . . . ,Xm) = Φs(X1, . . . ,Xm) − θs be the centralized kernel. By the well-known
Hoeffding’s decomposition (Hoeffding (1948)), under H0, we can decompose θ̂n,s − θs as

θ̂n,s − θs =
m

n

n∑
i=1

h1,s(Xi) +

(
n

m

)−1 ∑
1≤k1<···<km≤n

h2,s(Xk1 , . . . ,Xkm),

where

h1,s(x) := EΨs(x,X2, . . . ,Xm), h2,s(x1, . . . ,xm) := Φs(x1, . . . ,xm)−
m∑
i=1

h1,s(xi)− θs. (2.1)

Denote bntc∗ = n − bntc for 0 ≤ t ≤ 1. To test whether there is a change point for θs during n
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observations, for each time point bntc, we estimate θs before and after bntc and obtain

θ̂bntc,s =
(bntc
m

)−1 ∑
1≤k1<···<km≤bntc

Φs(Xk1 , . . . ,Xkm),

θ̂bntc∗,s =
(bntc∗

m

)−1 ∑
(bntc+1)≤k1<···<km≤n

Φs(Xk1 , . . . ,Xkm).
(2.2)

Then based on (2.2), we define the following U -statistic typed CUSUM statistic for each θs:

C̃s(bntc) =
√
n
bntc
n

bntc∗

n
σ−1/2
s,s

(
θ̂bntc,s − θ̂bntc∗,s

)
, with s = 1, . . . , q, and 0 ≤ t ≤ 1, (2.3)

where σs,s = Var(h1,s(X1)). With known variances (σs,s)
q
s=1, we can use (2.3) to construct the oracle

U -statistic-based CUSUM matrix C̃ = (C̃s(bntc)) with 1 ≤ s ≤ q and τ0 ≤ t ≤ 1− τ0 as follows:

C̃ =


C̃1

(
bnτ0c

)
, . . . , C̃1

(
bn(1− τ0)c

)
C̃2

(
bnτ0c) , . . . , C̃2(bn(1− τ0)c

)
... · · ·

...
C̃q
(
bnτ0c

)
, . . . , C̃q

(
bn(1− τ0)c

)

 .

Remark 2.1. Note that C̃s(bntc) is the generalization of the CUSUM statistic. For example, for m = 1

and θs = EXs, C̃s(bntc) reduces to the CUSUM statistic in (1.2) for the mean change point detection;
for m = 2 and θi,j = E((Xi − X ′i)(Xj − X ′j)/2), C̃i,j(bntc) is the CUSUM statistic for the vari-
ance/covariance change point detection. More examples can be found in Csörgő and Horváth (1997).

2.3 Two new (s0, p)-norm-based test statistics

In Section 2.2, we introduce the U -statistic-based CUSUM matrix C̃. The challenge for high dimen-
sional change point detection is how to aggregate C̃ efficiently. In this section, we introduce two methods
for aggregating C̃ according to the alternative structures, and the change point locations. To that end, we
investigate the following two different scenarios.

2.3.1 Case I: common change point location

We first consider the case where all γ coordinates with a change point have a common change
point location. In other words, there exists t∗ ∈ [τ0, 1 − τ0] such that t̃s = t∗ for all s ∈ Πγ . For a
simple illustration, we generate a 200 × 100 data matrix X = (Xi,j). The rows of X correspond to
the observations, and the columns correspond to the coordinates. We generate a constant mean shift for
some columns after a change point. In particular, we generate X from the following mean shift model:

Xi,j =


εi,j , for 1 ≤ i ≤ n, and j ∈ (Πγ)c,

εi,j , for 1 ≤ i ≤ bnt̃jc, and j ∈ Πγ ,

δ + εi,j , for bnt̃jc+ 1 ≤ i ≤ n, and j ∈ Πγ ,

(2.4)

where εi,j is i.i.d N(0, 1) random variable for 1 ≤ i ≤ 200 and 1 ≤ j ≤ 100. For Model (2.4), we
set the change point location at t̃j = 0.5 for all j ∈ Πγ . We also consider two different alternative
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scenarios: the sparse case with a small γ, and the dense case with a large γ. For the sparse case, we
set γ = 5, Πγ = {10, 30, 50, 70, 90}, and the mean jump δ = 1. For the dense case, we set γ = 50,
Πγ = {1, 3, 5, . . . , 97, 99}, and δ = 0.5.

Figure 1 shows the corresponding heatmap of the CUSUM matrix C̃, and the CUSUM charts for
coordinates in Πγ for the sparse and dense cases, respectively. From the heatmap and the CUSUM
charts, we can make several observations about C̃. The rows of C̃ with a change point have very different
values. In particular, the column of C̃ at the middle of the observations contains the largest test statistic.
Furthermore, the CUSUM chart is maximized near the true change point location t∗ = 0.5 for all entries
in Πγ . Therefore, to efficiently aggregate C̃, we need to take the alternative pattern (rows of C̃) and the
change point location (columns of C̃) into consideration simultaneously. In order to construct our new
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Figure 1: Heatmap and CUSUM charts for sparse and dense alternatives with a com-
mon change point location. Top left: Heatmap of C̃ for γ = 5; Top right: CUSUM
charts of the corresponding 5 components in Π5. Bottom left: Heatmap of C̃ for
γ = 50; Bottom right: CUSUM charts of 10 randomly selected components in Π50.

test statistics, we consider both the change point location and the alternative pattern. For the change
point location, let C̃(bntc) = (C̃1(bntc), . . . , C̃q(bntc))> be the column of the CUSUM matrix C̃ at the
location t with τ0 ≤ t ≤ 1 − τ0. In this example, there is a common change point location at t∗ = 0.5.
Therefore, C̃(bnt∗c) contains the most information among all columns of C̃. For the alternative pattern,
it can be either sparse or dense in real applications. To capture the underlying (unknown) alternative
structures, we adopt the (s0, p)-norm proposed by Zhou et al. (2018) to aggregate C̃(bnt∗c). The (s0, p)-
norm is essentially the Lp norm of the s0-largest entries of the corresponding vector. In particular, for
v = (v1, . . . , vd)

> ∈ Rd, with |v(1)| ≤ · · · ≤ |v(d)| being the ordered statistic for |v1|, . . . , |vd|, its
(s0, p)-norm is defined as

‖v‖(s0,p) :=
( d∑
j=d−s0+1

|v(j)|p
)1/p

.
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By adopting the (s0, p)-norm, for a given s0, ‖C̃(bnt∗c)‖(s0,p) with a small p (e.g. p = 1, 2) is more
sensitive to dense alternatives with a small change on many entries; ‖C̃(bnt∗c)‖(s0,p) with a large p (e.g.
p = ∞) is more sensitive to sparse alternatives with a large change on a few entries. As t∗ is typically
unknown, we scan all possible locations with t ∈ [τ0, 1 − τ0]. Hence, for a fixed s0, with known σs,s,
we propose the (s0, p)-norm-based oracle individual test statistic as follows:

T̃(s0,p) = max
τ0≤t≤1−τ0

∥∥C̃(bntc)
∥∥

(s0,p)
, for 1 ≤ p ≤ ∞. (2.5)

By definition, T̃(s0,p) generalizes the existing methods for aggregating C̃ by choosing a proper s0

or p. For example, by setting s0 = d and p = 2, T̃(s0,p) is the L2 aggregation in Zhang et al. (2010);
by setting p = ∞, T̃(s0,p) is the L∞ aggregation in Jirak (2015); by setting s0 = s0(πthr) and p =

1, T̃(s0,p) is the thresholded L1 aggregation in Cho and Fryzlewicz (2015), where πthr is a threshold
variable. Furthermore, T̃(s0,p) fully takes the alternative pattern and the common change point location
into consideration. As shown in our numerical studies, for any given alternative structure, there is at
least one test in T̃(s0,p) with 1 ≤ p ≤ ∞ performing well by choosing a proper p. Note that s0 is a pre-
specified parameter. The following sensitivity analysis shows that the individual tests are robust against
the choice of s0 given it is not too small. More discussions about its choice are provided in Section 4.

2.3.2 Case II: different change point locations

In Section 2.3.1, we propose T̃(s0,p) in (2.5) for the general hypothesis (1.1) when all coordinates in
Πγ have a common change point location. In real applications, the change point time t̃s for s ∈ Πγ can
be different. To illustrate this scenario briefly, we also generate a 200× 100 dataset by Model (2.4). The
only difference between Case II and Case I is that the change point location t̃s for θs (s ∈ Πγ) can be
different in the current example. In particular, for the sparse case with γ = 5, we set the change point
locations for the 5 components with a change point at t̃s = 0.25, 0.35, 0.45, 0.55, and 0.65, respectively;
for the dense case with γ = 50, we randomly divide the corresponding 50 change point locations into 5
groups, and each group contains 10 components having a common change point location. Specifically,
the 5 groups are {0.15, · · · , 0.15} (group 1), {0.3, · · · , 0.3} (group 2), {0.45, · · · , 0.45} (group 3),
{0.6, · · · , 0.6} (group 4), and {0.75, · · · , 0.75} (group 5).

Figure 2 shows the heatmap and the CUSUM charts for Case II. Similar to Case I, the rows of C̃ with
a change point have more different values than those without. Different from Case I, the information for
the column of C̃ is not centered at a certain location. Moreover, each column C̃(bntc) with τ0 ≤ t ≤
1 − τ0 only contains at most 1 out of 5 components in Πγ for the sparse case, and 10 out of 50 for the
dense case. Consequently, it is inefficient to first aggregate C̃(bntc) with the (s0, p)-norm at each time
point bntc with τ0 ≤ t ≤ 1− τ0.

To construct powerful test statistics for Case II, we first aggregate the rows of C̃ instead of aggre-
gating the columns. In particular, let B̃s = maxτ0≤t≤1−τ0 |C̃s(bntc)| be the maximum of the absolute
values of CUSUM statistic for θs with 1 ≤ s ≤ q. Let B̃ = (B̃1, . . . , B̃q)

> be the aggregated vector.
Then we aggregate B̃ with the (s0, p)-norm, and propose the (s0, p)-norm-based oracle individual test
statistic as follows:

W̃(s0,p) =
∥∥B̃∥∥

(s0,p)
, for 1 ≤ p ≤ ∞. (2.6)
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Figure 2: Heatmap and CUSUM charts for sparse and dense alternatives with different
change point locations. Top left: Heatmap of C̃ for γ = 5; Top right: CUSUM charts
of the corresponding 5 components in Π5. Bottom left: Heatmap of C̃ for γ = 50;
Bottom right: CUSUM charts of 10 randomly selected components in Π50.

By definition, W̃(s0,p) has the following properties: For p =∞, it equals to T̃(s0,p), and also the L∞
aggregation in Jirak (2015) and Yu and Chen (2017). In addition, by allowing different change point
locations among the coordinates, W̃(s0,p) reduces the information loss by first aggregating the rows of C̃.
Furthermore, W̃(s0,p) can capture the alternative pattern by adopting the (s0, p)-norm. In particular, for
a fixed s0, W̃(s0,p) with a large p (e.g. p = ∞) is sensitive to sparse alternatives with large deviations,
and W̃(s0,p) with a small p (e.g. p = 1, 2) is powerful against dense alternatives with small deviations.
Consequently, for any given alternative pattern, there exists at least one powerful test in W̃(s0,p) with
1 ≤ p ≤ ∞. As shown by our numerical studies, W̃(s0,p) has better power performance than T̃(s0,p)

when the change point locations for θs with s ∈ Πγ are different.
Note that Zhou et al. (2018) constructed their test statistics for one- or two-sample tests based on

the (s0, p)-norm. Considering the particular change point problem in (1.1), we propose our individual
test statistics which are very different from Zhou et al. (2018). Specifically, we first construct the U -
statistic-based CUSUM matrix C. To aggregate C efficiently, we take both the change point locations
and alternative structures into account, and propose two types of individual test statistics. With the
above flexible aggregations, many existing statistics can be viewed as special cases of our individual test
statistics. We believe our proposed test statistics are novel in the context of high dimensional change
point analysis. In contrast, there is no need to deal with the unknown change point in Zhou et al. (2018).
They mainly developed their test statistics using the aggregation of U -statistic-based vectors.
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2.4 Jackknife-based variance estimation for σs,s

In Section 2.3, we have introduced two types of the (s0, p)-norm-based oracle individual test statis-
tics T̃(s0,p) and W̃(s0,p). By definition, both statistics depend on σs,s = Var(h1,s(X)). The Hoeffding’s
projection h1,s(X) in (2.1) is unknown. Consequently, we can not apply T̃(s0,p) and W̃(s0,p) directly
for the hypothesis (1.1) because of the unknown σs,s. In this section, we introduce a jackknife-based
variance estimator for σs,s.

Note that jackknife is a widely used method for estimating the unknown variances in U -statistics.
For example, Zhou et al. (2018) adopted jackknife for estimating the variances in their test statistics.
However, since there is no concern about the unknown change point, the estimation in Zhou et al. (2018)
is essentially based on i.i.d observations. Different from Zhou et al. (2018), in what follows, we propose
jackknife-based pooled variance estimators {σ̂bntc,s,s, τ0 ≤ t ≤ 1 − τ0, 1 ≤ s ≤ q}, to deal with the
unknown change point, which is an established approach in the context of change point analysis.

We first consider the order m ≥ 2 for the kernel used in (1.1). For each time point bntc with
t ∈ [τ0, 1− τ0], we define the jackknife estimator for h1,s(Xk) before and after bntc as:

Qbntc,s,k :=
(bntc−1

m−1
)−1 ∑

1≤`1<···<`m−1≤bntc
`j 6=k,j=1,...,m−1

Φs(Xk,X`1 , . . . ,X`m−1
), for 1 ≤ k ≤ bntc,

Qbntc∗,s,k :=
(bntc∗−1

m−1
)−1 ∑

bntc+1≤`1<···<`m−1≤n
`j 6=k,j=1,...,m−1

Φs(Xk,X`1 , . . . ,X`m−1
), for bntc+ 1 ≤ k ≤ n.

Then based on Qbntc,s,k and Qbntc∗,s,k, our jackknife estimator for σs,s is defined as follows:

σ̂bntc,s,s =
1

n

( bntc∑
k=1

(Qbntc,s,k − θ̂bntc,s)2 +

n∑
k=bntc+1

(Qbntc∗,s,k − θ̂bntc∗,s)2
)
,

where θ̂bntc,s and θ̂bntc∗,s are defined in (2.2).
Next we consider the kernel with an order m = 1, where θ̂bntc,s and θ̂bntc∗,s are reduced to

θ̂bntc,s =
1

bntc

bntc∑
k=1

Φs(Xk), and θ̂bntc∗,s =
1

bntc∗
n∑

k=bntc+1

Φs(Xk),

and Qbntc,s,k, Qbntc∗,s,k are reduced to Φs(Xk). Consequently, for m = 1, the jackknife estimator in
(2.4) reduces to the classical pooled variance estimation in Csörgő and Horváth (1997):

σ̂bntc,s,s =
1

n

( bntc∑
k=1

(Φs(Xk)− θ̂bntc,s)2 +
n∑

k=bntc+1

(Φs(Xk)− θ̂bntc∗,s)2
)
.

Under H0, our theoretical results show that max
1≤s≤q

max
τ0≤t≤1−τ0

|σ̂bntc,s,s − σs,s| = op(1) (see Remark C.1

in the Supplementary Material). We can replace σs,s in (2.3) by its estimator σ̂bntc,s,s for 1 ≤ s ≤ q,
and define the following data-driven CUSUM statistic:

Cs(bntc) =
√
n
bntc
n

bntc∗

n
σ̂
−1/2
bntc,s,s

(
θ̂bntc,s − θ̂bntc∗,s

)
, and Bs = max

τ0≤t≤1−τ0
|Cs(bntc)|.
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Define C(bntc) = (C1(bntc), . . . , Cq(bntc))>, and B = (B1, . . . , Bq)
>. Note that there are no un-

known parameters inC(bntc) andB. Then we define our two types of the (s0, p)-norm-based individual
test statistics as follows:

T(s0,p) = max
τ0≤t≤1−τ0

∥∥C(bntc)
∥∥

(s0,p)
, and W(s0,p) =

∥∥B∥∥
(s0,p)

. (2.7)

Throughout this paper, we use T(s0,p) and W(s0,p) with 1 ≤ p ≤ ∞ as our individual test statistics for
the general hypothesis (1.1).

2.5 Bootstrap procedure for the asymptotic distributions of T(s0,p) and W(s0,p)

In Section 2.4, we introduce two types of the (s0, p)-norm-based individual test statistics T(s0,p) and
W(s0,p) with 1 ≤ p ≤ ∞. As n, d, and q go to infinity, it is difficult to obtain their limiting distributions
directly. To overcome this problem, in this section, we introduce the multiplier bootstrap method for
approximating the limiting distributions of T(s0,p) and W(s0,p).

We first review the literature on the multiplier bootstrap method both in low dimensions, and high
dimensions. In the low dimensional case, the multiplier bootstrap method is well studied. For example,
Janssen (1994); Wang and Jing (2004) investigated this method for U -statistics. Gombay and Horváth
(1999); Bücher and Kojadinovic (2016) applied the multiplier bootstrap method for U -statistic-based
change point detection with independent, and dependent observations, respectively. In the high dimen-
sional setting, Chernozhukov et al. (2017) first introduced the multiplier bootstrap method for sums of
independent random vectors. In particular, letX1, . . . ,Xn be centered d-dimensional independent ran-
dom vectors, then the multiplier bootstrap version of X1, . . . ,Xn are ε1X1, . . . , εnXn, where (εi)

n
i=1

are i.i.d N(0, 1) random variables. According to Chernozhukov et al. (2017), for some set A, we can
approximate P(n−1/2

∑n
i=1Xi ∈ A) by P(n−1/2

∑n
i=1 εiXi ∈ A|X ) under some regular conditions.

As extensions, Chen (2018) and Zhou et al. (2018) generalized the multiplier bootstrap scheme to the
high dimensional U -statistic-based vectors with the L∞-norm, and the (s0, p)-norm, respectively. Jirak
(2015) also applied this method for the high dimensional mean change point detection, and obtained the
critical value for their L∞-based test statistics.

To approximate the limiting distributions of T(s0,p) and W(s0,p), we investigate the multiplier boot-
strap method for the high dimensional U -process with the (s0, p)-norm. Specifically, let εb1, . . . , ε

b
n be

i.i.d N(0, 1) random variables with b = 1, . . . , B. For 1 ≤ s ≤ q and τ0 ≤ t ≤ 1− τ0, we set

θ̂bbntc,s =
(bntc
m

)−1 ∑
1≤k1<···<km≤bntc

(εbk1
+ · · ·+ εbkm)

(
Φs(Xk1 , . . . ,Xkm)− θ̂bntc,s

)
,

θ̂bbntc∗,s =
(bntc∗

m

)−1 ∑
(bntc+1)≤k1<···<km≤n

(εbk1
+ · · ·+ εbkm)

(
Φs(Xk1 , . . . ,Xkm)− θ̂bntc∗,s

)
,

(2.8)
as the bootstrap version of θ̂bntc,s and θ̂bntc∗,s, where θ̂bntc,s and θ̂bntc∗,s are defined in (2.2). Then,
based on θ̂bbntc,s and θ̂bbntc∗,s, we define the corresponding bootstrap version of Cs(bntc) and Bs as:

Cbs(bntc) =
√
n
bntc
n

bntc∗

n
σ̂
−1/2
bntc,s,s

(
θ̂bbntc,s − θ̂

b
bntc∗,s

)
, and Bb

s = max
τ0≤t≤1−τ0

|Cbs(bntc)|. (2.9)
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Based on (2.9), we define the vector-valued process Cb(bntc) andBb as:

Cb(bntc) =
(
Cb1(bntc), . . . , Cbq(bntc)

)>
, and Bb =

(
Bb

1, . . . , B
b
q

)>
. (2.10)

Now, the b-th multiplier bootstrap version of the individual test statistics are defined as:

T b(s0,p) = max
τ0≤t≤1−τ0

∥∥Cb(bntc)
∥∥

(s0,p)
, and W b

(s0,p)
=
∥∥Bb

∥∥
(s0,p)

, with 1 ≤ p ≤ ∞. (2.11)

Given the significance level α, let

cTα,(s0,p) := inf{t ∈ R : P(T(s0,p) ≤ t) ≥ 1−α}, and cWα,(s0,p) := inf{t ∈ R : P(W(s0,p) ≤ t) ≥ 1−α}

be the oracle critical values for T(s0,p) and W(s0,p), respectively. Based on the bootstrap samples
{T 1

(s0,p)
, . . . , TB(s0,p)} and {W 1

(s0,p)
, . . . ,WB

(s0,p)
}, we can estimate cTα,(s0,p) and cWα,(s0,p) by

ĉTα,(s0,p) = inf
{
t :

∑B
b=1 1{T b

(s0,p)
≤t}

B ≥ 1− α
}
, and ĉWα,(s0,p) = inf

{
t :

∑B
b=1 1{W b

(s0,p)
≤t}

B ≥ 1− α
}
.

Hence, based on the estimated critical values ĉTα,(s0,p) and ĉWα,(s0,p), we define our two types of the
(s0, p)-norm-based individual tests as:

ΨTα,(s0,p) = 1
{
T(s0,p) ≥ ĉTα,(s0,p)

}
, and ΨWα,(s0,p) = 1

{
W(s0,p) ≥ ĉWα,(s0,p)

}
.

For T(s0,p), we reject H0 if and only if ΨTα,(s0,p) = 1. Similarly, for W(s0,p), we reject H0 if and only if
ΨWα,(s0,p) = 1. Let PT,(s0,p) and PW,(s0,p) be the theoretical P -values for T(s0,p) and W(s0,p) respectively.
Then based on the bootstrap samples, we can approximate them by

P̂T,(s0,p) =

∑B
b=1 1{T b(s0,p) > T(s0,p)}

B + 1
, and P̂W,(s0,p) =

∑B
b=1 1{W b

(s0,p)
> W(s0,p)}

B + 1
. (2.12)

Therefore, given the significance level α, for T(s0,p), we reject H0 if and only if P̂T,(s0,p) ≤ α. Similarly,
for W(s0,p), we reject H0 if and only if P̂W,(s0,p) ≤ α.

2.6 Two types of data-adaptive tests

In Sections 2.3 and 2.5, we introduce two types of the (s0, p)-norm-based individual test statistics
T(s0,p) and W(s0,p), and use the multiplier bootstrap method to approximate their limiting distributions.
Under a given alternative pattern, both T(s0,p) and W(s0,p) have different power performance among
various p for a fixed s0. For example, T(s0,1) and W(s0,1) are more sensitive to alternatives with small
deviations on a large number of coordinates. In contrast, T(s0,∞) andW(s0,∞) are more powerful against
alternatives with large perturbations on a small number of coordinates. Empirically, the alternative
structure is typically unknown. Theoretically, there is also no uniformly powerful test for all alternative
patterns (Cox and Hinkley (1979)). Therefore, it is desirable to construct a data-adaptive method which
is simultaneously powerful under various alternative scenarios.

As a small P -value leads to rejection of H0, for T(s0,p) and W(s0,p) with 1 ≤ p ≤ ∞, we construct
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the corresponding data-adaptive test statistic as their minimum P -value. In particular, our two types of
data-adaptive test statistics are as follows:

Tad = min
p∈P

P̂T,(s0,p), and Wad = min
p∈P

P̂W,(s0,p), (2.13)

where P̂T,(s0,p) and P̂W,(s0,p) are defined in (2.12), and P is a candidate subset of p.
In this paper, we require that #{P} is finite. Our theoretical results in Section 3 require this condi-

tion. In practice, if the alternative structure is known, we can choose P accordingly. For example, we
can choose P = {1, 2} for dense alternatives, and P = {∞} for sparse alternatives. However, if the
alternative structure is unknown, we can choose P consisting both small and large p ∈ {1, . . . ,∞}. For
example, we recommend to use P = {1, 2, 3, 4, 5,∞} in real applications, which has been shown by
our numerical studies to enjoy high powers as well as relatively low computational cost. Algorithm 1
describes our procedure to construct Tad and Wad.

Algorithm 1 : A bootstrap procedure to obtain Tad and Wad

Input: Given the data X = {X1, . . . ,Xn}, set the values for s0, τ0, the bootstrap replication number
B, and the candidate subset P .

Step 1: Calculate T(s0,p) and W(s0,p) for p ∈ P as defined in (2.7).

Step 2: Repeat the procedure (2.8) – (2.11) for B times, and obtain the bootstrap samples
{T 1

(s0,p)
, . . . , TB(s0,p)}, and {W 1

(s0,p)
, . . . ,WB

(s0,p)
} for p ∈ P .

Step 3: Based on the bootstrap samples in Step 2, calculate empirical P -values P̂T,(s0,p) and P̂W,(s0,p)
for p ∈ P as defined in (2.12).

Step 4: Using P̂T,(s0,p) and P̂W,(s0,p) with p ∈ P , calculate the two data-adaptive test statistics Tad and
Wad as defined in (2.13).

Output: Algorithm 1 provides the multiplier bootstrap samples {T 1
(s0,p)

, . . . , TB(s0,p)} and
{W 1

(s0,p)
, . . . ,WB

(s0,p)
} with p ∈ P , and the data-adaptive test statistics Tad and Wad.

Using Algorithm 1, we construct two types of data-adaptive test statistics Tad andWad. Let FT,ad(x)

and FW,ad(x) be their distribution functions, respectively. Neither FT,ad(x) nor FW,ad(x) is known.
Consequently, we can not use Tad or Wad directly for the hypothesis (1.1). To approximate their cor-
responding P -values, we adopt the low-cost bootstrap method proposed by Zhou et al. (2018). The
main idea of the low-cost bootstrap procedure is to utilize the bootstrap samples {T 1

(s0,p)
, . . . , TB(s0,p)}

and {W 1
(s0,p)

, . . . ,WB
(s0,p)
} efficiently. Specifically, for b = 1, . . . , B, we set the b-th low-cost bootstrap

sample for the theoretical P -values of T(s0,p) and W(s0,p) as:

P̂ bT,(s0,p) =
1

B

∑
b′ 6=b

1
{
T b
′

(s0,p)
> T b(s0,p)

}
, and P̂ bW,(s0,p) =

1

B

∑
b′ 6=b

1
{
W b′

(s0,p)
> W b

(s0,p)

}
. (2.14)
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Then, we define the b-th bootstrap sample for the data-adaptive test statistics Tad and Wad as:

T bad′ = min
p∈P

P̂ bT,(s0,p), and W b
ad′ = min

p∈P
P̂ bW,(s0,p). (2.15)

Let PT,ad and PW,ad be the theoretical P -values for Tad and Wad, respectively. Based on the bootstrap
samples {T 1

ad′ , . . . , T
B
ad′} and {W 1

ad′ , . . . ,W
B
ad′}, we approximate PT,ad and PW,ad by

P̂T,ad =
1

B + 1

B∑
b=1

1
{
T bad′ ≤ Tad

}
, and P̂W,ad =

1

B + 1

B∑
b=1

1
{
W b

ad′ ≤Wad

}
. (2.16)

Algorithm 2 describes our method to obtain P̂T,ad and P̂W,ad. Using Algorithm 2, we obtain the esti-

Algorithm 2 : A low-cost bootstrap procedure for approximating P -values for Tad and Wad

Input: Use the bootstrap samples {T 1
(s0,p)

, . . . , TB(s0,p)} and {W 1
(s0,p)

, . . . ,WB
(s0,p)
} with p ∈ P from

Algorithm 1.

Step 1: For p ∈ P , get the low-cost bootstrap samples P̂ bT,(s0,p) and P̂ bW,(s0,p) with 1 ≤ b ≤ B as
defined in (2.14).

Step 2: Calculate the b-th bootstrap sample T bad′ and W b
ad′ with 1 ≤ b ≤ B for the data-adaptive test

statistics as defined in (2.15)

Step 3: Based on {T 1
ad′ , . . . , T

B
ad′}, and {W 1

ad′ , . . . ,W
B
ad′} from Step 2, calculate the empirical P -values

P̂T,ad and P̂W,ad for the data-adaptive tests as defined in (2.16).

Output: Algorithm 2 provides low-cost bootstrap samples {T 1
ad′ , . . . , T

B
ad′} and {W 1

ad′ , . . . ,W
B
ad′} for

the data-adaptive statistics Tad and Wad, and their empirical P -values P̂T,ad and P̂W,ad.

mated P -values for the two types of data-adaptive test statistics. Therefore, given the significance level
α, we define the two data-adaptive tests as:

ΨTα,ad = 1{P̂T,ad ≤ α}, and ΨWα,ad = 1{P̂W,ad ≤ α}.

For the data-adaptive test Tad, we reject H0 if and only if ΨTα,ad = 1. Similarly, for Wad, we reject
H0 if and only if ΨWα,ad = 1. More detailed illustrations of Algorithms 1 and 2 are provided in the
Supplementary Material.

3 Theoretical properties

In this section, we discuss theoretical properties of our two types of the (s0, p)-norm-based individ-
ual tests as well as the data-adaptive tests. In Section 3.1, we introduce some assumptions. Based on
that, in Section 3.2, we discuss the size and power properties of the (s0, p)-norm-based tests. In Section
3.3, we present some theoretical properties of the data-adaptive methods.

Note that both this paper and Zhou et al. (2018) adopt the bootstrap procedure to approximate the
corresponding test statistics’ limiting distributions. The latter extended the bootstrap procedure of mean
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vectors (Chernozhukov et al. (2017)) to U -statistic-based vectors. However, the validity of our bootstrap
procedure for change point analysis does not follow directly from Chernozhukov et al. (2017) and Zhou
et al. (2018). Specifically, considering the series dependence in the CUSUM matrix C, our two types
of individual test statistics designed for the change point detection require substantial modifications for
Gaussian approximations developed in Chernozhukov et al. (2017); Zhou et al. (2018). Furthermore, as
shown in what follows, the analysis of alternatives also requires careful handling of nuisance parameters
derived from model misspecifications, which is also fundamentally different from Zhou et al. (2018).

3.1 Basic assumptions

We introduce some notations and several basic assumptions needed for our theorems. Forx,x1, . . . ,xm ∈
Rd, we define

Ψ(x1, . . . ,xm) :=
(
Ψ1(x1, . . . ,xm), . . . ,Ψq(x1, . . . ,xm)

)>
,

h(x) :=
(
h1,1(x), . . . , h1,q(x)

)>
,

where Ψs(x1, . . . ,xm) = Φs(x1, . . . ,xm)−θs is the centralized kernel, and h1,s(x) is defined in (2.1).
We also set Vs0 := {v ∈ Sq−1 : ‖v‖0 ≤ s0}, where Sq−1 := {v ∈ Rq : ‖v‖ = 1}. With the notations,
we then introduce our assumptions as follows:

(A.0) Suppose there exists τ0 ∈ (0, 0.5) such that τ0 ≤ t̃s ≤ 1− τ0 for s ∈ Πγ .

(A.1) There exists 0 < δ < 1/7 such that s2
0 log(qn) = O(nδ).

(A.2) For different indices 0 < i1 < · · · < im < n, we require

max
1≤s≤q

E
(

exp(|Ψs(Xi1 , . . . ,Xim)|/K)
)
≤ 2, for some constant K > 0.

(A.3) There is a constant b > 0, such that E|v>h(X)|2 ≥ b, for all v ∈ Vs0 .

(A.4) For ` = 1, 2, we require max1≤s≤q E|h1,s(X)|2+` ≤ K`.

Assumption (A.0) requires that the relative change point location t̃s is strictly bounded away from
the beginning or end of data observations, which is a common assumption in the literature (Jirak, 2015;
Dette and Gösmann, 2018). It is also a minimum sample size requirement to justify the asymptotic
properties of our new tests. Assumption (A.1) is a technical condition, which describes the scaling
relationships among s0, q, and n. Assumption (A.1) allows that s0 and q can go to infinity as n → ∞
as long as s2

0 log(qn) = O(nδ) for some 0 < δ < 1/7. Assumptions (A.2) – (A.4) are crucial
for proving the results of Gaussian approximations for our two types of (s0, p)-norm-based individual
test statistics. In particular, Assumptions (A.2) and (A.4) are moment conditions for the centered
kernel Ψs(·). Assumption (A.2) requires that Ψs(Xi1 , . . . ,Xim) follows sub-exponential distributions.
Many bounded kernels such as Wilcoxon or Kendall’s tau can satisfy this condition. Assumption (A.4)

requires that h1,s(X) has bounded third and forth moments. Assumption (A.3) requires that the U -
statistics are non-degenerate. Moreover, it requires that v>h(X) is also non-degenerate for any v ∈ Vs0 .
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3.2 Theoretical results of the two types of individual test statistics

In this section, we derive the theoretical properties for the two types of the (s0, p)-norm-based indi-
vidual test statistics, in terms of their size and power.

3.2.1 Size performance

We first consider their size properties. The following Theorem 3.1 justifies the uniform validity of
the bootstrap procedure for T(s0,p) and W(s0,p) in Algorithm 1. It is also crucial for the size control.

Theorem 3.1. For T(s0,p), suppose Assumptions (A.0) – (A.4) hold. Under H0, we have

sup
z∈(0,∞)

∣∣P(T(s0,p) ≤ z)− P(T b(s0,p) ≤ z|X )
∣∣ = op(1), as n, q →∞.

Similarly, for W(s0,p), suppose Assumptions (A.0) – (A.4) hold. Then under H0, we have

sup
z∈(0,∞)

∣∣P(W(s0,p) ≤ z)− P(W b
(s0,p)

≤ z|X )
∣∣ = op(1), as n, q →∞.

Under Theorem 3.1, the following Corollary 3.1 shows that our two types of the (s0, p)-norm-based
individual tests ΨTα,(s0,p) and ΨWα,(s0,p) defined in (2.7) have the asymptotic level of α.

Corollary 3.1. For T(s0,p), suppose Assumptions (A.0) – (A.4) hold. Under H0, we have

P(ΨTα,(s0,p) = 1)→ α, and P̂T,(s0,p) − PT,(s0,p)
P−→ 0, as n, q,B →∞.

Similarly, for W(s0,p), suppose Assumptions (A.0) – (A.4) hold. Then under H0, we have

P(ΨWα,(s0,p) = 1)→ α, and P̂W,(s0,p) − PW,(s0,p)
P−→ 0, as n, q,B →∞,

where PT,(s0,p) := 1 − FT(s0,p)
(T(s0,p)) and PW,(s0,p) := 1 − FW(s0,p)

(W(s0,p)) are the theoretical
P -values for T(s0,p) and W(s0,p), respectively, and P̂T,(s0,p) and P̂W,(s0,p) defined in (2.16) are the corre-
sponding approximations.

3.2.2 Power performance

We next discuss the oracle power properties. For simplicity, we first assume σs,s = Var(h1,s(X)) is
known. With known (σs,s)

q
s=1, we then define the oracle individual tests for T̃(s0,p) and W̃(s0,p) as

Ψ T̃α,(s0,p) = 1{T̃(s0,p) ≥ ĉ
T̃
α,(s0,p)

}, and Ψ W̃α,(s0,p) = 1{W̃(s0,p) ≥ ĉ
W̃
α,(s0,p)

},

where T̃(s0,p) is defined in (2.5), W̃(s0,p) is defined in (2.6), and ĉT̃α,(s0,p) and ĉW̃α,(s0,p) are the estimated

critical values for T̃(s0,p) and W̃(s0,p), respectively, by the corresponding multiplier bootstrap procedure.
To analyze the power for Ψ T̃α,(s0,p) and Ψ W̃α,(s0,p), we need to introduce some additional notations and
assumptions. Note that under H1, there is a change point of θs at the location bnt̃sc for s ∈ Πγ . We
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set θ(1)
s and θ(2)

s as the parameters for the coordinate s ∈ Πγ before bnt̃sc, and after bnt̃sc, respectively.
Then we define the oracle signal to noise ratio vectorD = (D1, . . . , Dq)

> (associated with t̃s) with

Ds :=

{
0, for s ∈ (Πγ)c∣∣t̃s(1− t̃s)(θ(2)

s − θ(1)
s )σ

−1/2
s,s

∣∣, for s ∈ Πγ .
(3.1)

Under H1, for each coordinate s ∈ Πγ , its change point location bnt̃sc divides the data into two parts
with different population distributions. More specifically, for each coordinate s, given the specified
kernel Φs(·), let XΦs be the corresponding sub-vector of (X1, . . . , Xd)

> according to the specified
kernel. Let XΦs

i be the i-th observation of the sub-vector XΦs for 1 ≤ i ≤ n. We assume that for
s ∈ Πγ , (XΦs

i )1≤i≤bnt̃sc
i.i.d∼ Ft̃s(x), and (XΦs

i )bnt̃sc+1≤i≤n
i.i.d∼ Gt̃s(x), where Ft̃s(x) and Gt̃s(x)

denote two different distribution functions. To simplify notations, we write XΦs
i as Xi for a given

kernel Φs. With basic notations, for s ∈ Πγ , we define

β(j)
s := EΦs(X

′
1, . . . ,X

′
j ,X

′
j+1, . . . ,X

′
m), for 1 ≤ j ≤ m− 1,

where X ′`
i.i.d∼ Ft̃s(x) for 1 ≤ ` ≤ j, and X ′`

i.i.d∼ Gt̃s(x) for j + 1 ≤ ` ≤ m. To simplify notations, we
write β(0)

s := θ
(1)
s , and β(m)

s := θ
(2)
s .

Note that for the mean change point problem with a kernel Φs = Xs, the sub-vector XΦs is Xs for
1 ≤ s ≤ d; for the Kendall’s tau correlation problem with Φi,j = sign(Xi − X ′i)sign(Xj − X ′j), the
sub-vectorXΦi,j is (Xi, Xj)

> for 1 ≤ i < j ≤ d.
We regard (β

(j)
s )m−1

j=1 defined in (3.2.2) as the parameters (cross terms) with mixing distributions.
For a given kernel Φs(·) with an order m, there are m − 1 cross terms under H1. For example, for
m = 1, there is no cross term; for m = 2, there is only one cross term, etc.

To analyze the power properties of the individual tests, we need the following assumption on the
parameters. In particular, we require:

(A.5) Suppose there exits M0 > 0 such that max
(

max
s∈Πγ

max
0≤j≤m

|β(j)
s |, max

s∈(Πγ)c
|θs|
)
≤M0.

After introducing the assumption on the parameters, to derive the power results, we also require the
following Assumption (A.1)′ on the scaling relationships among s0, q, and n:

(A.1)′ We require log q = o(n1/3) and n = o(exp(logδ1(q))) for some 0 < δ1 < 1. Moreover, we
assume ∃δ2 > 0 such that s0 = logδ2(q).

Under basic assumptions, Theorem 3.2 presents the power results for T̃(s0,p) and W̃(s0,p).

Theorem 3.2. Suppose that Assumptions (A.0), (A.1)′, (A.2) – (A.5) hold. Let εn = o(1) satisfy
εn
√

log(q(n− 2bnτ0c))→∞ as n, q →∞. If H1 holds with

√
n
∥∥D∥∥

(s0,p)
≥ s0(1 + εn)C−1

0

(
A0

√
2 log(q(n− 2bnτ0c)) +

√
2 log(α−1)

)
, (3.2)

then for both T̃(s0,p) and W̃(s0,p), we have

P(Ψ T̃α,(s0,p) = 1)→ 1, and P(Ψ W̃α,(s0,p) = 1)→ 1, as n, q,B →∞,
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where A0 and C0 are universal positive constants only depending on M0, b and K.

Theorem 3.2 shows that with probability tending to one, the oracle individual tests Ψ T̃α,(s0,p) and

Ψ W̃α,(s0,p) can detect the change points as long as the signal-noise ratio vectorD satisfies Condition (3.2).
By (3.1) and (3.2), we see that it is more likely to reject H0 if the change point location t̃s with s ∈ Πγ

gets closer to the middle of the data observations. Note that the scaling relationships among s0, n, and q
in Assumption (A.1)′ are weaker than those in Assumption (A.1), which allows larger q to reject H0.

As an important remark, we discuss the value of C0 in (3.2), which characterizes the lower bound
of the signal-noise ratio vector D for rejecting H0. In particular, by (3.2), it is more likely to reject H0

when C0 > 1 than C0 ≤ 1. Essentially, the value of C0 relies on the relationships among the parameters
θ

(1)
s , θ(2)

s , and the cross terms (β
(j)
s )m−1

j=1 . To see this, for s ∈ Πγ , by letting βs =
(
β

(0)
s , . . . , β

(m)
s

)>,
we define δs(t; t̃s,βs) as:

δs(t; t̃s,βs) = lim
n→∞

bntcbntc∗

n2
E
(
θ̂bntc,s − θ̂bntc∗,s

)
, with t ∈ [τ0, 1− τ0]. (3.3)

The function δs(t; t̃s,βs) characterizes the expected signal jump at each time point t. On one hand,
for s ∈ Πγ , if the signal jump |θ(1)

s − θ(2)
s | is large enough such that the true change point location t̃s

maximizes |δs(t; t̃s,βs)|, we have C0 ≤ 1 as shown in our proof. On the other hand, if the values of
cross terms (β

(j)
s )m−1

j=1 are much bigger than those of the true parameters θ(1)
s and θ(2)

s such that t̃s fails
to maximize |δs(t; t̃s,βs)|, we have C0 > 1. In this case, by (3.2), it is more likely to reject H0. From
this aspect, the cross terms under H1 provide useful information for the change point detection, although
they may have a negative effect on the identification of the true change point location t̃s.

Note that for the kernel Φs(·) with an order m = 1, the function δs(t; t̃s,βs) reduces to

δs(t; t̃s, θ
(1)
s , θ(2)

s ) =


t(1− t̃s)

(
θ

(1)
s − θ(2)

s

)
, t ∈ [τ0, t̃s],

(1− t)t̃s
(
θ

(1)
s − θ(2)

s

)
, t ∈ [t̃s, 1− τ0].

In this case, t̃s = arg maxt |δs(t; t̃s,βs)| always holds for all s ∈ Πγ . Consequently, as a special case,
we can set the constant C0 = 1 in (3.2) for the mean change point detection.

3.3 Theoretical properties of the two types of data-adaptive test statistics

In Section 3.2, we present theoretical properties of our two types of the (s0, p)-norm-based individual
test statistics T(s0,p) and W(s0,p). In this section, we discuss the size and power properties of the data-
adaptive tests ΨTα,ad and ΨWα,ad introduced in (2.6). To present the theorems below, it is necessary to make
one additional Assumption (A.1)′′. Since Assumption (A.1)′′ is more technically involved and does
not add much to our understanding of the main results, we include it in the supplementary material.

The following Theorem 3.3 justifies the validity of the low-cost bootstrap procedure in Algorithm 2.
It also shows that our data-adaptive tests have the asymptotic level of α.

Theorem 3.3. For Tad, suppose Assumptions (A.0), (A.1)′′, (A.2) – (A.4) hold. Under H0, we have

P(ΨTα,ad = 1)→ α, and P̂T,ad − P̃T,ad
P−→ 0, as n, q,B →∞.
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Similarly, for Wad, suppose Assumptions (A.0), (A.1)′′, (A.2) – (A.4) hold. Under H0, we have

P(ΨWα,ad = 1)→ α, and P̂W,ad − P̃W,ad
P−→ 0, as n, q,B →∞.

After analyzing the size, we now discuss the power. Similar to Theorem 3.2, we first assume that
σs,s = Var(h1,s(X1)) is known. The following Theorem 3.4 shows that under some regular conditions,
our two types of data-adaptive tests can reject the null hypothesis with probability tending to one.

Theorem 3.4. Suppose Assumptions (A.0), (A.1)′, (A.2) – (A.5) hold. Let εn = o(1) satisfy
εn
√

log(q(n− 2bnτ0c))→∞ as n, q →∞. If H1 holds with

√
n
∥∥D∥∥

(s0,p)
≥ s0(1 + εn)C−1

0

(
A0

√
2 log(q(n− 2bnτ0c)) +

√
2 log(#{P}/α)

)
, (3.4)

then for both Tad and Wad, we have

P(ΨTα,ad = 1)→ 1, and P(ΨWα,ad = 1)→ 1, as n, q,B →∞,

where A0 is a positive constant only depending on M0, b and K, and C0 is a universal positive constant.

So far we have been focusing on the case with known σs,s. In real applications, σs,s is typically
unknown. In that case, we can show that the results still hold if the variance estimator satisfies some
conditions. As discussed in Shao and Zhang (2010), inappropriate estimation of σs,s can lead to non-
monotone power. Therefore, we need to control the estimation error of σ̂s,s under H1. Suppose the
variance estimators σ̂s,s with 1 ≤ s ≤ q satisfy

max
1≤s≤q

|σ̂s,s − σs,s| = op

( 1√
log(qn)

)
. (3.5)

Then, under the same assumptions, Theorems 3.2 and 3.4 still hold by replacing σs,s by σ̂s,s.
In practice, to obtain appropriate estimators satisfying (3.5), we can first get the change point loca-

tion’s estimator for each coordinate by

t̂s = arg max
t∈[τ0,1−τ0]

∣∣∣√nbntc
n

bntc∗

n

(
θ̂bntc,s − θ̂bntc∗,s

) ∣∣∣, for 1 ≤ s ≤ q.

Then we put t̂s in σ̂bntc,s,s defined in (2.4) and obtain the final variance estimation as

σ̂s,s =
1

n

( bnt̂sc∑
k=1

(
Qbnt̂sc,s,k − θ̂bnt̂sc,s

)2
+

n∑
k=bnt̂sc+1

(
Qbnt̂sc∗,s,k − θ̂bnt̂sc∗,s

)2)
, for 1 ≤ s ≤ q. (3.6)

As shown by our extensive numerical studies, our new tests with the above estimators in (3.6) can control
the size well under H0 and have “reasonable” power performance under H1. Furthermore, the following
Proposition 3.5 shows that {σ̂s,s}1≤s≤q are uniformly consistent for the kernel with m = 1.

Proposition 3.5. Assume that Assumptions (A.0), (A.1)′, (A.2) – (A.5) hold. Under H1, suppose
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additionally that

lim sup
n,q→∞

log(n)

nδ2
min

= 0

holds, where δmin = mins∈Πγ |θ
(2)
s − θ(1)

s |. Then, for the kernel with an order m = 1, there exists a
sufficiently small universal constant C1 > 0 such that

max
1≤s≤q

|σ̂s,s − σs,s| = op(n
−C1). (3.7)

Proposition 3.5 shows that the variance estimators are uniformly consistent as long as the minimum
signal jump does not converge too fast to 0 as n and q tend to infinity. It is a mild modification of the
results in Section 3 of Jirak (2015). It is worth mentioning that it is challenging to extend the result in
(3.7) directly to the general case with an order m ≥ 2. One difficulty is that, to prove (3.7), we need to
justify the estimation consistency of t̂s for t̃s with s ∈ Πγ . However, this requires δs(t; t̃s,βs) in (3.3)
obtains its maximum absolute value at the true change point location t̃s, which involves complicated
discussions about the relationships among θ(1)

s , θ(2)
s , and the cross terms {β(j)

s }m−1
j=1 . Since this work is

beyond the scope of this paper, we leave it as a future research direction.

3.4 More discussions about the theoretical results

In this section, we compare our proposed methods with several other tests from a theoretical view-
point. In particular, we investigate the high dimensional efficiency as well as the detection boundary.

3.4.1 High dimensional efficiency

Note that Aston and Kirch (2018) introduced the asymptotic concept of high dimensional effi-
ciency to compare different tests’ detection powers. Specifically, recall the signal to noise ratio D =

(D1, . . . , Dq)
> as defined in (3.1). Define ∆ = (∆1, . . . ,∆q)

> with ∆s = θ
(2)
s − θ(1)

s . Then, the high
dimensional efficiency is defined as a rate at which ‖D‖2 or ‖∆‖2 is allowed to converge to zero such
that the asymptotical power is strictly above the nominal level α. Note that Ds = t̃s(1 − t̃s)σ−1/2

s,s ∆s.
Since ‖D‖2 � ‖∆‖2, according to Aston and Kirch (2018) (Definition 2.1), any tests using eitherD or
∆ have the same high dimensional efficiency. To compare different methods in a unified form, in this
section, we use ∆ to define the high dimensional efficiency.

With the above new concept, Aston and Kirch (2018) mainly investigated the properties of projection-
based tests, where they first used a vector p to project {Xi}ni=1 into a univariate data sequence {p>Xi}ni=1,
then they used {p>Xi}ni=1 to construct CUSUM statistics to detect the change point. As shown by As-
ton and Kirch (2018), choosing p = Σ−1∆ obtains the highest high dimensional efficiency, which
is defined as the oracle projection. Furthermore, the following Table 1 summarizes the efficiency of
different tests for high dimensional mean change point detection.

According to Table 1, the oracle projection with known ∆ and Σ has the highest efficiency. If the
underlying covariance structure is the identity, the two types of L2-based tests, designed for the dense
alternative, have an efficiency loss of an order q1/4 as compared to the oracle projection. Furthermore,
as shown in Aston and Kirch (2018) (Corollary 3.8), they perform similarly to the case of a random
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Table 1: High dimensional efficiency for change point tests

Methods Efficiency Methods Efficiency

Oracle Projection ‖Σ−1/2∆‖2 L∞- based
mins∈Πγ |∆s|

log1/2(n)
(Aston and Kirch (2018)) (Jirak (2015))

L2-based 1
q1/4
‖∆‖2 Double CUSUM

γϕ−1
∑
s∈Πγ

|∆s|

qϕ log(n)
(Horváth and Hušková (2012)) (Cho et al. (2016))

L2-based
‖∆‖2

q1/4(log(q log(n)))1/4
(s0, p)-norm-based

‖∆‖(s0,p)
s0 log1/2(q)

(Enikeeva and Harchaoui (2019))

projection if the covariance structure is non-identity. Our simulation studies further show that both
of them suffer from size distortions as the covariance matrix is far away from identity. Under sparse
alternatives with γ � 1, we note that, compared to the oracle case, Jirak (2015), Cho et al. (2016) with
ϕ = 0, and our (s0, p)-norm-based tests with a fixed s0 have only an efficiency loss of an order log(n)

or log(q). Furthermore, as shown in what follows, our new tests reach the detection boundary for sparse
change point alternatives, suggesting that our new tests are more efficient than other methods in the
sparse setting. For instance, suppose we have data with only two components having a change point,
i.e., γ = 2. Considering Table 1, our individual test with s0 = 2 and p = 2 has the highest efficiency
among all candidates.

3.4.2 Detection boundary under sparse alternatives

We note that the rates in (3.2) and (3.4) are rate-optimal for high dimensional change point detection
problems. In particular, Enikeeva and Harchaoui (2019) considered the minimax rate optimality of
the high dimensional mean change point detection for independent Gaussian random vectors with the
identity covariance matrix. Specifically, let γ = q1−β with β ∈ (0, 1) denote the sparsity of coordinates
with a change point. Suppose there is a common change point location at bnt∗c for some t∗ ∈ (0, 1),
and the signal strength satisfies |θ(2)

s − θ(1)
s | = an.q for all s ∈ Πγ . Then, under the high sparsity setting

with β ∈ (1/2, 1), they obtained the minimax separation rate of an order

an.q = C
( log(q)

nt∗(1− t∗)

)1/2
. (3.8)

In other words, there is noα-level test can correctly reject H0 uniformly over an.q = C∗

( log(q)

nt∗(1− t∗)

)1/2

for some very small C∗. Considering (3.2) and (3.4), to reject the null hypothesis, we require

‖D
∥∥

(s0,p)
≥ Cs0

( log(q)

nt∗(1− t∗)

)1/2
. (3.9)

Therefore, considering (3.8) and (3.9), with a fixed s0, both our two types of individual and data-adaptive
tests obtain the rate optimality for the sparse alternatives.
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Lastly, we note that the L2-based test in Enikeeva and Harchaoui (2019) almost reaches the detection
boundary for dense alternatives (β ∈ [0, 1/2])) with a rate of an order an,q = O

(
(log(q log(n)))1/2/(

√
nq1/4)

)
.

Although our tests do not reach that rate, they are still consistent for dense alternatives and have compa-
rable powers with that of Enikeeva and Harchaoui (2019) in terms of finite sample performance.

4 Simulation studies

In this section, we examine the empirical performance of our proposed methods in terms of size and
power, and compare them with several existing state-of-art techniques.

4.1 Model settings

We consider the mean change point problem. In particular, by letting θs = µs = EXs for 1 ≤ s ≤ d,
we consider the following hypothesis:

H0 : µ1,s = · · · = µn,s, for 1 ≤ s ≤ d, v.s.
H1 : ∃s ∈ {1, . . . , d} and t̃s ∈ (0, 1), s.t. µ1,s = · · · = µbnt̃sc,s 6= µbnt̃sc+1,s = · · · = µn,s.

To show the adaptivity of our methods, we compare the proposed new tests with several existing
methods for the high dimensional mean change point detection, including the classical Hotelling’s T 2

test (Hotelling; Srivastava and Worsley (1986)); L2-type tests: H&H (Horváth and Hušková, 2012)
and E&H (Enikeeva and Harchaoui, 2019); the L∞-type test (Jirak; Jirak (2015)); the double CUSUM
methods DC-0, DC-0.5, and DC-COM, where DC-COM is the combination of DC-0 and DC-0.5 (Cho
et al. (2016)); the projection-based methods with an oracle projection (Ora-Pro), random projection
(Ran-Pro), and a fixed angle projection 2π/5-Pro, where the angle between 2π/5-Pro and Ora-Pro is
2π/5 radian. More details can be found in Aston and Kirch (2018).

We consider the alternative scenario where (µs)s∈Πγ have a common change point location t∗, where
t∗ ∈ {0.3, 0.4, 0.5}. We set the sample size n = 200. The dimension d is in {100, 200, 300}, and the
bootstrap replication number B is 500. To show the broad applicability of our methods, we generate
data from different distributions with various covariance structures as in the following five models:

Model 1: We generate data from multivariate Gaussian distributions with the identity covariance
matrix Σ = Id.

Model 2: We generate data from multivariate Gaussian distributions with blocked diagonal Σ∗,
where Σ? = (σ?ij) ∈ Rd×d with σ?ii

i.i.d.∼ U(1, 2), σ?ij = 0.5 for 5(k − 1) + 1 ≤ i 6= j ≤ 5k

(k = 1, . . . , bd/5c), and σ?ij = 0 otherwise.
Model 3: We generate data from multivariate Gaussian distributions with banded Σ′, where Σ′ =

(σ′ij) ∈ Rd×d with σ′ij = 0.5|i−j| for 1 ≤ i, j ≤ d.
Model 4: We generate data from multivariate Gaussian distributions with non-sparse Σ as in Zhou

et al. (2018). The details are provided in the supplementary material.
Model 5 : We generate data from multivariate student t(5, Id) distributions.
For all models, we consider a wide range of alternative patterns including both sparse and dense

settings to compare the performance of these methods. Specifically, we set γ = 5, and γ = 100 for
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sparse and dense settings, respectively. We select Πγ randomly from {1, . . . , d}. Let δs = µ
(2)
s − µ(1)

s

be the mean shift for s ∈ Πγ which follows U(u1, u2). Under H0, we set u1 = u2 = 0. Under the
sparse alternative, we set u1 = 0, and u2 = c1

√
log(d)/n with a constant c1 > 0. Under the dense

alternative, we set u1 = 0, and u2 = c2

√
1/n for some constant c2 > 0. To avoid trivial powers,

we set different values of c1 and c2 for those five models. Specifically, from Models 1 to 5, we set
c1 = 5.5, 6.5, 5.5, 6.5, 6.5 and c2 = 3.5, 4.5, 4, 4.5, 5, respectively.

4.2 Size performance

We first consider the size performance. We set the significance level α = 0.05. For both T(s0,p) and
W(s0,p), we choose P = {1, 2, 3, 4, 5,∞}, and obtain the corresponding P -values by Algorithm 1. For
both Tad and Wad, we obtain the P -values via the low-cost bootstrap procedure in Algorithm 2. For
Hotelling, we approximate the distribution under H0 using the approximation method in Srivastava and
Worsley (1986). For H&H, following the suggestion by Horváth and Hušková (2012), we set the critical
value as 0.894. For E&H, we set the threshold as the 1−α/2n quantile of χ2(d) distribution. It is worth
mentioning that the above theoretical critical values for either E&H or H&H are obtained based on the
assumption that the cross-sectional structures among coordinates are independent. To compare these
two methods in a more equal fashion, we adopt the Generalised Dynamic Factor Model (GDFM) based
bootstrap algorithm proposed in Cho et al. (2016), to obtain their critical values empirically, which are
referred to E&H-Boot and H&H-Boot, respectively. As discussed in Cho et al. (2016), GDFM-based
bootstrap utilizes the representation property of the GDFM and is able to handle the cross-correlations
as well as within-series correlations of the panel data. For Jirak, we obtain the critical value by the
multiplier bootstrap method. For TϕDC, we use the algorithm proposed by Cho et al. (2016). Note that
the projection-based methods in Aston and Kirch (2018) rely on the information of the signal jump δ.
We do not report their size results here.

Table 2 demonstrates the empirical sizes for all these methods under Models 1 – 5. For Hotelling,
it is designed for multivariate normal distributions with d < n. In those settings, its sizes are under the
nominal level. For the L∞-typed method Jirak, it is a bit over-sized for all settings. Note that the L2-
typed tests H&H and E&H are designed for either independent coordinates or Gaussian distributions.
With naive asymptotic critical values, they suffer from serious size distortions for Models 2 – 5, indicat-
ing that they are no longer applicable to those settings. Furthermore, their empirical size performance
can be improved in most cases by adopting the bootstrap algorithm. The double CUSUM-based tests
can control the size well when the dimension is not very large (d = 100, 200). Their sizes become con-
servative with a relatively large dimension (d = 300). As for our data-adaptive tests T-AD and W-AD
with a fixed s0 = d/2, they can control the size correctly across various model settings and dimensions.

4.3 Power comparisons with several other existing state-of-art methods

We next compare the proposed new data-adaptive methods with other techniques in terms of change
point detection. Table 3 shows the power results of those methods for Model 1 under various change
point locations, dimensions, and alternative structures. To present the results more directly, for each
setting (t∗, γ, d), we mark tests having top three powers as bold and those having bottom three powers
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Table 2: Empirical sizes (%) for tests under Models 1 – 5 with τ0 = 0.2, α = 0.05,
n = 200, and B = 500, based on 2000 replications.

Settings d T-AD W-AD Hotelling Jirak H&H H&H-Boot E&H E&H-Boot DC-0 DC-0.5 DC-COM
model 1 100 4.65 4.45 2.65 8.60 8.65 8.84 1.25 5.62 4.50 5.65 4.55

200 5.15 5.05 NA 7.55 8.25 10.44 1.50 3.82 6.25 6.45 6.20
300 4.00 3.65 NA 8.70 7.45 0.8 1.10 2.11 0.00 0.50 0.00

model 2 100 4.70 5.70 3.50 8.20 21.95 18.17 10.80 10.04 4.70 11.75 4.60
200 4.50 4.35 NA 8.70 21.30 15.36 7.95 5.52 6.45 7.10 6.45
300 3.85 3.80 NA 8.80 22.65 6.63 8.90 7.13 0.10 2.85 0.10

model 3 100 5.85 5.55 2.65 7.10 28.85 21.29 13.40 6.93 5.30 8.00 5.45
200 5.05 4.55 NA 7.35 28.94 7.83 14.35 2.81 7.45 3.85 7.55
300 5.45 5.15 NA 8.65 28.80 8.63 13.85 6.02 0.20 3.40 0.20

model 4 100 4.55 4.80 3.35 7.90 22.75 20.58 9.45 8.63 3.70 8.35 3.70
200 5.10 5.25 NA 7.15 22.90 20.88 8.55 6.12 6.20 9.40 6.35
300 4.40 4.05 NA 7.65 23.55 6.43 8.20 6.93 0.00 1.95 0.00

model 5 100 2.85 3.05 44.50 6.15 50.55 3.82 76.50 30.22 5.75 14.15 5.70
200 3.10 3.15 NA 6.70 70.45 0.9 87.15 11.75 5.70 4.85 5.15
300 2.90 3.20 NA 7.50 80.00 0.3 92.95 14.46 0.70 5.55 0.85

Table 3: Empirical powers (%) for Model 1 with different change point locations,
dimensions, and alternative structures, based on 2000 replications. Bold and italic
items correspond to tests with top three and bottom three powers excluding projection
methods for each (t∗, γ, d).

Location Type Methods
γ = 5 γ = 100

d = 100 d = 200 d = 300 d = 100 d = 200 d = 300

t∗ = 0.5 L2 Hotelling 34 .45 NA NA 73.75 NA NA
L2 E&H-Boot 70 .68 60 .82 38 .16 99.18 93.42 74.69
L2 H&H-Boot 87.45 80 .04 54.12 99.61 99.18 88.68
L∞ Jirak 90.49 91.69 92.74 58 .79 46 .65 40 .45
DC DC-0 75.50 82.05 41 .15 17 .95 17 .15 0 .30
DC DC-0.5 54 .30 37 .25 6 .05 97.65 86.20 39.35
DC DC-COM 76.20 82.50 42.20 18 .75 17 .55 0 .30

Projection Ora-Pro 99.70 99.80 99.65 100.00 100.00 100.00
Projection Ran-Pro 9.75 7.40 5.45 11.75 8.05 7.35
Projection 2π/5-Pro 51.6 56.55 58.05 76.55 80.10 77.70
Adaptive T-AD 90.95 92.00 92.00 99.75 92.25 75.55
Adaptive W-AD 89.95 91.45 91.70 97.85 76.95 57.35

as italic. Note that the projection-based methods require the knowledge of the signal jump δ and the
underlying covariance structure Σ (or Σ−1). We only report their power results as an upper benchmark
(Ora-Pro) and a lower benchmark (Ran-Pro) of other methods. According to Table 3, our proposed tests
have the following advantages over their competitors:
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• Under the sparse alternatives, the L∞-based test Jirak has the best power performance. The two
types of L2-based methods H&H-Boot and E&H-Boot generally have the lowest powers. For the
double CUSUM-based tests, as shown in Cho et al. (2016), we prefer DC-0 for sparse alternatives
and DC-0.5 for dense alternatives, respectively. In this case, DC-0 and DC-COM have better
performance than DC-0.5. As for our new methods T-AD and W-AD, they have comparable
power performance with the best test (Jirak) in sparse settings.

• Under the dense alternatives, the candidate methods behave differently to the sparse settings.
Specifically, the L2- based tests H&H-Boot and E&H-Boot perform better than the L∞-based test
Jirak. DC-0.5 has higher powers than DC-0 and DC-COM, which is consistent with the theoretical
analysis in Cho et al. (2016). Our proposed methods, especially for T-AD, still enjoy comparable
power performance with the L2-based tests in most cases.

• We note that the three projection-based methods depend on the knowledge of the signal jump δ
and the underlying covariance matrix Σ or its inverse Σ−1. In particular, Ora-Pro has the best
power performance across all settings by knowing δ and Σ in advance. As shown in Aston and
Kirch (2018), Ora-Pro has the highest high dimensional efficiency (see Definition 2.1 therein)
theoretically for the mean change point detection, which serves as an upper benchmark of other
methods. In practice, however, it is of great difficulty to estimate δ and Σ simultaneously and
construct efficient tests based on them. Furthermore, as a lower benchmark, Ran-Pro has the
worst performance by using a random projection.

Power results for Models 2-5 are reported in the Supplementary Material, and are similar to the
Model 1 results, indicating good performance across a range of data distributions and various covari-
ance structures. In comparisons with the Wang and Samworth method (Wang and Samworth (2018))
for change point identification of high dimensional mean vectors, our algorithm is comparable under
Gaussian distributions and better performing for the t5. This suggests using our algorithm after first
detecting the existence of a change point with a data-adaptive test (see Supplementary A.5).

Note that the proposed data-adaptive testing procedure involves the selection of s0 and P . As shown
by our sensitivity analysis (Sections A.2 and A.3 of the Supplementary Material), the proposed new
method is robust against the choice of s0, given s0 is not too small. In practice, we recommend the use
of s0 = d/2. As for the choice of P , it is shown that P = {1, 2, 3, 4, 5,∞} is relatively fast to execute
and has good power performance under various alternative structures, and is recommended to use.

So far, we have focused the attention on change point detection with a common change point lo-
cation. In practice, the change points for different coordinates can be different. In such cases, it is
demonstrated in Supplementary A.4 that Wad has better power performance than Tad. This suggests
that it is better to aggregate rows of the CUSUM matrix first, in the case of multiple change points.

Lastly, in addition to the high dimensional mean change point problem, we also consider the co-
variance matrix change point detection by letting θi,j = σi,j = EXiXj for 1 ≤ i < j ≤ d. In this
case, two methods are considered: Pearson’s sample covariance matrix with the kernel Φi,j(X,X ′) =

(Xi − X ′i)(Xj − X ′j)/2, and the Kendall’s tau correlation matrix with the kernel Φi,j(X,X ′) =

sign(Xi −X ′i)sign(Xj −X ′j). It is shown that our proposed methods still enjoy adaptive performance
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for large scale covariance matrix change point detection. Furthermore, for data with light-tailed distribu-
tions such as Gaussian distributions, the Pearson covariance-based tests have higher powers than those
of Kendall’s tau-based tests. In contrast, the Kendall’s tau-based tests are more robust than those of the
Pearson’s when the data are heavy-tailed. See Supplementary A.6 for more details.

5 Real applications

In this section, we apply our proposed new method to a genomic dataset of bladder tumor profiles.
The motivation of this real example comes from comparative genomic hybridization (CGH) in genomic
studies, where CGH is used to obtain the number of copies of genes in a DNA profile. Elevated or low-
ered copy-number in the tumor generally corresponds to the associated disease (Nicolas et al. (2006)).

We obtain the dataset from the R package “ecp”. This dataset contains observations on 43 profiles
(d = 43) from a DNA with a length of 2215 (n = 2215). According to Matteson and James (2014),
this dataset records the relative hybridization intensity with respect to a normal genome reference and
is normalized on a logarithmic scale. The goal is to find which regions of DNA contain abnormal
DNA copy-numbers for the bladder tumor. As shown in Figure 3, abnormal DNA copy-numbers can
be profile-specific or be shared across many profiles. In other words, the alternative patterns can be
either sparse or dense in this data example. This suggests that it is appropriate to use the data-adaptive
method to identify the change points. Furthermore, for each profile, abnormal DNA copy-numbers can
happen for more than one time. To locate the segments precisely, we combine our data-adaptive testing
procedure with the binary segmentation method in Vostrikova (1981). More specifically, for each search
interval (s, e), we use our data-adaptive testing procedure to detect the existence of a change point. If
H0 is rejected, we identify the new change point b from the individual test which has the minimum
P -value. In particular,

b = arg max
s+h≤k≤e−h

∥∥C(k)
∥∥

(s0,p∗)
, with p∗ = arg min

p∈P
P̂T,(s0,p).

Then the interval (s, e) is split into two subintervals (s, b) and (b, e) and we conduct the above procedure
on (s, b) and (b, e) separately. This algorithm is stopped until no subinterval can detect a change point.
In this data exploration, we set the significance level α = 0.05. We choose the parameters as s0 = 43,
P = {1, 2, 3, 4, 5,∞}, and h = 40. Each subinterval-based test is based on 500 bootstrap replications.
Using our new algorithm, 43 change points are identified. The segmentation results are reported in
Figure 3, which are similar to the previous studies in Matteson and James (2014). This indicates that our
method works well in this real example.

6 Discussion

This paper provides a unified data-adaptive framework for change point detection in high dimen-
sions, where the dimension d and number of parameters q can be much larger than the sample size n.
To that end, we first construct U -statistic-based CUSUM matrix C. To aggregate C efficiently, we take
both the change point location and the alternative pattern into consideration, and propose two types of
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Figure 3: CGH data segmentation for the first 8 profiles. Red lines correspond to
medians for the identified segments of each profile.
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Figure 4: Plots for ‖C(k)‖(s0,p) for the interval (1, 2215) with s0 = 43 and p ∈
{1, 2, 3, 4, 5,∞}. The x-axis denotes the location of DNA. The y-axis is the value of
‖C(k)‖(s0,p). The red dotted lines correspond to the identified 43 change points.

(s0, p)-norm-based individual test statistics T(s0,p) and W(s0,p) with 1 ≤ p ≤ ∞. Under this framework,
many existing statistics are special cases of T(s0,p) or W(s0,p) by choosing a proper s0, p, and the kernel
Φ(·). We introduce s0 to boost the power for the individual tests with smaller p (e.g. p = 1, 2). We
also use p to capture the alternative pattern. Thus, there is at least one test in T(s0,p) (or W(s0,p)) with
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1 ≤ p ≤ ∞ to be powerful for any given alternative structure. In real applications, the alternative
structure is unknown. To construct a data-adaptive method, we combine the corresponding individual
tests in T(s0,p) (or W(s0,p)) with 1 ≤ p ≤ ∞. It is shown that our two types of data-adaptive tests are
simultaneously powerful under various alternatives. For approximating the individual and data-adaptive
test statistics’ limiting distributions, we adopt the multiplier and the low-cost bootstrap methods in Al-
gorithms 1 and 2, respectively. With mild moment conditions, we justify the validity of our methods in
terms of size and power. An R package called AdaptiveCpt is developed to implement our new tests.
Extensive simulation studies show that the proposed data-adaptive techniques outperform the existing
methods under various model settings and alternative structures.

There are several future directions to be investigated along our proposed work. Our theoretical
results are based on the independent assumption for the n observations. In real applications, the obser-
vations can be dependent, e.g. financial data. In this case, we can possibly generalize our methods to the
high dimensional time series with some dependency structure. Another possible extension is to consider
more complex data models such as data with missing entries. Furthermore, if there are more than one
change points in each coordinate, we can apply our methods recursively by binary or circular binary
methods (Vostrikova (1981); Olshen et al. (2004)). More explorations can be pursued in the future.
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