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1. Introduction

Let A be an m-by-n real-valued matrix with singular value decomposition (SVD)
VT
Vi’

where U € R™*", V € R"*" [U U_],[V V] are orthogonal and X, 35 are (pseudo)
diagonal matrices with decreasing singular values of A. Suppose B = A +7Z € R™*",

2 0

A=Uug |t oo

where Z is some perturbation matrix. We similarly write down the SVD of B as
vT
Vi

such that U and V share the same dimensions as U and V, respectively. The relationship

S0

B=UU| ) &

between the singular structures of A and B is a central topic in matrix perturbation
theory. Since the seminal work by Weyl [1], Davis-Kahan [2], Wedin [3], the perturbation
analysis for singular values (i.e., 31, X9 versus f)l, f)g) and the leading singular vectors
(i.e., U,V versus U, V) have attracted enormous attentions. For example, [4-6] studied
perturbation expansion for singular value decomposition; [7-10] established the relative
perturbation theory for eigenvectors of Hermitian matrices and singular vectors of general
matrices; [11-14] studied the numeric computation accuracy for singular values and
vectors; more recently, [15—-17] developed several new perturbation results under specific
structural assumptions motivated by emerging applications in statistics and data science.
The readers are referred to [18-20] for overviews of the historical development of matrix
perturbation theory.

While most of the existing works focused on U and V or ¥; and X5, there are
fewer studies on the perturbation analysis of the true matrix A itself. In this paper, we
consider the estimation of rank-r matrix A (i.e., ¥5 = 0) via rank-r truncated SVD
(i.e., best rank-r approximation) of B: A = UZ,VT. Such a low-rank assumption
and estimation method are widely used in many applications including matrix denoising
[21,22], signal processing [23,24] and multivariate statistical analysis [25], etc. We focus
on the estimation error in matrix Schatten-¢ norm: HK — All4. A tight upper bound
on ||1/§ — A||, can provide an important benchmark for both algorithmic and statistical
analysis in the applications mentioned above; moreover, it can be used to study some
other basic perturbation quantities, such as the pseudo-inverse perturbation |Af — AT Ilq
[26,27].

As a starting point, it is straightforward to apply the classical perturbation bounds
for singular values and vectors to obtain an upper bound on ||A — All,. For example,
one can immediately have the following inequality via Wedin’s sin © Theorem (Eq. (4.4)
in [3]),
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1A~ Ally < 1Zl, (3+ 1B - Al /o,(B)) (1)

Another way is utilizing the optimality of SVD (Eckart-Young-Mirsky Theorem) and
some basic norm inequalities to obtain:

IA - All, < |A =B, + A -BJ, <2|A - B, = 2||Z|, (2)
|A — All, < (27 A - A < < 2tt1/apt/e)z). (3)

In contrast, we establish the following result in this paper:
Theorem 1. Suppose B = A + Z, where A is an unknown rank-r matriz, B is the

observation, and Z is the perturbation. Let A= ﬁf]l\A/T be the best rank-r approximation
of B. Then,

(20 + 1)V ||z 1<q<
1A = Ally <Q V5|2 2 < g < oo; (4)
2Hzmax(’r)H7 q=

Here Zax(ry s defined as the best rank-r approximation of Z.

The proof of Theorem 1 relies on a careful characterization of ||[Pg A4 (where Pg
is the projection onto the subspace spanned by U 1) in Theorem 2, which we refer as the
perturbation projection error bound. The details of Theorem 2 and the proof of Theorem 1
will be presented in Section 2.

The established bound (4) is sharper than the classic results (1), (2) and (3) since
|Zmax(ryllg < min{||Z|q, r'/9||Z||} for any Z. When m,n > r and the first r singular
values of Z decay fast, which commonly happens in many large-scale matrix datasets
(28], |Zmax(r)llq can be much smaller than [|Z|],, r1/4||Z|| (see an example in Section 2)
so that the upper bound of (4) can be much smaller than (1), (2) and (3).

Then, we further introduce two lower bounds to justify the tightness of the upper
bound in Theorem 1. Specifically for any ¢ > 0, 1 < ¢ < oo, we construct a triplet of
matrices (A, Z,B) such that

1A = Allg > (27 + DY = )| Zmaxrlls > 0. (5)

which suggests that the constant in (4) cannot be further improved for ¢ € [1,2]U{co}. In
addition, we introduce an estimation error lower bound to show that the rank-r truncated
SVD estimator (i.e., A) is minimax rate-optimal over the class of all rank-r matrices.

As a byproduct of the theory in this paper, we derive a subspace (singular vectors)
sin® perturbation bound (definition of Schatten-¢ sin® distance is in Section 1.1) under
the same condition as Theorem 1:
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max {|| sin (T, U)|l,, || sin O(V, V)||q} < U Zmaxr s

or-(A)
This bound is “user-friendly” as it is free of B, ﬁ', and \Af, which are often perturbed
and uncontrolled quantities in practice (see more discussions in Section 4).

The rest of this paper is organized as follows. After a brief introduction on notation
and preliminaries in Section 1.1, we present the proof of Theorem 1 in Section 2 and
develop the corresponding lower bounds in Section 3. The new sin © perturbation analysis
is done in Section 4. We provide numerical studies to corroborate our theoretical findings
in Section 5. Conclusion and discussions are made in Section 6.

1.1. Notation and preliminaries

The following notation will be used throughout this paper. The lowercase letters (e.g.,
a,b), lowercase boldface letters (e.g., u,v), uppercase boldface letters (e.g., U, V) are
used to denote scalars, vectors, matrices, respectively. For any two numbers a,b, let
a A'b = min{a, b}, a Vb = max{a,b}. For any matrix A € R™*" with singular value
decomposition 37" o (A)w; v, let Apax(r) = i, 0i(A)u;v] be the best rank-r ap-
proximation of A, and A_ () = Z:Z:Z_l o;(A)u;v] be the remainder. For ¢ € [1, 0],

the Schatten-g norm of matrix A is defined as [|Al|, := (27)" af(A))l/q. Especially,
Frobenius norm || - || 7 and spectral norm ||-|| are Schatten-2 norm and Schatten-oo norm,
respectively. In addition, let I, be the r-by-r identity matrix. Let O, be the set of r-by-r
orthogonal matrices, Qp, = {U € RP*" : UTU = I,} be the set of all p-by-r matrices
with orthonormal columns. For any U € O, ,., Py = UU' is the projection matrix onto
the column span of U. We also use U, € O, ,_, to represent the orthonormal comple-
ment of U. We use bracket subscripts to denote sub-matrices. For example, A[; ;) is
the entry of A on the i;-th row and 4p-th column; A4 1).m ;) contains the (r + 1)-th to
the m-th rows of A.

We use the sin © norm to quantify the distance between singular subspaces. Suppose
U; and U; are two p-by-r matrices with orthonormal columns. Let the singular values
of U/ Uy be 0y > 03 > ... > 0, > 0. Then O(Uy, Uy) is defined as a diagonal matrix

with principal angles between U; and Us:
(U, U,) = diag (cos (1), ...,cos ' (0,)) .

Then the Schatten-¢g sin © distance is defined as

r 1/q
| sin ©(Uy, Uy)|lq = ||diag(sin cos™" (a1), ... ,sincosfl(a,a))Hq = (Z(l — 072_)‘1/2) .

Importantly, [[U], Uslly = [[sin©(Uy, Uy)||, for any g € [1,00] [8, Lemma 2.1].
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Finally, a function ® : R™ — R is called a symmetric gauge function if (1) x # 0 =
®(x) > 0, (2) 2(px) = [p|®(x) for p € R, (3) P(x+y) < (x) + P(y) for any x,y € R",
and (4) for any permutation matrix P, we have ®(Px) = ®(x) [18, Definition 11.3.3].

2. Proof of Theorem 1

The roadmap of the proof of Theorem 1 is the following. We first introduce Theorem 2,
which quantifies the projection error, |[Pg Af4 and [[APg /¢, under the perturbation
model. This result plays a crucial role in the proof of Theorem 1 and may also be of
independent interest. Next, we present Lemma 1 with proof and then give the proof for
Theorem 1. Since the proof of Theorem 2 is relatively long, we present its full proof and
discussions in Section 2.1.

Theorem 2 (A perturbation projection error bound). Suppose B = A +Z for some rank-r
matriz A and perturbation matriz Z. Then for any q € [1,00],

max { Py, Ally, APy, s} < 2 Zumaxr o (7)

Next, the following Lemma 1 characterizes the Schatten-g norm of matrix orthogonal
projections.

Lemma 1. Suppose A,B € R™*", U € Oy, g 2 1. Then,

1/2
(IPuAZ + [[Pu.BJ?) 2
1

|PuA + Py, B, < { 1/q
. (IPoAlE +[1Pu. BlE)

Proof. Let T = PyA+ Py, B. We construct Ty = PUT PyA, Ty =Py, T= Py, B.
First we have T'T = T1TT1 + TQTTQ. So for p >

ITI3, = ITT T, = [|T{ Ty + T3 Tal, < [T Tillp + [ T3 Tall, = [T1]3, + IT23,,

which has proved the first part.

For the second part, note that when ¢ = 1, the inequality holds by triangle inequality.
Next we show the inequality holds when 1 < ¢ < 2. Let X = [(T{ T;)¥/2 (T, T2)/2].
For any p > 1 we have

IT{ Ty + T3 Ta) = XX 5 = IIXTXHP IITTT1IIP+IITTT2H (8)

where (a) is because the norm of the diagonal part of a matrix is no greater than the
norm of the whole matrix [29]. So we have

2 2
ITI|55 = ITTT|5 = ||T{ T1 + TTTzII” IITTTal + T3 Tollf = 1T 15 + 1Tl
(9)
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Define subspaces
T = {T T = Tl +T2,T1 = PUA.,TQ = PUJ_B and A,B S Rmxn},

_ _ T _ _ _ _
T’{T/:T’ [T(;l ,I(‘),],TQPUA,T’QPULB and A,BGR”””}.
2

= PyT 0

Consider the linear map A : T € T — —| € T'. We can verify the
0 Py, T

€
T 0

adjoint map of A, A*, satisfies A* ([ 0 T'}) = T} + T, as for any T € T and
2

T o
0 T,
From (9) we have shown || A(T)|, < | T||p, i-e., A is contractive with respect to || - ||, for

T - € T', we have (A(T), T') = (PuT,T4) + (Pu, T, Ty) = (T, A*(T")).

p > 2. Set 1 < p < oo suchthat 1/¢g+1/p = 1. Since || - ||, and || - ||; are dual norms, we

have for 1 < ¢ < 2:
A = A , X
({ 0 T2DH X;S‘SE,@< ([ 0 TJ
Tl O :| >
= AKX
X;HS)?\ﬁgl <[ 0 T X)

< oo ]H A,

S sup
< (ITolg + 17219

I, = \

X:|X |, <1

Here (a) is an application of [18, Lemma I1.3.4] and Holder’s inequality. This shows
T][¢ < [IT1[|Z + || T2||¢ and finishes the proof. O

Next, we prove Theorem 1 based on Theorem 2 and Lemma, 1.

Proof of Theorem 1. For 1 < g < oo, since A= Bax(r) and U is composed of the first
r left singular vectors of B, we have A= PgB and

’ ~

= |PoB — PgA — Py A = |PoZ ~ Pg. A

1/q
(@ (HPﬁZHZ+HPﬁLA q) L 1<q<
<

o\ 1/2
<||Pﬁz||j+HPﬁLA ) , 2<g< o

(®) (2(] + 1)1/(1 Hzmax(r)H , 1<g¢q
< q
\/gHZmaX(r)an 2<q

Here, (a) is due to Lemma 1 and (b) is due to Theorem 2. For ¢ = oo,
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—~ ~ (a)
|A~ Al <A ~B|+[A B < 2/A - B < 2|Z] = 2|Zpuxir|
Here (a) comes from the fact that A is the best rank-r approximation of B. 0O

As discussed in Section 1, one can derive the matrix estimation error bounds relying
on ||Z||, or r'/9||Z|| via the existing perturbation theory in the literature. The following
example illustrates that our result can be much sharper when the singular values of Z
have some polynomial decay.

Example 1. Suppose Z satisfies that oy (Z) = k=4 for ¢ > 1. Then

r 1/q
1 Zmax(r) llg = (Z k—l) ~ (1+logr)t/9,
k=1

which can be much smaller than

mAn 1/q
121l = (Z k) ~ (L log(m Am) Ve, a)z) = Ve,
k=1

2.1. Proof of Theorem 2

In this section, we focus on the proof of Theorem 2. We first introduce several ad-
ditional lemmas on the properties of matrix singular values and norms, then present
the proof of Theorem 2 and discussions. Recall that a matrix norm || - || is unitarily
invariant if [|A|| = [|[UAV]| for any matrix A and orthogonal matrices U, V. Define

1/q
®,(x) = maxigi,<..<i,<n <Z§:1 |xij|q) with ¢ > 1 for any x € R™. We have the

following Lemmas for ||(-)max(r)ll¢-

Lemma 2. Suppose q > 1. Then ®4(-) is a symmetric gauge function and ||(*)max(r)llq 5
a unitarily invariant matriz norm.

Proof. First, ||(-)max(r)llq is @ unitarily invariant matrix norm follows by von Neuman-
nan’s Theory [18, Theorem II.3.6] if we can show ®,(-) is a symmetric gauge function.
Recall the definition of symmetric gauge function from Section 1.1, it is easy to see we
just need to show @y (x +y) < P4(x) + ®4(y) for any x,y € R™. To show this, for any
x € R™ and z € R™ with ||z]|o < r (here ||z|lo denotes the number of non-zero entries in
z), by Holder’s inequality and the definition of ®,4(-), we have (x,z) < ||z||,®4(x) for p
such that 1/p+1/q = 1. Moreover, the equality is achieved when the equality condition
in Holder’s inequality is satisfied. So

o,(x) = sup (x,2). (10)

z:z][p <1, [|z]lo<r
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Thus, we have

10
Q,(x+y) (L sup (x+y,z) < sup (x,2) + sup (y,z)

z:|z[p <1, ||zllo<r 2|zl <L, [|lzllo<r 2|zl <L, [|z[lo<r

D, (x) + @, (y).

This shows ®,(+) is a symmetric gauge function and finishes the proof of this lemma. O

Next, the following lemma introduces a dual characterization of the truncated matrix
Schatten-g norm.

Lemma 3 (Dual representation of Truncated Schatten-q norm). Let X be a m-by-n real-
valued matriz. For any non-negative integer r < mAn, ¢ > 1 and 1/p+ 1/q = 1, we
have

XKoo= s (B,X). (11)
IBll¢<1,rank(B)<r

If rank(X) < r, then

1Xlp = sup (B, X). (12)

[|Bl¢<1,rank(B)<r
Proof. We first prove (11). Since ®,(x) is a symmetric gauge function as we have shown

in Lemma 2 and its dual is ®,(-) with 1/p 4+ 1/¢ = 1, (11) follows from [18, Lemma
I1.3.5]. Finally, (12) is a special case of (11). O

Lemma 4. Given matric A € R™*™ and any non-negative integer k < m A n, for any
matriz M with rank(M) < r, we have

H (A— max(r))max(k) Hq < || (A - M)max(k) ||q

The equality is achieved when M = A () -

Proof. By the well-known Eckart-Young-Mirsky Theorem [30-32], the truncated SVD
achieves the best low-rank matrix approximation in any unitarily invariant norm. This
lemma follows from the Eckart-Young-Mirsky Theorem and the fact that ||(-)max(x)llq i
a unitarily invariant matrix norm (Lemma 2). O

Now we are in position to prove Theorem 2.

Proof of Theorem 2. We only study | Pg All, since the proof of the upper bound of
[APg g follows by symmetry. Denote > ko1 0k(A)ugv) as a singular value decompo-
sition of A. Since rank(Pg A) < rank(A) = r, for p > 1 satisfying 1/p+1/¢ = 1, we

have
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HPﬁLA = sup <PGLA7X>
7 [IX][lp<Lrank(X)<r
= sup (Pg (A+7Z)- Py 7Z,X)
IX]lp <1,rank(X)<r
< sup <Pfjl (A + Z)7 X> —+ sup <P6LZ7 X>
1X]|p<1,rank(X)<r 1X]p<1,rank(X)<r
(b)
< sup Xl || (P, (A +2))
[|1X]|p<1,rank(X)<r max(r) q
b s XL (Po.2)
||X|\p<1,rank(x)<rH I U™ max(r) 4
(¢)
< min [(A+Z-M),.| +|(P,2)
rank(M)<r ( ) r) q H UL max(r) q

max(r)

<[a+z-Poa+2)

- H(Pﬁlz)

p + H(Pﬁlz)max(r) ”q (13)

max(r) q

< H (PUL Z)max(r)

gHZmaX(r)”q + ”ZmaX(r)Hq < 2||Zmax(r)||Q'
Here (a), (b) are due to Lemma 3 and (c) is due to Lemma 4. O

We make several remarks on Theorem 2.
First, Theorem 2 may not be simply implied by the classic results. For example, the
classic Wedin’s sin © Theorem [3],

max{[|ZV|ly, [[U" Zl}

max { | sin ©(U, O)ll, | sin O(V, V)|, } < - (B) SN
yields
~ (a)  ~ ) ~
1Py, Ally = [OIUS: V|, < [ULU]lg01(A) = [[sin ©(U, U) [ 401(A)
GI Gz L) (15)
<
< max {12V, 1072, § 75,

here (a) is by [18, Theorem I1.3.9].

This bound (15) can be less sharp or practical for its dependency on o1(A)/c.(B).
As pointed out by [28], the spectrum of large matrix datasets arising from applications
often decays fast. If the singular values of A, B decay fast, 01(A)/0,.(B) > 1 and (15)
can be loose. In contrast, our bound (7) in Theorem 2 is free of any ratio of singular
values, which can be a significant advantage in practice. We will further illustrate the
difference between (7) and (15) by simulation in Section 5.2.
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Second, it is noteworthy by (13) in the proof of Theorem 2, we have actually proved

1o, Allg < H(Pﬁiz)maxm

+ H(PULZ
q

)max(r) q
(16)
IAPg |, < H (2,

+ H(ZPVL)max(r) q

max(r)
under the setting of Theorem 2. The bound (16) can be better than the one in Theorem 2
in some scenarios. For example, when Z is (or is close to) ULz VT for some r-by-r matrix
¥z, the bound in (16) is smaller than ||Z,,ax(r)|lq- On the other hand, the proposed bound

in Theorem 2 is strong enough for proving Theorem 1, does not involve Pﬁ or Pg
and can be more convenient to use.

7

3. Lower bounds

The following Theorem 3 shows that the error upper bound for the rank-r truncated
SVD estimator A in Theorem 1 is sharp.

7

Theorem 3. For anye > 0 and ¢ > 1, there exist A, B, and Z # 0 such that rank(A) =
B=A+7Z, and

||A - AHq > ((Qq + 1)1/q - 5)HzmaX(r)HQ'

Proof. Without loss of generality we assume 0 < ¢ < 1. We choose a value n €

q 1/q
(0, bt — 1). Define

2, O,y O —(1+nI Opx O
A= Orxr Opxr O ) Z = O0rxr Ir 0 ;
0 0 0 0 0 0
and
(1777)17“ Or><r 0
B: 0r><r Ir 0
0 0 0
Then,

= (2q7. + r)l/q’ ||Zmax(7")Hq = (1 + n)rl/q'
q

A *217’ 07’ s
1A -l = [o2 %]

We thus have

1A = Allg > (27 + DY = &)|Zinax(ry g O
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Theorems 1 and 3 together imply that the constants in (4) are not improvable when
1 <g<2and g =00 For 2 < p < oo, it would be an interesting future work to
close the gap between the upper bound (v/5|Zmyax(r)llq) and the lower bound ((27 +
1)1/q Hzmax(r) ||q)

Apart from checking the sharpness of the upper bound (4), another natural question
is, whether the rank-r truncated SVD estimator is an optimal estimator in estimating A.
To answer this question, we consider the minimax estimation error lower bound among
all possible data-dependent procedures A= A(B) (i.e., A is a deterministic or random
function of matrix B). We specifically focus on the following class of (A, Z, ]§) triplets:

<)
q

Fo6) = {@, Z.B): B — A+ Z, rank(A) — 1,

Zmax(r)

Here, ¢ corresponds to HZmaX(T) Hq in the context of Theorem 1.

Theorem 4 (Schatten-qg minimaz lower bound). For the low-rank perturbation model, if
mAn = 2r, then, for any q > 1, we have

inf sup HAf;&H > ol/a-1¢,
A (AZB)eF,(€) 1

Here the infimum is taken over all the estimation procedures.

Proof. The proof is done by construction. We construct

0, 0 O 1. 0 0
Zi=| 0 5L 0|, Ar=| 0 0y 0],
0 0 O 0 0 0
and
LI, 0 0 ) Opxr 0 O
Zy = 0 0rx, 0], Ay = 0 Tlg/q I. O
0 0 0 0 0 o0

By the construction above, we have [|(Z1)max(r)llg = & [[(Z2)max(rllq = & and Ay +
Z1 = Az + ZQ. So

inf  sup HA _ AH > inf (max {||Ix ~ Al A - AQHq})
A (AZB)eF, () ¢ A
. X - ~ - 1 — B -
> 1%f (HA — A+ A - A1Hq) > §||A1 ~ Ay, =21, O

N =
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Combining Theorems 1 and 4, we conclude that the truncated SVD A achieves the
optimal rate of low-rank matrix estimation error among all possible procedures A in the
class of F,.(€).

4. Subspace perturbation bounds

In this section, we apply the perturbation projection error bound established in The-
orem 2 to derive a user-friendly subspace (singular vectors) perturbation bound.

Theorem 5. Consider the same perturbation setting as in Theorem 1. For any q > 1, we
have

2Hzmax(r) ”‘1

. 3 . <> <
max {|[sin 00, U)llp [ sin O(V, V)l | < ==

Proof. By Theorem 2, we have
HPIAJLA”q < 2||Zmax(r)HQ'
Since the left singular subspace of A is U, we have UUT A = PyA = A. Then

_ _ @ |UTUUTA|, 1P, Allg 2| Zmax(rl
sin®(U, U _ UTU < L 7 _ 1 < max(r q’
| ( Nq=1ULU[q o-(UTA) ar(A) o-(A)

here (a) is by [18, Theorem 11.3.9]. O

We note that several similar bounds are developed towards the applications in statis-
tics and machine learning in the past few years, for example, [33, Corollary 4.1], [15,
Theorem 2], and [34, Lemma 5.1]. When the matrix is positive semidefinite, these results

yield
~ 2||Z
sin @(U,U)HF < %, ([33, Corollary 4.1]), (17)
. 2min{r'/?|Z||,||Z
sin @(U,U)HF < min{r (”A;" 1Z]lr} [15, Theorem 2], [34, Lemma 5.1].  (18)
oy

When A, Z,B are asymmetric, [15] also proved

. o~ 202||A|| + ||Z|) min{r'/?||Z]|, || Z
Sln@(U’U)HFg 2[]A] + | ”)02(A{) 1Z|, | Z]|r}

[15, Theorem 3. (19)

The perturbation bounds (17), (18), (19), along with Theorem 5 in this paper, are “user
friendly” as they do not involve U, V or B in contrast to the classical Wedin’s sin ©
bound (14). This advantage facilitates the application of these perturbations to many



Y. Luo et al. / Linear Algebra and its Applications 630 (2021) 225-240 237

settings when A and Z are the given arguments: one no longer needs to further bound
HZ\A7||q, ||6TZ||,1 The “user friendly” advantage is also important in many settings as
the denominator of (14), o,.(B), depends highly on the perturbation Z and can be rather
small due to perturbation [15]. In addition, our new result in Theorem 5 has a better
dependence on both Z and o,(A) than (17), (18), (19) because

1 Zumaxio 1 < min {71/2)Z], 11|}

while the opposite side of this inequality does not hold. Moreover, Theorem 5 covers the
more general asymmetric matrices in Schatten-q sin® norms for any ¢ € [1, oc].

5. Simulations

In this section, we provide numerical studies to support our theoretical results. We
specifically compare the low-rank matrix estimation error bound (Theorem 1) and the
matrix perturbation projection error bound (Theorem 2) in Section 2 with the results in
previous literature. In each setting, we randomly generate a perturbation Z = uv ' + Z,
draw A by a to-be-specified scheme, and construct B = A + Z. Here u, v are randomly
generated unit vectors and Z has iid. N (0,02) entries. Throughout the simulation
studies, we consider the Schatten-2 norm (i.e., Frobenius norm) as the error metric.
Each simulation setting is repeated for 100 times and the average values are reported.

5.1. Numerical comparison of low-rank matriz estimation error bounds

We first compare the low-rank matrix estimation error bound ||A — A, in Theorem 1
and the bounds in (2) and (3). We set n € {100, 300}, € {4,6,...,16}, o = 0.02, and
generate A = UX, V', where U € R"*", V € R™*" are independently drawn from Onp,r
uniformly at random; 335 is a diagonal matrix with singular values decaying polynomially
as: (X1)p,) = %, 1<igr.

The evaluations of the upper bounds in Theorem 1, (2), (3), and the true value of
HK — A||F are given in Fig. 1. It shows that the upper bound in Theorem 1 is tighter than
the upper bounds in (2), (3) in all settings. In addition, when n increases from 100 to
300, the upper bound of (2) significantly increases while the upper bound of Theorem 1
remains steady. This is because the upper bounds of (2) and Theorem 1 rely on ||Z|
and || Zuax(r)|| 7, respectively.

5.2. Numerical comparison of matriz perturbation projection error bounds

Next, we compare the matrix perturbation projection error bound in Theorem 2 with
the upper bound (15) derived from Wedin’s sin® Theorem. We generate B,Z in the
same way as the previous simulation setting. When generating ¥, in A, apart from the
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Error

Bound in (2,

. © Boundin (3
£ Theorem 1 Bound

True Value

(a) n =100 (b) n =300

Fig. 1. Low-rank matrix estimation error bound (Theorem 1), upper bounds (2), (3) and the true value of
1A = Allr.
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Fig. 2. Matrix perturbation projection error upper bound (Theorem 2), upper bound via Wedin’s sin®©
Theorem (15), and the true value of HPﬁLA”F‘

polynomial singular value decaying pattern considered in the last setting, we also consider
the following exponential singular value decaying pattern: (31);;) = 27 1 <i<r
The values of the upper bounds in Theorem 2 and (15), along with the true value of
| Pg, Allg, are presented in Fig. 2. We find the bound of Theorem 2 is much tighter than
the bound in (15). As r increases or singular value decaying pattern becomes exponential,
i.e., A becomes ill-conditioned, (15) becomes loose while Theorem 2 can still be sharp.

6. Discussions

In this paper, we prove a sharp upper bound for estimation error of rank-r truncated
SVD (|| A - All4) under perturbation, and show its optimality in low-rank matrix estima-
tion. The key technical tool we use is a novel matrix perturbation projection error bound
for ||PfJl All,4. As a byproduct, we also provide a sharper user-friendly sin® perturbation
bound. The numerical studies demonstrate the advantages of these new results over the
ones in the literature.
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The main result of this paper is the upper bound in (4), which is sharper than ones
directly derived from the literature (1), (2), (3). We also comment that (1) can be
conveniently extended to the general case that A is approximately rank r [3, Eq.(4.4)].
It is interesting future work to study if a similar bound to (4) can be obtained for the
general approximately low-rank A.

Throughout the paper, we study the additive perturbations and it is a future work
to extend the results to multiplicative perturbations [7,8]. Also for convenience of pre-
sentation, we focus on the real number field in this paper. It is interesting to extend the
developed results to the field of complex numbers. The main technical work for such an
extension includes complex versions of Lemma 2 and 3.

Apart from the widely studied perturbation theory on singular value decomposition,
the perturbation theory for other problems, such as pseudo-inverses [26,27], least squares
problems [27], orthogonal projection [27,35-37], rank-one perturbation [38], are also im-
portant topics. It would be interesting to explore whether the tools developed in this
paper are useful in studying the perturbation theory for these problems.
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