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1. Introduction

Let A be an m-by-n real-valued matrix with singular value decomposition (SVD)

A = [U U⊥]
[

Σ1 0
0 Σ2

][
V�

V�
⊥

]
,

where U ∈ Rm×r, V ∈ Rn×r, [U U⊥], [V V⊥] are orthogonal and Σ1, Σ2 are (pseudo) 
diagonal matrices with decreasing singular values of A. Suppose B = A + Z ∈ Rm×n, 
where Z is some perturbation matrix. We similarly write down the SVD of B as

B =[Û Û⊥]
[

Σ̂1 0
0 Σ̂2

][
V̂�

V̂�
⊥

]

such that Û and V̂ share the same dimensions as U and V, respectively. The relationship 
between the singular structures of A and B is a central topic in matrix perturbation 
theory. Since the seminal work by Weyl [1], Davis-Kahan [2], Wedin [3], the perturbation 
analysis for singular values (i.e., Σ1, Σ2 versus Σ̂1, Σ̂2) and the leading singular vectors 
(i.e., U, V versus Û, V̂) have attracted enormous attentions. For example, [4–6] studied 
perturbation expansion for singular value decomposition; [7–10] established the relative 
perturbation theory for eigenvectors of Hermitian matrices and singular vectors of general 
matrices; [11–14] studied the numeric computation accuracy for singular values and 
vectors; more recently, [15–17] developed several new perturbation results under specific 
structural assumptions motivated by emerging applications in statistics and data science. 
The readers are referred to [18–20] for overviews of the historical development of matrix 
perturbation theory.

While most of the existing works focused on U and V or Σ1 and Σ2, there are 
fewer studies on the perturbation analysis of the true matrix A itself. In this paper, we 
consider the estimation of rank-r matrix A (i.e., Σ2 = 0) via rank-r truncated SVD 
(i.e., best rank-r approximation) of B: Â := ÛΣ̂1V̂�. Such a low-rank assumption 
and estimation method are widely used in many applications including matrix denoising 
[21,22], signal processing [23,24] and multivariate statistical analysis [25], etc. We focus 
on the estimation error in matrix Schatten-q norm: ‖Â − A‖q. A tight upper bound 
on ‖Â − A‖q can provide an important benchmark for both algorithmic and statistical 
analysis in the applications mentioned above; moreover, it can be used to study some 
other basic perturbation quantities, such as the pseudo-inverse perturbation ‖Â†−A†‖q
[26,27].

As a starting point, it is straightforward to apply the classical perturbation bounds 
for singular values and vectors to obtain an upper bound on ‖Â − A‖q. For example, 
one can immediately have the following inequality via Wedin’s sin Θ Theorem (Eq. (4.4) 
in [3]),



Y. Luo et al. / Linear Algebra and its Applications 630 (2021) 225–240 227
‖Â − A‖q � ‖Z‖q
(
3 + ‖B − Â‖q/σr(B)

)
. (1)

Another way is utilizing the optimality of SVD (Eckart-Young-Mirsky Theorem) and 
some basic norm inequalities to obtain:

‖Â − A‖q � ‖Â − B‖q + ‖A − B‖q � 2‖A − B‖q = 2‖Z‖q, (2)

‖Â − A‖q � (2r)1/q‖Â − A‖
(2)
� 21+1/qr1/q‖Z‖. (3)

In contrast, we establish the following result in this paper:

Theorem 1. Suppose B = A + Z, where A is an unknown rank-r matrix, B is the 
observation, and Z is the perturbation. Let Â = ÛΣ̂1V̂� be the best rank-r approximation 
of B. Then,

‖Â − A‖q �

⎧⎪⎨⎪⎩
(2q + 1)1/q

∥∥Zmax(r)
∥∥
q
, 1 � q � 2;√

5
∥∥Zmax(r)

∥∥
q
, 2 � q < ∞;

2‖Zmax(r)‖, q = ∞.

(4)

Here Zmax(r) is defined as the best rank-r approximation of Z.

The proof of Theorem 1 relies on a careful characterization of ‖PÛ⊥
A‖q (where PÛ⊥

is the projection onto the subspace spanned by Û⊥) in Theorem 2, which we refer as the 
perturbation projection error bound. The details of Theorem 2 and the proof of Theorem 1
will be presented in Section 2.

The established bound (4) is sharper than the classic results (1), (2) and (3) since 
‖Zmax(r)‖q � min{‖Z‖q, r1/q‖Z‖} for any Z. When m, n � r and the first r singular 
values of Z decay fast, which commonly happens in many large-scale matrix datasets 
[28], ‖Zmax(r)‖q can be much smaller than ‖Z‖q, r1/q‖Z‖ (see an example in Section 2) 
so that the upper bound of (4) can be much smaller than (1), (2) and (3).

Then, we further introduce two lower bounds to justify the tightness of the upper 
bound in Theorem 1. Specifically for any ε > 0, 1 � q � ∞, we construct a triplet of 
matrices (A, Z, B) such that

‖Â − A‖q � ((2q + 1)1/q − ε)‖Zmax(r)‖q > 0, (5)

which suggests that the constant in (4) cannot be further improved for q ∈ [1, 2] ∪{∞}. In 
addition, we introduce an estimation error lower bound to show that the rank-r truncated 
SVD estimator (i.e., Â) is minimax rate-optimal over the class of all rank-r matrices.

As a byproduct of the theory in this paper, we derive a subspace (singular vectors) 
sinΘ perturbation bound (definition of Schatten-q sinΘ distance is in Section 1.1) under 
the same condition as Theorem 1:
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max
{
‖ sin Θ(Û,U)‖q, ‖ sin Θ(V̂,V)‖q

}
�

2‖Zmax(r)‖q
σr(A) .

This bound is “user-friendly” as it is free of B, Û, and V̂, which are often perturbed 
and uncontrolled quantities in practice (see more discussions in Section 4).

The rest of this paper is organized as follows. After a brief introduction on notation 
and preliminaries in Section 1.1, we present the proof of Theorem 1 in Section 2 and 
develop the corresponding lower bounds in Section 3. The new sin Θ perturbation analysis 
is done in Section 4. We provide numerical studies to corroborate our theoretical findings 
in Section 5. Conclusion and discussions are made in Section 6.

1.1. Notation and preliminaries

The following notation will be used throughout this paper. The lowercase letters (e.g., 
a, b), lowercase boldface letters (e.g., u, v), uppercase boldface letters (e.g., U, V) are 
used to denote scalars, vectors, matrices, respectively. For any two numbers a, b, let 
a ∧ b = min{a, b}, a ∨ b = max{a, b}. For any matrix A ∈ Rm×n with singular value 
decomposition 

∑m∧n
i=1 σi(A)uiv�

i , let Amax(r) =
∑r

i=1 σi(A)uiv�
i be the best rank-r ap-

proximation of A, and A−max(r) =
∑m∧n

i=r+1 σi(A)uiv�
i be the remainder. For q ∈ [1, ∞], 

the Schatten-q norm of matrix A is defined as ‖A‖q :=
(∑m∧n

i=1 σq
i (A)

)1/q. Especially, 
Frobenius norm ‖ ·‖F and spectral norm ‖ ·‖ are Schatten-2 norm and Schatten-∞ norm, 
respectively. In addition, let Ir be the r-by-r identity matrix. Let Or be the set of r-by-r
orthogonal matrices, Op,r = {U ∈ Rp×r : U�U = Ir} be the set of all p-by-r matrices 
with orthonormal columns. For any U ∈ Op,r, PU = UU� is the projection matrix onto 
the column span of U. We also use U⊥ ∈ Op,p−r to represent the orthonormal comple-
ment of U. We use bracket subscripts to denote sub-matrices. For example, A[i1,i2] is 
the entry of A on the i1-th row and i2-th column; A[(r+1):m,:] contains the (r + 1)-th to 
the m-th rows of A.

We use the sin Θ norm to quantify the distance between singular subspaces. Suppose 
U1 and U2 are two p-by-r matrices with orthonormal columns. Let the singular values 
of U�

1 U2 be σ1 � σ2 � . . . � σr � 0. Then Θ(U1, U2) is defined as a diagonal matrix 
with principal angles between U1 and U2:

Θ(U1,U2) = diag
(
cos−1(σ1), . . . , cos−1(σr)

)
.

Then the Schatten-q sin Θ distance is defined as

‖ sin Θ(U1,U2)‖q =
∥∥diag(sin cos−1(σ1), . . . , sin cos−1(σr))

∥∥
q

=
(

r∑
i=1

(1 − σ2
r)q/2

)1/q

.

(6)
Importantly, ‖U�

1⊥U2‖q = ‖sin Θ(U1,U2)‖q for any q ∈ [1, ∞] [8, Lemma 2.1].
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Finally, a function Φ : Rn → R is called a symmetric gauge function if (1) x �= 0 =⇒
Φ(x) > 0, (2) Φ(ρx) = |ρ|Φ(x) for ρ ∈ R, (3) Φ(x+y) � Φ(x) +Φ(y) for any x, y ∈ Rn, 
and (4) for any permutation matrix P, we have Φ(Px) = Φ(x) [18, Definition II.3.3].

2. Proof of Theorem 1

The roadmap of the proof of Theorem 1 is the following. We first introduce Theorem 2, 
which quantifies the projection error, ‖PÛ⊥

A‖q and ‖APV̂⊥
‖q, under the perturbation 

model. This result plays a crucial role in the proof of Theorem 1 and may also be of 
independent interest. Next, we present Lemma 1 with proof and then give the proof for 
Theorem 1. Since the proof of Theorem 2 is relatively long, we present its full proof and 
discussions in Section 2.1.

Theorem 2 (A perturbation projection error bound). Suppose B = A +Z for some rank-r
matrix A and perturbation matrix Z. Then for any q ∈ [1, ∞],

max
{
‖PÛ⊥

A‖q, ‖APV̂⊥
‖q
}

� 2‖Zmax(r)‖q. (7)

Next, the following Lemma 1 characterizes the Schatten-q norm of matrix orthogonal 
projections.

Lemma 1. Suppose A, B ∈ Rm×n, U ∈ Om,r, q � 1. Then,

‖PUA + PU⊥B‖q �
{ (

‖PUA‖2
q + ‖PU⊥B‖2

q

)1/2
, 2 � q � ∞;(

‖PUA‖qq + ‖PU⊥B‖qq
)1/q

, 1 � q � 2.

Proof. Let T = PUA +PU⊥B. We construct T1 = PUT = PUA, T2 = PU⊥T = PU⊥B. 
First we have T�T = T�

1 T1 + T�
2 T2. So for p � 1,

‖T‖2
2p = ‖T�T‖p = ‖T�

1 T1 + T�
2 T2‖p � ‖T�

1 T1‖p + ‖T�
2 T2‖p = ‖T1‖2

2p + ‖T2‖2
2p,

which has proved the first part.
For the second part, note that when q = 1, the inequality holds by triangle inequality. 

Next we show the inequality holds when 1 < q � 2. Let X =
[
(T�

1 T1)1/2 (T�
2 T2)1/2

]
. 

For any p � 1 we have

‖T�
1 T1 + T�

2 T2‖pp = ‖XX�‖pp = ‖X�X‖pp
(a)
� ‖T�

1 T1‖pp + ‖T�
2 T2‖pp, (8)

where (a) is because the norm of the diagonal part of a matrix is no greater than the 
norm of the whole matrix [29]. So we have

‖T‖2p
2p = ‖T�T‖pp = ‖T�

1 T1 + T�
2 T2‖pp

(8)
� ‖T�

1 T1‖pp + ‖T�
2 T2‖pp = ‖T1‖2p

2p + ‖T2‖2p
2p.

(9)
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Define subspaces

T = {sT : sT = sT1 + sT2, sT1 = PU sA, sT2 = PU⊥
sB and sA, sB ∈ Rm×n},

T ′ =
{

sT′ : sT′ =
[

sT′
1 0

0 sT′
2

]
, sT′

1 = PU sA, sT′
2 = PU⊥

sB and sA, sB ∈ Rm×n

}
.

Consider the linear map A : sT ∈ T −→
[
PU sT 0

0 PU⊥
sT

]
∈ T ′. We can verify the 

adjoint map of A, A∗, satisfies A∗
([

sT′
1 0

0 sT′
2

])
= sT′

1 + sT′
2 as for any sT ∈ T and 

sT′ =
[

sT′
1 0

0 sT′
2

]
∈ T ′, we have 〈A(sT), sT′〉 = 〈PU sT, sT′

1〉 + 〈PU⊥
sT, sT′

2〉 = 〈sT, A∗(sT′)〉. 
From (9) we have shown ‖A(T)‖p � ‖T‖p, i.e., A is contractive with respect to ‖ · ‖p for 
p � 2. Set 1 � p < ∞ such that 1/q + 1/p = 1. Since ‖ · ‖p and ‖ · ‖q are dual norms, we 
have for 1 < q � 2:

‖T‖q =
∥∥∥∥A∗

([
T1 0
0 T2

])∥∥∥∥
q

= sup
X:‖X‖p�1

〈
A∗
([

T1 0
0 T2

])
,X
〉

= sup
X:‖X‖p�1

〈[
T1 0
0 T2

]
,A(X)

〉
(a)
� sup

X:‖X‖p�1

∥∥∥∥[T1 0
0 T2

]∥∥∥∥
q

‖A(X)‖p

� (‖T1‖qq + ‖T2‖qq)1/q.

Here (a) is an application of [18, Lemma II.3.4] and Hölder’s inequality. This shows 
‖T‖qq � ‖T1‖qq + ‖T2‖qq and finishes the proof. �

Next, we prove Theorem 1 based on Theorem 2 and Lemma 1.

Proof of Theorem 1. For 1 � q < ∞, since Â = Bmax(r) and Û is composed of the first 
r left singular vectors of B, we have Â = PÛB and∥∥∥Â − A

∥∥∥
q

=
∥∥∥PÛB − PÛA − PÛ⊥

A
∥∥∥
q

=
∥∥∥PÛZ − PÛ⊥

A
∥∥∥
q

(a)
�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∥∥PÛZ

∥∥q
q
+
∥∥∥PÛ⊥

A
∥∥∥q
q

)1/q

, 1 � q � 2;(∥∥PÛZ
∥∥2
q

+
∥∥∥PÛ⊥

A
∥∥∥2

q

)1/2

, 2 � q < ∞

(b)
�
{

(2q + 1)1/q
∥∥Zmax(r)

∥∥
q
, 1 � q � 2;√

5
∥∥Zmax(r)

∥∥
q
, 2 � q < ∞.

Here, (a) is due to Lemma 1 and (b) is due to Theorem 2. For q = ∞,



Y. Luo et al. / Linear Algebra and its Applications 630 (2021) 225–240 231
‖Â − A‖ � ‖Â − B‖ + ‖A − B‖
(a)
� 2‖A − B‖ � 2‖Z‖ = 2‖Zmax(r)‖.

Here (a) comes from the fact that Â is the best rank-r approximation of B. �
As discussed in Section 1, one can derive the matrix estimation error bounds relying 

on ‖Z‖q or r1/q‖Z‖ via the existing perturbation theory in the literature. The following 
example illustrates that our result can be much sharper when the singular values of Z
have some polynomial decay.

Example 1. Suppose Z satisfies that σk(Z) = k−1/q for q > 1. Then

‖Zmax(r)‖q =
(

r∑
k=1

k−1

)1/q

≈ (1 + log r)1/q,

which can be much smaller than

‖Z‖q =
(

m∧n∑
k=1

k−1

)1/q

≈ (1 + log(m ∧ n))1/q, r1/q‖Z‖ = r1/q.

2.1. Proof of Theorem 2

In this section, we focus on the proof of Theorem 2. We first introduce several ad-
ditional lemmas on the properties of matrix singular values and norms, then present 
the proof of Theorem 2 and discussions. Recall that a matrix norm ‖ · ‖ is unitarily 
invariant if ‖A‖ = ‖UAV‖ for any matrix A and orthogonal matrices U, V. Define 

Φq(x) := max1�i1<...<ir�n

(∑r
j=1 |xij |q

)1/q
with q � 1 for any x ∈ Rn. We have the 

following Lemmas for ‖(·)max(r)‖q.

Lemma 2. Suppose q � 1. Then Φq(·) is a symmetric gauge function and ‖(·)max(r)‖q is 
a unitarily invariant matrix norm.

Proof. First, ‖(·)max(r)‖q is a unitarily invariant matrix norm follows by von Neuman-
nan’s Theory [18, Theorem II.3.6] if we can show Φq(·) is a symmetric gauge function. 
Recall the definition of symmetric gauge function from Section 1.1, it is easy to see we 
just need to show Φq(x + y) � Φq(x) + Φq(y) for any x, y ∈ Rn. To show this, for any 
x ∈ Rn and z ∈ Rn with ‖z‖0 � r (here ‖z‖0 denotes the number of non-zero entries in 
z), by Hölder’s inequality and the definition of Φq(·), we have 〈x, z〉 � ‖z‖pΦq(x) for p
such that 1/p + 1/q = 1. Moreover, the equality is achieved when the equality condition 
in Hölder’s inequality is satisfied. So

Φq(x) = sup 〈x, z〉. (10)

z:‖z‖p�1,‖z‖0�r
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Thus, we have

Φq(x + y) (10)= sup
z:‖z‖p�1,‖z‖0�r

〈x + y, z〉 � sup
z:‖z‖p�1,‖z‖0�r

〈x, z〉 + sup
z:‖z‖p�1,‖z‖0�r

〈y, z〉

(10)= Φq(x) + Φq(y).

This shows Φq(·) is a symmetric gauge function and finishes the proof of this lemma. �
Next, the following lemma introduces a dual characterization of the truncated matrix 

Schatten-q norm.

Lemma 3 (Dual representation of Truncated Schatten-q norm). Let X be a m-by-n real-
valued matrix. For any non-negative integer r � m ∧ n, q � 1 and 1/p + 1/q = 1, we 
have

‖Xmax(r)‖p = sup
‖B‖q�1,rank(B)�r

〈B,X〉. (11)

If rank(X) � r, then

‖X‖p = sup
‖B‖q�1,rank(B)�r

〈B,X〉. (12)

Proof. We first prove (11). Since Φq(x) is a symmetric gauge function as we have shown 
in Lemma 2 and its dual is Φp(·) with 1/p + 1/q = 1, (11) follows from [18, Lemma 
II.3.5]. Finally, (12) is a special case of (11). �
Lemma 4. Given matrix A ∈ Rm×n and any non-negative integer k � m ∧ n, for any 
matrix M with rank(M) � r, we have∥∥∥(A−max(r)

)
max(k)

∥∥∥
q

� ‖ (A − M)max(k) ‖q.

The equality is achieved when M = Amax(r).

Proof. By the well-known Eckart-Young-Mirsky Theorem [30–32], the truncated SVD 
achieves the best low-rank matrix approximation in any unitarily invariant norm. This 
lemma follows from the Eckart-Young-Mirsky Theorem and the fact that ‖(·)max(k)‖q is 
a unitarily invariant matrix norm (Lemma 2). �

Now we are in position to prove Theorem 2.

Proof of Theorem 2. We only study ‖PÛ⊥
A‖q since the proof of the upper bound of 

‖APV̂⊥
‖q follows by symmetry. Denote 

∑r
k=1 σk(A)ukv�

k as a singular value decompo-
sition of A. Since rank(PÛ⊥

A) � rank(A) = r, for p � 1 satisfying 1/p + 1/q = 1, we 
have
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∥∥∥PÛ⊥
A
∥∥∥
q

(a)= sup
‖X‖p�1,rank(X)�r

〈PÛ⊥
A,X〉

= sup
‖X‖p�1,rank(X)�r

〈PÛ⊥
(A + Z) − PÛ⊥

Z,X〉

� sup
‖X‖p�1,rank(X)�r

〈PÛ⊥
(A + Z),X〉 + sup

‖X‖p�1,rank(X)�r

〈PÛ⊥
Z,X〉

(b)
� sup

‖X‖p�1,rank(X)�r

‖X‖p
∥∥∥∥(PÛ⊥

(A + Z)
)

max(r)

∥∥∥∥
q

+ sup
‖X‖p�1,rank(X)�r

‖X‖p
∥∥∥∥(PÛ⊥

Z
)

max(r)

∥∥∥∥
q

(c)
� min

rank(M)�r

∥∥∥(A + Z − M)max(r)

∥∥∥
q
+
∥∥∥∥(PÛ⊥

Z
)

max(r)

∥∥∥∥
q

�
∥∥∥(A + Z − PU(A + Z))max(r)

∥∥∥
q

+
∥∥∥∥(PÛ⊥

Z
)

max(r)

∥∥∥∥
q

�
∥∥∥(PU⊥Z)max(r)

∥∥∥
q

+ ‖(PÛ⊥
Z)max(r)‖q (13)

�‖Zmax(r)‖q + ‖Zmax(r)‖q � 2‖Zmax(r)‖q.

Here (a), (b) are due to Lemma 3 and (c) is due to Lemma 4. �
We make several remarks on Theorem 2.
First, Theorem 2 may not be simply implied by the classic results. For example, the 

classic Wedin’s sin Θ Theorem [3],

max
{
‖ sin Θ(U, Û)‖q, ‖ sin Θ(V, V̂)‖q

}
� max{‖ZV̂‖q, ‖Û�Z‖q}

σr(B) , (14)

yields

‖PÛ⊥
A‖q = ‖Û�

⊥UΣ1V�‖q
(a)
� ‖Û�

⊥U‖qσ1(A) = ‖ sin Θ(U, Û)‖qσ1(A)

� max
{
‖ZV̂‖q, ‖Û�Z‖q

} σ1(A)
σr(B) ,

(15)

here (a) is by [18, Theorem II.3.9].
This bound (15) can be less sharp or practical for its dependency on σ1(A)/σr(B). 

As pointed out by [28], the spectrum of large matrix datasets arising from applications 
often decays fast. If the singular values of A, B decay fast, σ1(A)/σr(B) � 1 and (15)
can be loose. In contrast, our bound (7) in Theorem 2 is free of any ratio of singular 
values, which can be a significant advantage in practice. We will further illustrate the 
difference between (7) and (15) by simulation in Section 5.2.
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Second, it is noteworthy by (13) in the proof of Theorem 2, we have actually proved

‖PÛ⊥
A‖q �

∥∥∥∥(PÛ⊥
Z
)

max(r)

∥∥∥∥
q

+
∥∥∥(PU⊥Z)max(r)

∥∥∥
q

‖APV̂⊥
‖q �

∥∥∥∥(ZPV̂⊥

)
max(r)

∥∥∥∥
q

+
∥∥∥(ZPV⊥)max(r)

∥∥∥
q

(16)

under the setting of Theorem 2. The bound (16) can be better than the one in Theorem 2
in some scenarios. For example, when Z is (or is close to) UΣZV� for some r-by-r matrix 
ΣZ, the bound in (16) is smaller than ‖Zmax(r)‖q. On the other hand, the proposed bound 
in Theorem 2 is strong enough for proving Theorem 1, does not involve PÛ⊥

or PV̂⊥
, 

and can be more convenient to use.

3. Lower bounds

The following Theorem 3 shows that the error upper bound for the rank-r truncated 
SVD estimator Â in Theorem 1 is sharp.

Theorem 3. For any ε > 0 and q � 1, there exist A, B, and Z �= 0 such that rank(A) = r, 
B = A + Z, and

‖Â − A‖q > ((2q + 1)1/q − ε)‖Zmax(r)‖q.

Proof. Without loss of generality we assume 0 < ε < 1. We choose a value η ∈
(0, (2q+1)1/q

(2q+1)1/q−ε
− 1). Define

A =
[ 2Ir 0r×r 0
0r×r 0r×r 0
0 0 0

]
, Z =

[−(1 + η)Ir 0r×r 0
0r×r Ir 0
0 0 0

]
,

and

B =
[(1 − η)Ir 0r×r 0

0r×r Ir 0
0 0 0

]
.

Then,

‖Â − A‖q =
∥∥∥∥[−2Ir 0r×r

0r×r Ir

]∥∥∥∥
q

= (2qr + r)1/q, ‖Zmax(r)‖q = (1 + η)r1/q.

We thus have

‖Â − A‖q > ((2q + 1)1/q − ε)‖Zmax(r)‖q. �
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Theorems 1 and 3 together imply that the constants in (4) are not improvable when 
1 � q � 2 and q = ∞. For 2 < p < ∞, it would be an interesting future work to 
close the gap between the upper bound (

√
5‖Zmax(r)‖q) and the lower bound ((2q +

1)1/q‖Zmax(r)‖q).
Apart from checking the sharpness of the upper bound (4), another natural question 

is, whether the rank-r truncated SVD estimator is an optimal estimator in estimating A. 
To answer this question, we consider the minimax estimation error lower bound among 
all possible data-dependent procedures qA = qA(B) (i.e., qA is a deterministic or random 
function of matrix B). We specifically focus on the following class of (Ã, Z̃, B̃) triplets:

Fr(ξ) =
{

(Ã, Z̃, B̃) : B̃ = Ã + Z̃, rank(Ã) = r,
∥∥∥Z̃max(r)

∥∥∥
q

� ξ

}
.

Here, ξ corresponds to 
∥∥Zmax(r)

∥∥
q

in the context of Theorem 1.

Theorem 4 (Schatten-q minimax lower bound). For the low-rank perturbation model, if 
m ∧ n � 2r, then, for any q � 1, we have

inf
qA

sup
(Ã,Z̃,B̃)∈Fr(ξ)

∥∥∥qA − Ã
∥∥∥
q

� 21/q−1ξ.

Here the infimum is taken over all the estimation procedures.

Proof. The proof is done by construction. We construct

Z1 =

⎛⎜⎝ 0r×r 0 0
0 ξ

r1/q Ir 0
0 0 0

⎞⎟⎠ , sA1 =

⎛⎜⎝ ξ
r1/q Ir 0 0

0 0r×r 0
0 0 0

⎞⎟⎠ ,

and

Z2 =

⎛⎜⎝ ξ
r1/q Ir 0 0

0 0r×r 0
0 0 0

⎞⎟⎠ , sA2 =

⎛⎜⎝ 0r×r 0 0
0 ξ

r1/q Ir 0
0 0 0

⎞⎟⎠ .

By the construction above, we have ‖(Z1)max(r)‖q = ξ, ‖(Z2)max(r)‖q = ξ, and sA1 +
Z1 = sA2 + Z2. So

inf
qA

sup
(Ã,Z̃,B̃)∈Fr(ξ)

∥∥∥qA − Ã
∥∥∥
q

� inf
qA

(
max

{
‖qA − sA1‖q, ‖qA − sA2‖q

})
�1 inf

(
‖qA − sA1‖q + ‖qA − qA1‖q

)
� 1‖sA1 − sA2‖q = 21/q−1ξ. �
2 qA 2
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Combining Theorems 1 and 4, we conclude that the truncated SVD Â achieves the 
optimal rate of low-rank matrix estimation error among all possible procedures qA in the 
class of Fr(ξ).

4. Subspace perturbation bounds

In this section, we apply the perturbation projection error bound established in The-
orem 2 to derive a user-friendly subspace (singular vectors) perturbation bound.

Theorem 5. Consider the same perturbation setting as in Theorem 1. For any q � 1, we 
have

max
{
‖ sin Θ(Û,U)‖q, ‖ sin Θ(V̂,V)‖q

}
�

2‖Zmax(r)‖q
σr(A) .

Proof. By Theorem 2, we have

‖PÛ⊥
A‖q � 2‖Zmax(r)‖q.

Since the left singular subspace of A is U, we have UU�A = PUA = A. Then

‖ sin Θ(Û,U)‖q = ‖Û�
⊥U‖q

(a)
� ‖Û�

⊥UU�A‖q
σr(U�A) =

‖PÛ⊥
A‖q

σr(A) �
2‖Zmax(r)‖q

σr(A) ,

here (a) is by [18, Theorem II.3.9]. �
We note that several similar bounds are developed towards the applications in statis-

tics and machine learning in the past few years, for example, [33, Corollary 4.1], [15, 
Theorem 2], and [34, Lemma 5.1]. When the matrix is positive semidefinite, these results 
yield

∥∥∥sin Θ(Û,U)
∥∥∥
F

�
√

2‖Z‖F
σr(A) , ([33, Corollary 4.1]), (17)

∥∥∥sin Θ(Û,U)
∥∥∥
F

� 2 min{r1/2‖Z‖, ‖Z‖F }
σr(A) [15, Theorem 2], [34, Lemma 5.1]. (18)

When A, Z, B are asymmetric, [15] also proved

∥∥∥sin Θ(Û,U)
∥∥∥
F

� 2(2‖A‖ + ‖Z‖) min{r1/2‖Z‖, ‖Z‖F }
σ2
r(A) [15, Theorem 3]. (19)

The perturbation bounds (17), (18), (19), along with Theorem 5 in this paper, are “user 
friendly” as they do not involve Û, V̂ or B in contrast to the classical Wedin’s sin Θ
bound (14). This advantage facilitates the application of these perturbations to many 
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settings when A and Z are the given arguments: one no longer needs to further bound 
‖ZV̂‖q, ‖Û�Z‖q. The “user friendly” advantage is also important in many settings as 
the denominator of (14), σr(B), depends highly on the perturbation Z and can be rather 
small due to perturbation [15]. In addition, our new result in Theorem 5 has a better 
dependence on both Z and σr(A) than (17), (18), (19) because

‖Zmax(r)‖F � min
{
r1/2‖Z‖, ‖Z‖F

}
,

while the opposite side of this inequality does not hold. Moreover, Theorem 5 covers the 
more general asymmetric matrices in Schatten-q sinΘ norms for any q ∈ [1, ∞].

5. Simulations

In this section, we provide numerical studies to support our theoretical results. We 
specifically compare the low-rank matrix estimation error bound (Theorem 1) and the 
matrix perturbation projection error bound (Theorem 2) in Section 2 with the results in 
previous literature. In each setting, we randomly generate a perturbation Z = uv� + Z̃, 
draw A by a to-be-specified scheme, and construct B = A + Z. Here u, v are randomly 
generated unit vectors and Z̃ has i.i.d. N(0, σ2) entries. Throughout the simulation 
studies, we consider the Schatten-2 norm (i.e., Frobenius norm) as the error metric. 
Each simulation setting is repeated for 100 times and the average values are reported.

5.1. Numerical comparison of low-rank matrix estimation error bounds

We first compare the low-rank matrix estimation error bound ‖Â−A‖q in Theorem 1
and the bounds in (2) and (3). We set n ∈ {100, 300}, r ∈ {4, 6, . . . , 16}, σ = 0.02, and 
generate A = UΣ1V�, where U ∈ Rn×r, V ∈ Rn×r are independently drawn from On,r

uniformly at random; Σ1 is a diagonal matrix with singular values decaying polynomially 
as: (Σ1)[i,i] = 10

i , 1 � i � r.
The evaluations of the upper bounds in Theorem 1, (2), (3), and the true value of 

‖Â−A‖F are given in Fig. 1. It shows that the upper bound in Theorem 1 is tighter than 
the upper bounds in (2), (3) in all settings. In addition, when n increases from 100 to 
300, the upper bound of (2) significantly increases while the upper bound of Theorem 1
remains steady. This is because the upper bounds of (2) and Theorem 1 rely on ‖Z‖F
and ‖Zmax(r)‖F , respectively.

5.2. Numerical comparison of matrix perturbation projection error bounds

Next, we compare the matrix perturbation projection error bound in Theorem 2 with 
the upper bound (15) derived from Wedin’s sinΘ Theorem. We generate B, Z in the 
same way as the previous simulation setting. When generating Σ1 in A, apart from the 
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Fig. 1. Low-rank matrix estimation error bound (Theorem 1), upper bounds (2), (3) and the true value of 
‖Â − A‖F .

Fig. 2. Matrix perturbation projection error upper bound (Theorem 2), upper bound via Wedin’s sinΘ
Theorem (15), and the true value of ‖P

Û⊥
A‖F .

polynomial singular value decaying pattern considered in the last setting, we also consider 
the following exponential singular value decaying pattern: (Σ1)[i,i] = 25−i, 1 � i � r.

The values of the upper bounds in Theorem 2 and (15), along with the true value of 
‖PÛ⊥

A‖q, are presented in Fig. 2. We find the bound of Theorem 2 is much tighter than 
the bound in (15). As r increases or singular value decaying pattern becomes exponential, 
i.e., A becomes ill-conditioned, (15) becomes loose while Theorem 2 can still be sharp.

6. Discussions

In this paper, we prove a sharp upper bound for estimation error of rank-r truncated 
SVD (‖Â−A‖q) under perturbation, and show its optimality in low-rank matrix estima-
tion. The key technical tool we use is a novel matrix perturbation projection error bound 
for ‖PÛ⊥

A‖q. As a byproduct, we also provide a sharper user-friendly sinΘ perturbation 
bound. The numerical studies demonstrate the advantages of these new results over the 
ones in the literature.
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The main result of this paper is the upper bound in (4), which is sharper than ones 
directly derived from the literature (1), (2), (3). We also comment that (1) can be 
conveniently extended to the general case that A is approximately rank r [3, Eq.(4.4)]. 
It is interesting future work to study if a similar bound to (4) can be obtained for the 
general approximately low-rank A.

Throughout the paper, we study the additive perturbations and it is a future work 
to extend the results to multiplicative perturbations [7,8]. Also for convenience of pre-
sentation, we focus on the real number field in this paper. It is interesting to extend the 
developed results to the field of complex numbers. The main technical work for such an 
extension includes complex versions of Lemma 2 and 3.

Apart from the widely studied perturbation theory on singular value decomposition, 
the perturbation theory for other problems, such as pseudo-inverses [26,27], least squares 
problems [27], orthogonal projection [27,35–37], rank-one perturbation [38], are also im-
portant topics. It would be interesting to explore whether the tools developed in this 
paper are useful in studying the perturbation theory for these problems.
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