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We examine the spatial modeling of the outbreak of COVID-19 in two regions: the autonomous community of
Andalusia in Spain and the mainland of Greece. We start with a zero-dimensional (0D; ordinary-differential-
equation-level) compartmental epidemiological model consisting of Susceptible, Exposed, Asymptomatic,
(symptomatically) Infected, Hospitalized, Recovered, and deceased populations (SEAIHR model). We em-
phasize the importance of the viral latent period (reflected in the exposed population) and the key role of an
asymptomatic population. We optimize model parameters for both regions by comparing predictions to the
cumulative number of infected and total number of deaths, the reported data we found to be most reliable,
via minimizing the �2 norm of the difference between predictions and observed data. We consider the sensitivity
of model predictions on reasonable variations of model parameters and initial conditions, and we address issues
of parameter identifiability. We model both the prequarantine and postquarantine evolution of the epidemic by
a time-dependent change of the viral transmission rates that arises in response to containment measures. Subse-
quently, a spatially distributed version of the 0D model in the form of reaction-diffusion equations is developed.
We consider that, after an initial localized seeding of the infection, its spread is governed by the diffusion (and
0D model “reactions”) of the asymptomatic and symptomatically infected populations, which decrease with the
imposed restrictive measures. We inserted the maps of the two regions, and we imported population-density data
into the finite-element software package COMSOLMultiphysics�, which was subsequently used to numerically
solve the model partial differential equations. Upon discussing how to adapt the 0D model to this spatial setting,
we show that these models bear significant potential towards capturing both the well-mixed, zero-dimensional
description and the spatial expansion of the pandemic in the two regions. Veins of potential refinement of the
model assumptions towards future work are also explored.
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I. THE LAY OF THE LAND

Since December 2019, most countries around the globe
have been grappling with how to best contain the COVID-
19 pandemic. This emerging infectious disease is caused by
the virus SARS-CoV-2, which belongs to the same family
(Coronaviridae) as the viruses responsible for the Severe
Acute Respiratory Syndrome (SARS) identified in 2002 in

*Corresponding author: jcuevas@us.es

China [1] and the Middle East Respiratory Syndrome (MERS)
that originated in Saudi Arabia a decade later [2]. As of this
writing (March 15, 2021), the number of confirmed infections
throughout the world has already eclipsed 120 million indi-
viduals with well over 2.5 million deaths [3], a number whose
rate of increase has subsided and subsequently increased as
the first wave of infections (pre-summer 2020) gave way to
the second wave (fall 2020). A third wave in winter 2020
and spring 2021 followed. The race to identify a suitable vac-
cine started almost contemporaneously with the appearance
of the virus, and progressed very rapidly, despite subsequent
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delays in manufacturing and distributing it [4]. Numerous vac-
cines have been developed, some approved for administration
to patients (possibly segregated in age groups) by national
authorities, others are under testing or under development.
Naturally, the vaccination of whole populations will take time
and may not be relevant in the short term. Given the time
needed to develop and deploy the distribution of vaccines,
the so-called “non-pharmaceutical interventions” [5,6] have
been brought to bear (often strictly so) during the earlier and
even during the ongoing wave of the pandemic. Most notable
among them are social distancing, self-quarantining (when
infected), lockdown and severely restricted human mobility,
limits on the number of persons in gatherings, and the use of
personal protective equipment (various forms of face masks)
to mitigate the growth of the number of infections. In an
unprecedented for at least a two-generation setting, more than
half of the planet’s population has been under the effect of
different levels of such measures.

The urgency of this ongoing and rapidly developing global
pandemic has redirected a significant volume of the research
community’s efforts in this particular direction. For biolo-
gists and clinicians, as well as for computational physicists
and chemists, a race against time is underway to understand
the binding properties of the virus and its hacking of the
RNA, the action of its spike protein, and how to inactivate
it via suitable antibody mechanisms [7]. Aerosol scientists
and virologists are trying to understand the role of expelled,
virus-loaded respiratory droplets in the transmission of the
virus, and the importance of the aerosol transmission mode, as
opposed to direct or indirect contact transmission [8], as well
as the importance of forced ventilation and air purification in
indoor environments. At the same time, a clear sense of urgent
need has emerged for mathematicians and epidemiologists
to consider the spreading of the virus over the population.
The focal points of such studies have been extremely diverse:
from isolated (or nearly isolated) entities such as restau-
rants [9], small villages and cruise ships [10], and cities [11],
to states and provinces [12–14], and a large number of coun-
tries [15–21], including recently Greece [22], aside of course
from the prototypical examples of Wuhan, China [23,24], as
well as some of the hard-hit Italian regions such as Lom-
bardy [25]. Indeed, as of the present writing there are about
3700 articles in arXiv and 14 000 in medRxiv and bioRxiv
centered around the theme of COVID-19/SARS-CoV-2 alone,
a rather staggering number given the 12 months since the
disease being declared a pandemic. To mention just a few
of these recent works, an inspiring collection of viewpoints
regarding recent developments and lingering challenges in the
mathematical modeling of COVID-19 is given in [26]. Data
quality and availability, rare but significant superspreading
events, the role of human behavior, and host heterogene-
ity are just a few of the hindrances faced by modelers. An
evaluation of various different modeling approaches, includ-
ing the SIR (Susceptible-Infectious-Recovered) and SEIR
(Susceptible-Exposed-Infectious-Recovered) epidemic mod-
els, as well as high-dimensional ones, like the one presented
in this work, is performed in [27]. In [28], care was taken
to address the issue of model limitations due to the amount
and quality of data and uncertainty regarding the fraction
of asymptomatic infections and their role in spreading the

disease. Most modeling reported in these works highlights
the fact that all models are imperfect, but some are still
useful [29].

Within this extremely diverse and rapidly evolving land-
scape, including several variants of the virus [30], our team
has identified a niche of significant deficiency in the current
level of modeling. A significant fraction of the models essen-
tially ignores the spatial element, considering the country in
the form of a well-mixed population that can be addressed
at the level of ordinary differential equations (ODEs) of the
extremely widely used form of SIR models and multicom-
ponent, as well as multiage group generalizations thereof.
Readable and informative reviews of the mathematics of in-
fectious diseases and epidemics include the works in [31].
While spatial generalizations of such SIR models do ex-
ist [32,33], they are often, but not exclusively, used at the level
of interesting models of pattern formation, rather than that of
realistic population-level settings. In fact, spatial extensions
of SIR models have been extensively discussed; see, for ex-
ample, [34]. They are typically used to model vector-borne
diseases whose vectors diffuse, as, for example, mosquitoes
that transmit malaria [35]. In the case of SARS-CoV-2 the
agents that transport the virus are the respiratory droplets [36]
that are closely connected, in both time and space, to the
infectious individuals. The behavior of these droplets on the
large spatial scales considered here (scales associated with
regions) is subsumed to the motion of individuals that we will
consider to be diffusive. This modeling of individual mobility
leads to a set of reaction-diffusion PDEs that may be used
to model the spatiotemporal evolution of the pandemic, an
approach that we follow in this work. A similar approach,
which considers two interacting and isotropically diffusing
populations (susceptible and infected), was adopted by [37]
to model the spreading of the mid-14th-century Black Death
plague in Europe, with particular interest in the propagation
velocity of one-dimensional traveling waves. Admittedly, the
approximation of human mobility as diffusive (and isotropic)
neglects that human mobility is partially predictable and
directed, as suggested by numerous recent studies, for exam-
ple, [38]. Directed motion can be incorporated in our model
via a convection term, which we neglect in this initial work.
The work presented herein provides a framework that can
include it, as well as other possible extensions like random but
long-range effects (emulating travel), or anisotropic diffusion.
We are not aware of any similar partial differential equation
(PDE) simulations of the spreading of an epidemic at the large
scales (country-wide) considered here (but see [39,40] for two
PDE-based studies, the former applied to France and the latter
to Lombardy). Hence, the limitations and potentialities of this
approach have not been properly assessed. As we argue, such
simulations entail severe computational challenges, e.g., a nu-
merical simulation on the spatial grid of an entire country with
the population density appropriately gridded, and they avail
of novel developments in Geographic Information Systems to
import the region’s geometry and to properly populate it by
the population density. Moreover, current data in Greece and
in Andalusia, the regions we explore, do not appear in any
source that we are aware of in a spatially distributed form at
the level and scales presented herein. The model we present
argues, for the first time, that it is relevant, interesting and
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computationally accessible to simulate models at the level of
a country, and thus to obtain data to compare at an adequately
spatially resolved level. It is thus a prompt for researchers on
the epidemiological side (or cross-disciplinary collaborations
of these with mathematical and physical scientists) to seek
to produce such data. More importantly, however, it sets the
stage for a more refined, and more realistic, description of the
spatiotemporal evolution of a disease in terms of convection-
reaction-diffusion PDE models.

Our aim is to enable a broad scale of spatial modeling,
at the same time leveraging the unprecedented availability of
data about this pandemic and the spatial connectivities and
mobility data of the human population. The approach that
one can select along this niche of spatial resolution of the
pandemic is, indeed, multifold. On the one hand, one can aim
to formulate a PDE model incorporating the ingredients of
a generalized SIR formulation. At the same time, a comple-
mentary viewpoint that is far less computationally expensive
but possibly quite informative in its own right is a metapop-
ulation network approach in the spirit of the work of [41].
While networks and metapopulation studies (see, for exam-
ple, [21,42,43]), are useful in attempting to examine small
numbers of groups of individuals, it is clear that these cannot
properly capture the scale of an entire country. The number
of nodes would simply be too large, and it would not be
possible to capture the tremendous variations of population-
density scales. Such models could be well suited to study
propagation of waves of an epidemic between metropolitan
centers, but they surely are not well suited to capture differ-
ent and much smaller scales (at least not without significant
adaptations). For instance, they cannot capture dynamics that
happens within a node (unless they have further structure),
and they surely cannot capture dynamics (spatially) occurring
between nodes. The interest in such models is to consider
transport along links if one is interested in long-range trans-
port of a virus by, e.g., airline travel or along highways. Here
we seed viral hotspots and explore how the virus will spread
locally thereafter. Our infection initialization by hotspots aims
to emulate the initial long-range transport of infectious indi-
viduals, and hence it becomes an indirect way to incorporate
mobility on a network in the absence of convection. In that
sense, our technique too requires significant adaptations but
for a different reason: this is in order to properly capture
mobility of the population that induces the spreading of a
pandemic.

Moreover, one can envision techniques (such as the
equation-free modeling framework [44]) that may enable the
cross-linking of the above two approaches, e.g., the use of
metapopulation network systems to perform PDE-level tasks.
Last, there exist isolated examples of models that take into
account the structure of different types of networks. A par-
ticularly nice example in this direction is the work of [45],
which leverages the availability of Enron, Facebook, and so-
cial graphs in the form of adjacency matrix patterns that can be
used to represent the connectivity within a country’s network.

With these considerations in mind, we develop an ex-
panded variant of the classical SIR model (ODE model) and
then focus on its PDE spatiotemporal generalization. We in-
corporate particularities of this virus, such as its latent period,
i.e., that individuals exposed to the virus may be infected but

not infectious during the latent period, and the significant frac-
tion of infected and infectious individuals that do not develop
symptoms. In Sec. II we present the spatial model, analyze
first its ODE variant that will be used to perform appropriate
optimization of its parameters in the cases of the country of
Greece (but without the islands, i.e., the mainland of Greece),
and the Spanish autonomous community of Andalusia. While
our study has focused on both regions, for practical purposes,
we opted to relegate the presentation and discussion of our
results for Greece to an Appendix. This renders the presen-
tation of our model, our approach, and methodology more
focused and easier to follow. The selection of two seemingly
unrelated regions may appear a bit disparate, yet we argue
these to be particularly interesting examples. Aside from their
intrinsic interest to the authors, these roughly equally sized
regions with similar population densities, exhibit significantly
different, i.e., by an order of magnitude, number of deaths,
illustrating the potential impact of different policies. Upon
optimizing the ODE results, we use their output to formulate
the input of the corresponding PDE framework and explain
how to set it up within the software package COMSOL. Fol-
lowing the formulation of both the ODE and PDE approaches
in Sec. II, the results for Andalusia and the respective inter-
pretations and comparisons with reported dates are offered
in Sec. III. We provide numerical results for key categories
such as cumulative infections and deaths, comparing the PDE
results both with the available data for these regions and the
associated ODE results. Finally, in Sec. IV we summarize our
findings and present our conclusions offering a number of
possibilities towards future work. The first Appendix summa-
rizes the calculation of the basic reproduction number by the
next-generation matrix approach, whereas the second presents
model results for the mainland of Greece for well-mixed and
spatially distributed populations, mimicking our analysis of
the spread of the virus in Andalusia.

II. SETUP OF ODE AND PDE MODELS

We first explain the ODE model which is obtained from
the full PDE model by removing the convection and diffusion
“spatial aspects” in the convection-reaction-diffusion equa-
tions of interest.

At the level of an ODE formulation, a relevant extension
of the standard SIR model can incorporate some of the key
features of this virus, such as that a fraction of the exposed
population remains asymptomatic [46]. We thus start with a
population of susceptibles (S), which may become exposed
(E ) upon the emergence of the virus within the population.
This represents the well-documented [47] feature that the
virus is latent within the host for a period of time, before he
or she becomes infectious (able to transmit the virus to sus-
ceptible hosts). After this latent period, exposed individuals,
in turn, may become asymptomatically infectious (A) at rate
σA, or (symptomatically) infected (I) at rate σI . We assume
here that both A and I can interact with the susceptibles S
with respective rates βAS and βIS to draw new members of
the population into the group E of individuals exposed to
the virus. We note that the transmission rates β incorporate
the total population size (ODE model) or the total population
density (PDE model). A fraction of hosts in the I class may
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FIG. 1. Schematic diagram of the SEAIHR model. The dashed lines denote the interaction of the infectious populations, namely
Asymptomatic and symptomatically Infected, with the Susceptible population that leads to infection.

need hospitalization, thus giving rise to a population of hos-
pitalized (H ) at rate γ M. Among these, a fraction responds
to the treatments, thus leading ultimately to a population of
recovered (R) at a rate (1 − ω)χ . At the same time, the seri-
ously ill who are hospitalized yield also a number of deceased
(D) at a rate ωψ . Asymptomatically infected hosts recover at
a rate MAR (i.e., asymptomatic recovered) and move into class
AR and the seriously ill recover at a rate (1 − γ )M. While
AR could, in principle, be merged with R, in our view, it is
meaningful to maintain these two populations separate since
R is a measurable quantity within available COVID-19 data
(and, hence, comparable to model predictions), while AR is
not. Notice that the above constants reflect both the popu-
lation fraction partition (e.g., ω vs 1 − ω) and the (inverse)
timescales (e.g., χ vs ψ) for transition between subgroups.

A weak effect of net change of the population due to birth
or other mortality factors (−μS) can be incorporated in the
susceptibles and can be adequately assessed from census data,
yet we do not incorporate it in the D population aiming to
evaluate purely the deaths stemming from COVID-19. Here
we briefly note two points. The pool of susceptible individuals
is not significantly affected (over the timescale of our study)
from this term which can be safely neglected for our pur-
poses. Second, one can include such a term in the rest of the
populations involved in our study. However, the (underlying)
health conditions often involved in such mortality often lead
to complications in the concurrent presence of COVID-19
and when this leads to mortality, the latter is attributed to
COVID-19. Hence, we do not include such a separate term
in the rest of the equations.

The above specify the “ODE parameters” within the group;
these reflect processes that happen either in an averaged way
at the “well-mixed” level (when no spatial dependence is
assigned) of the ODEs or processes that happen locally at
every point in space for the PDEs. We will return to this
when we discuss parameter conversions in the next section.
The relevant populations and rates of conversion can be seen

in a self-contained form in Fig. 1. The ODE version of the
proposed model, described in the figure, is similar to the
SEAIHR model used to model the transmission of the MERS
coronavirus in the Republic of Korea [48], but slightly distinct
in its treatment of the asymptomatically recovered, the recov-
ered, and the hospitalized who, in the current model, do not
transmit the virus, as they are expected to be in isolation.

The relevant population model at the PDE level reads

St = ∇(DS∇S) − (�v · ∇)S − βSASA − βSI SI−μS, (1)

Et = ∇(DE∇E )−(�v · ∇)E +βSASA + βSI SI − (σA + σI )E ,

(2)

At = ∇(DA∇A) − (�v · ∇)A + σAE − MARA, (3)

ARt = ∇(DAR∇AR) − (�v · ∇)AR + MARA, (4)

It = σI E − MI, (5)

Ht = γ MI − (1 − ω)χH − ωψH, (6)

Rt = ∇(DR∇R) + (1 − γ )MI + (1 − ω)χH, (7)

Dt = ωψH. (8)

We now turn to the PDE properties of the model involving
spatial spreading of the pandemic. Initially, we note that we do
not anticipate that infected (which should be self-quarantined)
and hospitalized (or at stages thereafter) will have diffusivity,
i.e., DI = DH = 0 in the initial installment of the model. As
regards the R and AR, in principle they can have diffusivity
(although there is a period of recovery), yet since it is fair to
assume that these populations have immunity in the immedi-
ate interval after their infection, we can assign DR = DAR =
0. However, an interesting possibility within the model is
the inclusion of population time-dependent diffusion, possibly
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anisotropic, and also directed motion (along the direction of
the velocity �v), as considered, for example, in [49] where a
laboratory case of epidemic propagation along lines of fast
diffusion is presented to model the spreading of a virus along
a highway. As regards the remaining populations, it may be
tempting to examine nonlinear variants where the diffusiv-
ity is larger, e.g., where the population is larger, reflecting
the existence of a well-established transportation/mobility
network. Nevertheless, in the present work, we will initiate
relevant considerations by assuming constant diffusivity of the
susceptibles, the exposed, and the asymptomatics. The latter
are the key, given their mobility and spatial spreading for the
corresponding spreading of the pandemic in the context of
Eqs. (1)–(8).

An additional important decision that can be incorporated
at the level of the PDE model concerns the functional form
of the directional velocity �v. In principle, this can be used
to capture “daily practices” (e.g., going to work, spending
time there, commuting back, and resting practices), but also
longer temporal or spatial scales (e.g., trips from city to city,
or country to country). Motivated partially by the colloquial
understanding of some of the case examples considered such
as the spreading of the pandemic in Greece [50], at the present
level, we opt not to incorporate these effects but simply allow
diffusion to perform the relevant spreading. The idea within
a given region then is that arriving infected individuals, e.g.,
from international travel, form local hotspots within the S
population, and we examine the diffusional spreading effect
of the virus in the presence of the above local viral dynamics.
Hence, the initial infectious seeding within the susceptible
population is a rough approximation intended to emulate long-
distance transport in the absence of convection. We will see
that this approach is not unreasonable given the results that
we obtain for the spreading of the PDE results compared
with both the ODE ones and the data available online for
the cumulative infections and the deaths within the regions of
interest. Naturally, it is hoped that this will be a seed study
towards a further refinement of such considerations on the
basis of more accurate spatial data for the spreading of the
disease.

In the results given in the next section, we have selected
as our illustrative example the autonomous community of
Andalusia in Spain. The example of the mainland of Greece
is presented in Appendix B. While these examples may seem
somewhat disparate, they bear some significant advantages as
regards their nature and their comparison. First, they are re-
gions of similar populations of about 8–10 million inhabitants.
Greece has been praised in international media [51] regarding
its handling of the first-wave COVID-19 crisis and the effec-
tiveness and promptness of the associated social-distancing
measures. Additional relevant features of this region include
(a) day 0 of the infection first wave and (b) the origin of the
localized events thereof could be successfully identified, as
well as (c) strict lockdown effects went into place early on.
Another example at the opposite end with very significant
numbers of infections and deaths is Spain. However, here
there is a significant set of complications. Not only is Spain
far larger in spatial and population size, but importantly for the
number of reported cases and especially the number of deaths,
there is no universally accepted way of reaching the relevant

conclusive numbers across the 17 different autonomous com-
munities. For all of the above reasons, and also for reasons of
clearer comparison of comparable sizes (and also for ones of
intrinsic interest to the authors, admittedly), we selected the
autonomous community of Andalusia.

Having selected our target regions, the next complication
is to formulate the solution of Eqs. (1)–(8) at the level of
the autonomous community or country as a “two-dimensional
spatial grid.” That is one significant complication toward spa-
tial modeling which we have addressed by utilizing the finite
element package COMSOL Multiphysics� [52]. We have in-
serted the regions’ map as a geometry within COMSOL and
proceeded subsequently to form a triangulated mesh of the
computational domain.

The next and also rather complex step is to formulate
a population as an initial condition of susceptibles within
the relevant grid. Here, we have leveraged tools from the
large-scale geographic project World Pop [53]. This method-
ology encompasses census data and enables via random forest
models [54] the generation of a gridded prediction of the
population density at a resolution of about 90 m. We have
imported this type of data within our spatial country grids
and via interpolation we are in a position to simulate models
of the type of Eqs. (1)–(8) with arbitrary choices of param-
eters, and, in principle, also initial conditions. This is, in
our view, a significant combined asset (the spatial grid of a
region combined with an interpolated over this grid realistic
representation of population census data) towards modeling
spreads of epidemics.

The crucial next step, within this line of modeling the
spreading of the epidemic, is to identify suitable parameters,
similarly to what has been done in numerous earlier stud-
ies [55,56] at the ODE level. To do so, we utilized a nonlinear
optimization algorithm such as the constrained minimization,
fmincon function within Matlab. We determined the optimal
model parameters by minimizing the Euclidean distance N
(�2 norm) between the time series generated by the model,
identified by the subscript “num,” and the corresponding “ob-
served” (data) time series, identified by the subscript “obs,”

N =
t endfit∑

i

{| log[Cnum(ti)] − log[Cobs(ti)]|2

+ | log[Dnum(ti )] − log[Dobs(ti )]|2} (9)

where the index “i” identifies a point in the time series. The
parameters were optimized to reproduce the time series of the
reported total number of infected cases [C(t ) = I (t ) + H (t ) +
R(t ) + D(t ), the total number of “cases”] and total number of
deceased [D(t )]. We found these two time series to provide
the most reliable data. Specifically, for the case of Greece
we note some nontrivial lapses in the apparent curation of
the data. Particularly noteworthy is the case of the recovered
individuals in [50]. The data must evidently be significantly
inaccurate, as the number of recovered individuals appears to
stay fixed at 53 between March 29 and April 5, only then to
jump entirely abruptly to 269 recovered, only to stay there
between April 6 and April 29, then to jump on to 1374.
Admittedly, the unprecedented circumstances were straining
the data collection process, yet it is particularly important to
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provide accurate data to modelers to adequately calibrate the
models towards the future spreading of the pandemic. It is
these two data columns (total cases and deaths) from [50]
that we thus compare to our zero-dimensional (0D) model
for Greece and the columns that were used in the parameter
optimization.

As expected for this large parameter space, initial param-
eter choices and parameter constraints affect the parameters
resulting from the optimization algorithms. In the next sec-
tion, where we present the ODE parameters, we discuss a
number of sensitivity studies as well as related issues of pa-
rameter identifiability. In addition, we argue that the suggested
median values are biologically and socially reasonable, and
that they are in line with a number of features known about
the SARS-CoV-2 transmission.

At the level of parameters within a certain individual and
how the virus acts on it “on average,” i.e., as concerns pa-
rameters such as (σA, σI , M, γ , MAR, ω, χ,ψ ), we preserve
the same values at the PDE level as at the ODE one. The
transmission rates β are more complicated. Keeping in mind
that at the PDE level the quantities, S, E , etc. are no longer
populations, but rather population densities [57] which inte-
grate over the region’s spatial surface (through the respective

surface integrals) to the true population of each category, we
can immediately infer that the units of such densities are
proportional to l−2 where l is a characteristic length scale of
the analysis. In that vein, the β’s need to be multiplied by l2 to
adapt dimensionally between the ODE and the corresponding
PDE model. Indeed, we found these to be the most compli-
cated parameters to select at the level of the PDE model, as
we will explain in the discussion of the results below. It is
important to bear in mind that while the results below are
given for these two regions our aim is to develop a set of
tools that could be in principle used, alongside with data for
the pandemic from different countries [3], to perform similar
analyses of other regions.

III. COMPUTATIONAL RESULTS

A. ODE model: Well-mixed populations

We start the exposition of our results by discussing what
we will refer to as the “0D” model (the version of Eqs. (1)–(8)
without space dependence) for Andalusia. Data for the evo-
lution of the pandemic in Andalusia were obtained from the
Andalusian goverment’s COVID-19 site [58]. The relevant re-
sults are given in Fig. 2. We obtained the optimal (best-fitting)

FIG. 2. 0D model for Andalusia with fitting to official data from March 14, 2020 (t = tinit = 1) to May 11, 2020 (t endfit = 59). Official
confinement started on March 16, 2020 (tq = 3). Top panels show the official data (black dots) and simulations: red line (top solid line at
t = 150) for tq = 3 (scenario 1) and blue line (bottom solid line at t = 150) for tq = 13 (scenario 2, quarantine starting on March 29, 2020).
Left top panel: Confirmed cases C(t ) = I (t ) + R(t ) + H (t ) + D(t ); Right top panel: Number of deaths D(t ). Bottom panels show the other
populations. Bottom left panel shows these populations for tq = 3 [distinguishable at t = 150 from top to bottom: recovered R(t ), asymptomatic
recovered AR(t ), hospitalized H (t ), asymptomatic A(t ), and exposed E (t )]. The bottom right panel shows them for tq = 16 (distinguishable
at t = 150 from top to bottom: asymptomatic recovered AR(t ), recovered R(t ), hospitalized H (t ), asymptomatic A(t ), and exposed E (t )). In
all the panels, shaded regions correspond to the interquartile range for each quantity, whereas the full line corresponds to simulations with the
median parameter (and initial-condition) values.
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TABLE I. ODE parameters for Andalusia: optimal (best-fitting), median and interquartile range, and variation range used in the optimiza-
tion algorithm. Initial parameters and initial-condition guesses were uniformly sampled within these ranges.

Median (interquartile range) Median (interquartile range)
(tq = 3) (tq = 16) Initial value

Population N 8 414 240
Initial populations (I0, H0, D0) (297, 134, 6)
Non-COVID-19 death rate [per day] μ 5.79 × 10−7

Transmission rate, S → I [per day] βIS
a 0.35 (0.28–0.41) 0.32 (0.29–0.35) c ∈ U [0, 1]

Transmission rate, S → A [per day] βAS
a 0.55 (0.50–0.60) 0.28 (0.26–0.30) c ∈ U [0, 1]

Lockdown effect, S → I ηIS 0.28 (0.24–0.35) 0.39 (0.36–0.42) c ∈ U [0, 1]
Lockdown effect, S → A ηAS 0.48 (0.43–0.56) 0.38 (0.35–0.41) c ∈ U [0, 1]
Latent period, E → A [days] 1/σA 4.52 (4.36–4.69) 2.97 (2.87–3.05) 1/k, k ∈ U [2, 7]
Incubation period, E → I [days] 1/σI 3.15 (2.98–3.33) 3.77 (3.54–4.14) 1/k, k ∈ U [2, 7]
Infectivity period [days] 1/M 6.06 (5.98–6.12) 5.97 (5.89–6.04) 1/k, k ∈ U [5, 12]
Recovery period (asymptomatics), A → AR [days] 1/MAR 6.15 (6.08–6.21) 6.85 (6.75–6.94) 1/k, k ∈ U [5, 12]
Recovery period (hospitalized), H → R [days] 1/χ 8.39 (8.23–8.54) 6.74 (6.60–6.85) 1/k, k ∈ U [5, 20]
Period from hospitalized to deceased, H → D [days] 1/ψ 9.38 (9.22–9.57) 8.33 (8.17–8.53) 1/k, k ∈ U [5, 20]

Conversion fraction (I
γ−→ H , I

1−γ−→ R) γ 0.58 (0.57–0.59) 0.55 (0.54–0.57) c ∈ U [0.25, 0.75]

Conversion fraction (H
ω−→ D, H

1−ω−→ R) ω 0.25 (0.24–0.26) 0.25 (0.25–0.26) c ∈ U [0.1, 0.5]
Initial population fraction, exposed E0/I0 2.90 (2.39–3.27) 2.69 (2.42–3.14) c ∈ U [1, 5]
Initial population fraction, asymptomatic A0/I0 3.33 (2.92–3.77) 2.93 (2.59–3.34) c ∈ U [1, 5]
Diffusivity, S [km2/day] DS – 10
Diffusivity, E or A [km2/day] DE or DA – 100

aThe transmission rates β have to be divided by N when used in the ODE model.

0D-model parameters for Andalusia (and Greece) from 2000
optimizations that compared model predictions to jointly the
number of cumulative infected and the deceased, as shown
in Eq. (9). For each optimization, the initial guess for each
parameter and initial condition was uniformly sampled within
a prespecified range. The upper and lower limits were used as
boundaries in the constrained minimization algorithm (imple-
mented in Matlab via the fmincon function). The parameter
ranges were determined from epidemiological information.
We note that at the initial time of model fitting, the number
of exposed and asymptomatic individuals is not known. We
thus optimized (and varied) their ratio to the initially infected
I (0), a number that was obtained by subtracting the officially
reported number of deaths, recovered, and hospitalized from
the (reported) number of cases. The sensitivity of the predicted
model parameters when the ratio of βAS to βIS is allowed to
vary within a specified interval ([0.2, 2]), in steps of 0.02, and
parameter-identifiability issues are discussed at the end of this
section.

Upon performing the optimizations we find that the fitting
yields the results summarized in Table I. We show the me-
dian parameters, as well as the interquartile range, and the
range of variation used to sample the parameters (and initial
conditions). Model predictions (with median parameter val-
ues, solid blue or red lines) are compared graphically to data
(black dots) in Fig. 2. Model output sensitivity to parameter
(and initial-condition) variations is represented by the shaded
regions.

The optimal parameters were obtained for two scenarios
(see Table II). The first scenario considers that restrictive
measures (quarantine, lockdown) in Andalusia were strictly
enforced on March 16, 2020. To account for the change in

parameters induced by the lockdown, we imposed a time
dependence on the transmission rates β

βIS (t ) = βIS

{
ηIS + (1 − ηIS )

1 − tanh[2(t − tq)]

2

}
(10a)

βAS (t ) = βAS

{
ηAS + (1 − ηAS )

1 − tanh[2(t − tq)]

2

}
(10b)

so that the transmission rates βIS and βAS decrease by a fac-
tor ηIS and ηAS (respectively) relatively abruptly at the time
tq the lockdown was imposed. The transmission rates effec-
tively incorporate the rate of contact of susceptible individuals
with infectious individuals (infected or asymptomatic in our
model) that leads to exposure to the virus. In fact, the trans-
mission rates β may be expressed as the product of the average
daily contacts (contact rate) a susceptible has with any indi-
vidual times the probability of infection given a contact: the
probability of infection is proportional to the viral load (viral
concentration in the respiratory-tract fluid) of expelled res-
piratory droplets [8]. Hence, government-imposed restrictive
measures, e.g., mobility restrictions, social-distance require-
ment, face-mask wearing, and limitations on the number of
persons in a gathering, are expected to decrease the transmis-
sion rates (for both infected and asymptomatics), an effect that
is reflected in the η’s.

The two top panels of Fig. 2 illustrate that how well we
capture the data for Andalusia depends on the scenario cho-
sen, i.e., when the quarantine is imposed (the events time
series is summarized in Table II). The red solid line (top
line at t = 150) and shaded region correspond to imposing
the quarantine at tq = 3 (scenario 1, modeling the beginning
of the quarantine almost immediately when it officially oc-
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TABLE II. Time sequence of events and simulation times.

Imposed lockdown (tq) Effective lockdown (tq)
Country Initial simulation time (tinit = 1) (Scenario 1) (Scenario2) Last fitting day (t endfit )

Andalusia March 14, 2020 March 16, 2020 (tq = 3) March 29, 2020 (tq = 16) May 11, 2020 (t endfit = 59)
Greece March 12, 2020 March 24, 2020 (tq = 13) April 3, 2020 (tq = 23) May 11, 2020 (t endfit = 61)

curred), whereas the blue solid line (bottom line at t = 150)
and shaded region present data (median and range) for tq =
16, scenario 2. Both scenarios reproduce reasonably well the
number of the fatalities (top right panel), with scenario 2 per-
forming better, but less so for the number of cases. Moreover,
the difference between predictions and data increases with
simulation time, with the predictions of scenario 1 becoming
progressively very high and dissonant with the trend of the
data. There is a characteristic feature in the top left panel
(cases) that the first scenario fails to capture: there is an “an-
gle” in the semilogarithmic plot associated with the curbing
of the observed cumulative number of infections C(t ) due
to containment measures. It is apparent that the attempt to
capture the data, due to the relevant mismatch in the asso-
ciated angle, leads to far more significant deviations. While
model prediction seems to minimize the distance to the data
by overpredictingC(t ) initially, and underpredicting it later, it
clearly starts overpredicting the trend of the quantity towards
the end of the available (fitted) data time series. This results in
predicted cumulative infections of the order of several (more
than four) tens of thousands. A similar over-prediction seems
to develop in D(t ) leading to nearly 5000 deaths, while the
data seem to clearly tend to values below that.

If we were to shift arbitrarily the time of the application
of the quarantine data by 13 days later (tq = 16), we note a
nontrivial difference. While we are not missing on D(t ) (in
fact, the fit is more accurate), we capture accurately the angle
in the C(t ) data. This suitable shift of the quarantine time
clearly does a far better job in capturing the actual trends
of both C(t ) and D(t ) with the C(t ) lying between 104 and
2 × 104 and, correspondingly, D(t ) staying below 2 × 103 at
the end of the five-month simulation period. Table I clearly
illustrates the source of the discrepancy at a parametric level:
compare the medians reported in the first and second columns.
The most noteworthy difference is that while for scenario
1 (no reproduction of the angle) βAS > βIS this inequality
reverses in scenario 2. A concomitant change occurs in the
ratio of exposed who turn asymptomatics (σA/(σI + σA)) from
0.41 (scenario 1) to 0.56 (scenario 2). The relative importance
of these changes is discussed at the end of this section where
parameter identifiability is addressed. Last, note the slight
change in the recovery period χ . A potential interpretation
of this admittedly somewhat arbitrary shift of the quarantine-
parameter imposition may be that at the model level such
measures have an immediate, essentially instantaneous effect,
while in the realistic country data, there is a time lag before
this switch in the number of contacts (due to lockdown) has a
perceptible effect, depending on how fast individuals adapt to
the imposed restrictions.

Since the second scenario reproduces more satisfactorily
the observed data we discuss (with the proviso mentioned at
the end of this section) the biological and societal significance

of its median parameters in the second column of Table I.
For instance, the median latent period is approximately three
days (2.976), whereas the median incubation period is approx-
imately four days (3.77), in reasonable agreement with the
values reported in [47], three and five days, respectively. The
value of MAR suggests a timescale of nearly 7 days (6.85) for
the recovery of asymptomatics. On the other hand, M suggests
a timescale of about 6 (5.97) days for those with symptoms
to potentially need hospitalization. The median timescales
associated with leaving the hospitalized compartment imply
almost 7 days (1/χ = 6.74) to recovery and almost 8.5 days
(1/ψ = 8.33) to fatality. Hence, the approximate recovery
period for mild cases is about six days, and for severe cases
approximately 13 days, while Ref. [47] estimates recovery
periods of approximately two weeks for mild cases and ap-
proximately six weeks for the quite severe cases. The value of
γ roughly suggests a half-half split between those recovering
directly versus those needing some form of hospitalization.
The value of ω suggests that among those needing hospital-
ization nearly 75% recover, while only 25% die. As discussed
above, there is no way to evaluate the initial population of
exposed E0 and asymptomatics A0. We thus opted to intro-
duce their fraction to the initial population of infected I0
as two additional parameters (referred to as initial condi-
tions), E0/I0 and A0/I0 in the optimization. Our optimization
yields initially (at the beginning of the simulations) approx-
imately equal ratios of exposed and asymptomatics to the
infected.

The relative transmission rates of asymptomatics and in-
fected, as well as the ratio of their populations, merit a
comment. The reported median values satisfy βIS > βAS , i.e.,
infected (with symptoms) are predicted to be more infectious
than asymptomatics. We surmise that the contact rate would
be significantly smaller for the (expected to be) self-isolating
infected individuals than for the asymptomatics who continue
their life, not knowing that they are carrying SARS-CoV-
2 (and most importantly that they are infectious). Hence,
their higher transmission rate would imply a higher emitted
viral load. Related to the transmission rates is the ratio of
asymptomatics to symptomatically infected. Assuming that
the latent timescale of the virus is similar for asymptomatics
and infected (as is reasonable to assume), the fraction of ex-
posed turning asymptomatic versus turning infected (σA/σI ) is
1.27. Equivalently, the ratio of becoming asymptomatic to the
total number of exposed [σA/(σA + σI )] is about 0.56 and that
to becoming symptomatically infected 0.44. This ratio reflects
the importance of asymptomatics [46] in the transmission of
SARS-CoV-2, a particularly important feature that differen-
tiates it from the transmission of other respiratory viruses
like influenza and SARS-CoV-1. Last, after lockdown mea-
sures are imposed, we find that both populations are equally
affected, ηIS ≈ ηAS , possibly because mobility restrictions,
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and the associated decrease in the average number of daily
contacts, apply equally to both populations.

One final observation at the level of data rather than at
that of the model is the significance of the early imposition
of restrictive measures. In Spain these measures were taken
when already the number of cumulative infections and deaths
was significantly higher than the corresponding numbers in
Greece when the decision was taken. This ultimately appears
to have led the smaller of the two regions (Andalusia having
8.4M inhabitants) to have an order of magnitude larger losses
of life and infections than the larger of the two regions (Greece
having 10.7M inhabitants).

We also calculated the basic reproduction number R0 re-
flecting the number of cases expected to be produced by
one infectious case in a fully susceptible population. This is
used to estimate how the epidemic developed initially. We
used the next-generation matrix approach (see Appendix A).
The prequarantine basic reproduction number (for the sec-
ond scenario, tq = 16), is R0 = 1.91 (1.86–1.95), where we
report both the median and the interquartile range. The
calculated basic reproduction number is close to the epi-
demiologically determined range of 2–4 [47], a range that
encompasses the variation of the basic reproduction number
in space and time. Although our focus is not on the calcu-
lation of R0, which is of principal interest to a wide range
of studies regarding SARS-CoV-2, it is worth noting that a
postquarantine effective reproduction number may be calcu-
lated for the lockdown-decreased transmission rates. We find
Reff = 0.73 (0.72–0.74) reflecting the decline of the epidemic
spreading under the lockdown measures. A similar calculation
with the scenario 1 parameters yields a prequarantine R0 =
2.65 (2.38–2.90), and, interestingly, a postquarantine effec-
tive reproduction number Reff = 1.04 (1.03–1.04) a value that
suggests the epidemic has not been effectively controlled (as
implied by the predicted evolution of the epidemic in Fig. 2,
top left).

We conclude the analyses of the ODE model by comment-
ing on the identifiability of model parameters. We partially
addressed it through the previously presented parameter sen-
sitivity analysis with 2000 optimizations. This procedure led
to the determination of the median values and their interquar-
tiles. In addition, and as argued in [59], one approach to
specifying confidence intervals is through the Hessian of the
variation of the Euclidean norm (9), the objective function
of our optimizations, with respect to model parameters [60].
Specifically, if we denote model parameters by θ the Hessian
is Hi j = ∂2N /∂θi∂θ j , suggesting that if it remains invariant
to parameter changes, these parameters would not be identi-
fiable (since their changes would not modify the optimized
norm). Alternatively, as discussed in [60], the inversion of the
Hessian leads to the confidence intervals associated with each
parameter. When we carried out this programme for a model
similar to the 0D model presented here [59], we found that
the Hessian was singular: in fact, it had two zero eigenvalues.
Our above line of argumentation (expanded upon in [59])
suggests that these two “zero-cost” eigendirections are closely
connected to the identifiability of the model, and specifically
that a number of parameters associated with these eigendirec-
tions are not independently identifiable. One eigendirection is
easily specified through inspection of the model. The three

parameters ω,ψ and χ may be easily combined to two κ1 =
(1 − ω)χ and κ2 = ωψ .

The second combination of parameters that defies identifi-
ability is less immediately transparent. However, we get a hint
of the other zero-eigenvalue eigendirection, and the associ-
ated not-independently identifiable parameters, by comparing
columns one versus two in Table I (and also from the runs
of Fig. 3; see especially the top panel thereof). When the time
the lockdown was imposed is modified (going from scenario 1
to scenario 2), the transmission rates and the timescales shift
from βIS < βAS and 1/σA < 1/σI (whose ratio, as discussed
earlier, determines the fraction of turning asymptomatic to
turning symptomatically infected to be 0.70) to βIS > βAS

and 1/σA > 1/σI (with the corresponding fraction becoming
1.27). Alternatively, for βAS > βIS the fraction of exposed
turning asymptomatic is smaller than when βAS < βIS , i.e.,
the larger the asymptomatic transmission rate the smaller their
fraction. This inverse relation becomes quantitative in the
top panel of Fig. 3 where we note that as βASσA decreases
βISσI increases. We chose these two parameter combinations
as they appear naturally in the two summands of the basic
reproduction number, Eq. (A1). The optimizations, whose
results are reported in the figure, were performed as previ-
ously discussed (i.e., parameters and initial conditions were
uniformly sampled within their range of variation) with an
additional constraint on the ratio of the two transmission
rates βAS/βIS . We chose their ratio to vary between 0.2 to
2, sampled in 10 equidistant values. For every ratio of the
transmission rates we performed 200 optimizations. The solid
blue line denotes the relationship for the median parame-
ters for each choice of βAS/βIS , the red dots correspond
to the optimal parameters for each optimization. Monitor-
ing the results obtained in Fig. 3, it is natural to conclude
βAS and βIS are not independently identifiable. Instead, there
is effectively a monoparametric freedom (associated with
the singular eigendirection) connecting these two parametric
combinations.

For this wide range of parameters we also compare the
predicted number of cases (bottom left panel of Fig. 3) and
fatalities (bottom right panel) to the reported numbers. Impor-
tantly, we note that even though the transmission rates times
the associated inverse timescales may vary significantly due
to their nonidentifiability, the predicted number of cases and
fatalities does not (compare also to Fig. 2). This is, indeed, a
manifestation of the singular eigendirection: a wide range of
model parameters provides an equally good predictor of the
total number of cases and fatalities. Hence, the uncertainty in
the identification of model parameters, and their nonidentifi-
ability, has a relatively small effect on the predictions of the
model. We believe this provides convincing evidence of the
predictive ability of the model and its accuracy. A far more
relevant question is not the specification of model parameters
and their confidence intervals, but how does the flexibility
to specify them, as allowed by the singular eigendirection,
modify model predictions. We find that the optimally deter-
mined model parameters provide a reasonable, within a given
range, estimate of the modeled quantity, even though due
to the nonidentifiability of the model the model parameters
may vary. It is also an interesting direction to explore what
additional pieces of data (such as, e.g., on the asymptomatic
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FIG. 3. Sensitivity analysis for Andalusia (tq = 16). The top panel shows the inverse relationship between βASσA and βISσI for a series of
optimizations (200) performed by uniformly sampling model parameters and 10 fixed equidistant ratios of βAS/βIS within the range [0.2, 2].
Blue dots are simulation results with the medians of the optimized values (the line is a guide to the eye), while the red dots are the results of all
the optimizations. The two bottom panels compare the predicted future number of cases (left panel, red bundle) and fatalities (right, red bundle)
for all the optimizations shown in the top panel; black dots are the reported numbers (and used for model fitting). Despite the wide variation
of transmission rates (times the associated timescales), we observe a rather small uncertainty in the forward, model predicted evolution of the
pandemic, an indication that even though some model parameters are not independently identifiable, they enable an adequate predictor for the
quantities of epidemiological interest.

infections) may render the model identifiable, enabling a more
precise identification of the relevant parameters.

B. PDE model: Spatially distributed populations

We now turn to the PDE simulations. Relevant results for
the autonomous region of Andalusia may be found in Fig. 4
for the same diagnostics as for the 0D model. However, now,
we complement them with the space-time evolution simula-
tions of Figs. 5–7 that will be compared also in what follows
with the data of the map of Fig. 8.

We first explain how we selected the model parameters and
how we initialized the PDE model of Eqs. (1)–(8) and then we
discuss the numerical results, emphasizing their advantages
and deficiencies. At the regional (spatial) level, we must adapt
the 0D model parameters. In the PDE model, we retained the
same median parameters as the optimized 0D (ODE) model
parameters starting with the σ ’s and beyond in Table I. This
is because they involve processes occurring at the level of a
single individual, i.e., “locally,” and hence we do not expect
them to change at the country level in the transition from
the ODE to the PDE model. In addition, we kept the same
reduction factor of the transmission rates ηIS and ηAS to model
the effect of restrictive measures on them.

On the contrary, we do not expect this to be the case for the
transmission rates β. They depend on the interaction between
individuals since they may be expressed as the product of the
daily average number of contacts times the infectious disease
transmission probability [8]. At the ODE level, the presence of
S and A or I immediately leads to the conversion of suscepti-
bles to exposed. At spatial (region or county) level, this effect
does not occur homogeneously as it does at the ODE level,
but rather in a distributed way. As the population is (spatially)
distributed over the country in a highly heterogeneous way,
the ODE β’s have to be modified to obtain their “spatially
averaged” variant.

We obtained these spatially averaged transmission rates
by first keeping the ratio of the β’s the same as that of the
ODE, but scaling each one by a scaling factor ξ . The tran-
sition from the ODE to the PDE transmission rates involves
the introduction of two length scales. The first reflects the
transition from the number of individuals (e.g., S, I , E , etc.) in
the ODE description to spatial densities of individuals in the
PDE description; the other length scale reflects the transition
from a spatially homogeneous to a spatially distributed model.
We obtained their product by noting that the β’s have to
be multiplied [57] by an effective inverse density l2/N , N
being the country population, i.e., by multiplying the ODE
transmission rates by the scaling factor ξ ≡ l2/N . The product
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FIG. 4. PDE model for Andalusia with fitting to official data from March 14, 2020 (t = tinit = 1) to May 11, 2020. Confinement time starts
on March 29, 2020 (tq = 16, only scenario 2 is plotted). The solid blue line (top two panels) reproduces the 0D simulation; cf. Fig. 2. The
median parameters shown in Table I (second column) are used, except for the transmission rates that have been scaled by ξε[0.00480, 0.00489].
The optimal scaling factor ξ increases as the diffusion-coefficient reduction factor ηD increases in the interval [0.25, 0.50] in steps of 0.05.
Shaded regions are delimited by the optimal plots for ηD = 0.5 and ηD = 0.25; their order at t = 150 is the same as that of the bottom right
panel of Fig. 2.

length scale l defines an effective spatial scale over which
the ODE transmission rates need to be rescaled to obtain the
corresponding PDE transmission rates. The scaling factor was
determined by minimizing the �2 norm specified in Eq. (9).
For these optimizations we kept all model parameters at their
median values, while diffusivities were varied as subsequently
discussed in Eq. (11).

In addition to the decision regarding the scaling of the β’s,
it is important the selection of the diffusivities. Recall that
in the present first work we decided to avoid attempting to
model convection effects, but rather mostly focus on the role
of diffusion. We assume that most of the populations relevant
to the infection which have not developed any symptoms,
namely the asymptomatics and the exposed, diffuse with a
diffusivity ofDc = 100 km2/day (i.e., associated with a char-
acteristic spatial scale of about 10 km). Our motivation for
this choice is that in this small population (for the regions and
data considered) associated with the infection, it is relevant
to include a wider spatial spread of their motion to enable
(through their contacts) the infection to spatially spread. On
the other hand, for the far larger population of susceptibles,
we assign a smaller diffusivity (0.1Dc) since we consider
that the mobility of susceptibles does not significantly change
their distribution [49]. In essence the much larger susceptible
population provides a background for the relative motion of
asymptomatic and exposed carriers of the virus. The rest of the
populations (most notably, I , H , and D, since the immunity of

R and AR renders their diffusion inconsequential) are assumed
to be highly localized or self-isolating and hence bear, for
our purposes, a vanishing diffusivity. For all the nonvanishing
diffusivities, we assume that the quarantine reduces them to
a fraction ηD of their original value (see Table I) in a similar
ramped form as before for the transmission rates:

D(t ) = D

{
ηD + (1 − ηD)

1 − tanh[2(t − tq)]

2

}
(11)

We should also describe the initialization of the model. We
selected to populate initially eight key “hotspots” of the infec-
tion as they arose in Andalusia. The selected areas (Almería,
Córdoba, Huelva, Granada, Jaén, Jerez de la Frontera, Málaga,
and Sevilla) correspond to the most populated cities of each
province of the autonomous community (see Fig. 9 for a
map indicating the location of these cities). Initial values for
the infections and deaths were provided by the Andalusian
Government (“La Junta de Andalucía”) [58]. We defined an
infection radius of 10 km around the center of each hotspot,
within which we placed the source of infection to initialize the
epidemic, what we refer to as “blobs” of infection. These epi-
centers of infection were modeled via Gaussian profiles whose
spatial (variance) scale was selected to be the infection radius;
their amplitude was chosen such that the total number of in-
fections, deaths, recoveries, and hospitalizations, as calculated
via the surface integrals of the associated densities through the
region, be the same as the one reported in the original data.
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FIG. 5. Evolution of the Andalusian infected population density log10 I (x, y, t ) for t = 1 day (top left, March 14, 2020), t = 6 days (top
right, March 19, 2020), t = 16 days (bottom left, March 29, 2020), and t = 47 days (bottom right, April 29, 2020). Scenario 2 (tq = 16),
reduction of diffusion coefficients by ηD = 0.3 and scaling factor ξ = 0.00480. A logarithmic (base 10) colorbar scale is used.

FIG. 6. Evolution of the Andalusian fatalities population density log10 D(x, y, t ) for t = 1 day (top left, March 14, 2020), t = 6 days (top
right, March 19, 2020), t = 16 days (bottom left, March 29, 2020), and t = 31 days (bottom right, April 29, 2020). Scenario 2 (tq = 16),
decrease of diffusion coefficients by ηD = 0.3 and scaling factor ξ = 0.00480. A logarithmic (base 10) colorbar scale is used.
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FIG. 7. Evolution of the Andalusian confirmed case density log10 C(x, y, t ) for t = 1 day (top left, March 14, 2020), t = 6 days (top right,
March 19, 2020), t = 16 days (bottom left, March 29, 2020), and t = 47 days (bottom right, April 29, 2020). Scenario 2 (tq = 16), reduction
of the diffusion coefficients by ηD = 0.3 and scaling factor ξ = 0.00480. A logarithmic (base 10) colorbar scale is used.

The population of asymptomatics and exposed was, similarly
to the ODE optimization, selected to be proportional to the
infected one with the proportionality ratios A0/I0 and E0/I0
maintained as those of the ODE.

With all these choices, the PDE model was run without
optimizing at the PDE level the median parameters that are
not expected to depend on spatial scales. The quantity that
we varied was the diffusion-coefficient reduction factor ηD in
steps of 0.05 in the interval [0.25, 0.50] (six simulations in
total). For each simulation the scaling factor ξ was determined

FIG. 8. Map of the COVID-19 outbreak in Andalusia as of April
29, 2020 (t = 47) reproduced with data and their manipulation via
an R code from Ref. [65]. Logarithm (base 10) of the number of
confirmed cases per squared kilometer at each municipality denoted
by color (logarithmic colorbar scale). Compare and contrast with the
bottom right panel at time t = 47 in Fig. 7.

by minimizing the �2 norm, as previously discussed. We used
the second scenario parameters (tq = 16) since this choice
reproduced better the data and the flattening of the epidemic
curves with the imposition of the lockdown.

The comparison of the spatially integrated PDE results to
the data for Andalusia and the ODE prediction, shown in
Fig. 4 is quite promising. We show the observed data as black
dots, the 0D-model predictions as the solid blue line, and the
spatially integrated results of the PDE model as the shaded re-
gion. The bottom and top of the shaded region are enclosed by
the curves corresponding to ηD = 0.50 and ηD = 0.25 (when

FIG. 9. Map of Andalusia showing the most populated cities of
each province. Notice that the name of these cities coincides with the
name of the province, except for the province of Cádiz, where the
city of Jerez de la Frontera is more populated than the city of Cádiz.
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the optimal scaling factor ξ is used). We found that both C(t )
and D(t ) asymptote to lower values for the optimal scaling
factor as ηD increases. As in the case of the 0D model, the
change in the transmission rates and diffusion coefficients as
a result of the lockdown leads to a flattening of the epidemic
curves. An additional remark on the reported and predicted
number of cases, and on the counting of asymptomatics, is in
order (Fig. 4, top left panel). As reported in [61], starting on
April 13, 2020 (t = 32) the reported number of cases includes
asymptomatic individuals, i.e., susceptibles that have tested
positive to COVID-19. This might explain the underprediction
of cases after t = 32.

Clearly, the spatial model can do an adequate job in captur-
ing both the cumulative infections and the number of deaths
(with the caveats to be given in the discussion below). Notice
that in the bottom row of the figure, we illustrate the surface
integrals of each of the density of E , A, H , R, and AR as a
function of time, representing the evolution of the pandemic
at the “integrated” level of the entire country in an illustration
similar to the one that we typically obtain from the ODE
models.

In addition, we complemented the spatially averaged re-
sults by the space-time evolution simulations of Figs. 5–7. For
the reported cases in the figures, the scaling factor multiplying
the β’s is ξ = 0.00480, corresponding to a characteristic scale
l ≈ 0.200 km. A comment on the scaling factor ξ is in order.
For the different choices of the diffusion-coefficient reduction
factor ηD we determined the optimal scaling factor to be in the
range ξε[0.00480, 0.00489], for the lower value of which we
obtain the reported characteristic length scale (l = √

ξN ≈
0.200 km). It is reasonable to associate the scaling factor,
and in particular ξ = 0.00480, with the inverse of the “lived”
population density, the population density perceived by a ran-
domly chosen individual [62]. According to [63] the inverse
lived density for Andalusia is approximately 0.0046, remark-
ably close to the smallest value of the scaling-factor range.
A similar observation holds for the scaling factor for Greece
which, in turn, suggests that this is an important insight (and
not a serendipitous occurrence) as concerns the “translation”
of the 0D model coefficients into the PDE ones.

Of course, the PDE model has considerable additional in-
formation through its spatial resolution. In Figs. 5–7 we can
see the spatiotemporal evolution of the infections in Andalusia
(i.e., the spatial distribution at a few snapshots over time), the
deaths and the cumulative infections C(x, y, t ), respectively.
We also produced movies of the corresponding evolution that
can be found in [64]. We can observe how the biggest fractions
of the infections remain in the most populated cities of Sevilla
and Málaga, and that the provinces of Huelva and Almería are
those with the smallest number of infections, in accordance
with the actual status of the pandemic [58]. The predicted
spatial distribution of the total confirmed cases C(t ) may be
compared to the data shown in Fig. 8, where officially reported
data are presented per municipality [65]. The comparison is
favorable as both figures show that Málaga is the hardest hit
municipality, followed by Sevilla. In addition, the predicted
number of cases in Granada, Córdoba, Jaén, and Jerez de la
Frontera (in decreasing number of cases), which are lower
than in the previous two cities, shows the same decreasing
trend as that manifested in the reported number of cases

shown in Fig. 8. The predictions for the number of deaths
in the different provinces shows a slightly different behavior
from the observed data. If the fatalities spatial density is
integrated over each province, the predicted final number of
deaths is higher in Málaga than in any other province. From
the data, the final number of deaths is almost the same in
Málaga, Sevilla, and Granada. This suggests that modeling
human mobility in these provinces solely by diffusion, and
specifically by the chosen diffusion coefficients, cannot fully
account for this dispersion of the number of fatalities. This
may arise, within our reaction-diffusion model, possibly due
to the number and intensity of the chosen hotspots of infection
or to the requirement that a diffusion coefficient of different
value should have been chosen.

IV. CONCLUSIONS, DISCUSSION, AND FUTURE WORK

In this work we presented a platform for establishing a
compartmental epidemiological model both at the level of
ODEs (0D, no spatial dependencies) in line with numerous
earlier works, as well as at the spatially distributed level of
PDEs to study the spatiotemporal spreading of COVID-19.
The regions of interest were the mainland of Greece and the
Spanish autonomous region of Andalusia for which there has
been a small number of studies. As regards Greece, there are
some probabilistic [15,17], some network-based approaches
for time-series analysis [66], and some based on the SIR
variant SEAIR [22]. Studies that focus on Spain also examine
Andalusia as a case example using either probabilistic [14]
or POD-based decomposition techniques [67]. Our effort has
been to explore a model of the SEIR variety that incorporates
some of the particular biological features of the SARS-CoV-
2 virus [47], such as its latent period, and the potential to
generate a significant fraction of asymptomatic hosts, which,
in turn, play a crucial role in spreading the infection. The
resulting SEAIHR model involves a number of populations:
Susceptible, Exposed, Asymptomatics, symptomatically In-
fected, Hospizalized, Recovered, and deceased. We found
that for the regions of interest the model reproduces the epi-
demiological data that we determined to be most reliable,
namely, the data on the cumulative infections and especially
the number of deaths. Naturally, more accurate data including
also spatially resolved ones (on the spatial scale of our PDE
model) would be helpful towards the improved calibration of
the results offered herein.

We modeled both the early, prequarantine, stage of the
epidemic, as well as its development at a later stage when
containment measures had been enforced. The effect of quar-
antine on the spreading of the disease was imposed via a
time-dependent (on the timescale of a day) change of the
transmission rates and of the diffusivities (the latter in the PDE
model). While initiating a quarantine roughly when it was im-
posed yields more acceptable results in Greece, in Andalusia
this is less so. In fact, for both regions, simulations reproduced
more accurately the observed data, and in particular they cap-
tured the “angle” indicating the curbing of the infection due
to government-imposed intervention measures, if a time lag is
imposed on the application of the (instantaneous in the ODE
model) quarantine set of parameters. We, thus, considered two
scenarios, corresponding to different delays in imposing the
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quarantine: the second scenarios were better at reproducing
the reported data. We note that this seemingly artificial time
shift in imposing the lockdown reflects the fact that model pa-
rameters change over a short timescale upon the introduction
of lockdown measures, whereas the effect of social interven-
tion measures (self-quarantine, social distancing, face masks,
etc.) appears to arise later in the epidemiological data.

We determined model parameters via optimizing model
predictions with respect to reported total number of (infected)
cases and number of deaths. The optimization algorithm
minimized the Euclidean distance between model predic-
tions and observed data. For the 0D model, we performed
2000 optimizations for model parameters and (the unknown
ones among the) initial conditions uniformly sampled within
specified ranges. Median and interquartile ranges for model
parameters were determined. Additional sensitivity analyses
were performed to conclude that combinations of parameters,
specifically the product of the asymptomatic transmission rate
times the inverse latent period, is nonidentifiable. This para-
metric combination is intimately connected to the product of
the infected transmission rate times the inverse incubation pe-
riod: in fact, our results suggest that the relation between these
two products can be well approximated via a straight line of
negative slope. We interpreted both the median timescales of,
e.g., the conversion of exposed to asymptomatics and (symp-
tomatically) infected, and the fraction of, e.g., hospitalized
that lead to recoveries or deaths. We found them, for both
countries and the second scenario, to be in reasonable agree-
ment with current epidemiological estimates. Our median
results reinforce the feature prevalent in numerous studies
about the importance of asymptomatics in the transmission
of the SARS-CoV-2 virus (cf. [46,68]) a particularity of this
coronavirus. The asymptomatic transmission rate βAS was
found to be smaller than the symptomatically infected rate βIS ,
coupled to the fraction of exposed evolving to asymptomatics
being larger than those evolving to symptomatically infected.
In [69] it was reported that asymptomatic infectious hosts may
account for up to 86% of cases, thus further supporting our
prediction of their importance in the spread of the disease.
We remark that of the four cases studied only one (Andalu-
sia, scenario 1, early imposition of lockdown measures) had
βAS > βIS (and a lower asymptomatic to infected split), a
case that did not reproduce the data accurately: in the more
accurate simulations of scenario 2 the inequality was inverted.
Once again, however, we caution the reader that issues of
identifiability prevent us from assigning a particular weight
to the findings about the relative size of βAS versus βIS , other
than their corroborating the central role of asymptomatics in
the transmission of SARS-CoV-2.

We then utilized the median parameters in a spatially
distributed, reaction-diffusion model. Here we overcame the
major challenges of formulating a mesh with the boundaries
of a region within the software package COMSOL and also
leveraged state-of-the-art geographical methods such as the
World Pop project (for population mapping based on cen-
sus data) to set up distributed simulations of the pandemic
spreading in the geographical domain. We consider this com-
putational effort a significant and necessary nontrivial step
for the eventual inclusion of more realistic long-range human
mobility modeling via the inclusion, e.g., of convection or

other modeling of directed motion of individual populations.
We pondered on how to adapt the parameters of the ODE
model to the PDE framework and argued that “onsite” (i.e.,
single-individual) parameters can be maintained the same. We
also explained the challenge of adapting contact parameters
(such as the transmission rates) to the level of the country:
this process involves issues of homogeneity at the ODE level
versus substantial heterogeneity at the PDE level. We also
made a first series of assumptions at the level of convection
(neglected herein) and isotropic diffusion (selected as the
primary mechanism for disease spreading herein) to explore
the time-resolved dynamics at the country or autonomous
community setting.

At the level of our distributed simulations, there exist
some promising results. We were able to seed the infection
at some of its key epicenters and observe it to produce in-
fections, recoveries, deaths, etc., over the entire region. The
“hotspot” seeding at various locations is an indirect attempt
to model the movement of infectious individuals as is, e.g.,
considered by metapopulation or network models. At the
cumulative level of the region, surface integrations enabled
comparisons with the collected data at the regional level yield-
ing reasonable correspondence between model results and the
observed cumulative epidemiological reality. Moreover, the
model appears to be promising towards capturing some of
the spatial features of the infection progression: for instance,
visual comparison of model predictions with reported spa-
tially distributed data for the cumulative infections shows that
the model reproduces the persistence of infections in highly
populated areas, albeit with a possible time lag. At the spatial
level we find that the infection persisted the longest in regions
of very high population density.

We believe that this effort paves the way for a distributed
observation of the relevant spreading, but it also has some
weaknesses, challenges, and improvements that are worth
considering in future steps. As stated in the Introduction,
the spatiotemporal modeling of the epidemic by reaction-
diffusion PDEs, and specifically with isotropic diffusion being
the dominant mechanism of spatially spreading the virus is an
important first step towards developing a continuous descrip-
tion of disease spreading where human mobility is modeled
at a fine spatial scale. This approach should be contrasted to
discrete network-based metapopulation models and the length
scales considered in these models. A distinct advantage of the
continuous model over the meta-population one is that the
former can model interaction at a finer and more extended
internodes scale.

It would be especially useful in the context of the present
pandemic of unprecedented information flow [3] to have eas-
ily accessible temporally and spatially resolved data for the
evolution of the pandemic in different regions. Such “seed-
ing” in a distributed way (rather than the colloquial seeding
at hotspots performed herein) would build into the model
an accurate spatial distribution of infected population, and,
hence, would be far closer to the country’s pandemic evolu-
tion. Indeed, there is another challenge that is arguably even
more significant. Diffusion as a mechanism for spreading a
disease is traditionally associated with diseases that have spe-
cific transmission characteristics, as for example vector-borne
malaria that is transmitted by mosquitoes [70]. Herein we
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considered diffusion as a proxy for short-term human mobility
(which via its interplay with nonlinear contact interactions
provides a mechanism for spreading the disease), relegating
long-distance transport to the initial seeding of the infection.
Yet, admittedly it is not sufficient for expanding the infection
at the scale of the country as our results show, at least not via
realistic spatial and temporal scales of individual mobility. In
particular, it has not escaped our attention that this type of
spreading does not account for the directed motion of indi-
viduals (possibly infected ones) from the city to the country,
or from one city to another for pleasure or business. This is
especially important for travel (and hence infection transport)
at a longer spatial scale (rather than the shorter one enabled by
diffusion). We note that a form of anisotropic diffusion was
used to model disease spreading primarily along highways
in [49].

This suggests that some form of a probabilistic element
needs to be inserted in the model. One possibility that we are
exploring is the spatial distribution of the initial condition of
the asymptomatic population. This may generate infections
in a more spatially distributed way, leading to the spatial
expansion of the pandemic throughout the country in a more
consistent way with the observed data [50]. A perhaps even
more significant or possibly complementary perspective worth

considering is, naturally, a probabilistic one. In addition to
deterministic processes like diffusion or convection (which
is worth integrating in a subsequent version of the model),
it seems relevant to include a probabilistic gain and loss
term reminiscent of (a long-range variant of) the conservative
Kawasaki dynamics [71] at the level of spins. This type of
term would generate infections in a probabilistic way (possi-
bly with a probability weighed upon the region’s population
density) by allowing individuals to effectively “perform trips”
through the country, i.e., disappearing from one location and
reappearing (within a short timescale of less than a day for the
regions of interest) in another.

As also discussed in the Introduction, there are other ways
by which to bypass the practicalities of the application of
PDEs at the level of a country. One of the canonical ones
involves the application of the theory of networks in the realm
of metapopulation models in a way similar to the work of [41].
Such approaches are already being brought to bear, as in the
work of [45] or [14] and are certainly also worth expand-
ing upon and refining, as well as comparing with the data
available in the context of the SARS-CoV-2 virus. Building
such networks for the examples of Greece and Andalusia
considered herein (and, of course, beyond) also constitutes
a worthwhile direction of future research. Clearly, further

FIG. 10. 0D model for Greece with fitting to official data from March 12 (t = tinit = 1) to May 11, 2020 (t endfit = 59). Official confinement
started on March 22, 2020 (t = 11). The top panels show the official data (black dots) and simulations: red line (top solid line at t = 150) for
tq = 13 (quarantine starting on March 24, 2020) and blue line (bottom solid line at t=150) for tq = 23 (quarantine starting on April 3, 2020).
Left top panel: Confirmed casesC(t ) = I (t ) + R(t ) + H (t ) + D(t ); Right top panel: Number of deaths D(t ). The bottom panels show the other
populations, (distinguishable at t = 150 from top to bottom: asymptomatic recovered AR(t ), recovered R(t ), hospitalized H (t ), asymptomatic
A(t ), and exposed E (t )). The bottom left panel shows these populations for tq = 13 and the bottom right panel for tq = 23. In all panels, shaded
regions correspond to the interquartile range for each quantity, whereas the full line corresponds to simulations with the median parameter
(and initial-condition) values.
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TABLE III. ODE parameters for Greece: optimal (best-fitting), median and interquartile range, and variation range used in the optimization
algorithm. Initial parameters and initial-condition guesses were uniformly sampled within these ranges.

Median (interquartile range) Median (interquartile range)
(tq = 13) (tq = 23) Initial value

Population N 10, 768 477
Initial populations (I0, H0, D0) (117, 0, 1)
Non-COVID-19 death rate [per day] μ 8.49 × 10−6

Transmission rate, S → I [per day] βIS
a 0.31 (0.29–0.33) 0.24 (0.23–0.25) c ∈ U [0, 1]

Transmission rate, S → A [per day] βAS
a 0.21 (0.19–0.22) 0.18 (0.17–0.19) c ∈ U [0, 1]

Lockdown effect, S → I ηIS 0.52 (0.49–0.54) 0.48 (0.46–0.50) c ∈ U [0, 1]
Lockdown effect, S → A ηAS 0.52 (0.49–0.54) 0.48 (0.46–0.50) c ∈ U [0, 1]
Latent period, E → A [days] 1/σA 2.82 (2.76–2.89) 2.89 (2.81–2.97) 1/k, k ∈ U [2, 7]
Incubation period, E → I [days] 1/σI 4.38 (4.14–4.68) 3.72 (3.55–4.00) 1/k, k ∈ U [2, 7]
Infectivity period [days] 1/M 6.30 (6.24–6.37) 6.13 (6.07–6.19) 1/k, k ∈ U [5, 12]
Recovery period (asymptomatics), A → AR [days] 1/MAR 6.95 (6.89–7.02) 6.87 (6.80–6.96) 1/k, k ∈ U [5, 12]
Recovery period (hospitalized), H → R [days] 1/χ 6.36 (6.31–6.42) 6.20 (6.16–6.26) 1/k, k ∈ U [5, 20]
Period from hospitalized to deceased, H → D [days] 1/ψ 8.87 (8.75–9.00) 8.76 (8.62–8.92) 1/k, k ∈ U [5, 20]

Conversion fraction (I
γ−→ H , I

1−γ−→ R) γ 0.44 (0.43–0.44) 0.44 (0.43–0.45) c ∈ U [0.25, 0.75]

Conversion fraction (H
ω−→ D, H

1−ω−→ R) ω 0.22 (0.21–0.22) 0.21 (0.21–0.22) c ∈ U [0.1, 0.5]
Initial population fraction, exposed E0/I0 2.65 (2.39–3.01) 2.71 (2.51–3.04) c ∈ U [1, 5]
Initial population fraction, asymptomatic A0/I0 2.84 (2.44–3.16) 2.87 (2.59–3.18) c ∈ U [1, 5]
Diffusivity, S [km2/day] DS 10 10
Diffusivity, E or A [km2/day] DE or DA 100 100

aThe transmission rates β have to be divided by N when used in the ODE model.

efforts at the level of data collection and curation, at the level
of model setup and validation, and then at the level of opti-
mization and utilization for prediction are needed. Our hope,
however, is that the approach proposed herein is an initial step
towards putting together a number of relevant tools to enable
going beyond the 0D approach of ODE models and gradually
considering in more detail the expansion of a pandemic at a
combined spatial and temporal level.
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APPENDIX A: NEXT-GENERATION CALCULATION OF
THE BASIC REPRODUCTION NUMBER R0

We will use the next-generation matrix approach of the
system of Eqs. (1)–(8) without the spatial term to find R0. In
particular, we set up the vectors

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βSASA + βSI SI

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(σA + σI )E

−σAE + MARA

−σI E + MI

−γ MI + (1 − ω)χH + ωψH

βSASA + βSI SI

MARA

−(1 − γ )MI − (1 − ω)χH

−ωψH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The idea is that we rearrange the compartments so that the infectious/infected compartments E , A, I, H , appear first. We then
place S, AR, R, D. If we calculate F − V , it should yield a reordered version of the vector field that describes our disease system.

We then focus on the four infectious or infected compartments and ignore the rest. We find the Jacobians of F,V with respect
to E , A, I, H in the order in which they appear. This will yield two 4 × 4 matrices:

F =

⎛
⎜⎜⎜⎜⎝

0 βSAS∗ βSI S∗ 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, V =

⎛
⎜⎜⎜⎜⎝

(σA + σI ) 0 0 0

−σA MAR 0 0

−σI 0 M 0

0 0 −γ M ωψ + d + (1 − ω)χ

⎞
⎟⎟⎟⎟⎠

The basic reproductive number is the spectral radius of FV −1,
which in our case is

R0 = βSAS∗σA

(σA + σI )MAR
+ βSI S∗σI

(σA + σI )M
. (A1)

This result is in accordance with epidemiological intuition:
the first contribution to R0 is proportional to βSA and S∗,
namely, the transmission rate and total susceptible population
S∗. It is also proportional to σA/(σA + σI ), namely, the fraction
of exposed hosts becoming infectious, yet asymptomatic, A.
Finally, it is inversely proportional to the loss rate MAR of the
infectious asymptomatic class A. The second contribution to

R0 is analogous to the first one and stems from the second
mode of transmission, i.e., through contact with I .

APPENDIX B: SPATIAL MODELING OF GREECE

1. ODE model: Well-mixed populations

We present the “0D” model predictions for Greece in
Fig. 10. The data we consider [50] start on March 12, 2020
when losses of life started to occur and the cumulative number
of infected (total number of cases) was already a bit over
100 individuals. We follow the evolution of the pandemic till
May 11, 2020 using official data up to this point to optimize

FIG. 11. Sensitivity analysis for Greece (scenario 2, tq = 23). The top panel shows the inverse relationship between βASσA and βISσI for a
series of optimizations (200) performed by uniformly sampling model parameters and 10 fixed equidistant ratios of βAS/βIS within the range
[0.2, 2]. The blue dots are the results of calculations with the median of the optimized values (the line is a guide to the eye), while the red
dots denote the results of all the optimizations. The two bottom panels compare the predicted future number of cases (left panel, red bundle)
and fatalities (right, red bundle) for all the optimizations shown in the top panel; black dots are the reported numbers (and those used for
model fitting). While the transmission rates (times the associated timescales) vary significantly, the forward, model-predicted evolution of the
pandemic does not. This is an indication that even though the model parameters are not identifiable, they provide an adequate predictor of the
evolution of the pandemic if chosen within a suitable range.
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FIG. 12. PDE model for Greece with fitting to official data from March 12, 2020 (t = tinit = 1) to May 11, 2020 (t endfit = 61). Confinement
time starts at March 22, 2020 (t = 11). The plots displayed on the left panels correspond to tq = 13 (March 22, 2020) and those on the right
panels hold for tq = 23 (April 3, 2020). The solid blue line (top two rows) reproduces the 0D simulation; cf. Fig. 10. The median parameters
shown in Table III are used, except for the transmission rates that were scaled by ξε[0.00216, 0.00234] for tq = 13 and ξε[0.00245, 0.00248]
for tq = 23. The optimal scaling factor ξ increases as the diffusion-coefficient reduction factor ηD increases. The latter was varied in the interval
[0.25, 0.50] in steps of 0.05. Shaded regions are delimited by the optimal plots for ηD = 0.5 and ηD = 0.25; their order at t = 150 is the same
as that of the bottom panels of Fig. 10.

model parameters and initial conditions. As in the case of
Andalusia, we minimized the combined Euclidean distance of
model results and observed data for the total number of cases
[C(t ) = I (t ) + H (t ) + R(t ) + D(t )] and the total number of
deceased (D(t )); see Eq. (9). A few remarks on the quality
of the data and our choice of the most reliable time series
(total number of reported cases and fatalities) are presented in
Sec. II, following Eq. (9). We performed 2000 optimizations
to obtain the parameters shown in Table III. We present the
medians of all model parameters and initial conditions, as

well as the interquartile range and the range of variation of
the initial values of parameters.

The model-predicted evolution of the pandemic shown in
Fig. 10 was calculated for the median parameters (solid blue
line) and for the cloud of the parameter variations represented
as the shaded region in the figure. Officially reported data are
denoted by black dots. As in the case of Andalusia, optimal
parameters are shown for two scenarios; see Table II for the
events’ time sequence. The first scenario considers that quar-
antine was strictly enforced at March 24, 2020 (tq = 13). In
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FIG. 13. Evolution of the mainland Greek infected population density log10 I (x, y, t ) for t = 1 day (top left, March 12, 2020), t = 6 days
(top right, March 17, 2020), t = 11 days (bottom left, March 22, 2020), and t = 18 days (bottom right, March 29, 2020). tq = 23 (April 3,
2020), ηD = 0.35 and scaling factor ξ = 0.00246. A logarithmic (base 10) colorbar scale is used.

reality, the lockdown in Greece started at the end of March 22,
2020; it is reasonable to assume that it was strictly enforced
1–2 days later. In the second scenario the lockdown was con-
sidered to have been imposed on April 3, 2020 (tq = 23). To
account for the change in parameters due to the lockdown,
we imposed the time dependence of the transmission rates
β as shown in Eq. (10). This time dependence forces the
transmission rates βIS and βAS to decrease by a factor ηIS and
ηAS , respectively, relatively abruptly at the time the lockdown
was imposed, tq.

The top panels of Fig. 10 compare model predictions for
the two scenarios for the total number of cases (left) and
fatalities (right). Scenario 1 median parameters, i.e., imposing
the quarantine practically at the time when it was officially
announced, capture the data for fatalities in Greece fairly well.
However, the number of reported cases, top left panel, is not
that accurately reproduced. We attribute this discrepancy to
the previously mentioned characteristic feature of the data
(top left panel) that model predictions fail to capture ade-
quately: the “angle” in the semi-logarithmic plot associated
with the curbing of the cumulative number of infections C(t )
due to containment measures. As the optimization algorithm
attempts to minimize the distance from the observed data,
initially it slightly overpredicts and then underpredicts the data
and eventually the long-term predictions seem to overpredict
the flattening of the cases curve. Nevertheless the overall dif-
ferences are relatively small: the model prediction flattening

out (over five months) around 200 deceased and slightly over
3K infected individuals seem reasonable, were the lockdown
measures potentially extendable to such a long time interval.
If, as in the case of Andalusia, were we to shift the time
of the application of the quarantine date by about 10 days
later (scenario 2), then we note in the top panel of the figure
a nontrivial difference. Most notably, without significantly
missing on D(t ) we capture accurately the angle in the C(t )
data. The relevant parameters (medians, interquartile range)
are presented in the second column of Table III. As before,
we justify our decision to consider a second scenario in that
lockdown measures have an almost immediate effect in model
predictions, whereas in reality there is a time lag before re-
strictive measures have a measurable effect. Last, we note that
the effect of the shift of tq is far less severe than in the case of
Andalusia (Fig. 2).

It is worthwhile to compare the scenario 2 median pa-
rameters (Table III, second column) to those we found for
Andalusia. There are no particularly noteworthy differences,
although some do exist. For example, as in the case of An-
dalusia, the median incubation period is approximately four
days (3.72), the latent period approximately three days (2.89),
the asymptomatic infectious period about seven days (6.87)
and that of the infected six days (6.13). A slight difference is
noted in the fraction of infected that need to be hospitalized
(γ ≈ 0.44 instead of 0.55), and the fraction of hospitalized
that become fatalities (ω ≈ 0.21 instead of 0.25). As in the
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FIG. 14. Evolution of the Greek fatalities population density log10 D(x, y, t ) for t = 1 day (top left, March 12, 2020), t = 6 days (top
right, March 17, 2020), t = 11 days (bottom left, March 22, 2020), and t = 18 days (bottom right, March 29, 2020). tq = 23 (April 3, 2020),
ηD = 0.35 and scaling factor ξ = 0.00246. A logarithmic (base 10) colorbar scale has been used.

case of Andalusia, we find βIS > βAS , but note the proviso
related to parameter identifiability reported later, and that the
fraction of exposed who turn asymptomatic is approximately
0.56 while the ratio of asymptomatics to symptomatically in-
fected is 1.29. After lockdown measures are imposed, the two
transmission rates decrease by the same amount (ηIS = ηAS),
again as we found for Andalusia.

The calculated basic reproduction number R0 (see Ap-
pendix A) for the scenario 1 prequarantine period (tq = 13),
i.e., calculated with data from the first column of Table III
with the η set to unity, is R0 = 1.64 (1.60–1.68), median
and interquartile range. The effective reproduction number,
i.e., the reproduction number at the beginning of the quar-
antine with the associated change of the transmission rates
(η’s as reported in column 1) was calculated to be Reff =
0.849 (0.842–0.854), reflecting the curbing of the epidemic
curves, as shown in Fig. 10. Similarly, the calculated pre-
quarantine basic reproduction number for scenario 2 (tq = 23)
is R0 = 1.32 (1.31–1.34). This postquarantine effective re-
production number decreases to Reff = 0.64 (0.63–0.65), an
indication that intervention measures lead to a curbing of the
epidemic.

We conclude this section by a brief discussion of parame-
ter identifiability and the zero eigenvalues of the Hessian of
the variation of the Euclidean norm with respect to model
parameters, in the spirit of the corresponding discussion for

the case of Andalusia. Figure 11 presents our calculations
relevant to parameter identifiability and sensitivity to parame-
ter variations (for the more reliable simulations of the second
scenario). As for Andalusia, we performed 200 optimizations
with parameters uniformly sampled within their variation
range with the ratio βAS/βIS fixed at one of 10 equidistant val-
ues chosen within [0.2, 2]. The top panel in the figure shows
the inverse (apparently nearly linear) relationship between
properties of asymptomatics (βASσA) and the corresponding
properties of infected, a relationship that we argued may be
interpreted as the manifestation of the singular eigendirection
of the Hessian. As the fraction of asymptomatics to infected
increases the asymptomatic transmission rate decreases. Last,
we note that the cloud of points for the total number of cases
slightly overpredicts the data initially en route to eventu-
ally (slightly) underpredicting their long-term evolution. The
cloud of points follows rather closely the data for total fatali-
ties, with the data eventually lying near the bottom edge of the
prediction interval.

2. PDE model: Spatially distributed populations

Results relevant to the scenario 2 PDE simulations for the
mainland of Greece may be found in Fig. 12 for the same
parameters as for the 0D model, and in Figs. 13–15 for the
spatiotemporal simulations of the pandemic.
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FIG. 15. Evolution of the Greek confirmed case density log10 C(x, y, t ) for t = 1 day (top left, March 12, 2020), t = 6 days (top right,
March 17, 2020), t = 11 days (bottom left, March 22, 2020), and t = 18 days (bottom right, March 29, 2020). tq = 23 (April 3, 2020),
ηD = 0.35 and scaling factor ξ = 0.00246. A logarithmic (base 10) colorbar scale has been used.

The initialization of the model for Greece consisted of se-
lecting five of the key “hotspots” of the infection, as they arose
in Greece, to populate initially. We defined an infection radius
of 10 km around the center of Athens (largest city and cap-
ital), Thessaloniki (second largest city and source of the first
infection), and Patras (third largest city and the location where
a key imported group of infected individuals was transferred),
as well as Kozani and Xanthi. These cities where the epidemic
was initialized are identified in the year 2000 population den-
sity map shown in the right panel of Fig. 16 below. The latter
two are two significant peripheral centers where infections
were seeded early on. In Athens, we placed the largest (by
a factor of two) source of infection, while similar “blobs” of
infection were initialized in the remaining four cities. As in
the case of Andalusia, these epicenters of infection were initi-
ated via Gaussian profiles whose spatial (variance) scale was
selected as the infection radius; their amplitude was chosen so
that the total number of infections, deaths, recoveries and hos-
pitalizations, as calculated via the surface integrals of the as-
sociated densities through the country, be the same as the one
reported in the original data. The population of asymptomatics
and exposed was, similarly to the ODE optimization, selected
to be proportional to the infected one with the proportionality
ratios A0/I0 and E0/I0 maintained as those of the ODE.

As for Andalusia, having initialized the PDE model, it was
run without optimizing the median parameters that are not
expected to depend on spatial scales at the PDE level. Instead,

we varied the diffusion-coefficient reduction factor ηD in steps
of 0.05 in the interval [0.25, 0.50] (six simulations in total).
For each simulation the scaling factor was determined by
minimizing the �2 norm, as previously discussed. Similarly to
the 0D simulations, the comparison of the spatially integrated
PDE results to the data for Greece (see Fig. 12) is not par-
ticularly good for the first scenario (tq = 13, left column) that
considers only a minor shift of the quarantine time. In fact, the
0D results do not fall within the range of the spatially averaged
PDE simulations. Further modification of the quarantine time
(scenario 2) can also help capture once again the “angle” in
the relevant data (right column). Clearly, the spatial model,
via the surface integral of the population densities, does a
very adequate job at capturing both the cumulative infections
and the number of deaths. Notice that in the bottom row
of the figure, we illustrate the surface integrals of each of
the densities of E , A, H , R, and AR as a function of time,
representing the evolution of the pandemic at the “integrated”
level of the entire country in an illustration similar to the one
that we typically obtain from the ODE models.

That being said, of course, the PDE model provides con-
siderable additional information through its spatial resolution.
In Figs. 13–15, we can see the spatiotemporal evolution of
infections (i.e., the spatial distribution at a few snapshots
over time), fatalities, and cumulative infections C(x, y, t ), re-
spectively. These figures were generated using the median
parameters of the second scenario, and with the transmission
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FIG. 16. Left panel: Map of COVID-19 outbreak in Greece as of March 29, 2020 (t = 18) reproduced from Ref. [73]. Number of confirmed
cases per prefecture (Greece’s regional units) denoted by color. Compare and contrast with the right bottom panel of Fig. 15. Right panel:
Population density, person per km2, in Greece at 2000, encompassing the identification of the cities where the epidemic was initialized:
Athens, Thessaloniki, Patras, Kozani, and Xanthi (in decreasing order of the number of inhabitants). Modified image based on the Wikimedia
Commons image of Ref. [74].

rates multiplied by the scaling factor ξ = 0.00246. The cor-
responding length scale is l = √

ξN ≈ 0.163 km, comparable
to what we found for Andalusia l ≈ 0.200 km. In addition and
as in the case of Andalusia, if we associate the scaling factor
with the inverse of the “lived” population density we find
that in Greece [72] it is around 1/379 ≈ 0.0026, remarkably
close to the numerically determined ξ . We believe that the
identification of the scaling factor as very closely matching
the inverse of the lived population density in two entirely
independent (and quite distinct in their number of infections)
cases suggests this scaling as a nontrivial insight stemming
from these studies about the connection of ODE and PDE
models.

We also produced movies of the corresponding evolution
that can be found in [64]. It is important to reiterate here
that we have not included the islands of Greece in this effort
(i.e., we are looking at the mainland of Greece). Obviously
if one were to model the disease spread in each of these
islands it would be relevant to seed the infection in each island
individually and study the spreading there rather than together
with the spatially disconnected from the islands mainland of
Greece.

We can clearly see how the infection spreads throughout
the country, affecting most significantly the regions of higher
population density. Indeed, it is clear that over time the in-
fection is extinguished in most regions and it finally persists
chiefly in Attica, the region of highest population density (and

where the main metropolitan center of the country, Athens,
lies); see, in particular, the bottom panels of Fig. 13. Nev-
ertheless, it is evident from Fig. 14 that a number of deaths
develops in each of the five regions where the infection was
initially seeded, in line with the corresponding expectation
from the country’s data. Indeed, also, each region features
a discernible fraction of cumulative infections in Fig. 15,
although clearly once again the lion’s share of infections
pertains to Attica. The second biggest fraction of infections
pertains to Thessaloniki (the second biggest metropolitan cen-
ter) and so on. It is clear from these figures that the model
yields a reasonable prediction of the spatial evolution of the
disease spread, in line with the cumulative totals of deaths and
infections throughout the country. Nevertheless, a comparison
with the spatial distribution of the pandemic throughout the
country [50] (see Fig. 16, left panel) suggests also some limi-
tations. The spatial snapshot of the number of confirmed cases
per prefecture shown in that figure was created on March 29,
2020, corresponding to t = 18. Hence the data hold for the
left bottom panel of Fig. 15. The persistence of the epidemic
in Attica (dark red) and to a lesser degree Thessaloniki (red)
is evident in both figures. The other areas seem to be slightly
underpredicted. The comparison suggests a partial time mis-
match between the simulations and the data. One can also
observe that since the initial spots for Andalusia were spatially
close, the infection spreads more easily in that region than in
the mainland of Greece.
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