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measurements of the Milky Way satellite population can
be reinterpreted to place stringent bounds on the micro-
physics of DM.
In this study, we focus on a scenario in which DM

elastically scatters with normal matter (baryons), alter-
ing matter perturbations in the early Universe and con-
sequently reducing the present-day population of small
galaxies. We further rely on the concordance between
the CDM predictions and measurements of the Milky
Way satellite abundance from the Dark Energy Survey
(DES) and Pan-STARRS1 (PS1; Drlica-Wagner et al.
2020; Nadler et al. 2020a,b) to place the most stringent
astrophysical bounds on a variety of velocity-dependent
interactions between DM particles and protons.
In a previous pilot study (Nadler et al. 2019a), we

developed a method to constrain velocity-independent
scattering only, which we later applied to DES data
(Nadler et al. 2020b). Here, we generalize our analy-
sis to include a whole class of velocity-dependent inter-
action models; this generalization has required a new
approach to quantifying the impact of DM interactions
on the satellite population. This method relies on pre-
dicting the most robust features of the matter trans-
fer function in IDM cosmology and relating those fea-
tures to the present-day abundance of low-mass halos. It
does not necessitate precise modeling of the intricacies of
galaxy formation within IDM. As such, it is only suited
for placement of conservative upper bounds on the in-
teraction cross section. Even so, the upper bounds we
obtain are 3–5 orders of magnitude more stringent than
the previous observational limits. They are also the first
near-field cosmological limit on velocity-dependent DM–
baryon interactions.
We address the same low-energy physics—and the

same DM parameter space—as direct detection experi-
ments. However, as with most other observational ap-
proaches, it is particularly well-suited for probing rel-
atively large interaction cross sections and sub-GeV
particle masses, outside the target sensitivity of most
nuclear-recoil-based underground experiments (e. g. Ag-
nese et al. 2019; The XENON collaboration et al. 2020;
Emken & Kouvaris 2018). It is thus directly comple-
mentary to laboratory searches for DM interactions with
Standard Model particles and substantially reduces the
allowed parameter space for IDM models.
The paper is organized as follows. In Section 2, we

review the theoretical models of DM–proton scattering
and their effects on observations. In Section 3, we re-
view the observational constraints on the Milky Way
satellite galaxy population. In Section 4, we describe
our approach to inferring upper limits on the interac-
tion cross section from the measured abundance of the
Milky Way satellites. In Section 5, we present our re-
sults. We discuss our findings and conclude in Section
6. Throughout, we adopt the following cosmological pa-
rameters: DM density Ωdmh

2 = 0.1153, baryon density
Ωbh

2 = 0.02223, radiation density Ωrad ≈ 9.23 × 10−5,

the Hubble constant h = 0.6932, optical depth to reion-
ization τreio = 0.081, the amplitude of the scalar pertur-
bations As = 2.464×10−9, and the scalar spectral index
ns = 0.9608; we set c = kB = 1.1

2. THEORY

We consider elastic scattering between DM particles
and protons that predominantly takes place in the early
Universe.2 We consider any scattering process with a
momentum-transfer cross section of the form σMT =
σ0v

n, where v is the relative particle velocity and σ0

is a free parameter of the model; we focus on power-
law index values n ∈ {0, 2, 4, 6} and consider a range
of DM particle masses mχ ∈ [15 keV, 100 GeV].3 We
choose this empirical parameterization and values of n
because they are representative of wide variety of rel-
ativistic DM models which can be described by a low-
energy effective field theory of DM scattering with nu-
cleons, broadly considered in DM searches (Anand et al.
2014; Fitzpatrick & Zurek 2010). The models are rep-
resented here by an appropriate choice of n (Boddy &
Gluscevic 2018). For example, n = 0 represents a cross
section with no velocity dependence and corresponds to
a spin-independent or spin-dependent contact interac-
tion, well-studied in context of direct detection; n = 2
arises at leading order from DM with an electric dipole
moment, induced by a heavy mediator that kinetically
mixes with the photon (Fitzpatrick et al. 2013). Aside
from its connection to particle theory, the power-law
parameterization is sufficient to fully capture the effects
of scattering on structure formation and thermal his-
tory of the Universe, and is thus adopted as a stan-
dard approach in observational searches for DM inter-
actions (e. g. Dvorkin et al. 2014; Gluscevic & Boddy
2018; Boddy & Gluscevic 2018; Xu et al. 2018; Slatyer
& Wu 2018; Boddy et al. 2018).
In an IDM cosmology, DM–baryon scattering leads to

heat and momentum transfer between the cosmological
fluids, smoothing out small-scale density perturbations
through collisional damping. The momentum-transfer
rate Rχ and the heat-transfer rate R′

χ are proportional
to σ0, and their redshift evolution is largely dictated by
the evolution of the relative particle velocities (Dvorkin
et al. 2014; Gluscevic & Boddy 2018). Since particle
velocities are primarily sourced by thermal motions in
the early Universe (z & 104), the associated Rχ evolves

1 The parameter values are chosen to be consistent with those used
in Nadler et al. 2020b.

2 For simplicity, we ignore scattering with helium. This ensures
that our bounds are conservative, as the inclusion of helium may
only slightly improve them (Boddy & Gluscevic 2018).

3 For mχ much greater than a proton mass, the constraints we
derive scale as σ0/mχ (Boddy & Gluscevic 2018); for thermally-
produced DM with masses below ∼10 keV, bounds on WDM
apply (Iršič et al. 2017); other cosmological limits may apply in
specific cases at masses .MeV, as discussed in Section 6.
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of Figure 2), that the data is likely even more constrain-
ing. However, non-linear evolution of structure at such
small scales makes it difficult to improve the limit on
the basis of linear-theory considerations, without run-
ning IDM cosmological simulations. Nonetheless, our
numerical limit presents a tremendous improvement over
the other observational bounds on IDM, as quantified in
Section 5.

4.2. Analytic estimates

As noted before, the analytic–limit prescription of
Nadler et al. (2019a) does not strictly apply in generic
IDM models. We consider it here only as a rough
estimate for how much our numerical limits could be
improved in principle. We start by noting that IDM
scattering affects matter perturbations until DM and
baryons decouple, at zdec. Following Nadler et al.
(2019a), we find zdec by setting

aH = Rχ

∣

∣

zdec
, (2)

where (Boddy et al. 2018)

Rχ =
NnaρbYpσ0

mχ +mp

(

Tb

mp

+
Tχ

mχ

)
1+n

2
, (3)

Nn = 25+n/2Γ(3 + n/2)/(3
√
π), a is the scale factor,

Yp = 0.75 is the proton mass fraction, ρb is the baryon
energy density, and mp is the proton mass. During radi-
ation domination, the temperature of baryons evolves as
Tb = T0(1 + z), where T0 = 2.73 K. The temperature of
the DM fluid Tχ is strongly coupled to Tb until thermal
decoupling at zth, and afterwards evolves adiabatically,
Tχ = T0(1 + z)2/(1 + zth). Thermal decoupling occurs
when the heat transfer rate, R′

χ ≡ Rχmχ/(mχ + mp),

matches the Hubble rate, aH = R′
χ

∣

∣

zth
. Substituting

Eq. (3) into the Eq. (2), we get zdec(σ0|mχ, n).
We can further estimate a critical comoving scale be-

low which collisional damping suppresses the matter
transfer function; this scale corresponds to the size of
the particle horizon at zdec, given by

kcrit ≡ 2aH
∣

∣

zdec
≈ 2H0zdec

√

Ωrad. (4)

Substituting zdec(σ0|mχ, n) in Eq. (4), we obtain
kcrit(σ0|mχ, n). Finally, we use Eq. (1), to relate σ0

to the mean mass of the smallest halos affected by IDM
physics, for a given n and mχ. We note that a particu-
lar value of kcrit translates to a different amount of sup-
pression in T 2(k), depending on the interaction model;
however, this analytic prescription does not predict the
amount of suppression. We also note that Mmin =
3.2 × 108 M� roughly corresponds to zdec ≈ 4 × 107

(the intersection point in Figure 1).
The benefit of the analytic calculation for n > 0 is

that it provides a rough estimate of the largest mass
at which halo abundances are affected by IDM, for a

given σ0. In other words, the values of σ0 that satisfy
Mcrit(σ0|mχ, n) < Mmin only affect halos of masses be-
low the current detection threshold. As such, they are
largely allowed by the current data. For illustration, the
right panel of Figure 2 shows transfer functions for all
our IDM models, where σ0 is set using the analytic esti-
mate. The corresponding T 2(k) curves present outer en-
velopes of the “disallowed” (shaded) region for most val-
ues of k. We thus expect that the analytically–estimated
bounds roughly capture maximal improvement that can
be obtained with detailed forward modeling of the same
data; however, this is a rough estimate that only holds
true for some DM masses, as we show in the following.

5. RESULTS

Our numerical bounds on σ0 as a function of mχ are
presented in Figure 3 and Table 1 for n ∈ {0, 2, 4, 6}.
In the same Figure, we present the results of our an-
alytic estimates, cast as an equivalent limit on σ0.
We also show the previous limits from Planck mea-
surements of the CMB temperature and polarization
anisotropy (Boddy & Gluscevic 2018), the limits from
FIRAS spectral-distortion bounds (Ali-Häımoud et al.
2015), and the limits from Lyman-α forest analysis (Xu
et al. 2018). Our numerical limits are orders of magni-
tude more constraining than those in previous studies
and currently present the most stringent astrophysical
bounds on these IDM models. Comparing to the Planck
limits, we report an improvement of approximately 3
and 5 orders of magnitude for n = 2 and n = 4, re-
spectively. For n = 0, our findings are consistent with
Nadler et al. (2019a, 2020b).
Our numerical limits are the most conservative upper

bounds on the momentum-transfer cross section from
linear perturbation theory, in the sense that larger val-
ues of σ0 lead to dramatic decrements in power on scales
that are measured to be consistent with CDM. The ana-
lytic estimates, on the other hand, roughly identify val-
ues of σ0 below which current data has a limited con-
straining power. However, the analytic prescription is a
poor predictor of the bound at low DM masses for n > 0
models, as the the analytically–estimated cross sections
fall into the excluded regions of the parameter space.
We note that the mass dependence of the numerical

bound shown in Figure 3 differs from the dependence of
the analytic estimate. While the analytic estimate di-
rectly inherits its mass dependence from the DM–baryon
momentum transfer rate Rχ, the numerical bound is ad-
ditionally modulated by the requirement that the DAO
features fall strictly beneath the WDM transfer func-
tion. The size of DAO features as a function of mχ is
not straightforwardly modeled, but it affects the mass
dependence of the numerical limit.

6. CONCLUSIONS AND DISCUSSION

We use the latest measurements of the Milky Way
satellite population from DES and Pan-STARRS1 to
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n Mass Numerical limit Analytic estimate

[cm2] [cm2]

15 keV 2.7× 10−29 2.1× 10−29

100 keV 6.9× 10−29 3.3× 10−29

0 10 MeV 2.8× 10−28 1.0× 10−28

1 GeV 1.8× 10−27 5.3× 10−28

10 GeV 1.2× 10−26 3.7× 10−27

100 GeV 1.3× 10−25 3.3× 10−26

15 keV 6.9× 10−29 1.7× 10−28

100 keV 7.5× 10−27 1.5× 10−27

2 10 MeV 1.4× 10−23 2.4× 10−25

1 GeV 1.5× 10−21 3.8× 10−23

10 GeV 1.3× 10−20 4.3× 10−22

100 GeV 1.3× 10−19 4.3× 10−21

15 keV 1.5× 10−29 4.2× 10−28

100 keV 1.9× 10−26 2.1× 10−26

4 10 MeV 2.1× 10−19 3.0× 10−22

1 GeV 5.5× 10−16 1.9× 10−18

10 GeV 1.4× 10−14 3.9× 10−17

100 GeV 1.4× 10−13 4.4× 10−16

15 keV 1.9× 10−29 6.6× 10−28

100 keV 7.0× 10−24 2.1× 10−25

6 10 MeV 1.0× 10−12 3.0× 10−22

1 GeV 6.2× 10−10 7.8× 10−14

10 GeV 7.8× 10−9 2.5× 10−12

100 GeV 1.0× 10−7 3.2× 10−11

Table 1. Bounds on the normalization σ0 of the momentum-

transfer cross section, σMT = σ0v
n, obtained via the analytic

and numerical approaches, for a set of DM masses mχ and

power-law dependencies on particle velocity v, with an index

n. Table entries correspond to the limits shown in Figure 3.

the behavior of the dark acoustic oscillations we observe
in Figure 2 may be possible to model semi-analytically
to understand their effects on dark matter substruc-

ture in galaxies like the Milky Way. Indeed, such ap-
proaches will be necessary to move beyond limits and
toward a discovery of new dark matter physics, should
inconsistencies with the cold dark matter paradigm arise
in future measurements. Simulations that include dark
matter–baryon scattering could also uncover other po-
tentially observable signatures of the interactions, such
as impacts on halo density profiles. A combined analysis
of all available observational probes is perhaps the most
robust way to search for new physics of dark matter with
upcoming surveys.
Finally, we note that the validity of our results does

not explicitly require thermal production of dark mat-
ter. However, we do assume that dark matter follows a
Maxwell-Boltzmann distribution, achieved by the suffi-
ciently strong coupling with baryons, through any one of
the interactions we considered. Deviations from this as-
sumption may occur because thermal decoupling takes
place before the interactions themselves decouple (Ali-
Häımoud 2019). Furthermore, thermally-produced dark
matter can alter primordial element abundances (Bœhm
et al. 2013; Nollett & Steigman 2015; Krnjaic & McDer-
mott 2020) and there are corresponding limits on ther-
mal dark matter candidate mass, complementary to our
results. However, these limits rely on details of a spe-
cific model of dark matter, such as its spin statistics and
the high-energy behavior of its interactions; in contrast,
we need not make any assumptions about these details.
We thus leave detailed comparisons of these bounds and
considerations related to the velocity distributions for
the future.
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