EVOLUTIONARY DIVERGENCE OF A HOXA2B HINDBRAIN ENHANCER IN SYNGNATHIDS MIMICS
RESULTS OF FUNCTIONAL ASSAYS

Allison M. Fuiten'? and William A. Cresko!
1. Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
2. Present address: Department of Dermatology, Oregon Health and Science University, Portland, OR 97239

Correspondence should be addressed to W. A. C. (wcresko@uoregon.edu)

Fuiten ORCID: 0000-0003-3926-5455
Cresko ORCID: 0000-0002-3496-8074



ABSTRACT

Hoxa? genes provide critical patterning signals during development, and their regulation and function have
been extensively studied. We report a previously uncharacterized significant sequence divergence of a highly
conserved hindbrain #oxa2b enhancer element in the family syngnathidae (pipefishes, seahorses, pipehorses,
seadragons). We compared the sox cis-regulatory element variation in the Gulf pipefish and two species of seahorse
against eight other species of fish, as well as human and mouse. We annotated the #oxa2b enhancer element binding
sites across three species of seahorse, four species of pipefish, and one species of ghost pipefish. Finally, we
performed in situ hybridization analysis of hoxa2b expression in Gulf pipefish embryos. We found that all
syngnathid fish examined share a modified rhombomere 4 hoxa2b enhancer element, despite the fact that this
element has been found to be highly conserved across all vertebrates examined previously. Binding element
sequence motifs and spacing between binding elements have been modified for the ~oxa2b enhancer in several
species of pipefish and seahorse, and that the loss of the Prep/Meis binding site and further space shortening
happened after ghost pipefish split from the rest of the syngnathid clade. We showed that expression of this gene in
rhombomere 4 is lower relative to the surrounding rhombomeres in developing Gulf pipefish embryos, reflecting
previously published functional tests for this enhancer. Our findings highlight the benefits of studying highly
derived, diverse taxa for understanding of gene regulatory evolution and support the hypothesis that natural

mutations can occur in deeply conserved pathways in ways potentially related to phenotypic diversity.
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INTRODUCTION

Hox genes are a group of core developmental genes present in all animals. These genes code for
homeodomain transcription factors that are responsible for determining the body plan of an embryo along the
anterior-posterior axis (Carroll 1995; Krumlauf 1994; McGinnis and Krumlauf 1992). In vertebrates, tetrapods have
four Hox gene clusters (denoted as Hox clusters A, B, C, and D), while teleost fish have eight clusters of Hox genes
due to the whole teleost genome duplication (Hox clusters Aa, Ab, Ba, Bb, Ca, Cb, Da, Db) (Amores et al. 1998)
(Supplemental Figure 1a). The vertebrate Hox genes are organized into 13 paralogous groups that span these gene
clusters (Scott 1992). Hox genes exhibit collinearity of expression along the body axis to confer positional identity
information, with the vertebrate hindbrain expressing Hox genes in paralogous groups 1 through 4 during
development (Alexander et al. 2009; Lumsden and Krumlauf 1996; Parker et al. 2016; Tumpel et al. 2009).

Despite the large amount of body plan diversity found in animals, most studies to date have documented
that Hox genes have maintained a great level of conservation throughout the animal kingdom both in terms of
sequence and function (reviewed in (Burglin and Affolter 2016; Gehring et al. 1994; Holland 2013)). This level of
conservation in Hox genes has been hypothesized to occur because major changes in coding regions of Hox genes
are likely detrimental to the development of the organism due to extensive antagonistic pleiotropy, and mutations in
such core developmental regulators are unlikely to contribute to evolution over short time scales (Carroll 2008;
Hoekstra and Coyne 2007; Stern 2000). Alternatively, mutations of one or a small number of cis-regulatory
elements (CRE) of Hox genes that cause shifts in expression of these conserved developmental genes may create
traits that evolve despite developmental constraints imposed by the antagonistic pleiotropy of the hox genes
themselves (Raff 2012; Wilkins 2002). As a result, we might predict that regulation of Hox genes may contribute to
macroevolution—especially of body plan traits.

Of particular interest for this study, the ~oxa2 gene is expressed in the vertebrate hindbrain during
development (first described by (Prince and Lumsden 1994)). The hindbrain of all jawed vertebrates is organized
into repeated morphological units called rhombomeres, which form through a progression of segmentation during
early development (Kiecker and Lumsden 2005; Lumsden 2004). Processes that include the formation of
cytoskeletal barriers, cell adhesion and repulsion keep each rhombomere a distinctive unit. As a consequence, each
rhombomere contains a separate population of cells that follow different developmental pathways and neurons that
are thombomere specific (reviewed by (Parker et al. 2016; Parker and Krumlauf 2020)). Rhombomeres are a source
of cranial neural crest cells and are important regulators for craniofacial and nerve development (reviewed in (Parker
et al. 2016; Parker and Krumlauf 2020)). Experimental manipulation of the anterior Hox genes have led to cranial
phenotypes (Minoux and Rijli 2010; Santagati and Rijli 2003; Trainor and Krumlauf 2000; Trainor and Krumlauf
2001). Hoxa2 genes are known to send important patterning signals to pharyngeal arch 2 through rhombomere 4
during development via migratory streams of neural crest cells (Minoux and Rijli 2010; Parker et al. 2014; Santagati
and Rijli 2003). Experimental manipulation of the soxa2 gene has been shown to cause various craniofacial
phenotypes. Loss-of-function experiments of Hoxa?2 in mice (Mus musculus), in hoxa2b and hoxb2a in zebrafish
(Danio rerio), and hoxa2a and hoxa2b in Nile tilapia (Oreochromis niloticus) led to duplications of jaw elements

(Gendron-Maguire et al. 1993; Hunter and Prince 2002; Le Pabic et al. 2010; Rijli et al. 1993; Santagati et al. 2005).
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Gain-of-expression experiments with #oxa?2 led to repression of jaw formation in mice, frog (Xenopus laevis), and
chicken (Gallus gallus) (Grammatopoulos et al. 2000; Kitazawa et al. 2015; Pasqualetti et al. 2000).

Hoxa? have several cis-regulatory factors that have been described over a series of studies (Maconochie et
al. 1999; Maconochie et al. 2001; McEllin et al. 2016; Nonchev et al. 1996a; Nonchev et al. 1996b; Parker et al.
2014; Parker et al. 2019a; Parker et al. 2019b; Tumpel et al. 2007; Tumpel et al. 2006). This list described cis-
regulatory factors currently includes a rhombomere 3/5 enhancer, a neural crest cell enhancer that is found upstream
of the hoxa2 gene, a rhombomere 4 enhancer element found in the intron and first exon of Hoxa?2, and a
rhombomere 2 enhancer element found in the second exon of hoxa2 (Parker et al. 2016; Tumpel et al. 2009). Due to
their whole genome duplication, teleost fish typically have two copies of the hoxa2 gene—called hoxa2a and
hoxa2b. Expression of these two paralogs within the hindbrain varies among the different species of teleost. The
fugu hoxa2Za gene has no expression in thombomere 4 while fugu hoxa2b is strongly expressed in rhombomere 4.
Sequential conversions of a series of binding sites in the functional fugu oxa2b rhombomere 4 enhancer into
paralogous sites derived from the nonfunctional fugu #oxa2a enhancer that were fused to a lacZ reporter gene and
electroporated into chick embryos showed strong to low level of reporter activity in rhombomere 4, depending on

the binding sites converted (Tumpel et al. 2000). The-knoeckeut-ofthisthombemere4-enhancerelementinfoxa2bin

d-to-differential-expression-ofhoxa2b-inrhombomere-4(Tumpelet 2l 2006). Previous research using chick
embryo electroporation and transgenic mouse embryo assays have also reported that site directed mutagenesis on
any one of these enhancer binding sites resulted in reduced efficiency of expression of #oxaZ2 in rhombomere 4

(Tumpel et al. 2007).

choose to further examine deeply conserved hoxa?2 regulatory element-in the family Syngnathidae, which includes
species of pipefish, seahorses, pipehorses, and seadragons. This charismatic teleost family is known for their highly
divergent body plans, including the elongate form of many pipefishes and seadragons and the vertical body axis and
reduced craniovertebral angle of seahorses (Herald 1959; Teske and Beheregaray 2009; Wilson and Rouse 2010)
(Figure 1). Derived characters such as leafy appendages, prehensile tails, bony body armor, male somatic brooding
and loss of ribs, caudal, and pelvic fins are common across the family and in many cases have evolved
independently in multiple lineages (Herald 1959; Neutens et al. 2014; Wilson and Rouse 2010). The highly modified
syngnathid skull results from modified cranial bones in the ethmoid region and Meckel’s cartilage (Leysen et al.
2010). Whereas the morphology is well described for the adult crania of the pipefish, the genetic mechanism
underlying the modification of the cranial bones remains unknown. Together, such extreme changes in body axis
and craniofacial structure beg the question as to whether modification of Hox gene expression may play a role.

We previously reported the Hox cluster genes in the Gulf pipefish (Syngnathus scovelli), and subsequently
the same complement of Hox genes have been reported in two species of seahorse (Lin et al. 2016; Lin et al. 2017,
Small et al. 2016) (Supplemental Figure 1b). In this study, we compare the Hox cis-regulatory elements in
syngnathid fish against other vertebrates. We report a previously uncharacterized significant sequence divergence of

the hindbrain rhombomere 4 hoxa2b enhancer element. We report how the rhombomere 4 enhancer binding sites of
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the hoxa2b gene are modified in syngnathid fish, and infer possible downstream morphological consequences to the
sequence modification of this enhancer element. We show expression of this gene in rhombomere 4 is lower relative
to the surrounding rhombomeres in developing Gulf pipefish embryos, reflecting previously published functional
tests for this enhancer. Our findings highlight the benefits of studying highly derived and diverse taxa for
understanding of gene regulatory structure and evolution and support the hypothesis that natural mutations can occur

in these deeply conserved pathways in ways potentially related to phenotypic diversity.

METHODS AND MATERIALS

Identification of non-coding elements

CNE:s were identified using mVISTA analyses based on levels of sequence conservation within Hox
clusters across threespine stickleback (Gasterosteus aculeatus), fugu (Takifugu rubripes), medaka (Oryzias latipes),
Pacific bluefin tuna (Thunnus orientalis), lined seahorse (Hippocampus erectus), tiger tail seahorse (Hippocampus
comes), Gulf pipefish, blue-spotted mudskipper (Boleophthalmus pectinirostris), cod (Gadus morhua), zebrafish,
spotted gar (Lepisosteus oculatus), mouse, and human (Homo sapiens) (Brudno et al. 2003a; Brudno et al. 2003b;
Frazer et al. 2004; Mayor et al. 2000). Sequences for zebrafish, spotted gar, mouse, and human were downloaded
from Ensembl. Pacific bluefin tuna sequence was extracted from the Pacific bluefin tuna genome ((Yasuike et al.
2016); http://nrifs.fra.affrc.go.jp/ResearchCenter/5 AG/genomes/Tuna DNAmicroarray/index.html). Cod sequence
was extracted from the cod genome ((Torresen et al. 2017);
https://figshare.com/articles/Transcript_and genome assemblies of Atlantic cod/3408247). Gulf pipefish sequence
was extracted from the Gulf pipefish genome ((Small et al. 2016); https://creskolab.uoregon.edu/pipefish/). The
lined seahorse sequence was extracted from the lined seahorse genome ((Lin et al. 2017); NCBI with the project
accession PRINA347499). The tiger tail seahorse sequence was extracted from the tiger tail seahorse genome ((Lin
et al. 2016); NCBI with the project accession PRINA314292). The blue-spotted mudskipper sequence was extracted
from the blue-spotted mudskipper genome ((You et al. 2014); NCBI with the project accession PRINA232434). The
fugu sequences were retrieved from Genbank ((Lee et al. 2006); Genbank accessions DQ481663-9). The medaka
sequences were retrieved from Genbank ((Kurosawa et al. 2006); AB232918-24). The threespine stickleback
sequences were from BAC clones, which were make available by Angel Amores. Sequences were softmasked using
RepeatMasker. Threespine stickleback, medaka, and fugu were set as the reference sequences for the VISTA
analysis. Alignment of each sequence from these species were aligned using the shuffle-LAGAN algorithm and the
LAGAN algorithm through the mVISTA website with minimum conservation identity set to 65% and minimum
length for a CNS set to 50. Any significant peak loss was confirmed to be not dependent on the teleost set as a
reference nor on whether shuffle-LAGAN or LAGAN algorithm was used.

All conserved noncoding sequences annotated within the Gulf pipefish Hox clusters were queried against
the NCBI NR database to identify coding exons, against RFAM, refseq rna, and the miRBase Sequence Databases
(Release 21) for mature miRNA chordate sequences and miRNA chordate hairpins (downloaded from miRBase).
BBMapSkimmer was used to query against the miRBase Sequence Databases in order to identify miRNA coding

genes. Kmer index size was set to 7, max indel set to 0, approximate minimum alignment identity set to 0.50,
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secondary site score ratio set to 0.25, behavior on ambiguously-mapped reads set to retain all top-scoring sites, and
maximum number of total alignments to print per read set to 4 million.

Hox cluster microRNAs and long-noncoding RNAs within the Hox cluster were identified using VISTA
analyses based on conserved noncoding elements (CNE) within Hox clusters across Gulf pipefish, threespine
stickleback, mouse (Mus musculus), spotted gar, zebrafish, Pacific bluefin tuna, medaka, and fugu (Takifugu
rubripes) (Frazer et al. 2004, Mayor et al. 2000, Brudno, Do, et al. 2003, Brudno, Malde, et al. 2003). We aligned
primary miRBase (Kozomara and Griffiths-Jones 2011) microRNA sequences from stickleback, zebrafish, medaka,
and fugu to S. scovelli Hox regions using MUSCLE (Edgar 2004) to supplement annotations. The hairpin loops of
the annotated microRNAs were confirmed using RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). When
known Hox cluster microRNAs were not detected in the Gulf pipefish genome, we further confirmed absence of the
conserved seed sequence, which was the case for mirl 96b between hoxb13a and hoxb9a and mirl0a between
hoxb5b and hoxb3b. All conserved noncoding sequences annotated within the Gulf pipefish Hox cluster were
queried against miRBase Sequence Databases (Release 21) for mature miRNA chordate sequences and miRNA
chordate hairpins (downloaded from miRBase) using BBMapSkimmer (Bushnell) for further identification of
microRNAs. Kmer index size was set to 7, max indel set to 0, approximate minimum alignment identity set to 0.50,
secondary site score ratio set to 0.25, behavior on ambiguously-mapped reads set to retain all top-scoring sites, and

maximum number of total alignments to print per read set to 4 million.

Sequence alignments and identification of enhancer binding sites

Hoxa2, hoxa2b, and hoxa2a sequences from coelacanth (Latimeria chalumnae), anole (Anolis
carolinensis), chicken, zebrafish, spotted gar, mouse, and human were downloaded from Ensembl. The Australian
ghostshark (Callorhinchus milii) hoxa2 sequence was retrieved from Genbank. The tamar wallaby (Notamacropus
eugenii) hoxa?2 sequence was retrieved from Genbank. The fugu hoxa2a and hoxa2b sequences were retrieved from
Genbank ((Lee et al. 2006); Genbank accessions DQ481663-9). The medaka hoxa2a and hoxa2b sequences were
retrieved from Genbank ((Kurosawa et al. 2006); AB232918-24). The threespine stickleback hoxa2b sequence was
from BAC clones, which were make available by Angel Amores. Pacific bluefin tuna hoxa2b sequence was
extracted from the Pacific bluefin tuna genome ((Yasuike et al. 2016);
http://nrifs.fra.affrc.go.jp/ResearchCenter/5 AG/genomes/Tuna DNAmicroarray/index.html). The blue-spotted
mudskipper hoxa2b sequence was extracted from the blue-spotted mudskipper genome ((You et al. 2014); NCBI
with the project accession PRINA232434). The Gulf pipefish hoxa2b sequence was extracted from the Gulf pipefish
genome ((Small et al. 2016); https://creskolab.uoregon.edu/pipefish/). The lined seahorse hoxa2b sequence was
extracted from the lined seahorse genome ((Lin et al. 2017); NCBI with the project accession PRINA347499). The
tiger tail seahorse hoxa2b sequence was extracted from the tiger tail seahorse genome ((Lin et al. 2016); NCBI with
the project accession PRINA314292).

In addition to the Gulf pipefish, lined seahorse, and tiger tail seahorse genomic sequences, degenerate
primers were designed and used to sequence the hoxa2b enhancer region for the dwarf seahorse (Hippocampus

zostrae), the messmate pipefish (Corythoichthys haematopterus), bluestripe pipefish (Doryrhamphus excisus),
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sculptured pipefish (Choeroichthys sculptus), and the robust ghost pipefish (Solenostomus cyanopterus) (Table 1).
Tissue samples from the robust ghost pipefish, messmate pipefish, and dwarf seahorse were obtained from the Adam
Jones Lab at the University of Idaho. Tissue samples from the bluestripe pipefish (KU 7147) and sculptured pipefish
(KU 5054) were obtained from the University of Kansas fish tissue collection. The dwarf seahorse and messmate
pipefish bring additional taxonomic sampling from the Syngnathinae subfamily of Syngnathidae. The sculptured
pipefish and bluestripe pipefish are members of the Nerophinae subfamily of Syngnathidae. The robust ghost
pipefish is a species from the immediate outgroup to Syngnathidae. This additional taxonomic sampling provided
further insight into the change of this enhancer element in this teleost fish family (Figure 1).

The sequences were aligned using MUSCLE through the Geneious software (Edgar 2004). Alignments
were corrected manually. The binding motifs identified in a previous study for #oxa2 in human, chicken, mouse,
baboon, rat, bat, dog, coelacanth, shark, and for hoxa2b in zebrafish, fugu, and medaka, and for soxa2a in fugu and
medaka were used as guides in aligning and identifying the Pbx/Hox and Prep/Meis binding sites in the species
included in this study. Binding site sequences for Pbx/Hox and Prep/Meis were obtained from (Berthelsen et al.
1998; Ferretti et al. 2005; Ferretti et al. 2000; Tumpel et al. 2007).

Whole mount ir situ hybridization analysis

Antisense riboprobes were made from syngnathid clones. Genes sequences for targeted genes were
obtained from the Gulf pipefish genome. For design of the in situ probe, functional domains were identified on
targeted gene, and the probe was designed around those sequences. Amplified fragments were cloned into TOPO
PCR-IV vector (Invitrogen) and the inserts were confirmed by Sanger sequencing. The resulting plasmids were
linearized with the either Notl or Spel restriction enzymes, depending on insert orientation. Antisense digoxigenin
(DIG)-labeled RNA probes were prepared using DIG-RNA labeling mix (Fermentas), Ribolock RNase inhibitor
(Fermentas) and either T7 RNA polymerase or T3 RNA polymerase (depending on insert orientation) and
incubating at 37°C for 2 hours. The plasmid was digested using DNase I, RNAse-free (Fermentas) and a portion of
the resultant RNA was run on a gel (1.0% agarose, 10 cm gel, 1.0X TBE, 110 V) to confirm the synthesis of
adequate probe. Probe concentration was also measured using Quantit RNA broad range assay kit on a Qubit
fluorometer (Invitrogen). For krox20a, the probe sequence used was 5°-
gegectecttgtacgcacgegeacctccaccegecctegtegtacacgtgeatcagtgacgtgtaccaggaatectetgatgagggttacctggecgtacccacctgeag
cgcggtgacttatcacatggegecagectataactcggegecaaaagecccgetggtggctgactacggegtggggggagtctacgecccacaggecacctteccegg
accggaagtcagtggeggegtacgecttggactcectcegegtggececteegeteacace-3’. For hoxa2a, the probe sequence used was 5°-
tggaatccacgcagcaggtccacaatagcageteggegagetttgetgctgeaccgetgaacageaatgagaaaaatctgaaacattttcccaaccegtecacccactgtt
ccecggetgegtgtcaacaatgggeccaggeteggeatecgtgecggacaatggegacagtcceccagetttggatgttictatacacgacttccaagcetttetegtcggat
tcctgettgecaactmteegacgetgectcgecgagettgtetgaatcgetggacagteeegtgg-3’. For hoxa2b, the probe sequence used was 5°-
gcgaaggaccttttggaagagcagecagecaaggggcagaggtatttccaggaaaattgtttcaattcacaacattgtcctaatagecacaatggsgacaatgattcgact
ttgtgcataagtgagaaaaatgccaaacatcttccggactgegeteccaccacggceteccttetgtgegeccgaaataggeccggagaataatytttcccacgtetegeac

agtgaatactccceggatttggacgectetttgegggagettectegageatectegttctcgecaagactggtcegattcaactecget-3°.
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Whole-mount in situ hybridization analyses were performed as described in Thisse and Thisse (2008). One
to five Gulf pipefish embryos from each stage were used in hybridization with each probe (hoxa2b, hoxa2a,
krox20a). Hybridized specimens were placed in 50% glycerol/50% PBSTw, mounted onto slides and photographed

on a compound microscope.

Collection and maintenance of pipefish

Adult Gulf pipefish were collected in Tampa Bay, Florida on May 5, 2017. Breeding tanks were set up at
the University of Tampa. Embryos from pregnant male pipefish were collected at 1, 2, 3, 4, 5, 6 dpf. Additionally,
embryos from wild caught pregnant male Gulf pipefish were collected. Pregnant male pipefish were euthanized in
0.017% Tricaine-S, and then fixed in 4% paraformaldehyde either overnight at 4°C or for 5 hours at room
temperature, embryos were extracted from the male brood pouch and stored in methanol. Experimental research
conducted on these animals was performed according to protocols approved by the Institutional Animal Care and

Use Committees (IACUC) at the University of Oregon.

RESULTS
A unique divergence of a hoxa2b enhancer is shared across syngnathid fish

We used lined seahorse, tiger tail seahorse and Gulf pipefish as the syngnathid representatives and
compared their conservation noncoding element (CNE) content to percomorph teleost fish (threespine stickleback,
fugu, medaka, Pacific bluefin tuna), non-percomorph teleost fish (blue-spotted mudskipper, cod, zebrafish), non-
teleost fish (spotted gar), and two non-fish vertebrates (mouse and human) in the Hox clusters. From examining the
VISTA plots, there were five instances of syngnathid-specific peak losses of Hox cluster CNEs among the species
examined.

Two of the five peak losses were independent losses of Hox cluster microRNAs—mirl9b and mirl Oa—that
are reported to be lost convergently in other teleosts. We previously documented mirl96b as an independent loss in
the Gulf pipefish (Small et al. 2016). There was an independent loss of mirl96b previously reported in medaka
(Hoegg et al. 2007). Miri96b was also missing the two seahorse species examined (Supplemental Figure 2). Mirl0a
was originally described as an independent loss in Gulf pipefish (Small et al. 2016). With the inclusion of cod and
mudskipper in this analysis, mir/Oa also appeared to be missing independently in these lineages as well
(Supplemental Figure 3).

We also identified two syngnathid specific CNE peak losses in HoxCa—one between hoxc8a and hoxc6a
and another between hoxc4a and hoxc3a (Supplemental Figures 4 and 5). Both of these CNEs were only found
among the acanthomorph fish examined (cod, blue-spotted mudskipper, fugu, medaka, Pacific bluefin tuna, and
threespine stickleback). It is unknown whether these CNEs serve a functional role or are merely the result of neutral
sequence conservation {Supplemental Eisure-6a).

Our most surprising finding was of a significant sequence divergence of a highly conserved noncoding
element that is shared across the included syngnathid species (Figure 2_and Supplemental Figure 6). This missing

element is located in the intron of hoxa2b in the HoxAb cluster of Hox genes. It was highly conserved in that it was
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present in all other species included in the VISTA analysis (Supplemental Figure 6d). The CNE missing in
syngnathid species is a previously described enhancer element for the oxa2b gene in teleost fish. This enhancer
element increases expression of #oxa2 in rhombomere 4 during development. Teleost fish have two copies of hoxa?2
called hoxa2a and hoxa2b. Previous research showed the fugu hoxa2a paralog when fused to a lacZ reporter gene
and electroporated into chick embryos-n—fish, despite exhibiting the binding motifs of this enhancer, apparently

does not drive expression of the hoxa2a gene in thombomere 4 the chick hindbrain (Tumpel et al. 2006).

Significant sequence changes to the Pbx/Hox and Prep/Meis syngnathid binding sites

The hoxa2b enhancer element comprises four Pbx/Hox binding sites and one Prep/Meis binding site. One
of the four Pbx/Hox binding sites is located in the first exon of hoxa2 and hoxa2b genes. The remaining binding
sites are located in the intron of the hoxa2 and hoxa2b genes (Figure 3) (Parker et al. 2014; Tumpel et al. 2007;
Tumpel et al. 2006). In order to further examine the degree of conservation of this binding site among vertebrates
and determine the pattern of divergence in syngnathids, we examined the enhancer element binding motifs across
Vertebrata using the Australian ghostshark, coelacanth, anole, chicken, tamar wallaby, human, mouse, spotted gar,
zebrafish, fugu, medaka, threespine stickleback, Pacific bluefin tuna, and blue-spotted mudskipper, along with
syngnathid species (Figure 4, Table 2). Pbx/Hox dimers recognize the sequence 5’-TGATNNAT-3’, with the Hox
proteins recognizing the 5’-NNAT-3". The Pbx proteins bind to the 5’ part of the 5’-TGATNN-3" sequence, and the
Hox protein contacts the NNAT sequence motif (Ferretti et al. 2005; Knoepfler et al. 1996). The two NN bases tend
to vary depending on the Hox gene that dimerizes with the Pbx (Chan et al. 1997; Chang et al. 1995; Knoepfler et al.
1996; Manzanares et al. 2001).

We found that teleost fish have the 5’-TGAT-3" motif in the Pbx/Hox 1 site, with the exception of the blue-
spotted mudskipper, the bluestripe pipefish, the sculptured pipefish, the messmate pipefish, the Gulf pipefish, and
the dwarf seahorse. Teleost fish, except for the blue-spotted mudskipper, did not have the NNAT sequence motif.
The Pbx/Hox 2 have stayed the most conserved relative to the other Pbx/Hox binding sites for this enhancer. The
binding sequence had stayed 5’-TGATAGAT-3" with the exception of mouse, that had 5’-TGATAGAC-3’ and
Pacific bluefin tuna which had 5’-TGATAAGG-3’. The robust ghost pipefish had 5’-TGATCGAT-3" and the

sequenee-motif: For the first four bases in the Pbx/Hox 3 binding site, all teleost fish examined have sequences 5°-
TGGC-3’ or 5’-TGGA-3’, instead of following the more common sequence pattern of 5’-TGAT-3" or the 5’-NNAT-

3’ described by (Ferretti et al. 2005). Based on alignments, the second half of Pbx/Hox 3 binding sequence appeared
to have been lost in the syngnathid species. The robust ghost pipefish and Syngnathidae fish have sequences 5°-
CGAT-3’ in the first four bases in the Pbx/Hox 4 binding sites instead of the 5’-TGAT-3" found in the other

examined teleost fish. For the last four bases in the Pbx/Hox 4 binding site, examined teleost fish had either 5°-
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NNGT-3’, 5’-NNTT-3’, or 5’-NNCT-3" (with the exception of the Pacific bluefin tuna) instead of the more common
the 5’-NNAT-3’ sequence motif (Table 2).

We also found that the Prep/Meis binding site was conserved across taxa examined, including in the robust
ghost pipefish, with the exception of the syngnathid species. Members of the Syngnathinae subfamily (lined
seahorse, tiger tail seahorse, dwarf seahorse, messmate pipefish, and Gulf pipefish) were missing the Prep/Meis
binding site. Based on alignments, it appeared that the two species from the Nerophinae subfamily, bluestripe

pipefish and sculptured pipefish had only the “ACA” nucleotides remaining from this binding site (Figure 4).

Truncated spacing between binding sites in the syngnathid binding sites

The spacing of the binding elements have also been modified in the syngnathid lineages. Overall, the intron
was shorter in syngnathid lineages relative the other vertebrates included for comparison (Table 3). The intron
lengths spanned from 924 bases in anole to 417 bases in fugu. The intron length in syngnathid species were all less
than 275 bases.

The spacing between each of the binding sites was also shorter in the syngnathid species relative to the
other species (Table 3). In vertebrates, the spacing between Pbx/Hox binding sites 1 to 2 was between 66 and 110,
except in syngnathids when it shortened to 33 and 32 bases in the bluestripe and sculptured pipefish and to 24 bases
in all other syngnathids examined. The nucleotides between Pbx/Hox binding sites 2 to 3 was consistently at 22
bases, with the exception of medaka at 21, the Australian ghostshark at 16 and the Pacific bluefin tuna at nine.
Syngnathids had the spacing of eight bases. Overall the distance between the first binding site of this enhancer
element to the last binding site of this enhancer element typically ranged from 682 to 384, with the exception of the
anole having the distance of 924 bases. The syngnathids included in this analysis had a spacing of 267 to 338 (Table
3).

Robust ghost pipefish had a space of 66 bases between Pbx/Hox binding sites 1 and 2, while the other
syngnathid fish had a space of 24 bases. The nucleotides between Pbx/Hox binding sites 2 to 3 was at 16 bases with
the robust ghost pipefish and the other syngnathid fish had a spacing of eight bases. Overall, the distance between
the first binding site of this enhancer element to the last binding site of this enhancer element for the syngnathids
included in this analysis ranged from 267 to 289 bases, with the exception of the robust ghost pipefish which had a
longer spacing of 356 bases (Table 3).

Loss of Prep/Meis and further space shortening evolved after robust ghost pipefish split from the rest of the
syngnathid clade

We found that the missing Prep/Meis binding site and modified state of the Pbx/Hox binding sites of this
enhancer element was also found in species sampled from both subfamilies of Syngnathidae. We concluded that this
particular extreme modification of the hoxa2b enhancer is mostly likely shared across the family of Syngnathidae
(Figure 1).

We found that the robust ghost pipefish had all five binding sites for this enhancer element and an

intermediately sized intron of 350 bases (Tables 2 and 3). This observation can be interpreted as that the loss of the
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Prep/Meis binding site happened after the robust ghost pipefish diverged from Syngnathidae clade (Figure 1). The
spacing of the motifs were already shortening before robust ghost pipefish split from Syngnathidae, but more

extreme shortening of the binding site spacing after robust ghost pipefish diverged from Syngnathidae.

Pattern of expression of hoxa2b in rhombomere 4 in syngnathid is similar to expression in knockout studies

In a previous study by Tumpel et al. (2007), various combinations of the binding site elements for this
enhancer were knocked out in chicken and mouse using site directed mutagenesis. When these binding sites were
knocked out, there was reduced Hoxa?2 expression in rhombomere 4, demonstrating that these binding sites were
necessary for the function of the enhancer. Based on this study, we hypothesized that the modification and reduction
of this enhancer element in syngnathid fish would result in reduced expression of #oxa2b in rhombomere 4.

We examined the expression of hoxa2a and hoxa2b over development in the Gulf pipefish. We found that
hoxa2b was expressed in the hindbrain and in the tailbud during development. At three days post fertilization,
hoxa2b was expressed in thombomere 3 and in the tailbud (Figure 5a). At four days post fertilization, hoxa2b was
expressed in rhombomeres 3, 4, and 5, in the pharyngeal arch 2, and in the tailbud. There is less expression of
hoxa2b in thombomere 4 relative to rhombomeres 3 and 5 (Figures 5b—d). At five days post fertilization, hoxa2b is
expressed in rhombomeres 3, 4, and 5 and in the tailbud (Figures Se and 5f). We found that soxa2a was expressed in
the hindbrain during development. At three, four, and five days post fertilization, soxa2a was expressed in
rhombomeres 2, 3, and 4 and pharyngeal arch 2 (Figures 5Sm—p). Expression of hoxa2b appears to be reduced in
rhombomere 4 relative to neighboring rhombomeres 3 and 5 in Gulf pipefish. This relative reduction in expression

of hoxa2b in thombomere 4 aligns with previous functional tests (Tumpel et al. 2007).

DiSCUSSION
Significant sequence divergence of the hoxa2bh R4 enhancer is a synapomorphy of syngnathid fish

Slight natural variants of this #oxa2b enhancer element has been previously reported in Tumpel et al. 2006,
Tumpel et al. 2007 and Parker et al. 2014, but variation in this enhancer element was limited to slight modifications
to the inter-elemental space between the critical Pbx/Hox and Prep/Meis bind sites and a small degree of base pair
changes. Amniotes have very conserved motifs for PH1-3, with more various in these binding sites present in fish.
The Prep/Meis site has stayed perfectly conserved in vertebrates examined, with no known variation (Tumpel et al.
2007). Complete loss of the Prep/Meis binding site, reduction in spacing between the binding sites, and the sequence
changes to the Pbx/Hox sites have never been reported until now as we show specifically for syngnathid fish.

Syngnathid fish all share a much more modified rhombomere 4 hoxa2b enhancer element. We find that the
Pbx/Hox binding element sequence motifs and spacing between the binding elements have been modified for this
enhancer. One Prep/Meis binding motif has been lost. One of the Pbx/Hox binding motifs is partially lost. The
robust ghost pipefish, the immediate outgroup to the teleost family Syngnathidae, has all the expected binding sites
for this enhancer element, which means that the total loss of the Prep/Meis binding site must have occurred after
robust ghost pipefish split from Syngnathidae. Interestingly, the length of the spacing of the binding sites in the
robust ghost pipefish falls between the typical vertebrate spacing lengths (with the exception of the space between
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PH2 and PH3) and the reduced spacing length found in the examined syngnathid fish (Figure 6).

Sequence divergence of the hoxa2b R4 enhancer affects expression in a predictable fashion
Despite the significant sequence divergence, it is possible that functionality of the regulatory elements is
maintained. To address this question, we examined expression of the #oxa2b gene in rhombomere 4 and found that

it is lower relative to the surrounding rhombomeres. Fhis-change-in-expression-is-consistent-with-the less-of the

ement-having functional-effe hrough-changes-to-erantal neural-erest-eells: Other studies have reported changes

to regulatory elements that have resulted in interesting phenotypic modifications to body plans (reviewed in (Carroll
2008; Gehrke and Shubin 2016; Rebeiz and Tsiantis 2017; Wray 2007)). Some examples include the pitx/
regulatory mutations influencing the reduction of pelvic fin structure in stickleback fish (Chan et al. 2010), the
inactivation of a 7bx4 enhancer likely contributing to the evolution of limblessness in snakes (Infante et al. 2015),
and regulatory mutations in ovo/svb affecting trichomes in Drosophila larvae (Stern and Frankel 2013). This study
adds to the increasing evidence to that noncoding changes of deeply conserved ‘master regulatory genes’ are linked
to body plan changes.

Hoxa? has been previously described as a “master regulator of craniofacial programs and jaw formations”
(McEllin et al. 2016). Mouse, zebrafish and Nile tilapia hoxa2 paralog mutants have homeotic mutation phenotypes
that involve pharyngeal arch 2 cranial elements developing into pharyngeal arch 1 cranial elements (Gendron-
Maguire et al. 1993; Hunter and Prince 2002; Le Pabic et al. 2010; Rijli et al. 1993; Santagati et al. 2005). Although
the requirement of hoxa2 for proper pharyngeal arch 2 derivative development is well demonstrated, the mechanism
is less understood. In addition, multiple perturbation studies have demonstrated that Hox genes and hindbrain

segmentation play important roles in neural crest cell specification, migration and differentiation. Fhis-ispessibly

Specific rhombomeres have different contributions to streams of cranial neural crest cells. Rhombomere 4
contributes to the stream of cranial neural crest cells that populate pharyngeal arch 2 and these neural crest cells
continue to express hoxa?2 as they migrate to pharyngeal arch 2. Hoxa?2 can repress components of the ossification
pathway like sox9, phx1, runx2 in pharyngeal arch 2 in neural crest cells. Intriguingly, syngnathids have numerous
modifications to their skulls, which include pharyngeal arch 1 derived Meckel’s cartilage, quadrate and
metapterygoid, and pharyngeal arch 2 derived preopercular, opercular, and symplectic bones (Brown 2010; Kimmel

et al. 2017; Leysen et al. 2010).

Potentially, the sequence divergence of the hoxa2b enhancer element is tied to the highly modified skull in

syngnathid fish, but more functional work will need to be done with this enhancer for rhombomere 4. Previous
functional studies have demonstrated different roles, with various levels of redundancy, between Hox paralog group
2 genes in teleost (Hunter and Prince 2002; Le Pabic et al. 2010). Future studies exploring the functional roles
within the three Hox paralog group 2 genes (hoxa2a, hoxa2b, and hoxb2a) will need to be done to further understand
the functional consequences of the unique change in this enhancer in syngnathid fish.

In addition to bones, rhombomere 4 is important for nerve cell and Mauthner cell development.
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Intriguingly, syngnathids have reportedly lost their Mauthner cells (Benedetti et al. 1991). Hoxa?2 -/- mouse mutants
have been described to have an altered rhombomere 2 and 3 motor axons, which suggests that changes in expression
in hoxa2b in thombomere 4 could affect the alar plate of rhombomere 4 (Gavalas et al. 1997). Altheush, Mauthner

sl depiaibeor e e baral s lee neibealne slale s Blebeanls e s meninn b copacee s Although we

cannot infer direct causation of the extreme sequence changes in this regulatory element of zoxa2b and the highly

derived craniofacial morphologies of syngnathids, the possible connections are intriguing and beg further study.

CONCLUSIONS

Making use of the increasing number of available de novo genome assemblies of highly derived animals
like syngnathid fish allows us to take advantage of natural evolutionary developmental models. Creatures like
syngnathid fish can provide insight into how biodiversity evolved. In this study, we asked how a hoxa2b enhancer is
modified in syngnathid fish and infer possible downstream morphological consequences to the sequence divergence
of this enhancer element. We described how this element has been modified in syngnathid fish and the expression of
the hoxa2b that it regulates during syngnathid development. We find that the binding element sequence motifs and
spacing between the binding elements have been modified for this enhancer. One binding motif has been lost and a
second binding site has been partially lost. Subsequently, we show expression of this gene in rhombomere 4 is lower
relative to the surrounding rhombomeres, reflecting previously published functional tests for this enhancer, and this
change in expression is consistent with causing effects on the cranial neural crest. The possible connections between
divergence of regulation of highly conserved developmental genes and evolutionary are fascinating, but of course
subsequent studies will be necessary to fully challenge these causative hypotheses. Studying the genetic basis of
morphological divergence in organisms with greatly derived morphologies provides an opportunity to explore the
ways that conserved genetic pathways can be altered and how genetic changes can lead to the evolution of derived
traits. Our data support the hypothesis that natural mutations can occur in these deeply conserved pathways in ways

potentially related to phenotypic diversity.

FIGURE AND TABLE LEGENDS

Figure 1: The Syngnathidae family contain morphologically diverse fish encompassing pipefish, seahorses,
seadragons and pipehorses. Illustrations depict representative species: a) dwarf seahorse (Hippocampus zostrae),
b) tiger tail seahorse (Hippocampus comes), ¢) lined seahorse (Hippocampus erectus), d) Gulf pipefish (Syngnathus
scovelli), e) leafy seadragon (Phycodurus eques), ) weedy seadragon (Phyllopteryx taeniolatus), g) messmate
pipefish (Corythoichthys haematopterus), h) sculptured pipefish (Choeroichthys sculptus), 1) bluestripe pipefish
(Doryrhamphus excisus), j) robust ghost pipefish (Solenostomus cyanopterus). Syngnathidae is divided into two
subfamilies—the tail brooding Syngnathinae and the trunk brooding Nerophinae. Seadragon clade highlighted in
pink, seahorse clade in blue, with black indicating pipefish and pipehorses. Clades sampled in this study are
highlighted with blue boxes. Cladogram based on molecular phylogeny published by Hamilton et al. 2017.
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Figure 2: A conserved non-coding element is not detectable in the pipefish HoxA4b cluster. a) One CNE present
in other teleost fish and mammals is missing from the intron of #oxa2b in the Gulf pipefish, tiger tail seahorse and
lined seahorse assemblies (red arrows). b) Syngnathid fish are not missing CNEs from the intron of hoxa2a in the
Gulf pipefish, tiger tail seahorse and lined seahorse assemblies. Exons are highlighted in blue, CNEs in pink. The
reference, Gac, is threespine stickleback; Tru, fugu; Ola, medaka; Tor, Pacific bluefin tuna; Heo, tiger tail seahorse;
Her, lined seahorse; Ssc, Gulf pipefish; Bpe, blue-spotted mudskipper; Gmo, cod; Dre, zebrafish; Loc, spotted gar;

Mmu, mouse; Hsa, human. Red arrows indicate missing CNE in syngnathid fish.

Figure 3: Rhombomeric regulatory modules in s#oxa2. Pink boxes represent the Pbx/Hox binding sites and the

blue box represents the Prep/Meis binding site. The gray boxes represent the exons.

Figure 4: Sequence alignment of 70xa2 rhombomere 4 enhancer across Vertebrata. Shown are the sequence
alignments around the four Pbx/Hox and one Prep/Meis binding sites (red boxes) for the r4 hoxa2 enhancer. The
hoxa2 sequence was used for Australian ghostshark, coelacanth, anole, chicken, tamar wallaby, human, mouse, and
spotted gar. The hoxa2b sequence was used for the rest of the included taxa. a) alignments surrounding the
Pbx/Hox4 binding site. This binding site is upstream to the other binding sites and is located in the first exon of
hoxa2/hoxa2b. b) alignments surrounding the Pbx/Hox1, Prep/Meis and Pbx/Hox2 binding sites located in the intron
of hoxa2/hoxa2b. c) is an immediate continuation of the alignment starting in b) and includes the Pbx/Hox3 binding
site alignment. It is also located within the hoxa2/hoxa2b intron. Blue boxes highlight key areas of sequence across

different subsets of the taxa.

Figure 5: In situ expression of hoxa2a and hoxa2b in Gulf pipefish. Images a—f show expression of hoxa2b in
Gulf pipefish embryos. Images g—1 show expression of #oxa2b in Gulf pipefish embryos co-stained for krox20a.
Images m—p show expression of hoxa2a in Gulf pipefish embryos. Images q—t show expression of Zoxa2a in Gulf
pipefish embryos co-stained for krox20a. a) hoxa2b 3dpf lateral; b) hoxa2b 4dpf dorsal; ¢) hoxa2b 4dpf right lateral;
d) hoxa2b 4dpf tailbud; e) hoxa2b ~5dpf left lateral; f) hoxa2b ~5dpf full embryo lateral; g) hoxa2b with krox20a
3dpf lateral; h) hoxa2b with krox20a 4dpf dorsal; 1) hoxa2b with krox20a 4dpf right lateral; j) hoxa2b with krox20a
4dpf tailbud; k) hoxa2b with krox20a ~5dpf left lateral; 1) hoxa2b with krox20a ~5dpf dorsal; m) hoxa2a 3dpf
lateral; n) hoxa2a 4dpf dorsal; 0) hoxa2a ~5dpf left lateral; p) hoxa2a ~5dpf dorsal; q) hoxa2a with krox20a 3dpf
lateral; r) hoxa2a with krox20a 4dpf dorsal; s) hoxa2a with krox20a ~5dpf left lateral; t) hoxa2a with krox20a ~5dpf
dorsal. Krox20a marks rhombomeres 3 and 5. R3, Rhombomere 3; R5, Rhombomere 5; PA2, Pharyngeal Arch 2.

Figure 6: Schematic of rhombomeric regulatory modules in #oxa2b in Syngnathid. a) binding sites present in
other teleost fish. b) binding sites in syngnathid fish. Dashed boxes indicate site with a high amount of sequence
change. c) binding sites in the robust ghost pipefish. d) Cladogram shows evolutionary relationships between
vertebrates included in the CNE analysis. 1 vertebrate CNE was uniquely, significantly diverged in the syngnathid
fish.
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Table 1: Degenerate primer pairs used on syngnathid species for hoxa2b.

Table 2: Binding site sequences for soxa2 enhancer element. Purple columns show Pbx/Hox binding sites.
Pbx/Hox4 is found in exon 1 of hoxa2 genes while the other Pbx/Hox are located in the intron. Red letters indicate

base pair changes that deviate from the consensus.

Table 3: Binding site spacing for hoxa2 enhancer element. PH4 = Pbx/Hox4, PH1 = Pbx/Hox1, PH2 =
Pbx/Hox2, PH3 = Pbx/Hox3, and PM = Prep/Meis binding sites. Intron length for soxa?2 or hoxa2b genes is

recorded in last column.

Supplemental Figure 1: Evolution of Hox complex. a) Evolutionary timing of Hox complex duplications are
denoted on the animal phylogeny based on (Carroll et al. 2013), with updates from (Pascual-Anaya et al. 2018; Ravi
et al. 2009). Dashed arrow indicates current uncertainty where the second vertebrate Hox cluster duplication
occurred relative to agnathans. b) A cartoon of the previously reported Hox clusters in Gulf pipefish, lined seahorse
and tiger tail seahorse with boxes representing genes and circles representing microRNAs arranged along
chromosome segments oriented left to right 5’ to 3’. The hollow box represents the hoxa7a pseudogene as described

in Small et al. 2016.

Supplemental Figure 2: VISTA plots for the HoxB clusters with threespine stickleback HoxBa set as
reference sequence. Exons are highlighted in blue, CNEs in pink, microRNAs are in the blue boxes. Shuffle
LAGAN alignment was used with gray lines indicate stretches of continuous sequence. The reference, Gac, is the
threespine stickleback; Tru, fugu; Ola, medaka; Tor, tuna; Ssc, pipefish; Hco, tiger tail seahorse; Her, lined
seahorse; Bpe, mudskipper; Gmo, cod; Dre, zebrafish; Loc, spotted gar; Mmu, mouse; Hsa, human. Syngnathid

specific peak losses are in red boxes.

Supplemental Figure 3: VISTA plots for the HoxB clusters with threespine stickleback HoxBb set as
reference sequence. Exons are highlighted in blue, CNEs in pink, microRNAs are in the blue boxes. Shuffle
LAGAN alignment was used with gray lines indicate stretches of continuous sequence. The reference, Gac, is the
threespine stickleback; Tru, fugu; Ola, medaka; Tor, tuna; Ssc, pipefish; Heo, tiger tail seahorse; Her, lined
seahorse; Bpe, mudskipper; Gmo, cod; Dre, zebrafish; Loc, spotted gar; Mmu, mouse; Hsa, human. Syngnathid

specific peak losses are in red boxes.

Supplemental Figure 4: VISTA plots for the HoxC clusters. with-threespinesticlkleback HoxCasetas
reference-sequenee: Exons are highlighted in blue, CNEs in pink. FAGAN-alignment-wasused—Thereferenee;

Gagc, is the threespine stickleback; Tru, fugu; Ola, medaka; Tor, tuna; Ssc, pipefish; Hco, tiger tail seahorse; Her,
lined seahorse; Bpe, mudskipper; Gmo, cod; Dre, zebrafish; Loc, spotted gar; Mmu, mouse; Hsa, human.
Syngnathid specific peak losses are in red boxes. a) Gac is set as the reference with Shuffle-LAGAN alignment
used. b) Ola is set as the reference with Shuffle-LAGAN alignment used. c¢) Tru is set as the reference with Shuffle-
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LAGAN alignment used. d) Gac is set as the reference with LAGAN alignment used. e) Ola is set as the reference
with LAGAN alignment used. f) Tru is set as the reference with LAGAN alignment used.

Supplemental Figure 5: VISTA plots for the HoxC clusters. with-threespinesticlkleback HoxCasetas
referenee-sequenee: Exons are highlighted in blue, CNEs in pink. EAGAN-alignment-wasused—Thereferenee;

Gagc, is the threespine stickleback; Tru, fugu; Ola, medaka; Tor, tuna; Ssc, pipefish; Hco, tiger tail seahorse; Her,
lined seahorse; Bpe, mudskipper; Gmo, cod; Dre, zebrafish; Loc, spotted gar; Mmu, mouse; Hsa, human.
Syngnathid specific peak losses are in red boxes. a) Gac is set as the reference with Shuffle-LAGAN alignment
used. b) Ola is set as the reference with Shuffle-LAGAN alignment used. c¢) Tru is set as the reference with Shuffle-

LAGAN alignment used. d) Gac is set as the reference with LAGAN alignment used. e) Ola is set as the reference

with LAGAN alignment used. f) Tru is set as the reference with LAGAN alignment used.

Supplemental Figure 6: A conserved non-coding element is not detectable in the pipefish HoxA4b cluster with
different species set as the reference and mVISTA alignment algorithms. Exons are highlighted in blue, CNEs
in pink. Gac, is the threespine stickleback HoxAb sequence; Tru, fugu HoxAb sequence; Ola, medaka HoxAb
sequence; Tor, tuna HoxAb sequence; Ssc, pipefish HoxAb sequence; Hco, tiger tail seahorse Hox4b sequence; Her,
lined seahorse HoxAb sequence; Bpe, mudskipper HoxAb sequence; Gmo, cod HoxAb sequence; Dre, zebrafish
HoxAb sequence; Loc, spotted gar HoxA sequence; Mmu, mouse HoxA sequence; Hsa, human HoxA sequence. Red
arrows indicate missing CNE in syngnathid fish. a) Threespine stickleback (gac) is set as the reference with LAGAN
alignment used. b) Fugu (tru) is set as the reference with LAGAN alignment used. ¢) Medaka (ola) is set as the
reference with LAGAN alignment used. d) Fugu (tru) is set as the reference with Shuffle-LAGAN alignment used.
e) Medaka (ola) is set as the reference with Shuffle-LAGAN alignment used.
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