A Flexible, Parallel, Adaptive Geometric Multigrid Method
for FEM

THOMAS C. CLEVENGER and TIMO HEISTER, Clemson University, USA
GUIDO KANSCHAT, Heidelberg University, DE
MARTIN KRONBICHLER, Technical University of Munich, DE

We present the design and implementation details of a geometric multigrid method on adaptively refined
meshes for massively parallel computations. The method uses local smoothing on the refined part of the
mesh. Partitioning is achieved by using a space filling curve for the leaf mesh and distributing ancestors
in the hierarchy based on the leaves. We present a model of the efficiency of mesh hierarchy distribution
and compare its predictions to runtime measurements. The algorithm is implemented as part of the DEAL.II
finite-element library and as such available to the public.

CCS Concepts: » Mathematics of computing — Solvers; Mathematical software performance; - Com-
puting methodologies — Massively parallel algorithms;

Additional Key Words and Phrases: Multigrid, message passing, finite-element methods

ACM Reference format:

Thomas C. Clevenger, Timo Heister, Guido Kanschat, and Martin Kronbichler. 2020. A Flexible, Parallel, Adap-
tive Geometric Multigrid Method for FEM. ACM Trans. Math. Softw. 47, 1, Article 7 (December 2020), 27 pages.
https://doi.org/10.1145/3425193

Thomas C. Clevenger and Timo Heister were partially supported by NSF Award No. OAC-2015848 and by the Computa-
tional Infrastructure in Geodynamics initiative (CIG), through the NSF under Awards No. EAR-0949446 and No. EAR-
1550901 and The University of California-Davis. Timo Heister was also partially supported by NSF Award No. DMS-
2028346, EAR-1925575, and by Technical Data Analysis, Inc. through U.S. Navy SBIR No. N68335-18-C-0011. The work
of Guido Kanschat and Martin Kronbichler was supported by the German Research Foundation (DFG) via the project
“High-order discontinuous Galerkin for the exa-scale” (ExaDG) within the priority program 1648 “Software for Exascale
Computing” (SPPEXA), Grant Agreements No. KA 1304/2-1 and No. KR 4661/2-1. Furthermore, the support by the state
of Baden-Wiirttemberg through bwHPC and the DFG through Grant No. INST 35/1134-1 FUGG are acknowledged. The
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) funded this project by providing computing time on the GCS
Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.Irz.de) through Project No. pr83te. This work used the
Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation
Grant No. ACI-1548562.

Authors’ addresses: T. C. Clevenger and T. Heister, Mathematical and Statistical Sciences, O-110 Martin Hall, Clemson
University, Clemson, SC 29634-0975, USA; emails: clevenger.conrad@gmail.com, heister@clemson.edu; G. Kanschat, In-
terdisciplinary Center for Scientific Computing (IWR), Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Ger-
many; email: kanschat@uni-heidelberg.de; M. Kronbichler, Institute for Computational Mechanics, Technical University
of Munich, Boltzmannstr. 15, 85748 Garching b. Miinchen, Germany; email: kronbichler@Inm.mw.tum.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0098-3500/2020/12-ART7 $15.00

https://doi.org/10.1145/3425193

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7

7:2 T. C. Clevenger et al.

1 INTRODUCTION

Geometric multigrid methods are known to be solvers for elliptic partial differential equations
with optimal complexity in the number of total variables [22, 31], but optimal performance in a
massively parallel environment depends on more than complexity alone. Sufficiently many con-
current operations must allow utilization of a sufficiently large part of the system, and it is not
clear a priori if multigrid methods with their hierarchy of coarse meshes and synchronization due
to grid transfer will be efficient on such systems. In this article, we present algorithms for such a
method and demonstrate its feasibility in experiments.

Geometric multigrid methods for adaptive meshes and their implementation on parallel com-
puters have been studied for almost four decades, for instance by References [13, 15, 51] and others.
A breakthrough was obtained in the late 1990s by the use of space filling curves (see Reference [52]
and literature cited therein), which allow the partitioning of a hierarchical mesh in almost no time.
Thus, load balancing was reduced from an np-hard problem to a negligible task. Such methods
were implemented for instance in the software libraries p4est [25], DEAL.II [11], DUNE [16], and
Peano [49, 50].

Several different kinds of adaptive multigrid methods can be distinguished from the types of
meshes and level spaces. Meshes can either be conforming or nonconforming. Conforming meshes
are generated by bisection, or by refinement into 2¢ children in d dimensions dividing all edges
and subsequent closure (red-green refinement). These methods are most commonly used with
simplicial meshes, and typically require mixed topologies otherwise. The alternative are noncon-
forming methods, most prominently the one-irregular meshes introduced by Bank et al. [14].
Here, the difference in refinement between two cells sharing a common edge may not exceed
one level. This constraint is not necessary and there have been codes that allow arbitrarily dif-
ferent refinement levels of neighbors (see Reference [8] and references therein). It nevertheless
simplifies the code considerably in particular in view of modern architectures. This method has
been implemented for simplicial meshes as well as meshes based on (deformed) hypercubes. Since
the meshes are nonconforming, additional care has to be taken to ensure conformity of associ-
ated finite-element spaces. This is achieved by “elimination of hanging nodes,” resulting in al-
gebraic constraints on the possible finite-element functions on the finer cell; see, for instance,
Reference [51].

After a locally refined mesh has been constructed, typically in an adaptive algorithm, and its
finite-element space has been properly defined with or without “hanging nodes,” the resulting
mesh has cells on different levels. Thus, using a multigrid algorithm employing smoothing op-
erations on all cells on “level € or less” is not of optimal complexity on arbitrary meshes. Two
remedies have been proposed: local smoothing [2, 23, 34, 35] and global coarsening [19, 44, 46].
We apply the former approach in this work. While optimal parallel work balance is more of a
challenge with local smoothing, there are a few potential advantages over global coarsening that
justify the investigation in this article. First, the computational complexity for the former is slightly
lower and optimal on all meshes, while there are (extreme) examples for suboptimal complexity
of global coarsening. Second, the smoothing operation is always run on meshes without hanging
nodes; while this is not an issue for point smoothers like the Jacobi method, it facilitates block
smoothers, in particular, patch smoothers as in References [7, 36]. Finally, implementation on vec-
torizing and multicore architectures is fairly straight-forward and does not require special care at
hanging nodes.

The hardware properties of state-of-the-art supercomputers have evolved most rapidly in terms
of the node-level performance in the last decade, whereas network topologies across the nodes
and node numbers have been relatively steady with a thousand to ten thousand nodes on the

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:3

top machines. For these reasons, algorithmic components and data structures that have low com-
munication requirements are essential to balance inter-node latencies with increasing intra-node
performance, which can rely on hybrid parallelism, matrix-free algorithms to relax the memory
bandwidth requirements [17, 18, 40, 42], as well as wide vectorization or offloading to GPUs; see,
e.g., Reference [41] and references therein. These node-level optimizations provide fast matrix-
vector products for use in smoothers and level transfer, including nearest-neighbor communica-
tion in the network. The main focus of the present work is on the algorithmic framework of local
smoothing multigrid targeting the inter-node case of large-scale parallel computations with MPI
on meshes with adaptive refinement. The components are flexible and allow for an arbitrary el-
ement degree, various conforming or non-conforming elements, as well as systems of equations,
extending previous work on massively parallel multigrid [3, 27, 43, 45, 47]. Our contribution is
integrated into the pEAL.II finite-element library and available as open-source software [4, 5].

Our approach shown here can be summarized as a geometric multigrid method on adaptively
refined meshes. Each V-cycle is built from smoother, transfer, and coarse solver operators that are
equivalent to the serial method, while the work and data structures are distributed in parallel. In
practice, it is common to use Krylov methods, like conjugate gradient, and perform a multigrid
cycle as a preconditioner instead of using multigrid as the solver. This is the approach we use in
the numerical examples.

The remainder of this work is structured as follows. In Section 2, we present the geometric
multigrid algorithm based on local smoothing. The components for parallel execution in terms of
the mesh infrastructure, supported by an efficiency analysis of one particular partitioning strategy,
are given in Section 3. Performance results are shown in Section 4, and the work is concluded in
Section 5.

2 GEOMETRIC MULTIGRID WITH LOCAL SMOOTHING
2.1 Bilinear forms and Finite-element Discretization

The basis for our method is a partial differential equation in weak form, abstractly written as: find
u € V such that

a(u,v) = f(v) YueV. (1)

Here, V is a suitable solution space and f € V*. For example, the Poisson equation with homoge-
neous Dirichlet boundary condition on the domain Q ¢ R¢ and right-hand side f € L*(Q) trans-
lates to V = H}(Q) and the weak equation

a(u,v)ELVu-Vvdszfvdef(v). (2)

Our second example are the Lamé-Navier equations of linear elasticity in space dimension d,
where V = H, (Q; RY). With the strain operator e(u) = %(Vu +VuT), we obtain

a(u,v) = L[Zue(u) :e(v)+AV-u V- v] dx = Lf -vdx = f(v). (3)

These weak forms are discretized by the finite-element method. To this end, we introduce a
mesh Ty covering the domain Q. This article describes functionality of the library DeAL.IL see
Reference [4], where the mesh cells T are quadrilaterals and hexahedra in two and three space
dimensions, respectively. We use mapped elements and the mappings from the reference cell to
the actual grid cell is not restricted to d-linear functions or polynomials, but can be any function.
On each mesh cell, we define a local shape function space, typically by mapping polynomials
defined by a set of interpolation points from the reference cell [0, 1]¢. Using degrees of freedom,

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:4 T. C. Clevenger et al.

we establish continuity between cells and define a basis of the finite-element space V, € V on the
mesh Tp. In the conforming case, the finite-element discretization of Equation (1) becomes: find
ur, € Vi such that

a(uL,vL) = f(’UL) Yor € VL. (4)

We will not distinguish between finite-element functions uy € Vi and their coefficient vectors
uy € R™ with n = dimVy, since the meaning will be clear from context. The basis used for this
identification consists of standard nodal finite-element functions with local support.

Discontinuous Galerkin (DG) finite-element methods are an alternative to conforming methods.
Starting with the same mesh, we introduce finite-element spaces Vi, which are no longer conform-
ing to the space V, ie., Vi ¢ V, in particular spaces with no continuity requirements. Therefore,
the straight-forward discretization using Equation (4) is inconsistent and typically not converging
to the continuous solution. This is remedied by introducing so-called flux terms on the interfaces,
which guarantee consistency and stability of the method. Accordingly, the bilinear form on T},
depends on the mesh itself, and we write: find u; € Vi such that

ar(ug,vr) = fr(vr) Yor € V1. (5)

As an example, we mention the interior-penalty method [6] for the Laplacian with its multilevel
analysis in Reference [28] and the bilinear form

ar(u,v) = Z fVu-Vvdx+ Z f[ohuv—c')nuv—u()nv ds
T F

TeTyL FeF}
v }:‘fiohmmﬁvﬂ—ZHVuHanH—2HunHHVvH ds. (0
FeF} £
The right-hand side with Dirichlet boundary data uP is

fiey= Y [foare 3 [

TeTy FeF}

opuPov — uPa,v| ds. (7)

Here, Fi are the (d — 1)-dimensional interfaces between mesh cells of Ty and Ff are the facets of
cells on the boundary of Q. Every face F € Fi has two adjacent cells, say T* and T~. We call the
restriction of the finite-element functions u and v to these cells u™, u~, v*, and v~, respectively.
With these definitions, we have the jump and mean value operators,
_ ut +u”
[l =t -, () = ®)

Finally, oy, is an appropriately chosen penalty parameter inversely proportional to the diameter of
the cells attached to the face F.

2.2 Geometric Multigrid

The geometric multigrid method employs a hierarchy of meshes, which we generate as follows.
Starting from the coarse mesh Ty, we generate the mesh Ty.1 from T, by selecting a subset or
all of its cells and refining these isotropically by bisecting each edge, generating 2¢ children each.
This results in a sequence,

TocTC---c Ty, 9)
where the symbol “C” denotes nested meshes, that is, every cell of a mesh on the left of this symbol

is the union of one or more cells of the mesh on the right.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:5

As usual, we define finite-element spaces Vz on these meshes by defining local shape function
spaces on each cell T € T, and concatenating these spaces, identifying shape functions on adjacent
cells that are associated to joint degrees of freedom. For most finite elements, and these are the
ones we consider here, the shape functions on a cell T can be represented as linear combinations
of the shape functions on its children in the mesh hierarchy. Therefore, the mesh hierarchy above
induces a sequence of finite-element spaces,

Vwcvyc---CVg. (10)

We discretize the weak formulation Equation (1) on each mesh by a bilinear form a,(.,.) and
the problem: find uy € Vg, such that

ae(ue,ve) = fe(ve) Voue € V. (11)

For conforming finite-element methods, the bilinear forms and the right-hand side are simply the
restrictions of a(.,.) and f(.) to the space V;. For DG and other stabilized schemes, they contain
additional terms for consistency and stability. Associated with the bilinear form a¢(., .) is a linear
operator Ag : Vp — Vg defined by

(Acue,ve)y, = ae(ue,ve) Yue,ve € V. (12)

Here, the inner product on Vp is the one used in the conjugate gradient method, typically the
Euclidean norm of the coefficient vector of a function u, € V, with respect to the nodal basis of V¢,
see for instance the discussion of mesh dependent norms in References [21, 24] and their relation to
the inner product of L?(Q). Based on the embeddings in Equation (10), we define the grid transfer
operators

R; Ve = Vpga, v, (13)
Re : Ve — Ve, (Reu, ve)y, = (u,v¢)y,,, Yoe € Ve. (14)

On each mesh level ¢, we employ a smoother S¢(u¢, g¢), which employs the right-hand side g
and the current state u, to compute a result. Examples for such smoothers are relaxation methods
of the form in Algorithm 1. Here, m¢ is the number of smoothing steps and By is the type of
relaxation method, for instance the diagonal for the Jacobi method or the lower triangle for Gauss-
Seidel. Similarly, additive and multiplicative Schwarz methods fit into this concept, but it also
extends to nonlinear methods like conjugate gradients or GMRES.

ALGORITHM 1: The abstract smoother algorithm.
function Se(ue, ge)

fork:=1,...,my
Up «— up+ B{Tl (gg - Agug)
return uy

We are now ready to state the multigrid V-cycle algorithm in Algorithm 2 in abstract form, as it
has been done in numerous publications. In addition to the level transfers and smoothers discussed
before, the recursion of the algorithm requires closure at level 0, denoted as the inverse of Ay. This
is called coarse grid solver, and in an implementation can be a direct solver, since the system is
small, or a basic iterative method like conjugate gradients or GMRES, since the system is well
conditioned.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:6 T. C. Clevenger et al.

supp Vt,s = T? supp VZL = T]g supp Vfl

Fig. 1. Splitting of the mesh Ty and the space Vy into subspaces for local smoothing. Superscript S refers to
the cells and functions strictly on level ¢ (left), used for smoothing. Superscript L is the support of functions
actually defined on lower levels (center), and I is the support of functions for node functionals on the interface
that have support in both subdomains

ALGORITHM 2: The abstract multigrid V-cycle algorithm.
function Veycle (¢, g¢)
if£ >0
Uy < S[(O, gl’)
Uy — up + RZ;chycle(f —1,Rp_1 (ge — Aruy))
usg < Se(uz, ge)
return us
else
return Aal ge

2.3 Level Meshes and Local Smoothing

For uniformly refined meshes, the definition of the level meshes T is trivial. For adaptively refined
meshes, we consider the hierarchy as a tree or a forest (for more than one coarse cell). Each node
of this forest is a cell in the mesh hierarchy. The cells of the coarse mesh Ty are the roots of its
trees. The level of a cell is defined as the distance from its root. The mesh on which we discretize
the differential equation consists of the leaves of this tree (or forest) and is denoted as the leaf mesh
Ty. Since it is obtained by local refinement, it typically consists of cells on different levels up to
level L.

For intermediate levels 0 < £ < L, two different schemes have been devised. First, for global
coarsening, the meshes are constructed from the leaf mesh. The mesh T,_; is obtained by replacing
all cells in T by their immediate parents in the forest. Once a cell of the coarse mesh is reached,
it remains in further level meshes. For more information, we refer to References [19, 46].

Instead, in our definition of the level mesh T, consists of all cells of level £ and of all leaves with
level less than £. With such a definition of T, a fairly coarse leaf cell can be part of many different
level meshes.

To obtain an algorithm with optimal complexity, smoothing for the degrees of freedom of a
given cell should only happen on a single level. This is where local smoothing enters: While we
are running a multigrid method for the whole finite-element space V,, we restrict smoothing only
to the mesh cells that are actually on level £. This splitting is explained in Figure 1. The mesh T¢ is
split into the submesh T f of cells strictly on level £ and T (,L of cells on lower levels than £. For DG

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:7

methods, this immediately results in a splitting V; = VZS e VKL, where the support of each subspace
is its corresponding submesh. The splitting for continuous methods is more complicated, since
there are finite-element basis functions with support straddling the interface and thus in both T ;
and T {{‘. The span of these basis functions is called V!, the space of interface functions.

We now give a short review of the structure of the operators in the multigrid method outlined
in References [34, 35]. Here, the goal is to implement the algebraic equivalent of the original multi-
grid method for the space hierarchy {V;} with operators obeying the subspace splitting. We start
with the observation that conforming methods require the function on the refined side of a re-
finement edge to coincide with the function on the coarse side. This translates into elimination
of degrees of freedom on the refined side such that V; uses degrees of freedom representable on
the coarse mesh T¢ only. The fact that shape functions in V,; have different support from their
counterparts in vg_; is taken care of by the grid transfer operators.

Thus, we can restrict smoothing on level ¢ to V; and can ignore V{,I . Furthermore, in the case of
DG methods, V; = {0}, such that in both cases we can write Vy = st @ V[I @ Vé,L. Our assumptions
on local smoothing translate to

xS gS Sg (xS’gS)
Sell], gI = x! s (15)
L L L

where Sg (x5, ¢%) is now the local smoother on V(;S only. We observe that the embedding operator
RLI maps a function from V_; to itself. Therefore, Ry_; is the identity on V[L. Thus, Ry_; has the
structure

xS

Re_i| x| = R?_lxs + Réflxl +xt. (16)
L
x

Note that the restriction operator involves more than two levels if its range is not in Vé,sfl, be-
cause the other components of V;_; are not stored on this level. Therefore, we simplify the code
considerably if we ensure R‘g_lVgS + Rﬁ,_lV[I C V(;S_l. This can be achieved by an additional mesh
refinement rule: require that there is a complete layer of cells on level £ — 1 surrounding T {:9.
Residuals, however, must be computed correctly on the whole space Vp according to

s s SI SL
r; g5 A, AY A (xS
0 1s ji || 1
re|= gL -Ay A, A, xL . (17)
L LS L1 L) \x
ry 9 A, Af Af

Note that the matrices A‘E,L and Ags are the flux matrices of a DG method on the refinement edge
and thus vanish for conforming methods. Furthermore, we see in the V-cycle algorithm that this
residual is immediately restricted to the coarse space Vp_1. Since the restriction acts as identity on
V[L, we can avoid computing r; and defer it to the lower level. Thus, the matrix AI{; is not needed
in computations at all. The matrix A‘; is used for smoothing on level £. The off-diagonal matrices
correspond to coupling between degrees of freedom on the cells at the interface, and are needed
in addition to A? for a consistent multigrid method.

A major advantage of local smoothing is its fairly simple data structure. The level meshes T 6,5
do not have hanging nodes, such that the results of cell-wise operations can be entered into global
vectors very efficiently without any elimination process. This also simplifies implementation, es-
pecially when considering more involved smoothers such as patch smoothers, that would need

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:8 T. C. Clevenger et al.

to operate on patches of cells on different refinement levels. Furthermore, it is of optimal compu-
tational complexity on any locally refined mesh, while global coarsening may be suboptimal on
some meshes with extreme local refinement; see Reference [34]. Nevertheless, this second aspect
does not seem to have much impact on actual computations.

3 PARALLELIZATION OF GEOMETRIC MULTIGRID

We will now discuss the construction of an efficient and scalable parallel version of the adaptive
multigrid method described in Section 2. We emphasize data and communication structures while
keeping the algorithm mathematically equivalent to the weathered sequential version. Regard-
ing parallelism, we have to consider three levels of parallelization in modern computer architec-
tures, namely, message passing between computer nodes and intra-node parallelization separated
in multicore/multitasking (multiple instruction, multiple data) and vectorization (single instruc-
tion, multiple data). As motivated in the introduction, this article focuses on message passing. The
intra-node parallelization approach employed is shortly discussed in Section 3.2.

A scalable approach requires distributed data structures and scalable algorithms operating on
them including equal partitioning of the work. As demonstrated in the computations in the later
sections of this article, the parallel algorithms described here enable high resolution adaptive com-
putations with billions of unknowns on 100,000+ cores. We concentrate on MPI as the paralleliza-
tion framework, and we refer to a single MPI rank or process as “processor.”

3.1 Parallel Algorithm

Our algorithm is synchronized between applications of residual, smoothing, grid transfer opera-
tors, and coarse grid solvers. Hence, our focus lies in the parallel implementation of these operators.

The abstraction of parallel data structures and algorithms equivalent to the serial version is
well-known. Libraries such as PETSc [9, 10] and Trilinos [33] have provided linear algebra data
structures (vectors, sparse matrices) and algorithms (iterative solvers) with this abstraction for a
long time. Up to a point, this isolates the user (for example, finite-element library implementors)
from having to interface directly with the underlying parallel computing framework. Abstraction
of this kind are of course not perfect, because operations like finite-element assembly need to be
partitioned between the processors. Nevertheless, it enables the design of parallel algorithms on a
higher level, like it is done in DEAL.II; see Reference [11].

The workload is typically distributed by partitioning the cells of the computation using graph-
based partitioners or using space-filling curves (like METIS [38], Zoltan [20], or p4est [25]—the
latter one being used in DEAL.II). This partitioning can be used to distribute cell-based work, like
matrix or residual assembly, and can be used to generate a partitioning of degrees of freedom
that is needed for the row-wise division of linear algebra objects (vectors, matrices). The latter
step requires a rule to decide on the ownership of degrees of freedom on the interface between
processor boundaries of the cells. For the finite-element framework, the main effort is to correctly
assign and communicate ghost cells and ghost indices, while the communication for matrix-vector
products and finite-element assembly of foreign entities only involves neighboring processors and
is typically provided by the linear algebra libraries.

Here, we will follow the same approach for the partitioning of cells and degrees of freedom on
each level of the multigrid hierarchy: After partitioning of all cells strictly on level £ in some way,
we use this to partition the degrees of freedom accordingly. Like above, it is advantageous for large
computations if only part of the mesh that is relevant for the current processor are stored locally.
There are different options for partitioning cells on each multigrid level. We will discuss different
strategies and the approach we take in Section 3.3, but we stress that our implementation is flexible
in this respect.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:9

While knowledge about the whole mesh is not required, we need ghost neighbors on each level,
which can be on different levels in adaptive computations. In our implementation, we decided
to always construct the ghost neighbors as the set of all cells that share at least a vertex with
the local cells and exchange all information about them, even though specific implementations
might require less information (for example, only neighbors across faces for DG). Furthermore,
information about parents/siblings is required for transfer operations. This allows us to compute
and exchange the necessary information about degrees of freedom for smoothing and grid transfer.

To summarize the execution of multigrid in parallel, the following parallel ingredients are
necessary:

e Prolongation and restriction are conceptually a multiplication of distributed vectors with a
rectangular transfer matrix and as such equivalent to the serial transfer. Known algorithms
for sparse matrix-vector products scale well in parallel.

e The smoothers we consider are conceptually a sequence of local operations on individual
degrees of freedom or small subspaces. Additive smoothers (Jacobi, additive Schwarz, etc.)
can be run in parallel on all processors and are still equivalent to the serial method. Se-
quential smoothers (Gauss-Seidel, multiplicative Schwarz, etc.) can of course not be used
immediately.

Other parallelizable smoothers (for example, block Gauss-Seidel variants) may not be
equivalent to their sequential version. Only in this case equivalence to the sequential multi-
grid algorithm is lost, which can lead to an increase in iteration numbers when increasing
the number of processors, albeit they often remain more effective than additive smoothers.

o There are several options for coarse solvers. First, if the problem is reduced to a very small
number of cells and processors, then runtime is negligible and (parallel) direct solvers can be
applied. In other cases, when the coarse mesh still has a large number of degrees of freedom,
switching to algebraic multigrid is an option used in References [46, 47], for example, and
what we use in Section 4.2.

3.2 Matrix-free Implementation

In the previous sections, we have derived the multigrid algorithm in an abstract way based on
linear algebra operators. While these are typically implemented as sparse matrices, the concept
directly translates to matrix-free operator evaluation. These methods often provide considerably
faster evaluation of matrix-vector products than assembled matrices, in particular for higher or-
der finite elements, because the access to memory is significantly reduced [39, 40], which is the
limiting factor in matrix-based implementations. In this work, we consider methods based on sum
factorization techniques on hexahedra, which have a particularly high node-level performance
[42] and are also applicable to GPUs [41]. We note that a fast intra-node performance puts more
emphasis on possible communication bottlenecks.

3.3 Partitioning Strategy for Mesh Hierarchy

When partitioning the cells on each level of the multigrid hierarchy, a balance between several
conflicting goals is necessary:

(1) Minimize communication for transfer operations between multigrid levels.

(2) Fair work balance on each level (same number of cells per processor).

(3) Minimize interface between processor boundaries on each level (minimizes communica-
tion in smoother applications or residual computations).

(4) Minimize required additional storage for the mesh hierarchy if local cells have little over-
lap between levels.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:10 T. C. Clevenger et al.

S
Il
o

Fig. 2. Example partitioning for an adaptive mesh from a single coarse cell with seven leaf cells distributed
between three processors indicated by color and label (red #0, orange #1, light green #2). Ownership of the
level cells is determined by the “first-child rule” (round shapes in the middle). Left: The partitioning of the
leaf mesh with the space-filling z-curve. Middle: Tree representation of the mesh and its partitioning. Right:
Partitioning of the three multigrid layers T;'

Previous work [46] has concentrated mainly on aspect (2) by using an independent partition on
each level. The multigrid method there is based on global coarsening instead of local smoothing,
so each level is an adaptively refined mesh that needs to be partitioned. While satisfying (2), this
ignores (1) and requires duplicate storage, violating (4). Experiments in Reference [46] have shown
excellent scaling despite these deficiencies. Note that (1) is satisfied for meshes refined mostly glob-
ally, but duplicate storage (4) is still required. It is worth pointing out that the storage requirement
reduces by a factor of 8 in each coarsening step in 3d.

In this work, we explore algorithms that ignore (2) and partition the hierarchy based on the
partitioning of the leaf mesh to minimize communication cost and storage requirements (goals (1)
and (4)). This option also represents a straight-forward implementation in terms of local tree data
structures and can be seen as a baseline to more sophisticated setups. We will see that we satisfy
goal (2) for mostly globally refined meshes and that we can quantify the partitioning efficiency
(see Section 3.4).

Note that both approaches behave similarly for uniformly refined meshes, while goals (1) and
(2) are conflicting for an adaptive scheme. Finally, note that (2) is desired when assuming that
levels are passed through sequentially, as the multigrid algorithm suggests, but one could design
a parallel method that does not require synchronization on each level.

In the following, we will partition the multigrid cells by the “first-child rule” as follows: First,
distribute the leaf cells using a space filling curve (we use p4est [25] as described in Reference [11]).
Second, for each cell in the hierarchy, recursively assign the parent of a cell to the owner of the
first child cell. A similar strategy has been used also by the Octor package [48] for the parent-child
relationships.

For an example with seven cells, see Figure 2 that shows the mesh with the space-filling curve
on the left, the tree representing the refinement in the middle, and the cells on each level on the
right. This approach has the following consequences:

(1) The local cells and their parents are already present on each processor and the owner-
ship of parents is known without any communication. This means the partitioning of the
multigrid hierarchy can be done without communication.

(2) No duplicated storage for the mesh is needed as all parent cells are already stored locally

(goal (4)).

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:11

(3) Transfer operations are local and require only a small amount of communication at pro-
cessor boundaries (goal (1)).

(4) Processors drop out automatically on coarser levels, which is desired.

(5) The workload on each level is not distributed equally.

We will discuss the last point and its impact in the next subsection.

3.4 Partitioning Efficiency Model

Our model for the complexity of the partitioned workload, in short parallel complexity, is based
on the assumption that parallelization is completely achieved by MPI ranks and that within each
rank the workload is proportional to the number of cells. Below, we develop a complexity model
based on this assumption, estimating the parallel complexity of our algorithm in terms of mesh
cells per level.

Let Ny be the number of cells on level £ and N¢,, of the subset owned by processor p. Here,
cell refers to all cells in the hierarchy, not only leaf cells belonging to the discretization mesh. We
assume that the workload for each cell is equal, such that Ny ;, is proportional to the total amount
of work a processor has to invest on level €. Obviously, the optimal parallel complexity is

L
W(,ptzé Wo+ Y > Ne, =é Wo+ Y N
4

=1 p
Here, the terms in brackets specify the total work of the multigrid algorithm and the total number
of processors is given by n,. W, is the cost of the coarse grid solver, which may be different than
the cost of a smoother application.

This calculation is based on perfect equidistribution of work and neglects communication over-
head. In particular, it is not achievable if grid transfers are synchronized, as in our implementation.
In this case, we can only distribute the work on each level such that we are bound from below on
each level by

1
Wt’,opt = ’rn_Nf“ s
P

where [n] is the smallest integer greater or equal to n. Therefore, the best achievable work time
with syncing between levels is

L
Vvsync =Wy + Z Wf,opt-
=1

However, with imperfect distribution of work, the limiting effort on each level is

Wp = max Ng,p,
P

and the total parallel complexity W and partitioning efficiency E due to imbalance against a hy-
pothetical optimal partitioning are given by

Wopt

W (18)

L
W=Wo+ > W, E=

£=1
To summarize, the efficiency E quantifies the overhead produced by not having a perfect work
balance on each level of the multigrid hierarchy. The work is modeled as one unit per cell and,
as such, can be used to model the computational cost for grid transfer, smoother application, and

other operations. The efficiency, by definition, accumulates the imbalances on each level.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:12 T. C. Clevenger et al.

We give an example for these estimates for the mesh hierarchy displayed in Figure 2. It consists
of 7 leaf cells obtained by successive refinement of a single coarse cell. The partitioning is done
for three processors. The ownership of the leaf cells is determined by p4est using a space-filling
curve (z-curve, also known as Morton curve, dashed line on the left picture) or depth-first traversal
(from left to right) in the tree representation depicted in the middle. The ownership of cells in the
multigrid hierarchy (round circles in the tree) is determined by copying the leaf ownership and
then applying the “first-child rule” recursively. For example, the parent of the four smallest cells on
level 2 is red (#0), because the first (bottom-left) child also belongs to processor #0 (red). One result
of this partitioning is that processors drop out on coarser levels automatically. Here, processor #1
(green) recuses itself on level 1 and only processor #0 (red) remains on the coarsest level (here a
single cell). The coarsest mesh is not necessarily completely owned by processor #0 if it consists
of more than a single cell.

The optimal parallel complexity is simply the number of all cells in the hierarchy divided by
the number of processors, hence, Wy = g = 3. However, assuming the coarse grid solver has the
same complexity as the work load per cell on higher levels,

1 4 4
Vvsync = WO,opt + Wl,opt + WZ,opt = [5] + [5] + [5] =5.

Comparing to

W= W=1+2+3=6,
4

we obtain E = 1/2 in this example. In other words, our model predicts a slowdown of 100% and
20% compared to Wop; and Wync, respectively. The slowdown with respect to Wyyn is due to the
non-optimal partitioning on level 1, where processor # 0 (red) works on three cells while the other
processors have to wait. An optimal partitioning would only require operating on two cells se-
quentially on that level. Compared to W,pi, we do not have enough cells to keep three processors
busy.

This example suggests that the efficiency of the algorithm depends significantly on the base
of comparison, Wsyne or Wopt. In fact, a closer inspection of the definitions reveals that they only
differ by rounding up the load on each level to the next multiple of n,, a difference that drops
below 1% as soon as we have 100 cells on each processor. Below, we only use W,y when we assess
the efficiency of our mesh hierarchy distribution.

3.5 Experimental Study of the Efficiency of the First-child Rule

Making general conclusions about the partitioning efficiency is difficult as it depends on the num-
ber of processors, the coarse mesh, and the refinement. Instead, we study the efficiency for several
test cases shown in Figure 3. These are obtained by the following construction. All are based on
a coarse mesh consisting of a single cell defined by [—1, 1]%. Finer meshes, where L denotes the
level of the finest cells, are obtained recursively by one of the following selection criteria:

“uniform” global refinement of the coarse mesh L times, obtaining a uniform leaf mesh of
4L cells in two dimensions.
“circle” L times refinement of all mesh cells with at least one vertex inside the circle of radius

% around the origin.
T

“quadrant” L times refinement of all mesh cells in the negative quadrant.

“sine curve” L times refinement of all mesh cells intersected by the curve (plane for 3d)
3 5 2
3 sin (3x - E) + -

“annulus” After L — 3 uniform refinements, add the steps:

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:13

(a) “circle” refinement. Leaf mesh with (b) “quadrant” refinement. Leaf mesh with
finest cells on level 9. finest cells on level 8.

(c) “sine curve” refinement. Leaf mesh (d) “annulus” refinement. Leaf mesh with
with finest cells on level 9. finest cells on level 9.

Fig. 3. Visualization of the different mesh refinement sequences. See text for descriptions of each refinement
algorithm.

(1) Refine all cells whose center lies in the circle (sphere for 3D) of radius 0.55.
(2) Refine all cells in the shell between radius 0.3 and 0.43.
(3) Refine all cells in the shell between radius 0.335 and 0.39.

All these procedures are completed by a closure after each refinement step, ensuring one-
irregularity in the sense that two leaf cells may only differ by one level, if they share a degree
of freedom or a face for conforming methods and for DG methods, respectively. These conditions
are imposed in the DEAL.II library for practical reasons, because they simplify several aspects of
the implementation. They can be relaxed at the price of software complexity.

Figure 4 shows the partitioning efficiency E as defined in Equation (18) for varying processor
count and problem size. For uniformly refined meshes, we observe 100% efficiency (this also holds
in 3d, not shown). This is due to the fact that processor counts are multiples of 2¢, which implies
perfect partitioning on each level. The “quadrant,” “sine curve,” and “annulus” refinement schemes
show roughly the same behavior. Their efficiency drops until it levels off at 60% for the quadrant
and 2D sine curve, 50% for the 3d sine plane, and about 30% for the annulus in two and three
dimensions. This level of efficiency is then maintained over a wide range of processor counts. It
only begins dropping again when the problem size is down to less than 1,000 cells per processor,
especially for the “circle” and “sine curve” refinements. Both are extreme cases with very localized
refinement and these examples have fewer cells compared to many of the other examples. For

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:14 T. C. Clevenger et al.

2D uniform/quadrant/circle refinement Sine curve/plane refinement
0.8 0.8 |- —
m m
> >
Q Q
= =]
[} 2}
ks 0.6 g 0.6 | |
& ® . &
23| 4 23)
ED \\A %D \\x \\
g 0.4 _ £ 0.4 N
=l —6— 16.8M cells, Uniform = NN
5 —w— 4.2M cells, Quadrant E —w— 6.1M cells, 2D Sine N
0.21 —6— 16.8M cells, Quadrant || 0.2 || —#&— 24M cells, 2D Sine B
—#— 5.4M cells, Circle —@— 7.2M cells, 3D Sine plane
—— 21.4M cells, Circle —6— 28M cells, 3D Sine plane
0 | | I I 0 I I I |
16 128 2048 32768 16 128 2048 32768
Number of Processors Number of Processors
2D annulus refinement 3D annulus refinement
1 T T T 1 T T -
—w— 9.5M cells —%— 2.1M cells
—u— 67.6M cells —e— 17.0M cells
o 0.8 - —u— 608.6M cells [] “ 0.8} —w— 457.8M cells [
o —w— 4.3B cells - —w— 5.8B cells
: :
L L
'S 0.6 — i3 0.6 |- —
& S
[<3] s3]
on o0
= g
E 0.4 — .g 0.4 —
k= k=
=] =]
A A
0.2 - 0.2 - —
0 | | | | 0 | | | |
16 256 4096 65536 16 256 4096 65536
Number of Processors Number of Processors

Fig. 4. Partitioning efficiency for various meshes. Dashed lines and orange triangles indicate experiments
with less than 1,000 leaf cells per processor. Top: uniform, circle, quadrant refinement (left) and sine curve
refinement (right). Bottom: annulus refinement in two (left) and three (right) dimensions.

realistic problem sizes (more than 1,000 active cells per processor), their efficiency remains above
50%.

All of this information together suggests that, given a sufficient number of cells per processor,
the imbalance of this distribution is primarily dependent on the type of mesh refinement refine-
ment scheme. The number of processors influences the efficiency only to a certain “leveling off”
point. In all cases, the efficiency stays above 30% compared to the optimal workload. To reach
higher efficiency, re-partitioning and additional communication to processes farther away would
be necessary.

Table 1 gives a level-by-level breakdown of the partition efficiency for the 3D annulus refine-
ment with 4.1M cells on 1,024 processors. Predictably, the efficiency is very low at lower levels
where there are fewer cells, and trends toward 1 for higher levels. It should be noted that the

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:15

Table 1. Workload Imbalance and Communication Ratio Per Level for 3D Annulus Refinement,
4.1M Cells, 1,024 Processors

Partition efficiency Communication ratio
level cells W | Wiyne Wopt E ghost native ratio
0 125 1 1| 0.1221 | 0.12207 513 487 | 0.51300
1 1,000 8 1| 09766 | 0.12207 866 7,134 | 0.10825
2 8,000 64 8 | 7.8125 | 0.12207 2,028 61,972 | 0.03169
3 64,000 506 63 | 62.500 | 0.12352 3,118 508,882 | 0.00609
4 512,000 4,048 500 | 500.00 | 0.12352 3,017 354,743 | 0.00843
5 357,760 3,988 350 | 349.38 | 0.08761 2,635 807,349 | 0.00325
6 809,984 2,316 791 | 791.00 | 0.34154 0| 2,977,280 | 0.00000
7| 2,977,280 4,048 | 2,908 | 2,907.5 | 0.71826 - - -
Total | 4,730,149 || 14,979 | 4,622 | 4,619.3 | 0.30838 || 12,177 | 4,717,847 | 0.00257

For partition efficiency, W, Wsyne, Wopts and [E are defined in Section 3.4. As discussed there, there partition
efficiency [is calculated using Wop instead of Wsyyc. For communication ratio, “ghost” represents the number of
cells that require communication during the transfer from that level and “native” represents the number of cells
that do not require communication.

partition efficiency calculated using Wsync would be very different on lower levels than the value
[E in the table, which uses Wop (this is seen on the smaller example in Section 3.4). However, the
difference in the total efficiency over all levels is only around 0.1% with a value of 0.309 using Wiync
as compared to 0.308 using Wopy.

3.6 Communication

The second factor determining the performance of parallel algorithms, next to load balancing dis-
cussed above, is communication overhead. Communication is not only much slower than computa-
tion at the granularity of individual instructions, it also consumes more energy, because electrical
charges must be transported over fairly long distances. We introduced the first-child rule with
the express purpose to reduce communication overhead and keep it small compared to the local
computations. In this section, we set out to demonstrate that this goal was achieved.

Communication happens in matrix-vector products and in grid transfer operations. Both of them
apply a linear operator to a global discretization vector. The communication overhead in the first
case is reduced by partitioning the leaf mesh into subdomains, such that their surface per volume
ratio is small. Since the surface is of lower dimension, this implies that communication cost tends
to zero as the number of cells on each processor grows to infinity. For weak scaling, this implies
that it remains small compared to local operations, as long as there are sufficiently many cells on
each processor. Such a partitioning is efficiently achieved by a space filling curve, in our case, the
z-curve. Enumerating the cells along such a curve implies that cells with close indices will typically
be close geometrically. This approach has been a standard for many years now.

The first child rule for partitioning lower levels achieves a similar goal for grid transfer oper-
ations. If most children are on the same processor as their parents, then the amount of commu-
nicated data is also much lower than the total amount of data processed. In Figure 5, we show
that the number of “ghost children” is indeed very small compared to the total number of children.
And while these numbers are rising with the number of processors, in the worst case observed less
than 1% of the cells require communication. Additionally, the total communication volume seems
to grow more slowly than the number of processors involved in the communication.

Finally, Table 1 gives a level-by-level breakdown of the communication ratio for the 3D an-
nulus refinement with 4.1M cells on 1,024 processors. Each of the higher levels require the

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:16 T. C. Clevenger et al.
2D uniform/quadrant/circle refinement Sine curve/plane refinement
10_1 T I I] 10—1 I I [
1072 N
o 107 1 e
E= 5 1073 n
5] 5]
~ ~
g g -4
% 10,5 . % 10
= g
= - g
g —0— 16.8M cells, Uniform é‘ 107° 1
g 1077 —w— 4.2M cells, Quadrant g - —#— 6.1M cells, 2D Sine
o —6— 16.8M cells, Quadrant o 1076 —&— 24M cells, 2D Sine H
—#— 5.4M cells, Circle —@— 7.2M cells, 3D Sine plane
10-9 —w— 21.4M cells, Circle || 1077 —6— 28M cells, 3D Sine plane |
- ofp) --- o(p)
| | I T 10—8 | T I I
16 128 2048 32768 16 128 2048 32768
Number of Processors Number of Processors
2D annulus refinement 3D annulus refinement
I I I I I
1072 . 1072 =
o °
E= U 1 =
& g 1073 .
g g
g 12
=1 =) —4 |
=} =] 10
g £
-5 -
o :
© —%— 9.5M cells © —%— 2.1M cells
» —w— 67.6Mcells || 1075 —e— 17.0M cells |]
10 —w— 270.5M cells —#— 135.6M cells
--- O --- Olp)
10—7 | | I T 10—6 | | I I
16 256 4096 65536 16 256 4096 65536

Number of Processors

Number of Processors

Fig. 5. Communication ratio (communicated number of children over total number) in level transfer for
different test problems. The black dashed line denotes linear growth with number of processes, O(p). Lines
turn into dashed lines with orange triangles for data points with less than 1,000 leaf cells per processor. The
number of cells to communicate grows more slowly than linear and stays below 1%.

communication of about 2,000-3,000 cell during the transfer, with the exception of the highest
level, which requires no communication, since the p4est distribution used for the active level
requires that all groups of terminal children are owned by the same processor. For refinement
schemes where the majority of active cells are of the highest refinement level, this will result in
low communication ratios, as is seen with global refinement in Figure 5.

4 PERFORMANCE RESULTS

The algorithm described in the previous sections has been implemented in the pEAL.II finite-
element library [4, 12]. The partitioning of the adaptively refined meshes uses p4est [25]. The

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:17

implementation with sparse matrices uses Trilinos EPetra [33], while the matrix-free implementa-
tion is based on data distribution algorithms built into DEAL.IL The source code and parameters of
the examples in this manuscript are available at https://github.com/tjhei/paper-parallel-gmg-data.

4.1 Scaling on SuperMUC

As a first experiment, we consider the constant-coefficient Laplacian on a cube, discretized
with @Q, elements, and compare the runtime on a uniform mesh against an adaptively refined
case with the annulus refinement. The adaptive mesh is set up such that the number of cells
matches with the number of cells in the uniform case within 2%. The computations are run on
phase 1 of SuperMUC, providing nodes with 2 X 8 cores of Intel Xeon E5-2680 (Sandy Bridge),
connected via an Infiniband FDR10 fabric. For pre- and post-smoothing, a Chebyshev iteration of
the Jacobi method with Chebyshev degree five, i.e., five matrix-vector products, is selected [1]. The
relatively high degree of the Chebyshev smoother is the result of an experimental study for the
best run time for the chosen implementation described below on uniform grids. Most important to
the decision is the mixed-precision setup with smoothing done in single precision as described in
References [26, 41]. The parameters of the Chebyshev polynomial are set to damp contributions in
the eigenvalue range [0.0SZma&g, l.Zimax’g] on each level £ > 0. The estimate A_max,[of the largest
eigenvalue of the matrix A is computed by a conjugate gradient iteration with 10 iterations from
an initial vector of zero mean constructed as (5.5, —4.5, . .., 4.5,5.5, 5.5, —4.5,...)T. As a coarse
solver, the Chebyshev iteration is selected with a degree chosen such that a priori error estimate of
the Chebyshev iteration ensures a residual reduction by 103, now for the full eigenvalue range of
the coarse level matrix determined by a conjugate gradient solution to a relative tolerance in the
unpreconditioned residual of 1073. The coarse grid tolerance is chosen as a balance between the
accuracy needed to not influence the convergence rate of the V-cycle for the chosen smoother (see
section 5.1 of Reference [41] for a detailed study) and its cost. Sine the coarse grid only consists of
a single cell in this experiment, the number of iterations is less than 5 in both 2D and 3D.

To reveal possible communication bottlenecks, we choose a fast node-level implementation by
matrix-free evaluation of the matrix-vector products both for level matrices Ay and level transfer
[42]. The implementation exploits SIMD vectorization across several cells [39] using four-wide
registers on the given Intel Xeon processors. To further enhance performance, we run the multi-
grid V-cycle in single-precision as suggested originally in Reference [30]. When combined with a
correction in double precision after each V-cycle, e.g., within an outer conjugate gradient solver,
the reduced precision (which is of high-frequency character and thus easily damped in subsequent
cycles) does not substantially alter the multigrid convergence [41].

Figures 6 and 7 list the strong and weak scaling for the runtime of one multigrid V-cycle run
as a preconditioner, including all aforementioned communication steps as well as the conversion
from double to single precision and vice versa. The presented numbers are consistent over several
runs (with standard deviations of at most 2% of the runtime). Each plot contains runtimes for
the uniform and adaptive refinement and the optimal O(N) scaling (black dashed line) coinciding
with the first data point of the uniform refinement graph. The red dashed line shows the model
prediction based on the imbalance of the adaptively refined mesh computed as 1/E multiplied by
the ideal scaling of the uniform computation for the same processor counts (black dashed line).
Given the results in Figure 4, the 2D annulus refinement suggests an efficiency gap of a factor close
to 3 in two dimensions. Figure 7(a) confirms this behavior, confirming that the model assumption
is realistic: the uniform refinement is predicted to be 100% efficient and the adaptive refinement is
31% efficient, so we predict a gap of 3.2X in runtime.

Finally, it is worth mentioning that we only looked at the performance of a single V-cycle so
far. When using it as a preconditioner of a Conjugate Gradient solver, the performance results are

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:18 T. C. Clevenger et al.

T T —] 1 I Im—
N ~ —6— Uniform | & —6— Uniform ||
| - ~ H
10 g s . Adaptive | haS . Adaptive
i NS -=-- model [| 10° E & --- model f
%) - 1 = [B
T | 1 3 L]
g £ - .
5 107p ERE I |
— = .| -
! i 18 1w'p E
>~ I S =]
? 5 19 r B
> | | > [i
1072 | E H i
§] 1072 |- E
! ! ! ! E | ! ! =
16 64 512 2048 1024 4096 16384 65536
Number of Processors Number of Processors
(a) 2D. Left: 9.5M cells/37.9M DoFs. Right: 606.3M cells/2425.4M DoFs
T T T T T | T
Foa —6— Uniform —6— Uniform
~ RS .
100 & L N . Adaptive S3L Adaptive
I R - == model [RN - == model
K] - | | @
[} i)
£ 1071 | E £
E F 1=
2 — 18
2 L 1 o 10° [7
3] [1 ©
o w0 f 4%
> F 1 >
1073 | N
L ! ! \ ! L ! ! !
64 256 1024 4096 16384 65536 16384 32768 65536
Number of Processors Number of Processors

(b) 3D. Left: 16.9M cells/137.4M DoFs. Right: 5.8B cells/46.4B DoFs

Fig. 6. Strong scaling for timing of a matrix-free V-cycle in 2D and 3D for small (left) and large (right) problem
size of the annulus refinement.

very similar as the number of iteration stays nearly constant. In fact, the number of iterations is
between 7 and 11 for a relative reduction of 1e — 10 for uniform and adaptive runs in 2D and 3D.

The strong scaling limit of the adaptive implementation follows the one of the uniform case,
highlighting the efficiency in the communication setup. In three dimensions with 16.9M cells,
scaling of the uniform mesh case starts to flatten for 8,192 MPI ranks, corresponding to 2,048
cells or approximately 54,000 unknowns (DoFs) per MPI rank. For this data point, the absolute
runtime for the V-cycle is 0.01 s. Given the fact that 12 matrix-vector products are performed
per level (8 in the smoother, two for the residuals, two for the transfer) for a total of 8 levels,
this data point corresponds to approximately 1.0 - 107* s per matrix-vector product, which is an
expected scaling limit of nearest neighbor communication for up to 26 neighbors combined with
some local computation on the given architecture. The adaptive case scales at least as well as
the uniform one even beyond 8K processors, and also for the other experiments. Partly, this is
due to an overlap of different levels, e.g., when some processors do not own any part of a fine

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:19

Weak Scaling 2D approx 407K cells/1.6M dofs per core

- T T T
—#— Uniform
Adaptive
L5 oo model P R R B
5] =" -
£ P
2 .-"
2 1
]
]
>
?
>
0.5 o PV PV—— — et —— % n
0 \ \ \ \ \
16 128 1024 8192 65536
Number of Processors
(a) 2D annulus: 407K cells/1.6M DoFs per core
Weak Scaling 3D approx 260K cells/2.1M dofs per core
I T T T
—w— Global
3 Adaptive i
--- model | T L----mTTTTTTEET
Q Al -0
4
 —
g 2 / N
¥ | e emeeme-—-——-- » 4
)
>
?
>
e C—% B
0 | | | | |
16 128 1024 8192 65536

Number of Processors

(b) 3D annulus: 260K cells/2.1M DoFs per core

Fig. 7. Weak scaling for timing of a matrix-free V-cycle in 2D and 3D for the annulus refinement.

level, they can start working on coarser levels as long as the local communication data arrives.
Furthermore, the imbalance also leads to more cells on the processors for a given level in relative
terms approximately proportional to the inverse efficiency factor 1/E.

4.2 Linear Elasticity with Discontinuous Galerkin Discretization

As a second experiment, we consider the equations of linear elasticity Equation (3) on a mesh
constructed from three cylinders with the Lamé parameters A = p = 1 according to the setup in
Figure 8. The solid is loaded by surface forces on the upper bases of the top two cylinders. It is
fixed at the base of the lower cylinder and traction-free on the sides the cylinders. To represent
the geometry with a high-quality mesh, we use 2,808 hexahedral cells with one global and a series
of up to three adaptive refinements based on a residual-based error estimator. Figure 8 shows how
the error estimator chooses to refine around the sharp corners with lower solution regularity. The

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:20 T. C. Clevenger et al.

subdomain

displacement Magnitude
2.700e+01

[435‘?5-0]

24

TTTTTTTTT "H\‘\HHHH
N 3

o

009
X E X
5.7630-08 0.0006+00

Fig. 8. Displacement magnitude (left) and distribution of domain over 28 processors (right) of three-
dimensional elasticity example.

outer layer of cells is represented by a curved cylindrical manifold aligned with the respective
cylinder sides. To smoothly relax the curved surface description into a straight-sided one toward
the center of the cylinder, we apply a transfinite interpolation [29] over approximately half the
cylinder radius. For approximation, we use vector-valued discontinuous @, elements of tensor
degree 2 and the symmetric interior-penalty method with penalty factor o, equal to 2.0 weighted
by the minimum vertex difference in face-normal direction and the factor 2 - 3 = 6 to account for
the inverse estimate on quadratic shape functions.

We solve the elasticity example with a point-Jacobi smoother with four pre- and postsmoothing
sweeps and relaxation parameter 0.5 on all levels, using a matrix-based implementation based on
Trilinos EPetra linear algebra. On the coarse level, there are 227K (= 2,808 X 81) unknowns and
123M nonzero entries in the matrix. We compare two different strategies for solving this coarse
linear system. The first setup uses a direct solver based on the SuperLUDist package, whereas the
second uses an iterative conjugate gradient solver preconditioned by the Trilinos AMG precondi-
tioner ML. The coarse grid CG solver is run to a relative tolerance of 1072, compared against the
initial unpreconditioned residual. The AMG solver is given the near-null space of elasticity, i.e.,
three translational and three rotational modes, the latter using the coordinates of the nodal points
of the finite-element interpolation. Two sweeps of an incomplete LU factorization (no fill-in, no
overlap in parallel) are used for pre- and post-smoothing, and the aggregation threshold is 0.01.
All other setting use the standard settings for elliptic problems.

The systems are then solved by a conjugate gradient solver on the leaf mesh preconditioned by
the proposed geometric multigrid scheme to a relative tolerance of 107, measured in the unpre-
conditioned residual norm. Table 2 displays the number of iterations and runtimes on 28 processors
(one node) for the two options. The results demonstrate that the multigrid preconditioner yields
mesh-independent iteration counts also for the elasticity problem and a more complex geometry.
In particular, the run time per unknown is constant or even slightly decreases as the grid is re-
fined, showing that all components in the multigrid algorithm show optimal weak scaling as the

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:21

Table 2. Number of Outer Conjugate Gradient Iterations and Runtimes for Solving the Elasticity
Example on a 28-core Setup for two Strategies on the Coarse Mesh

coarse direct solver coarse CG/AMG iteration
time | time / DoF coarse solve | time | time /DoF
levels DoFs | CGits [s] | [us/DoF] | CGits avg CG its [s] | [us/DoF]
2 1,819,584 27 46.1 25.3 27 28.8 | 113.4 62.3
3 2,456,325 27 63.6 25.9 27 29.7 | 152.7 62.2
4 4,916,538 28 | 121.7 24.8 28 29.7 | 251.9 51.2
5| 11,684,817 28 | 260.3 22.3 28 27.8 | 420.0 35.9

Table 3. Runtimes in Seconds for Solving the Elasticity Example on a System of 48-core Nodes for a
Coarse Direct Solver

1 node 4 nodes 16 nodes 64 nodes

without without without without

levels DoFs | time coarse | time coarse | time coarse | time coarse
2 1.8M 27.3 14.9 35.5 5.2 30.3 1.5 40.9 0.4

3 2.5M 44.5 28.7 32.7 8.4 30.5 3.0 30.1 1.1

4 4.9M 85.9 71.5 51.2 21.4 34.9 7.8 45.8 2.8

5 11.7M | 188.3 173.1 82.7 54.4 48.9 18.2 35.1 6.3

6 35.7M — — | 2121 185.3 91.3 62.1 48.8 20.6

7 | 101.1M — — — — | 214.2 178.9 92.8 61.6

8 | 316.8M — — — — — — | 262.3 227.8

problem size is increased. However, the iterative coarse-grid solver produces solver runtimes that
are considerably worse than the direct solver SuperLUDist. The high cost of the iterative solver
is due to the large number of iterations. For the example of 11.7M unknowns, the coarse solver
takes 27.8 iterations for each outer CG iteration on average (or 779 when accumulating over all
iterations). This high iteration count is due to the higher-order discontinuous nature of the solu-
tion space and could be overcome, e.g., by p-multigrid techniques [32], see also Reference [26] and
references therein.

Table 3 shows a scaling experiment of the elasticity example on up to 3,072 processors with the
coarse direct solver SuperLUDist. To separate the lack of parallel scaling in the direct solver from
the proposed contributions, the table also reports the solver time for all parts except the coarse
grid solver, derived from subtracting timing results of the coarse grid solver with an MPI barrier
around it from the overall solver time. For all cases, the number of solver iterations is between
27 and 29, similar to the results reported in Table 2. The results demonstrate the ability of the
proposed framework to run on a large scale also when using matrix-based solvers. However, due
to the discontinuous Q; basis, the average number of nonzero entries per row exceeds 500, leading
to a high memory consumption with up to 4 GB per MPI process of resident virtual memory for
the largest computation of 317M unknowns on 3,072 cores. Larger problems for a given memory
configuration could be solved with matrix-free solvers [40].

Figure 9 shows the strong and weak scaling behavior of the data presented in Table 3 along-
side the efficiency model from Section 3.4. In the strong scaling experiment on 11.7M DoFs, the
partitioning efficiency E increases from 2.12 on 48 MPI ranks to 3.81 on 3,072 MPI ranks. For
weak scaling, the largest problem with 317M DoFs on 8 levels has an imbalance of 4.85. The model
explains the loss of efficiency especially for the strong scaling test and moderate sizes. For weak

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:22 T. C. Clevenger et al.

Strong Scaling (w/o coarse solver) 11.7M DoFs Weak Scaling
T T T T T T T
[—»— measured || —»— measured
) = = = model & = = = model
10 |- H Q .
F - - - ideal H a - - - ideal
B ¥ 2,000 -
[1]
= N I
< I : g
L
+
£ i | :
[=1 —
s w
= . . = 1,000 | .
100 F B)
5 i £
N ~ -
H N =
[N B =]
AY -
L N
(S | | - 0L—l | | |
48 192 768 3072 48 192 768 3072
Number of Processors Number of Processors

Fig. 9. Parallel scaling for the elasticity problem in 3D. Strong scaling (left) uses a problem size of 11.7M
DoFs and reports timings without the coarse solver. Weak scaling (right) is reported for the full solver times
of the largest problem sizes per processor configuration reported in Table 3, re-scaled to a fixed number of
unknowns per MPI process.

scaling, the measured run time scales somewhat worse than the one predicted by the model, which
can be traced back to a memory bandwidth effect: On low node counts, the imbalance is within
a shared memory region, and cores with more work on a particular level can use the memory
bandwidth of idle cores. This effect mostly disappears for higher node counts.

4.3 Laplace: Comparison Against AMG

In this example, we consider the variable-coefficient Laplacian
(eVu, Vo) = (f,v) Yo eV,

on the domain Q = [-1,1]*\ [0, 1]* (a 3D Fichera corner) with € = 1 if min(x,y,z) > —3 and € =
100 otherwise. The boundary conditions are u = 0 on the whole boundary and the right-hand side
is f = 1. Figure 10 visualizes the solution. We use continuous Q2 elements to discretize Vj and use
an adaptively refined grid.

For this example, we compare a matrix-free geometric multigrid implementation, a matrix-based
geometric multigrid implementation, and an algebraic multigrid based on Trilinos ML. With this
problem and this discretization, we expect the algebraic multigrid method to work very well. For
a balanced comparison, we are picking the same settings for all solvers, namely, a single Jacobi
smoothing step. These might not be the optimal settings for each individual method, though. We
compare the solution with the conjugate gradient method to a relative tolerance of 1071 in the
unpreconditioned residual norm with the following preconditioners:

(1) “MF”: matrix-free geometric multigrid using 1 Jacobi step (without damping) in single
precision, constructed all the way down to the coarsest mesh. The coarse solver is an
unpreconditioned CG solve.

(2) “MB”: geometric multigrid using Trilinos Epetra matrices using 1 Jacobi step (without
damping), constructed all the way down to the coarsest mesh. The coarse solver is an
unpreconditioned CG solve.

(3) “AMG”: Trilinos ML using Epetra with 1 Jacobi smoother, aggregation threshold 0.02, and
coarse solve “Amesos-KLU.”

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:23

43002

L o008

o2 3

2
[Dcv
00e+00

Fig. 10. Left: Solution to the Laplace example on a 3D domain with Fichera corner and discontinuous coef-
ficients. Right: Slice for x close to the center of the domain showing the adaptively refined mesh.

Table 4. Time in Seconds for Various Stages for different Problem Sizes for the three Solver Schemes
for the Adaptively Refined Laplace Problem

Setup total

Proc | Cycle DoFs | mesh | FE | assembly | prec | total | solve time

MF 112 13 41M | 0.562 | 0.151 0.029 | 0.393 | 1.135 | 0.200 1.335
448 15 16.3M | 0.703 | 0.154 0.027 | 0.535 | 1.419 | 0.253 1.672

1,792 17 65.1M | 0.910 | 0.182 0.030 | 0.686 | 1.808 | 0.309 2.117

7,168 19 || 256.3M | 1.030 | 0.152 0.032 | 0.893 | 2.107 | 0.521 2.628

MB 112 13 41M | 0.564 | 0.527 0.623 | 2.934 | 4.648 | 0.716 5.364
448 15 16.3M | 0.702 | 0.548 0.677 | 3.776 | 5.703 | 1.190 6.893

1,792 17 65.1IM | 0.898 | 0.575 0.698 | 4.862 | 7.033 | 1.660 8.693

7,168 19 || 256.3M | 1.040 | 0.619 0.727 | 7.260 | 9.646 | 2.560 | 12.206
AMG 112 13 4.1M | 0.296 | 0.507 0.657 | 0.405 | 1.865 | 0.924 2.789
448 15 16.3M | 0.339 | 0.534 0.671 | 0.456 | 2.000 | 1.150 3.150

1,792 17 65.1M | 0.421 | 0.553 0.680 | 0.546 | 2.200 | 1.460 3.660

7,168 19 || 256.3M | 0.515 | 0.585 0.744 | 1.010 | 2.854 | 1.890 4.744

MF: matrix-free geometric multigrid, MB: matrix-based geometric multigrid, AMG: algebraic multigrid (Trilinos ML).

We start with a coarse mesh with 7 cells (and 117 Q2 unknowns) and refine adaptively using
the residual-based, cell-wise a posteriori error estimator e(K) = ece(K) + eface (K) from Reference
[37] with

ecel(K) = H2IIf + enullf, erace(K) = " hrll[eVu-]|l
F

We double the number of cells approximately in each step of the adaptive loop by refining the
14.2% of the cells with the largest contribution to the estimator.

In Table 4, we present the time in seconds for the setup and for solving the linear system for the
three methods and different problem sizes. The different columns contain the following operations:

¢ “mesh”™: refine the mesh adaptively, repartition the cells between processors, computing cell
ownership, exchange ghost information (MF and MB).

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:24 T. C. Clevenger et al.

Strong Scaling

10!

10°
—a— AMG, 256M

—6— MB, 256M
MF, 256M
ideal

- AMG, 32M s

- MB, 32M ~
MF, 32M :

T T T | | | | | | |
56 112 224 448 896 1792 3584 7168 14336 28672

solve time/s

1071

i

Number of Processors

Fig. 11. Strong scaling for the solve step of the variable viscosity Laplace problem with adaptive refinement
for two different meshes for algebraic multigrid (AMG), matrix-based geometric multigrid (MB), and matrix-
free geometric multigrid (MF).

e “FE”: enumerate the degrees of freedom, create vectors, create system matrix (MB, AMG).

e “assembly” assemble system matrix (MB, AMG) and right-hand side, evaluate viscosity
(MF).

e “prec”: enumerate DoFs on each multigrid level (MB, MF), assemble level matrices (MB),
create intergrid transfer operators (MB and MF), create matrix-free operators (MF), create
AMG preconditioner (AMG).

The efficiency E for the four different problem sizes is 0.371, 0.294, 0.229, and 0.161, respectively.
This can explain a slow-down of 0.371/0.161 ~ 2.3 the preconditioner setup from the smallest to
largest problem, which is close to what we observe here.

Finally, we present strong scaling of the CG solve for this highly resolved mesh in Figure 11.
While the matrix-based solver and algebraic multigrid scale similarly and have a similar time to so-
lution, the matrix-free implementation scales much better and solves the finer problem in roughly
the same time as the AMG method for the coarser mesh with only an eighth of the number of
unknowns. For large numbers of processors, the solve time for the matrix-based solver degrades
considerably. Based on microbenchmarks, we hypothesize that this effect is mostly caused by the
implementation of the ghost exchange of the Epetra_CrsMatrix in Trilinos, which includes a
global barrier and MPI ready-sends.! This operation involves all processors, including those idle
on a given level. For the high number of levels (16 for the 32M DoFs case, 19 for the 256M DoFs
case) and the appearance both in the residual, the level transfer computations, and the coarse grid
CG solver, this operation affects the run time. While the situation could be improved by suitable
sub-communicators, the much better scaling with the matrix-free solvers and their non-blocking
MPI communication show that this limit is not inherent to the proposed multigrid algorithms but
rather the linear algebra back-end.

The implementation is given at https://github.com/trilinos/Trilinos/blob/67064dc0bd94754b56ded6ee2a0a09a2dccd5433/
packages/epetra/src/Epetra_MpiDistributor.cpp#L781-L938.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:25

5 CONCLUSIONS

In this article, we described the implementation of a parallel, adaptive multigrid framework within
the multi-purpose finite-element library pDEALIL The framework allows for conforming as well as
discontinuous finite elements on locally refined meshes. We have shown scaling results involving
up to 65,536 cores with very good weak scaling and strong scaling as long as the local problem
size is large enough. The distribution of mesh hierarchies is optimized for communication reduc-
tion, such that the framework is expected to scale well after node-level optimizations through
vectorization and algorithms with higher computational intensity. We exemplified the efficiency
by evaluating the parallel scaling using a matrix-free implementation with optimized node-level
performance. We presented a model for the efficiency of the partitioning of the hierarchy and com-
pared its prediction to actual runtimes. Computational experiments include an elastic structure
with a nontrivial coarse mesh and comparison to algebraic multigrid. The presented ingredients
are flexible in terms of finite-element spaces, matrix-based or matrix-free implementations, and
smoothers.

The proposed performance model and the computational results suggest that minimizing solely
for communication is not optimal for performance. It is subject of future research to identify the
best tradeoff between load imbalance and longer-distance communication in the level transfer in
terms of performance.

ACKNOWLEDGMENTS

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing access to both the Stampede2 and Frontera machines that have con-
tributed to the research results reported within this article. Clemson University is acknowledged
for generous allotment of compute time on Palmetto cluster. The authors thank their coauthors
on the peAL.II project.

REFERENCES

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro. 2003. Parallel multigrid smoothing: Polynomial versus Gauss—Seidel.
. Comput. Phys. 188 (2003), 593-610.

[2] M. Adams, P. Colella, D. T. Graves, J. N. Johnson, H. S. Johansen, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W.
McCorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen. 2015. Chombo Software Package
for AMR applications design document. Technical Report. Lawrence Berkeley National Laboratory. Retrieved from
https://crd.Ibl.gov/assets/pubs_presos/chomboDesign.pdf.

[3] M. F. Adams, J. Brown, J. Shalf, B. Van Straalen, E. Strohmaier, and S. Williams. 2014. HPGMG 1.0: A Benchmark for
Ranking High Performance Computing Systems. Technical Report LBNL-6630E. LBNL, Berkeley. DOI : https://doi.org/
10.2172/1131029

[4] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai,
M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. 2019. The deal.II library, version
9.1. J. Numer. Math. 27, 4 (2019), 203-213. DOI : https://doi.org/10.1515/jnma-2019-0064

[5] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D.
Wells. 2020. The deal Il finite element library: Design, features, and insights. Comput. Math. Appl. (2020). DOI : https:
//doi.org/10.1016/j.camwa.2020.02.022

[6] D.N. Arnold. 1982. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19,
4(1982), 742-760.

[7] D.N. Arnold, R. S. Falk, and R. Winther. 1997. Preconditioning in H (div) and applications. Math. Comput. 66, 219
(1997), 957-984. DOI : https://doi.org/10.1090/S0025-5718-97-00826-0

[8] E. Aulisa, G. Capodaglio, and G. Ke. 2019. Construction of h-refined continuous finite element spaces with arbitrary
hanging node configurations and applications to multigrid algorithms. SIAM J. Sci. Comput. 41, 1 (2019), A480-A507.

[9] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, D. A. May, L. Curfman McInnes, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and
H. Zhang. 2017. PETSc Users Manual. Technical Report ANL-95/11-Revision 3.8. Argonne National Laboratory. Re-
trieved from http://www.mcs.anl.gov/petsc.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

7:26

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]

[27]

[28]
[29]
[30]
[31]

[32]

[33]

[34]

T. C. Clevenger et al.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, D. A. May, L. Curfman McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H.
Zhang. 2017. PETSc Web page. Retrieved from http://www.mcs.anl.gov/petsc.

W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. 2011. Algorithms and data structures for massively parallel
generic adaptive finite element codes. ACM Trans. Math. Softw. 38, 2 (2011), 14:1-14:28.

W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal II—A general purpose object oriented finite element library.
ACM Trans. Math. Softw. 33, 4 (2007), 24/1-24/27.

R. E. Bank and M. Holst. 2003. A new paradigm for parallel adaptive meshing algorithms. SIAM Rev. 45, 2 (2003),
291-323. DOI: https://doi.org/10.1137/5003614450342061

R. E. Bank, A. H. Sherman, and A. Weiser. 1983. Some refinement algorithms and data structures for regular local
mesh refinement. Scientific Computing, Applications of Mathematics and Computing to the Physical Sciences 1 (1983),
3-17.

P. Bastian. 1996. Parallele Adaptive Mehrgitterverfahren. Teubner, Stuttgart.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Kl6fkorn, R. Kornhuber, M. Ohlberger, and O. Sander. 2008. A generic
grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing
82, 2-3(2008), 121-138.

S.Bauer, D. Drzisga, M. Mohr, U. Riide, C. Waluga, and B. Wohlmuth. 2018. A stencil scaling approach for accelerating
matrix-free finite element implementation. SIAM . Sci. Comput. 40, 6 (2018), C748-C778.

S. Bauer, M. Mohr, U. Riide, J. Weismiiller, M. Wittmann, and B. Wohlmuth. 2017. A two-scale approach for efficient
on-the-fly operator assembly in massively parallel high performance multigrid codes. Appl. Numer. Math. 122 (2017),
14-38.

R. Becker and M. Braack. 2000. Multigrid techniques for finite elements on locally refined meshes. Numer. Linear
Algebra Appl. 7 (2000), 363-379.

E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. 2012. The zoltan and isorropia parallel toolkits for
combinatorial scientific computing: Partitioning, ordering, and coloring. Sci. Program. 20, 2 (2012), 129-150.

D. Braess and W. Hackbusch. 1983. A new convergence proof for the multigrid method including the v-cycle. SIAM
7. Sci. Comput. 20, 5 (1983), 967-975.

J. H. Bramble. 1993. Multigrid Methods. Number 294 in Pitman research notes in mathematics series. Longman
Scientific.

A. Brandt. 1977. Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 138 (1977), 333-390.

S. C. Brenner and L. R. Scott. 2008. The Mathematical Theory of Finite Element Methods (3rd ed.). Springer, New York.
DOI : https://doi.org/10.1007/978-0-387-75934-0

C. Burstedde, L. C. Wilcox, and O. Ghattas. 2011. p4est: Scalable algorithms for parallel adaptive mesh refinement
on forests of octrees. SIAM J. Sci. Comput. 33, 3 (2011), 1103-1133. DOI : https://doi.org/10.1137/100791634

N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler. 2020. Hybrid multigrid methods for high-order discontinuous
Galerkin discretizations. J. Comput. Phys. 415 (2020), 109538. DOI : https://doi.org/10.1016/j.jcp.2020.109538

A. Gholami, D. Malhotra, H. Sundar, and G. Biros. 2016. FFT, FMM, or multigrid? a comparative study of state-of-the-
art poisson solvers for uniform and nonuniform grids in the unit cube. SIAM ¥. Sci. Comput. 38, 3 (2016), C280-C306.
DOI : https://doi.org/10.1137/15M1010798

J. Gopalakrishnan and G. Kanschat. 2003. A multilevel discontinuous Galerkin method. Numer. Math. 95, 3 (2003),
527-550. DOI : https://doi.org/10.1007/s002110200392

W. Gordon and L. Thiel. 1982. Transfinite mapping and their application to grid generation. Appl. Math. Comput.
10-11, 10 (1982), 171-233. DOI: https://doi.org/10.1016/0096-3003(82)90191-6

W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. 2000. Performance modeling and tuning of an unstructured
mesh CFD application. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (SC’00). 34-34.

W. Hackbusch. 1985. Multi-grid Methods and Applications. Springer, Heidelberg.

B. Helenbrook, D. J. Mavriplis, and H. L. Atkins. 2003. Analysis of p-multigrid for continuous and discontinuous finite
element discretizations. In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference. Orlando, FL, ATAA
Paper 2003-3989.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R.]. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski,
E.T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. 2005. An
overview of the trilinos project. ACM Trans. Math. Softw. 31, 3 (2005), 397-423. DOI : https://doi.org/10.1145/1089014.
1089021

B. Janssen and G. Kanschat. 2011. Adaptive multilevel methods with local smoothing for H'- and H®!-conforming
high order finite element methods. SIAM J. Sci. Comput. 33, 4 (2011), 2095-2114. DOI:https://doi.org/10.1137/
090778523

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

Parallel, Adaptive Geometric Multigrid 7:27

(35]
[36]
(37]
(38]
[39]
[40]
[41]
[42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]
[50]
(51]

(52]

G. Kanschat. 2004. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes. Comput. Struct.
82, 28 (2004), 2437-2445. DOI : https://doi.org/10.1016/j.compstruc.2004.04.015

G.Kanschat and Y. Mao. 2015. Multigrid methods for HY¥ -conforming discontinuous Galerkin methods for the stokes
equations. J. Numer. Math. 23, 1 (2015), 51-66. DOI : https://doi.org/10.1515/jnma-2015-0005

O. A. Karakashian and F. Pascal. 2003. A posteriori error estimates for a discontinuous Galerkin approximation of
second-order elliptic problems. SIAM J. Numer. Anal. 41, 6 (2003), 2374-2399.

G. Karypis and V. Kumar. 1999. A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM
Journal on Scientific Computing 20, 1 (1999), 359-392.

M. Kronbichler and K. Kormann. 2012. A generic interface for parallel cell-based finite element operator application.
Comput. Fluids 63 (2012), 135-147. DOI : https://doi.org/10.1016/j.compfluid.2012.04.012

M. Kronbichler and K. Kormann. 2019. Fast matrix-free evaluation of discontinuous Galerkin finite element operators.
ACM Trans. Math. Softw. 45, 3 (2019), 29/1-29/40. DOI : https://doi.org/10.1145/3325864

M. Kronbichler and K. Ljungkvist. 2019. Multigrid for matrix-free high-order finite element computations on graphics
processors. ACM Trans. Parallel Comput. 6, 1 (2019), 2/1-2/32. DOI : https://doi.org/10.1145/3322813

M. Kronbichler and W. A. Wall. 2018. A performance comparison of continuous and discontinuous Galerkin methods
with fast multigrid solvers. SIAM . Sci. Comput. 40, 5 (2018), A3423-A3448. DOI : https://doi.org/10.1137/16M110455X
D. A. May, J. Brown, and L. Le Pourhiet. 2014. pTatin3D: High-performance methods for long-term lithospheric
dynamics. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis (SC’14). 274-284.

S. McCormick and J. Thomas. 1986. The fast adaptive composite grid (FAC) method for elliptic equations. Math.
Comput. 46, 174 (1986), 439-456.

J.Rudi, A. C. 1. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. Ineichen, C. Bekas, A. Curioni, and O. Ghattas.
2015. An extreme-scale implicit solver for complex PDEs: Highly heterogeneous flow in Earth’s mantle. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’15). ACM,
New York, NY, Article 5, 12 pages.

H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. 2012. Parallel geometric-algebraic multigrid
on unstructured forests of octrees. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC’12). IEEE Computer Society Press, 43.

H. Sundar, G. Stadler, and G. Biros. 2015. Comparison of multigrid algorithms for high-order continuous finite element
discretizations. Numer. Lin. Alg. Appl. 22, 4 (2015), 664-680. DOI : https://doi.org/10.1002/nla.1979

T. Tu,D. R. O’Hallaron, and O. Ghattas. 2005. Scalable parallel octree meshing for terascale applications. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’05). IEEE, 1-15.
DOI:https://doi.org/10.1109/sc.2005.61

T. Weinzierl. 2019. The Peano software—Parallel, automaton-based, dynamically adaptive grid traversals. ACM Trans.
Math. Softw. 45, 2 (2019), 1-41. DOI : https://doi.org/10.1145/3319797

T. Weinzierl and M. Mehl. 2011. Peano—A traversal and storage scheme for octree-like adaptive cartesian multiscale
grids. SIAM . Sci. Comput. 33, 5 (2011), 2732-2760. Retrieved from https://epubs.siam.org/doi/10.1137/100799071.

P. Zave and W. C. Rheinboldt. 1979. Design of an adaptive, parallel finite-element system. ACM Trans. Math. Softw. 5,
1(1979), 1-17.

G. Zumbusch. 2003. Parallel Multilevel Methods. Teubner, Stuttgart.

Received April 2019; revised September 2020; accepted September 2020

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 7. Publication date: December 2020.

