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ABSTRACT
Mathematical models of the dynamics of infectious disease transmission are used to
forecast epidemics and assess mitigation strategies. In this article, we highlight the
analogy between the dynamics of disease transmission and chemical reaction kinetics
while providing an exposition on the classic Susceptible–Infectious–Removed
(SIR) epidemic model. Particularly, the SIR model resembles a dynamic model of
a batch reactor carrying out an autocatalytic reaction with catalyst deactivation.
This analogy between disease transmission and chemical reaction enables the
exchange of ideas between epidemic and chemical kinetic modeling communities.
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INTRODUCTION
Mathematical models of the dynamics of infectious disease transmission (Brauer, 2017;
Hethcote, 2000) are useful for forecasting epidemics, evaluating public health
interventions, and inferring properties of diseases.

In compartmental epidemic models (Brauer, 2008), each member of the population
is categorized based on their disease status in addition to, possibly, their attributes
and/or the treatment they received. The dynamics of disease transmission are then
typically modeled with differential equations that describe the flow of individuals
between the compartments as the population mixes, the disease spreads, infected
individuals progress through the stages of the disease, and public health interventions are
implemented.

The parsimonious, classic Susceptible–Infectious–Removed (SIR) compartmental
model (Kermack & McKendrick, 1927; Anderson, 1991) gives insights into the dynamics of
epidemics and shows utility for understanding how public health interventions affect the
trajectory of an epidemic (Bertozzi et al., 2020).

In this article, we highlight the analogy between the dynamics of disease transmission
and chemical reaction kinetics while formulating and analyzing the SIR epidemic model.
This article is pedagogical in nature and its aim, in making the connection between
chemical kinetics and the spread of infectious disease, is knowledge exchange across the
two disciplines of chemical kinetic and epidemic modeling.
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RESULTS
The SIR model
In the classic SIR model of an epidemic (Kermack & McKendrick, 1927; Murray, 1993;
Hethcote, 2000, Edelstein-Keshet, 1988; Frauenthal, 2012; Brauer, Castillo-Chavez & Feng,
2019), each member of the population belongs to one of three compartments: Susceptible,
Infectious, or Removed.

The reactions
Susceptible folks can contract the disease if they come into contact with an infectious
individual. Once infected, they move into the infectious compartment, assuming zero
delay between infection and the ability to transmit the disease. This is analogous to an
irreversible, autocatalytic chemical reaction (Schuster, 2019; Scott, 1983) between a
reactant, S, and catalyst, I:

Sþ I!2I f1g
Infectious individuals eventually recover or die from the disease, entering the

removed compartment. Folks in the removed compartment do not participate in disease
transmission. That is, they cannot transmit the disease, nor can they contract it again,
assuming that recovery from the disease confers immunity to reinfection. This is analogous
to a reaction where the catalyst, I, irreversibly degrades or converts to a deactivated form, R:

I!R f2g
We assume permanent protective immunity is conferred upon recovery from the

disease, thus neglecting the possibility of an R → S reaction.
So, the SIR model of an epidemic is analogous to an autocatalytic reaction (rxn. {1})

with catalyst deactivation (rxn. {2}). An infectious individual (the catalyst, I), (i) upon
contacting (colliding with) a susceptible individual (the reactant, S), can convert them into
another infectious individual (another catalyst particle) and (ii) recovers or dies
(deactivates) with time. Figure 1 depicts the flow of individuals between compartments
under the SIR model, induced by rxns. {1} and {2} .

The dynamic mathematical model
Mathematically, the SIR model (Kermack & McKendrick, 1927; Edelstein-Keshet, 1988;
Murray, 1993; Martcheva, 2015a) is equivalent to a dynamic model of a well-mixed,
isothermal batch reactor carrying out the two homogeneous, elementary rxns. {1} and {2} .

Figure 1 The SIR model. The boxes represent the set of susceptible, infectious, and removed individuals.
The arrows represent flow and are annotated with per capita flow rates.

Full-size DOI: 10.7717/peerj-pchem.14/fig-1
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As in a (closed) batch reactor, we neglect immigration and emigration (hence, the
absence of flow to/from external populations in Fig. 1). Moreover, we take births and
deaths not caused by the disease to be negligible over the (short) time scale of the epidemic.

Let [S](t), [I](t) and [R](t) be the fraction of the population that is susceptible,
infectious, and removed, respectively, at time t. Considering a large population, we treat
[S], [I], and [R] as continuous variables. So, [S], [I], [R] ∈ [0, 1].

The incidence rate

Assuming their spatial mixing is uniform (Wilson & Worcester, 1945; Weiss, 2013),
we invoke the law of mass action to model the rate at which susceptible and infectious
individuals “react” via bimolecular, autocatalytic rxn. {1}. The incidence rate of the disease,
that is, the number of new infections per unit time (Martcheva, 2015a), is then β [S][I]
(per capita). A symmetric, bilinear function of [S] and [I], intuitively, the incidence rate
doubles if [I] ([S]) doubles while [S] ([I]) is fixed. The second-order transmission rate
constant β > 0 is the product of the average frequency of contacts of an individual in the
population and the transmissibility of the disease (the probability of transmission
conditioned upon contact).

The recovery rate

We model the rate at which infectious individuals “deactivate” (are removed) via rxn.
{2} with first-order kinetics, that is, as γ [I] (per capita). The inverse of the first-order
recovery rate constant γ > 0 is the average time period that an infected individual is
infectious (Keeling & Rohani, 2011).

The assumptions above are summarized by the rates of flow between the compartments
shown in Fig. 1. We arrive at the set of nonlinear, coupled differential equations that
comprise the SIR dynamic model of infectious disease transmission by writing a mass
balance on each compartment in Fig. 1:

d½S�
dt

¼ �b½S�½I� (1)

d½I�
dt

¼ b½S�½I� � g½I� (2)

d½R�
dt

¼ g½I�: (3)

The only two parameters in the SIR model are the transmission and recovery rate
constants, β and γ, respectively. The average duration of infectiousness, γ−1, could be
estimated from contact tracing or shedding studies (Fine, 2003). The transmission rate
constant, β, could be identified by fitting differential Eqs. (1)–(3) to epidemic time series
data (case counts) (Martcheva, 2015a; Weiss, 2013), much like identifying a reaction rate
constant from concentration time series (Fogler, 2010).
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Addition of Eqs. (1)–(3) confirms the population is closed and demography is neglected,
that is, [S](t) + [I](t) + [R](t) = 1, ∀t ≥ 0. As a consequence, Eqs. (1) and (2) fully determine
the SIR model dynamics, with [R](t) = 1 − [S](t) − [I](t).

The replacement and basic reproduction numbers
Two important numbers aid our characterization and understanding of SIR model
dynamics: the replacement number, r, and the basic reproduction number, R0.

The replacement number, r = r(t), is the expected number of folks (directly) infected
by a typical infectious individual, mixing in the population, over the course of their
infectiousness (Hethcote, 2000). Because the concentration of susceptible folks [S] = [S](t)
influences the frequency that a typical infectious individual contacts a susceptible
individual, r changes over the course of an epidemic. In the SIR model, a typical infectious
individual is expected to produce β [S](t) new infections per unit time (incidence rate per
infectious individual) for an infectious duration of γ−1. The replacement number is
therefore:

r ¼ rðtÞ ¼ b

g
½S�ðtÞ: (4)

The basic reproduction number, R0, is defined as the initial replacement number when
one infectious individual is introduced into an all-susceptible population (Edelstein-Keshet,
1988; Hethcote, 2000). In this context, R0 in the SIR model is the replacement number
in Eq. (4) when [S] ≈ 1:

R0 ¼ b

g
: (5)

That is, R0 is the expected number of infections directly caused by a single infectious
individual introduced into an entirely susceptible population (Hethcote, 2000).

The dimensionless numbers r and R0 are properties of both the disease and the
population (Delamater et al., 2019). While r = r(t) changes with time, R0 is constant and
defined only at the initial stage of a particular context: when one infectious individual is
introduced to an all-susceptible population. Notably, the two numbers are related via
rðtÞ ¼ R0½S�ðtÞ.

If the basic reproduction number R0 in Eq. (5) is large (small), the infected are
infectious for a long (short) period of time, the disease is (not) easily transmitted,
and/or the average frequency of contacts in the population is high (low). Under the
analogy with chemical kinetics, since the activity and longevity of the catalyst, I, are
embedded in β and γ, respectively: R0 is large (small) if the catalyst has a high (low)
activity and/or remains active for a long (short) time. These remarks also hold for the
replacement number, r ¼ R0½S�. However, r decreases as the concentration of the
reactant, [S], decreases, owing to the reduced frequency that any given catalyst particle
encounters a reactant particle to catalyze its conversion into another catalyst particle
by rxn. {1} .
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SIR model dynamics
In the SIR model, what happens if we introduce a small number of infectious individuals
into a large population of susceptible individuals? This is akin to injecting our deactivating
autocatalyst, I, into a well-mixed batch reactor containing pure S. The corresponding
initial conditions are:

½S�ð0Þ ¼ ½S�0 (6)

½I�ð0Þ ¼ ½I�0 (7)

½R�ð0Þ ¼ 0; (8)

with [S]0 + [I]0 = 1, [I]0 << 1 and [S]0, [I]0 > 0. We consider [R](0) = 0 for the interesting
case where a population is exposed to a novel pathogen to which it has no immunity.

The replacement number r(t) determines the sign of [I]′(t)
The replacement number r(t) in Eq. (4) is key to understanding SIR model dynamics.
By inspection of Eq. (2), [I](t) is increasing at time t if the replacement number r(t) > 1 and
decreasing if r(t) < 1. This is intuitive: if the typical infectious person mixing in the
population is expected to infect less than one susceptible person before they recover, they
are not expected to replace themselves with a new infectious individual to propagate the
disease, and, consequently, [I](t) is decreasing. Note rðtÞ < 1 , ½S�ðtÞ < R�1

0 .

Does an epidemic ensue?
We first address a qualitative question: given the initial conditions in Eqs. (6)–(8), does the
disease invade the population? The outcome depends on the initial replacement number
r0 :¼ rð0Þ ¼ R0½S�0 in a threshold manner. If r0 > 1, [I](t) initially increases. That is,
the disease spreads; an epidemic ensues. If r0 < 1, [I](t) initially decreases and, since [S](t) is
a decreasing function of time (see Eq. (1)), decays to zero. That is, the disease dies out;
an epidemic does not ensue.

Under the chemical reaction analogy, if r0 < 1 (r0 > 1), the injected catalyst particles
deactivate via rxn. {2} faster (slower) than they catalyze rxn. {1} to convert the reactant,
S, into more catalyst, I, to propagate autocatalytic rxn. {1} ; the reaction dies out (proceeds).

For our remaining analysis, we take r0 < 1 and further analyze the dynamics of an
SIR epidemic.

Initial exponential growth
Early in the epidemic, the number of infectious folks grows approximately exponentially
with growth rate (r0 − 1)γ:

½I�ðtÞ � ½I�0eðr0�1Þgt: (9)

This follows from Eq. (2) if we neglect the depletion of the susceptible pool by
approximating [S](t) ≈ [S]0, valid only in the initial stage of the epidemic; as the disease
spreads, [S] decreases and diminishes the replacement number. Equation (9) is thus an
overestimate.
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Since Eq. (9) is also a valid initial approximation for r0 < 1, it reinforces that an epidemic
will not ensue if r0 < 1, since [I](t) would then decay approximately exponentially.

A simulation of an SIR model epidemic
Figure 2 shows the numerical solution to Eqs. (1)–(3) with initial conditions in Eqs. (6)–(8)
for R0 ¼ 2 and [I]0 = 10−5. Initially, the concentration of infectious folks, [I], grows
approximately exponentially (see Fig. S1 for a comparison of [I](t) with Eq. (9)).
The concentration of susceptible folks, [S], decreases monotonically as the disease invades
the population. As a result, the frequency with which any given infectious individual
comes into contact with a susceptible individual decreases. In conjunction with the
infectious folks recovering, this eventually causes the (net) growth rate of [I] to diminish
and, when the replacement number r in Eq. (4) drops below one, causes [I] to decay.
The epidemic self-extinguishes, that is, limt!1½I�ðtÞ ¼ 0 (Bjørnstad et al., 2020a). The R
category accumulates the folks that have been infected by and have recovered or died from
the disease, ½R�ðtÞ ¼ g

R t
0 ½I�ðtÞdt (see Eq. (3) with initial condition 8). Notably, the

disease does not infect the entire population, even after an infinite amount of time
(limt!1½S�ðtÞ 6¼ 0). That is, the epidemic self-extinguishes not because the population is
depleted of susceptible folks, but rather because it is depleted of infectious folks (Murray,
1993; Weiss, 2013). An alternative visualization of SIR model dynamics in Fig. S2
emphasizes [S](t) + [I](t) + [R](t) = 1, ∀t ≥ 0.

Under the chemical kinetics analogy, the autocatalytic rxn. {1} begins to slow down
after the concentration of the reactant, [S], decreases sufficiently. Once the replacement
number r(t) drops below one (i.e., once [S] drops belowR�1

0 ), the catalyst, I, is deactivating
via rxn. {2} faster than it is converting the reactant, S, into more catalyst to replenish
itself via rxn. {1}. Consequently, the catalyst concentration, [I], begins to drop and decays
to zero. Owing to catalyst deactivation (rxn. {2}), not all reactant, S, is consumed, even after
an infinite amount of time.

Figure 2 Numerical approximation (Rackauckas & Nie, 2017) of the solution to the SIR model in
Eqs. (1)–(3) with initial conditions in Eqs. (6)–(8). Full-size DOI: 10.7717/peerj-pchem.14/fig-2
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Solution trajectory in the ([S], [I]) phase space
We can analytically find the trajectory of the solution to Eqs. (1) and (2) in the ([S], [I])
phase plane. Dividing Eq. (2) by Eq. (1) takes us into the phase plane by giving a
differential equation with a d½I�

d½S� derivative, with the view of [I] as a function of [S].
Separating, integrating, and applying the initial conditions in Eqs. (6) and (7), we arrive at
the solution path (Brauer, 2008):

½I�ðtÞ ¼ 1� ½S�ðtÞ þ 1
R0

log
½S�ðtÞ
½S�0

� �
: (10)

Figure 3 shows the trajectory of the solution given by Eq. (10) (R0 ¼ 2, [I]0 = 10−5),
traveling from the initial condition in the bottom right corner to the final condition on the
bottom left. The trajectory reinforces that [S](t) decreases monotonically with time; that
[I](t) increases, peaks, then diminishes to zero; and that a fraction of the population
remains susceptible after the epidemic dies out.

Final size of the epidemic
Given the epidemic (autocatalytic reaction) dies out before all of the susceptible folks
(reactant) have been infected, what fraction of the population (reactant) remains
susceptible (unreacted) after the epidemic ends?

We find an implicit equation for ½S�1 :¼ limt!1½S�ðtÞ by taking the limit t ! 1 in
Eq. (10):

0 ¼ 1� ½S�1 þ 1
R0

log
½S�1
½S�0

� �
: (11)

Figure 3 The trajectory of the solution to the SIRmodel, with initial conditions in Eqs. (6)–(8), in the
([S], [I]) phase plane, given by Eq. (10). The trajectory is colored according to time. The initial con-
ditions, peak prevalence of infectious folks, and final conditions are marked. Since [S](t) + [I](t) ≤ 1,
points in the gray region are not feasible. Full-size DOI: 10.7717/peerj-pchem.14/fig-3
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We used the fact that the epidemic eventually dies out, limt!1½I�ðtÞ ¼ 0. [S]∞ is the
unique root of Eq. (11) in ð0;R�1

0 Þ (Hethcote, 2000). The fraction of the population
infected over the course of the epidemic is limt!1½R�ðtÞ ¼: ½R�1 ¼ 1� ½S�1 since the
R category accumulates those that have recovered or died from the disease. Figure 4A
shows that, as R0 increases from one, more of the population will be infected over the
course of the epidemic.

Peak prevalence of infectious folks
The peak prevalence of infectious folks, maxt [I](t), is important because it determines
the maximum strain on the healthcare system. Both Eqs. (10) and (2) show that the
maximum in [I](t) (look for d½I�

d½S� ¼ 0 or d½I�
dt ¼ 0, respectively) occurs when the replacement

number r(t) = 1. Before the peak is reached, the replacement number r(t) > 1 and [I](t)
is increasing; after the peak, r(t) < 1 and [I](t) is decreasing to zero. Substituting ½S� ¼ R�1

0

into Eq. (10), we find:

max
t
½I�ðtÞ ¼ 1� 1

R0
1þ log R0½S�0

� �� �
: (12)

Figure 4B shows how the peak prevalence of infectious folks increases as R0 increases
from one. In addition, Fig. 4C shows that the (non-dimensional) time to reach peak
prevalence, argmaxt a[I](t), decreases as R0 increases from one.

Herd immunity
A population achieves herd immunity when a sufficient fraction are immune to the disease
so as to confer indirect, population-level protection from an invasion of the disease upon
the introduction of an infectious individual. Notably, the immunity could be acquired
by either previous infection or by vaccination (Hethcote, 2000).

The administration of a vaccine that confers perfect and permanent immunity to a
susceptible individual is modeled by introducing an S → R reaction to the SIR model, that

Figure 4 Final size and peak prevalence of an SIR epidemic. As a function of R0, (A) the fraction of the population that will be infected over the
course of the epidemic, [R]∞ = 1 − [S]∞, with [S]∞ obtained from Eq. (11), (B) the fraction of the population that is infectious at peak prevalence,
maxt [I](t), via Eq. (12), and (C) the (non-dimensional) time to reach peak prevalence, argmaxt a[I](t), computed by a grid search using the
numerical solution to the SIR model. All correspond to initial conditions in Eqs. (6)–(8). Full-size DOI: 10.7717/peerj-pchem.14/fig-4
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is, by allowing flow in Fig. 1 from the susceptible category directly to the removed category
(Yusuf & Benyah, 2012; Martcheva, 2015a; Shulgin, Stone & Agur, 1998).

What fraction v of a population must be immune to the disease in order to achieve herd
immunity? [I](t) will decrease upon introducing an infectious individual if the replacement
number r(t) < 1, that is, if ½S� < R�1

0 . Thus, a fraction v > 1�R�1
0 of the population

must be immune to achieve herd immunity. Figure 5 shows the region v > 1�R�1
0 (gray)

and illustrates that, as R0 increases from one, more of the population must be immune to
prevent an epidemic via herd immunity.

In the chemical kinetics analogy, herd immunity results from reducing the
concentration of the reactant, [S], so that a catalyst particle, I, fed to the reactor is expected
to deactivate before it encounters an S particle and autocatalyzes rxn. {1} to replace itself.
That is, to achieve herd immunity, [S] must be reduced sufficiently to make the
replacement number r less than one.

We now make a comparison between herd immunity achieved exclusively (i) by
vaccination (S → R) and (ii) by infection and removal (recovery or death) (S → I → R).
Consider an all-susceptible population. Under strategy (i), vaccinating a fraction
v ¼ 1�R�1

0 of the population will suffice to confer herd immunity. Under strategy (ii), by
introducing infectious individuals and allowing the epidemic to run its course, a fraction
[R]∞ of the population will be infected over the course of the epidemic. Though, herd
immunity will be achieved when ½S� ¼ R�1

0 . At this point, [I](t) is maximal (see Eq. (10)
and Fig. 3). These infectious individuals will infect more susceptible folks before they
all recover/die, even though, on average, each is expected to recover/die before they infect a
susceptible individual (r < 1 after this point). The comparison of v ¼ 1�R�1

0 and [R]∞ in

Figure 5 Herd immunity. The gray region shows the fraction v > 1 −R�1
0 of the population that must be

immune to achieve herd immunity, as a function of R0. Such immunity could be conferred by vacci-
nation and/or by previous infection. For comparison, the orange line shows [R]∞, the number of folks
that will be infected over the course of an SIR epidemic without any vaccination.

Full-size DOI: 10.7717/peerj-pchem.14/fig-5
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Fig. 5 confirms that a significantly greater fraction of the population will be infected by
the disease if we let it run its course than would have needed vaccination to achieve herd
immunity. However, the most obvious benefit of the path S → R over S → I → R is avoidance
of disease-induced suffering and, possibly, death.

Conclusion: R0 is a useful tool
The dimensionless basic reproduction number R0 is a property of an infectious disease
within a population. The average frequency of contacts of an individual in the population,
the transmissibility of the disease, and the average duration of infectiousness are all
embedded in R0. In the SIR model, R0 influences whether or not the disease invades the
population, the initial exponential growth rate of infectious folks, how many are infected
over the course of the epidemic, the peak prevalence of infectious folks, and how many
must be vaccinated to achieve herd immunity.

Extensions to the SIR model
The SIR model is a very simple epidemic model, but we can extend it to model other
epidemiological factors and prevention/control measures by introducing:

Births, deaths and loss of immunity
To model infectious disease transmission over longer time scales, we can modify the SIR
model to account for births and deaths not caused by the disease by allowing flow into
the S compartment and flow out of all compartments, respectively. See Fig. 6A (top).
While Eqs. (1)–(3) resemble a dynamic model of a closed batch reactor carrying out
rxns. {1} and {2}, the modified SIR model with demographics resembles a dynamic model
of a continuously stirred tank reactor (Fogler, 2010): births are represented by a feed stream
of pure S flowing into the reactor, while deaths are represented by an effluent stream.
In addition, as opposed to assuming recovery from infection confers permanent immunity,
we can model temporary immunity by introducing an R → S reaction to represent loss of
immunity. Because births and the loss of immunity continuously add to the susceptible pool,
[I](t) in the SIR model with births, deaths, and loss of immunity can exhibit damped
oscillations that settle on an endemic equilibrium, where the disease remains in the
population indefinitely (i.e., [I] is maintained at a non-zero value). See Fig. 6A (bottom).
At an endemic equilibrium, the replacement number is maintained at one so that [I](t) is
neither increasing nor decreasing (Hethcote, 2000; Bjørnstad et al., 2020b; Earn, 2008).

Time-varying parameters
A time-varying transmission rate constant β = β(t) can model (voluntary or policy-
induced) changes in behavior during an epidemic that affect (i) the average frequency of
contacts of an individual in the population or (ii) the transmissibility of the disease.
Examples include staying home, social distancing, and taking hygiene measures (Fenichel
et al., 2011; Reluga, 2010; Bjørnstad et al., 2020a; Bootsma & Ferguson, 2007). A periodic
β(t) can model seasonality of an infectious disease (Fisman, 2007; Aron & Schwartz, 1984).
A time-varying recovery rate constant γ = γ(t) can model changes in the average time
period of infectiousness, for example, a reduction of γ−1 by administering a drug to
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infected patients (Bjørnstad et al., 2020a). Evolution of the pathogen could also cause β and
γ to change with time (Lion & Metz, 2018). Reducing the transmission rate constant β
and/or the average time period of infectiousness γ−1 reduces the replacement number r
(see Eq. (4)); if r is reduced below one, the prevalence of infectious folks will decrease.

Figure 6 Extensions to the SIR model. (A) Births and natural deaths (balanced, with rate constant µ)
are introduced to the SIR model through the flows in/out of the compartments denoted by the dashed
arrows (top). With births and deaths, the trajectory of the solution in the phase plane (bottom) shows
[I](t) can exhibit damped oscillations that settle on an endemic equilibrium (µ(µ + γ)−1 unrealistically
large to clearly see limt→∞[I](t) > 0) (Hethcote, 2000). (B) A simulation of the (stochastic) SIR con-
tinuous-time Markov chain model (Allen, 2017) for a small population of 50 individuals, with one initially
infectious. The state variables S, I and R are discrete counts of individuals in the compartments.
(C) Introducing additional compartments. For example, exposed individuals have been exposed to and
infected by the disease, but cannot yet transmit the disease, due to a latent period. Owing to control
measures, quarantined (Q) and isolated (J) individuals make contacts with a reduced frequency.
(D) Contact networkmodels. (top) Nodes represent individuals, and each is in the S, I, or R state. Edges, along
which disease transmission can occur, represent contacts. (bottom) The state changes of nodes in an SIR
contact network model (Kiss, Miller & Simon, 2017). Full-size DOI: 10.7717/peerj-pchem.14/fig-6
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Analogously, in chemical kinetics, time-varying reaction rate constants arise when the
temperature in the reactor changes with time (Fogler, 2010).

Stochasticity
As opposed to the deterministic differential Eqs. (1)–(3), we can introduce randomness
into the SIR model to account for the stochastic and uncertain nature of human interaction
and disease transmission (Allen, 2008, 2017; Britton, 2010). Stochastic epidemic models
aim to describe the probabilistic distribution of outcomes, for example, the distributions
of [R]∞ and maxt [I](t) (Allen, 2008; Britton, 2010). Stochasticity can be particularly
important to model for small populations and in the early stage of an epidemic, when there
are small numbers of infectious individuals (Britton, 2010). Analogously, when modeling
chemical reaction dynamics, if the reactants are not abundant, such as in a biological
cell, discreteness and stochasticity can be important to model (Erban, Chapman & Maini,
2007; Gillespie, Hellander & Petzold, 2013). See Fig. 6B for an example of a stochastic
simulation of the SIR model.

More realistic probabilistic distributions of the infectious time period
The probabilistic implication of first-order decay in Eq. (3) for a single infectious
individual is that their time period of infectiousness is an exponentially distributed random
variable with mean γ−1 (Brauer, 2008). More realistic probabilistic distributions of the
time period of infectiousness can be built into the SIR model (Hethcote & Tudor, 1980;
Lloyd, 2001). In the realm of biochemical kinetics, such non-exponential waiting times
could arise, for example, between gene transcription events, owing to several steps
involving transcription factors, cofactors, chromatin remodeling, etc. (Pedraza & Paulsson,
2008; Haberle & Stark, 2018).

Additional compartments
We can introduce additional compartments and further divide the population to (i)
account for heterogeneity in the population, (ii) model public health interventions, and
(iii) include other characteristics of the disease. Members of different compartments can
then have different contact patterns, transmissibilities, and/or recovery times. For example,
the SEQIJR model (Gumel et al., 2004) introduces three additional compartments:
Exposed (E), Quarantined (Q), and Isolated (J). Usually, the E compartment is included to
model the latent period of a disease; exposed individuals have been exposed to and infected
by the disease but are not yet infectious (Brauer, 2008; Martcheva, 2015b). The Q and J
compartments are included to model the control measures of quarantining exposed
individuals and isolating infectious individuals, respectively. Members of the Q and J
compartments contact other members of the population with reduced frequencies,
compared to those in the E and I compartments, respectively (Brauer, 2008). See Fig. 6C.
As another example, we can partition the infectious compartment into two distinct
categories of infectious folks: symptomatic and asymptomatic (Vivas-Barber,
Castillo-Chavez & Barany, 2014), which can have different frequencies of contacts,
transmissibilities, and recovery rates. Finally, to account for different mixing patterns
among different age groups (Brauer, 2008), age-structured compartmental models
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partition the S and I compartments into age cohorts. Notably, introducing additional
compartments to the SIR model is much like introducing additional reactive chemical
species into a chemical kinetics model.

Additional compartments complicate the derivation of the basic reproduction number
R0 from the model (Van den Driessche, 2017). Still, the peak prevalence of infectious folks
and final size of the epidemic increase with R0 in most models (Van den Driessche &
Watmough, 2008). Notably, a more precise definition ofR0 is needed if compartments are
introduced to account for heterogeneity in the population (Diekmann, Heesterbeek &
Metz, 1990).

Spatial heterogeneity

We can model spatial heterogeneity of an epidemic, that is, spatially-dependent [S], [I] and
[R], by treating space as discrete (Van den Driessche, 2008) or continuous (Martcheva,
2015a). Modeling the spatial movement of susceptible and infectious individuals in a
continuous space as a diffusive process results in reaction-diffusion equations (Martcheva,
2015a), also commonly used in the chemical sciences. Compartmental, epidemic models
of metapopulations allow travel between spatially segregated regions and resemble
models of multiple reactors connected with pipes that permit flow between them (Van den
Driessche, 2008; Arino et al., 2005; Balcan et al., 2010).

More detail/structure in the contact patterns
Network epidemiological models allow us to study how structure and heterogeneity in the
contact patterns within a population impact the dynamics of an epidemic (Kiss, Miller &
Simon, 2017; Bansal, Grenfell & Meyers, 2007; Keeling & Eames, 2005; Newman, 2002).
In a typical contact network model, each individual in a population is represented by a
node, and each interaction/contact between a pair of individuals is represented by an edge.
The state of an SIR network at a given time is specified by the disease status (S, I, or R)
of each node. The disease can be transmitted along an edge if one of the nodes is
infectious and the other is susceptible (Kiss, Miller & Simon, 2017) (See Fig. 6D).

The dynamics of disease transmission on a contact network depend significantly on the
structure of the network, for example, on its degree distribution, node clustering, and
correlations between the degrees of connected nodes (Bansal, Grenfell & Meyers, 2007).
Intuitively, the dynamics of an SIR model on large, static, random k-regular contact
networks (a random network where each node has k neighbors) closely approximate those
of Eqs. (1)–(3), which assume homogeneous mixing (Bansal, Grenfell & Meyers, 2007).
In contrast, the dynamics of SIR models on highly heterogeneous contact networks, such
as those with heavy-tailed degree distributions that capture “superspreaders” (Lloyd-Smith
et al., 2005; Meyers et al., 2005), deviate significantly from Eqs. (1)–(3).

Interestingly, directed networks can model asymmetric contacts that can only transmit
the disease one-way, such as donated blood transfusions (Keeling & Eames, 2005;
Allard et al., 2020).

A contact network model such as in Fig. 6D only implicitly accounts for spatial
heterogeneity. To more explicitly account for spatial heterogeneity, contact networks can
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be encoded as a dynamic, bipartite graph with two classes of nodes: individuals and
locations. Edges then connect individuals with locations, and disease transmission can
occur between people that are in the same location. (Eubank et al., 2004) Other
agent-based models are fully spatially explicit and track the location of individuals as they
move between households, schools, and workplaces (Ferguson et al., 2005). Notably, to
construct such contact network models, very detailed data is required (Ajelli et al., 2010).

Vectors that transmit the pathogen from host to host
Some infectious diseases are primarily transmitted from one host to another host by living
vectors that can acquire and carry the infectious agent. For example, mosquitoes can
acquire an infectious agent (e.g., the virus that causes dengue fever or the parasite that
causes malaria) from feeding on the blood of an infected human, then transmit the
infectious agent to another, susceptible human when feeding on their blood. SIR-like
models of diseases transmitted by vectors include an incidence term β [S][Iv], where [Iv] is
the concentration of infectious vectors and β includes the frequency that the vector bites
hosts and the probability of transmission conditioned upon a bite. (Martcheva, 2015c,
Smith et al., 2012).

CONCLUSIONS
Mathematical models of the dynamics of disease transmission are used to forecast
epidemics and assess mitigation strategies. We provided an exposition on the classic SIR
dynamic model of disease transmission and highlighted the analogy between disease
transmission and an autocatalytic reaction with catalyst deactivation. This analogy links
together the fields of chemical kinetic and epidemic modeling to enable knowledge
exchange between the two research communities. Moreover, the analogy could be the basis
for an engaging, experience-based approach to learning chemical kinetics in the classroom
(Sucre-Rosales et al., 2020) and illustrate how concepts in one field can transfer, aid
understanding, and generate insights to/in another field.
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