Predicting Personal Opinion on Future Events with Fingerprints
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Abstract

Predicting users’ opinions in their response to social events has important real-world applications,
many of which with political and social impacts. Existing approaches derive a population’s opin-
ion on a going event from large scores of user generated content. In certain scenarios, we may
not be able to acquire such content and thus cannot infer opinion on those emerging events. To
address this problem, we propose to explore opinion on unseen articles based on an user’s fin-
gerprinting: the prior reading and commenting history. This work presents a focused study on
modeling and leveraging fingerprinting techniques to predict a user’s future opinion to an unseen
event or topic. We introduce a recurrent neural network based model that integrates fingerprint-
ing. We collect a large dataset that consists of event-comment pairs from six news websites.
We evaluate the proposed model on this dataset. The results show substantial performance gains
demonstrating the effectiveness of our approach.

1 Introduction

Opinion mining and sentiment analysis has important applications with practical socio-political and eco-
nomical benefits. There are numerous examples of works that show applications of sentiment analysis
beyond classification. It can be used for analyzing political preferences of the electorate or for mining
sentiments and emotions of people who lived in the past. The goal of these studies is not only to recognize
sentiments, but also to understand how they were formed. All these approaches share the same starting
point: abundant availability of user-generated content (UGC), such as reviews and Twitter posts (Dave
et al., 2003; Hu and Liu, 2004; Pang and Lee, 2008; Pak and Paroubek, 2010; Liu, 2010; Taboada et
al., 2011; Liu, 2012; Zhu et al., 2011; Yang et al., 2016; Joulin et al., 2017). They focus on document
classification and predict sentiment, stance, subjectivity, or aspect.

The success of these methods relies on the assumption that people have already expressed their opinion
on a topic or event. However, we may not acquire those opinion if people are not willing to reveal them
or did not have the chance to express their opinions (e.g., about a new piece of legislature). Another
instance is the availability of biased content on the web. One cannot possibly read all the content on the
web and can only peruse a tiny part of the information, and people often read the content that is consistent
with their prior beliefs (Mullainathan and Shleifer, 2005; Xiang and Sarvary, 2007). As a result, existing
methods cannot deal with the situation when there is no user-generated content and might fail to collect
opinion on certain topics.

We aim to fill this gap. We propose to predict opinion about public events before people leave their
comments. We consider news articles as the description of events, because people usually check breaking
news about emerging events from news portals, micro-blogs, and social media (Di Crescenzo et al., 2017)
and leave comments. We predict the opinion of users on all events regardless of whether they have read
those articles. The key idea is to access the historical event-opinion pairs of users and learn about a user’s
fingerprinting, which we assume to be consistent over a period of time. We expect this fingerprinting
mwas done prior to joining Amazon.
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creativecommons.org/licenses/by/4.0/.



Event: Hillary Clinton reacts to controversial Trump retweet: *We need a real president’.
Comment: Actually Trump is still your president so don’t cry.

Event: Pelosi creates new House committee with subpoena power for coronavirus oversight.
Comment: Still your president. Btw Trumps polls are higher than 2016 so that is a win.

Table 1: An example of one’s historical event-comment pairs

Judges appear skeptical ...

e a, pr*
Article | Comment User v 1
Achivels 2043 812768 25474 =
DailyMail 21040 | 9374073 | 127419 i S-RNN LY
FoxNews 4675 | 15989665 | 78678 1
NewYorkTimes | 3647 | 2328597 | 52030 L) - [wrnn | woRnn
TheGuadian 6393 5467755 72904 c o a
WSIJ 8365 1822599 18600 This so-called judge ... Pelosi creates ...
Table 2: Data Description Figure 1: The illustration of our model.

to implicitly capture what a person has said about events and assist opinion mining on unseen articles.
For example, a user commented “still your president” for events about “Hillary Clinton” and “Pelosi”
as shown in Table 1, and we might expect this user to write similar comments on other events of the
Democratic Party, such as the candidacy of Elizabeth Warren to U.S. presidency.

Since there is no research directly addressing this problem, we collect event-comment pairs from six
websites: Archivels, DailyMail, FoxNews, NYTimes, TheGuardian, and WSJ. There are in total more
than 45K articles, 35M comments, and 376K users in this dataset. The overview of the dataset is given
in Table 2. Empirically, we quantify the concept of opinion by sentiment and subjectivity and apply
four methods for auto labeling. We propose an approach that takes two inputs: (i) a user identifier that
enables the system to access historical data; (ii) an event as reported by a news article. We evaluate four
baselines: three of them leverage the historical data and one baseline learns user embedding with neural
collaborative filtering (He et al., 2017). We further introduce a recurrent neural network model that
encodes a user’s reading and commenting history. Our experiment indicates that encoding user historical
data with recurrent neural network improves the performance of predicting sentiment and subjectivity on
unseen articles over these baselines.

2 Method

We describe the proposed model in this section. Assuming that among K users we are interested in
knowing the opinion of the user u; on a newly occurring event a7, and the user uy, has previously left n
article-comment pairs, i.e., [cy*, ..., ci] and [ag*, . .., al], we aim to model the prediction py" as the
opinion of the user on a future article a7*. An overview of the model is illustrated in Figure 1.

Since recurrent neural network architecture has achieved the state-of-the-art results on encoding se-
quences, we build our model using RNN for both words and the user history. Specifically, we leverage
two GRUs (Cho et al., 2014) instead of LSTM (Hochreiter and Schmidhuber, 1997) because the former

has fewer parameters. The first GRU, denoted as W-RNN in Figure 1 for modeling Words, encodes

events and comments into fixed-length vectors, i.e, [hg™™*, ..., hy**], [hg™", ... hy"*], and h:**. The
second GRU, denoted as S-RNN in Figure 1 for modeling the Sequence of history, takes as the input
the concatenation of prior events and comments, i.e, [[hy™*; hy“*], ..., [hy™*; hy"*]] where [;] means

concatenation, and outputs the user’s fingerprint embedding h/*. Finally, we give the concatenation of
the fingerprinting embedding and the current event embedding, i.e., [h/"*; h7:"*], to a one layer feed-
forward network, which is denoted as MLP in Figure 1. This MLP outputs the final prediction with a
softmax activation function.



User uy;’s history: Train Valid Test
« | I I

Uk
o

U U U Uy Uy ug ug
, Ar_pCr—p QAr_p,Cr—y  Ar,Cp

Figure 2: Data split
3 Experiments

We describe the experimental setup in this section. We first explain how we process the dataset. Then
we detail the baselines and present the results.

3.1 Data Preparation

News articles were randomly collected from Achivels, DailyMail, FoxNews, New YorkTimes, TheGua-
dian, and WSJ. We remove users if they have less than ten comments and then we remove articles that
the remaining users have not commented. We have manually checked a subset of articles and their com-
ments, and find that irrelevant comments are few enough to ignore. We split the training, validation,
and test as in Figure 2. Suppose in the past 7' time user u; contributed a sequence of article-comment
pairs, we use the most recent article a;’c as the unseen article for test and aéﬁ“_ , as the unseen article for
validation, so that their corresponding comments (opinion) are not viewed during the training. For the
training set [a1, c1, . .., ar—2, cr—2|, each article is used as the unseen article to form a training instance.
Given the user and an unseen article, we include previous m article-comment pairs as the historical data
to model the user fingerprint, and we assume that users have consistent views and stance on the same
event within these m pairs . Thus, the numbers of examples in the test set and the validation set are equal
to the user number U, and the number of training examples is equal to U * (T' — 2).

The opinion expressed in the comments are hard for evaluation, so we quantify the concept of opinion
by sentiment polarity and subjectivity. Given the volume of our dataset, it would be inefficient to conduct
manual annotation. We apply four methods, including Vader (Hutto and Gilbert, 2014), Flair (Akbik et
al., 2019), BlobText sentiment, and BlobText subjectivity (Loria et al., 2014), to automatically label all
comments. Vader is a rule-based model for general sentiment analysis. It is constructed from a general-
izable, valence-based, human-curated gold standard sentiment lexicon. When assessing the sentiment of
tweets, Vader outperforms individual human raters (Hutto and Gilbert, 2014). Flair presents a unified
interface for all word embeddings and supports methods for producing vector representation of entire
documents. We use the Flair pretrained classification model for sentiment labels. The model is trained
on the IMDB dataset and has 90.54 micro F1 score. Flair predicts either positive or negative. BlobText
is a simple rule-based API for sentiment analysis. It has both sentiment model and subjectivity model,
and we refer them Bsent, Bsubj in Table 3, respectively. We cast the real value prediction to categorical
value by comparing with a threshold. For example, Vader predicts the sentiment between -1 and 1, and
we take the threshold of zero.

Notably, we do not consider stance prediction because some websites might have a clear political ori-
entation, e.g., the FoxNews favors the Republican Party, and their readers and comments reveal a similar
trend. Nevertheless, we do not restrict sentiment and subjectivity in our task. For example, we can also
predict one’s emotional reaction about unseen articles (Bostan and Klinger, 2018), which we will explore
in future shortly. Essentially, we argue that the proposed task requires models to effectively capture the
fingerprinting of users based on what they have read and commented, so that we can generalize one’s
history to predict their opinion on unseen events.

To validate that the automatic annotation gives reasonable labels, we perform standard document clas-
sification on these labels with a RNN classifier and report micro F1 in Table 3, which we denoted as
Oracle. According to the result, labeling with rule-based methods (Vader and BlobText) gives a better
performance than pre-trained neural network model Flair. The reason could be that rule-based methods
provide less noise: they will label an instance neutral if no sentiment lexicon is found. It is worthwhile
to note that the performance of the oracle is consistent across a variety of news sites yielding confidence
on the labels that we use to evaluate our model.



Vader Flair Bsent Bsubj || Vader Flair Bsent Bsubj || Vader Flair Bsent Bsubj

Archivels DailyMail FoxNews
Oracle 84.04 6938 87.12 8628 || 9239 7511 95.17 9534 || 90.50 72.60 93.53 93.64
UF 49.87 50.17 45.69 5053 || 44.61 51.85 3721 51.20 || 4648 5251 39.00 50.24

A-tfidf 48.78 5096 44.69 49.64 || 42.08 51.55 3638 49.14 || 44.05 52.14 3838 49.59
A-BERT | 4795 50.72 44.68 49.85 || 4191 51.12 3622 4928 || 4390 52.11 3798 4954

CF 5222 5235 4893 39.19 46.63 51.89 37.75 41.78 45.15 5254 39.10 3598

FPE 5272 5228 4991 5221 4693 5470 41.38 52.07 46.82 5392 4209 52.64
TheGuardian WSJ New YorkTimes

Oracle 87.18 73.21 90.64 89.86 83.47 68.84 86.07 85.84 85.78 70.73 89.16 89.16

UF 46.88 5191 4376 49.48 4799 50.88 44.22 50.19 4947 51.05 4557 50.52

A-tfidf 4492 5219 4382 4786 || 46.50 51.66 43.87 4929 || 4793 5096 45.00 49.63
A-BERT | 4452 51.58 4322 47.80 || 4635 50.69 4334 4925 || 4734 5134 4453 4953
CF 48.88 53.22 4283 3857 || 49.74 53.03 4340 4251 5036  51.73 4446 35.17
FPE 49.51 5485 46.17 5084 || 51.09 5374 4511 51.67 || 54.12 5322 47.68 5299

Table 3: The results of our experiment. Bsent: BlobText Sentiment; Bsubj: BlobText Subjectivity

3.2 Baselines and Implementation

We evaluate four baselines to compare. UF: we retrieve the most frequent opinion from one’s history
and use it as the opinion of an unseen article. A-tfidf: we compare the cosine distance between the
unseen article and one’s reading history and extract the opinion of the most similar article as the opinion
of the unseen article. We use TF-IDF to represent each article after we remove stop words. A-BERT: it
also compares the similarity between the unseen article and one’s reading history, but adopts pre-trained
BERT (Devlin et al., 2018) for representation. CF': this baseline uses neural collaborative filtering (He
et al., 2017), which has been well applied for recommendation system. In our task, we still use GRU to
encode the unseen article but replace the fingerprint embedding with a learnable user embedding.

We denote the proposed method FPE, short for FingerPrint Embedding. We implement the model
with the Pytorch package. We arbitrarily set each instance to access at most 14 previous article-comment
pairs. In all cases, the size of hidden dimension is 256. We use the Adam optimizer (Kingma and
Ba, 2015) with a fixed learning rate of 0.001. We apply dropouts with a fixed probability of 0.2. We
further apply BPEmb to process documents and utilize the pretrained 300 dimension sub-word embed-
dings (Heinzerling and Strube, 2018). We train CF and FPE for 16 epochs and save the model based
on the micro F1 score of the validation set. The best model is usually achieved around five epochs. The
code is released at: https://github.com/fYYw/fingerprinting.

3.3 Results and Discussion

We report the micro F1 score in Table 3. All the results are acquired by using the best model on the
test set. From Table 3, we first observe that all the evaluated methods suffer a large performance drop
compared to the oracle setting. This means that the task of predicting the opinion on unseen events is
challenging. Note that the “oracle” directly uses responses, so it is not predicting future opinion from
past history. We view the oracle as a quality check to ensure labels are correct. How to effectively model
the fingerprint of a user and generalize one’s history to future event will require more investigation.
Nevertheless, even on such a hard task, the FPE model outperforms UF, A-tfidf, and A-BERT on
all labels. This is important because automatic labeling may bring noise on individual labels while
considering four labeling schemas together makes better sense. The improvement indicates that using
RNN can better leverage one’s reading and commenting history, and therefore creates the fingerprint of
a user more generalized on unseen events than other methods. Because previous works also suggest that
the recurrent neural network can effectively track one’s sequential actions (Tan et al., 2016; Pei et al.,
2017; Zhu et al., 2017; Beutel et al., 2018), we conclude that the recurrent architecture is the reason for
improvements. Comparing FPE with CF, we see that FPE consistently outperforms CF except a small
drop with the Flair score on Archivels. Since the only difference between FPE and CF is whether or
not we encode the user historical data, we conclude that historical event-comment pairs carry valuable
information to build one’s fingerprint embedding and therefore benefit prediction on unseen articles.
We also observe that A-BERT does not perform well, possibly because there is no fine-tuning step on



the pretrained BERT model. Another choice is to replace BERT with Sentence-BERT (Reimers and
Gurevych, 2019) for semantic textual similarity, which could improve A-BERT due to a better sentence
embeddings.

4 Conclusion

In this work, we introduce a new task that predicts opinion on unseen events based on one’s reading and
commenting history. We design a recurrent neural network based model to encode the historical data and
use the fingerprint embedding to obtain opinion on new articles. Experiments on our newly collected
dataset show that leveraging recurrent neural network and one’s historical data gives better performance
that four used baselines. We believe that the proposed novel problem setting lays the foundation for a
variety of more rigorous works to fully explore how to learn and generalize user fingerprints. In the
future, we plan to quantify one’s comment with more dimensions, such as emotion, and predict them on
unseen events. We argue that a successful model would effectively leverage one’s fingerprinting, and it
is worthwhile to investigate different architectures for this task.
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