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Role of Memristive Device Variability in Governing
the Accuracy and Conversion Time of Machine

Learning Algorithms on Neuromorphic Hardware
Andrew J. Ford, Member, IEEE, and Rashmi Jha, Member, IEEE

Abstract—A vital issue regarding hardware implementations of
machine learning algorithms with novel memristive devices is the
concern of the proposed architecture’s resilience to high device
variability. We find that most algorithms have surprisingly high
tolerance to variable weight updates and initializations. We also
propose a simple method of quantifying the maximum variability
an algorithm can handle without suffering loss of accuracy or
increased training time. Finally, we show high level simulations
of an RRAM cell with intermediate states, decay, and Gaussian
variability.

Index Terms—Memristive, RRAM, Device, Variability, Neuro-
morphic

I. INTRODUCTION

With rise in Artificial Intelligence (AI) and Machine Learn-
ing (ML), neuromorphic architecture designs with memris-
tive crossbar arrays have caught significant research attention
[1]. This is because memristive devices, due to their non-
volatile reconfigurable states with low programming volt-
ages, offer tremendous opportunities for in-memory comput-
ing that addresses the memory bandwidth bottleneck faced
by other computing architectures. However, when designing
novel architectures implemented with memristive devices, it
becomes clear that tolerance to device variability is not a
recommendation; rather, it is a requirement of the research.
In comparison with other traditional memory devices, these
devices face the obstacle of matching the increasing read
and write precision which entails substantial research and
development. A natural inclination for designers might be
to choose accurate memory write operations with a sacrifice
regarding increased area, power consumption, or minimum
operational frequency accompanying flash or SRAM relative
to variable memristive devices. However, our findings indicate
that the choice may not be so straightforward, and that the
ML algorithms are quite tolerant to variability in states during
read and write operations performed on these devices. In
spite of numerous work reporting neuromorphic architectures
with memristive crossbar arrays, a detailed study on accept-
able variability on memristive devices for successful design,
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Fig. 1. Normal distribution created by the Gaussian function. (Figure from
[1])

verification, and validation of neuromorphic systems design
around memristive crossbar arrays is lacking. Due to this gap
in the knowledgebase it is difficult to develop the verification
and validation techniques on for these hardware designs. In
this paper, we report our studies on the impact of variability
in memristive devices on accuracy and conversion time for
ML algorithms implemented on neuromorphic architectures
implemented using memristive crossbar arrays. We also pro-
pose that ML accuracy vs. conversion time on benchmarking
datasets, such as, MNIST [2], can also be used as successful
validation technique of the neuromorphic hardware designs
using memristive crossbar arrays.

II. SIMULATION PLATFORM SETUP

During the domain specific neuromorphic hardware designs,
various levels of abstractions are used based on design com-
plexities and verifications are performed accordingly. Often,
novel neuromorphic hardware architectures are first simulated
at high level in languages like C++, MATLAB, or Python.
To demonstrate the impacts of device variability in high level
simulations, we chose to write a Single Layer Perceptron
(SLP) in Python training against the popular MNIST dataset
of handwritten numerical digits. The training and validation
datesets were untouched, and left to 60,000 and 10,000 digits,
respectively. In order to keep each trial comparable to other
trials, the training and testing sets are not shuffled.

A. Representing Device Variability

Variability in resistive states of the device was simulated
according to a normal function, shown in Fig. 1. The normal
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Fig. 2. SLP neuron diagram. bn is the neuron’s bias. yn is the sum of the
previous layer’s weighted outputs calculated in eq. (3). zn is the activation
of yn calculated in eq. (4).

distribution is modeled by the Gaussian function, shown in
Eq. (1):

f(x) =
1√
2πσ2

e−
1
2 (
x−µ
σ )2 (1)

The plot in Fig. 1 was created by selecting x values and
computing the corresponding f(x) values. The most likely
f(x) value to occur after variability is applied is f(µ),
where µ is the ideal weight value, and f(µ) decreases as σ
increases. In order to simulate random variability, we need to
work backward from this. By randomly selecting f(x) values
ranging from 0 ≤ f(x) ≤ f(µ), we can calculate x values
using Eq. (2):

x = µ± σ
√

2 ln(
1

f(x)σ
√
2π

) (2)

This process is applied in python simulations and referred to
as N(µ, σ).

B. Network Properties

The MNIST handwritten digit dataset was chosen for its
popularity as a benchmarking algorithm for evaluating ma-
chine learning algorithms. Static learning rates which provide
the reliably highest accuracies for the SLP will contribute
to the weight updates according to the Stochastic Gradient
Descent (SGD) algorithm via backpropagation. [3]

C. SLP Neuron Properties

A diagram of a layered perceptron neuron is shown in Fig.
2. During testing, each neuron propagates forward through the
network according to eq. (3).

yn = bn +

I∑
i=0

xi · wi (3)

bn represents the individual neuron’s bias, initialized randomly
between -1 and 1 pre-training. xi represents an element of
the input vector (in this case, one pixel of an incoming

MNIST digit). wi represents each neurons coefficient which
corresponds to a certain input element of an incoming input
vector (in this case, the coefficient aligning with one MNIST
input pixel, or the output value zn from a previous layer in
the case of a Multi-Layer Perceptron). Each neuron activates
according to the sigmoidal activation function in eq. (4).

zn =
1

1 + e−yn
(4)

The cost function used for the layered perceptron networks
was the Mean Squared Error (MSE) function in Eq. (5).

MSE =
N∑

n=0

1

2
(idealn − zn)2 (5)

During training, eq. (5) is used to calculate the error of the
previous layer, Using Stochastic Gradient Descent (SGD), we
can minimize the cost function by computing its gradient set
to 0 in eq. (6).

∇MSE = 0 (6)

This leads us to the partial derivatives in eq. (7).

A :
∂MSE

∂zn
= zn − idealn

B :
∂zn
∂yn

= zn(1− zn)

C :
∂yn
∂wi

= xi

(7)

These partial derivatives contribute to the outer layer’s weight
update algorithm in eq. (8).

wnew
i = wold

i − α ·A ·B · C
bnewi = boldi − α ·A ·B

(8)

Hidden neuron weight and bias updates in Multi-Layer Per-
ceptrons (MLPs) can be calculated with eq. (9), but was not
studied for the scope of this work.

wnew
i = wold

i − α · (
N∑

n=0

An ·Bn · wn) · (zn(1− zn)) · xi

bnewi = boldi − α · (
N∑

n=0

An ·Bn · wn) · (zn(1− zn))

(9)

Finally, the process described in Section II. A. can be applied
to weight updates to simulate device variability in eq. (10).

wnew
i = N(wnew

i , σ)

bnewi = N(bnewi , σ)
(10)

The σ found in eq. (10) is increased to simulate higher device
variability, and decrease to simulate a device with more precise
behavior, as is shown in (REFERENCE FIGURE).

D. Learning Rates

The static learning rate which, in the case of layered percep-
trons, controls many aspects of backpropagation via stochastic
gradient descent, can be different depending on a number of
factors. Without diving deep into dataset characteristics and
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Fig. 3. Impact of σ during a weight request of 0.5. At the most extreme,
σ = 0.5, which results in weights occurring anywhere between the upper
and lower bounds. A more realistic σ value, being σ = 0.1. This variability
will cause the majority of new weight value update requests of 0.5 to occur
between the values of 0.47 and 0.53.

Fig. 4. Impact of learning rate on a SLP. Ideal learning rate was found to be
α = 0.1, which reached and consistently held accuracies above 90% quickly
without over-training.

number of hidden layers and neurons, the learning rate is not
the same for every application or network. For the purpose of
device variability, it is not vital that the learning rate achieve
a high peak accuracy; the learning rate should be chosen such
that the network can reliably train to desired values. The trials
to determine the ideal SLP learning rate can be found in Fig.
4. From Fig. 4, the ideal learning rate was found to be 0.1 for
the SLP. Currently, the constraints of this particular experiment
include 60,000 MNIST training inputs, and in the interest of
minimizing trial time, only 10 epochs being run per trial, with
a total of 600,000 iterations of training per trial. This same
process could be used for any machine learning algorithm.

E. Successful vs. Unsuccessful Training

Given the constraints of 600,000 iterations during training
and a static learning rate of α = 0.1 for the SLP, it is also
important to determine what constitutes a successful trial. In
Fig. 5, 50 trials were run with our static learning rate. It is
clear that these values range fairly wildly, depending on which
randomized values the weights are set to. Since all trials in
Fig. 5 were deemed successful, we can conservatively say that
any SLP trial which achieves and maintains at least 70%
accuracy within the third epoch (180,000th iteration) of
training is successful. It is important to note that using an
SLP for MNIST is not ideal - and far greater accuracies have
been achieved much more reliably with with MLPs [4]. The
SLP, however, is desirable for our purposes since it does not
achieve 99%+ accuracies with ease, and as a result, any poor
performances will be easily noticed.

Fig. 5. Baseline variability from highly precise weight updates using Python’s
float variables. 50 trials run on an SLP with a learning rate of α = 0.1
determined from Fig. 4.

Fig. 6. SLP behavior when subjected to weight initialization variability
depicted in eq. (10). Legend shows the variability in the form of σ.

III. RESULTS

In neuromorphic hardware, memristive devices are used
to represent the weights, therefore, device variability will
manifest itself as variabilities in “weight” on NN. There were
three phases of results in which the impact of device states
variability on the SLP was assessed: weight initialization,
weight update, and combined weight initialization and update.

A. Variability in Weight Initialization

The results of 10 trials of an SLP with a learning rate of α =
0.1 where the weight and bias initializations were subjected
to a Gaussian function to simulate device variability is shown
in Fig. 6. An important consideration here is the behavior at
boundary extremes. In the case of layered perceptrons, weights
are initialized between -1 and 1. Take a weight initialization
request of w0 = 0.98. In a device with high variability, there
is a reasonable change that the device may cause the actual
weight to be set to w0 = 1.03. Since weights need to vary
between -1 and 1, upper and lower caps are necessary. This
means that the initialized weights may not exceed w0 = 1, and
may not be below w0 = −1. In this example, a weight request
of w0 = 0.98 is quite likely to exceed the upper bound, and
be set to w0 = 1. As seen in Fig. 6, too many weight values
residing at their boundary extremes results in a substantial
delay in the time required to constitute a successfully trained
trial, in the cases of σ = 0.5 and σ = 0.05. However, all
weight initializations with σ ≤ 0.01 were uninhibited by their
device variability. When comparing Fig. 6 to Fig. 4, there is a
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Fig. 7. Accuracy of a SLP with variability in weight updates. Legend shows
the variability in the form of σ.

Fig. 8. Accuracy of a SLP with variability in weight updates and initializa-
tions.

noticeable delay at the beginning of training, likely resulting
from behavior at the initialization boundary extremes.

B. Variability in Weight Updates

A phase heavily impacted by device variability would be
weight updates during training. Results from 10 trials of an
SLP with a static learning rate of α = 0.1 and a variation
in σ are shown in Fig. 7. The weight update phase is where
variability has the most impact. From Fig. 10, all trials with
σ < 0.01 were considered passing. However, σ = 0.05 did
not show signs of improving above 80% accuracy, and this
should be an absolute worst case amount of variability.

C. Combined Variability in Weight Initialization and Updates

The properties of the other two phases become most clear
when combined and compared to their individual results. From
Fig. 8, many aspects from the inclusion of device variability
are noticeable. The delay introduced in training time from the
weight initialization phase in Fig. 6 is present. Beyond that,
it becomes clear that past the first epoch, the weight update
phase (Fig. 10) becomes the dominant hindrance to the SLP
training when too much device variability is present. However,
as with the weight update phase, the only failures in training
occured with variability of σ ≤ 0.005. Again, the variability
of σ = 0.005 did not show signs of surpassing 80% accuracy.

D. Variability in Offloaded Weights

In the case of an inferencing processor, the novel devices
with higher variability may be utilized solely offline relative to
the training device. For instance, a fleet of GPUs may be used

Fig. 9. Accuracy of a SLP with variability in weight and bias offloading
from GPUs to an inferencing processor. Only trial to fail was σ = 0.5. When
compared to Fig. 8, the tolerance to variability is extremely high, since the
weight update and initialization phases are allowed to utilize high precision
during weight updates.

Fig. 10. Memristive RRAM implementation of a SLP. Part a.) shows a very
high level SLP diagram, where 3 blue inputs are fully connected via the gray
lines to 2 orange neurons. Part b.) shows 3 blue input voltages, encoded as
currents as they route through the memristors, fully connected to the output
neurons shown in orange.

to hone in on the ideal weight values, and those weight values
could be copied over to a low-power high-speed inferencing
processor, with no training capabilities. Fig. 9 shows how
tolerant a single layer perceptron is to device variability during
the offloading process from GPUs to a memristive processor.

IV. GATED RRAM: AN EXAMPLE

To offer a more realistic explanation and application of our
machine learning tolerance to device variability, a SLP which
uses Short-Term Memory (STM) and Long-Term Memory
(LTM) Resistive Random Access Memory (RRAM) was also
studied [8]. Fig. 10 shows the memristive array implementa-
tion of RRAM cells (part b.) of a single layer perceptron (part
a.).

A. STM vs. LTM RRAM

Recently, research has been presented on STM and LTM
RRAM which offers the opportunity to rely on a transferrance
of weights from a training to a testing phase [5]. While
RRAM is easy to use, quick, and low power, it has unique
decay characteristics that could be viewed as worrisome for
a designer looking to utilize RRAM in a machine learning
processor. These decay properties can be seen in Fig. 11. When
a weight value in an RRAM cell is set to a value of 1, it decays
towards 0 constantly. It decays quickest at the beginning, and
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Fig. 11. Simulated exponential decay of an RRAM cell set to produce
a weight value of 1. The x-axis shows the number of iterations, which
corresponds to 10 epochs of MNIST training. The legend contains the percent
of the weight preserved after one iteration. A decay value of 95% means that
after one iteration, a weight value of 1 will become 0.95.

Fig. 12. Weight behavior inside and outside of an RRAM intermediate states.
It decays quickly outside of the intermediate state window, and slowly when
inside. Whether the weights have a negative or positive magnitude, they will
decay towards 0 asymptotically. In this figure, this would represent 22 = 4
intermediate states, at 1, 0.33, -0.33, and -1.

approaches 0 asymptotically. Testing and experiments have
shown that decay can be modeled exponenetially [6]. Fig. 11
uses an exponential decay, where each iteration sees a weight
decay of a certain value (95%, 99.5%, 99.95%, etc.) times the
current weight.
Along with decay, it is important to model intermediate states.
There are a varying number of intermediate states in an RRAM
cell [7], usually 2n. When an RRAM cell is set to one of
these intermediate states, the decay rate becomes significantly
smaller, as is shown in Fig. 12. In theory, there is zero decay
when using these states. In reality, a small amount of decay is
present. For our applications, the LTM RRAM will primarily
reside in the intermediate states, and the STM will be modeled
by an average rate of decay.

Another important consideration is the type of RRAM’s
specific decay rate. STM RRAM cells offer low power con-
sumption rates at high operating frequencies, and prove ideal
for training, since it should occur so quickly. Once weight
values converge to values which yield a high network accuracy,
the STM will continue to decay at a relatively rapid rate.
These training weights could be offloaded to a different part
of the processor into LTM RRAM cells, which will not
decay quickly, and have a sufficient number of intermediate
states which will not hinder the network’s ability to classify
accurately.

Fig. 13. Minimum number of intermediate states required in which the
classification accuracy of an SLP is not inhibited. Dashed lines show the
lowest performing trials. The exception was 512 states, which took longer to
converge, but still reached satisfiable accuracy levels. Within completion of
the 4th epoch, 512 states converges on classification values higher than any
other, which implies it likely had to do with unlucky weight randomization,
resulting in delayed convergence.

B. Intermediate States and Accuracy
In an examination of the behavior of the SLP with RRAM’s

high level characteristics, including device variability, an im-
portant first step is to determine the minimum number of
required minimum states which the LTM testing portion of
a processor would require without harming the SLP’s classi-
fication accuracy. All parameters from the previous sections
were used, and the results for 2n states are shown in Fig. 13,
where 1 ≤ n ≤ 10. We find that any trial with more than
n = 23 = 8 intermediate testing states is sufficient for this
particular algorithm. n = 23 intermediate states still classified
fairly accurately, but may be too volatile for some applications.

C. Realistic Intermediate Decay
In theory, there is no decay when RRAM cells are conduct-

ing in one of their intermediate states. In practice, there is
still some decay, but not quite as much as when it is between
intermediate states.
The testing phase realistically proceed as follows:

1) Offload weights from STM to LTM, which sets RRAM
cells to their intermediate states

2) Between each testing inference, weight values decay
slowly away from their intermediate states towards 0

Since testing is done in LTM, the RRAM cells do not decay
quickly enough for the weight values to leave their interme-
diate state windows. On the contrary, the training process is
different and more difficult to simulate:

1) Ideally, train continuously, testing in parallel as needed
2) If parallelized testing/training is not feasible, then keep

testing sessions as quick as possible, so STM weights
do not decay

3) With a forced potentiation and depression model, the
decay is rapid enough that an average decay constant
can be implemented. The idea here is that weight updates
are so frequent that STM RRAM doesn’t have any time
to decay substantially enough to have any impact on
training quality

With the testing and training intermediate states and decay
implemented, a few trials with variable decay were run and
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Fig. 14. SLP behavior when 32 intermediate states are implemented with
decay. STM decay is shown in the legend, and LTM decay is one tenth of
STM decay. The only trials to fail in this case were 95% STM decay between
iterations and 99.5% STM decay between iterations. The dashed lines indicate
failures.

Fig. 15. The classification accuracy of a SLP behaving as though its weights
are comprised of gated STM and LTM RRAM. 32 intermediate states are used,
with 99.95% decay during training, and 99.995% decay during inferencing.
Dashed lines indicate failed trials, which fell below 70% accuracy after the
third epoch of training.

are compiled in the plot in Fig. 14. Given that the only 2 trials
to fail had decay rates of 95% STM decay between iterations
(99.5% LTM) and 99.5% STM decay (99.95% LTM), this is
very promising with only 32 intermediate testing states.

D. Results

In an effort to simulate a gated RRAM SLP at high level,
we attempt to demonstrate proof of concept by offering a
quantifiable tolerances to device variability, intermediate states
for weights, and memristive device decay, both from STM
and LTM. The results for 32 states are shown in Fig. 15. The
amount of space between the weights here is not trivial; each
weight must occupy a value what cannot fall below a resolu-
tion of 0.0625. 32-bit precision. With a typical 32-bit floating
point number, 23 bits are used to represent whole numbers, and
8 bits for the decimal points. That is an astounding 0.00000001
resolution! Having 8 bit decimal resolution low may not hinder
the classification accuracy of the SLP, however, it implies more
computing time and power consumption would be required. As
seen in Fig. 15, 32 intermediate states and a substantial amount
of decay, and variability of σ ≤ 0.01, the SLP was able to
successful classify MNIST with a mean of 80% accuracy.
A slight improvement in mitigating decay, as well as increas-
ing the number of states from 32 to 64, yeilds the results in
Fig. 16. .

Fig. 16. SLP behavior with 99.5% STM decay, 99.95% LTM decay, 64
intermediate states, and varied device variability. Small developments reducing
decay and intermediate states improve the SLP’s resistance to high device
variability.

V. CONCLUSIONS

Device variability is a major consideration each time a
new electrical component is created. As time goes on and
the devices can be improved, variability and decay rates can
all be reduced, but that is not guaranteed. However, rather
than ignore devices with a noticeable device variability, it is
worthwhile to analyze a machine learning algorithm’s toler-
ance to device variability. Modeling the devices by subjecting
the weights to a Gaussian variability is useful to understand
how much variability the algorithm is capable of withstanding
without sacrificing accuracy. As an example, a SLP was
analyzed with a varying σ. With too high of a variability, the
accuracy fell below 70%. However, once σ fell below 0.01, the
SLP performed uninhibited. To further illustrate the benefits
of examining device variability, the SLP was adapted to mimic
the behavior that STM and LTM RRAM. It was simulated with
intermediate states, memristive decay, and device variability.
The SLP was still able to converge to reliably classify MNIST
with 80% accuracy. It was simulated with 32 states, a high
rate of decay, and substantial device variability. When lower
power consumption, higher operating speeds, and other posi-
tive aspects are available for consideration, it is worthwhile to
examine the algorithm’s resilience before prioritizing precise
weight updates.
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