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Abstract

Inspired by new technologies to monitor parking occupancy and process market
signals, we aim to expand the application of demand-responsive pricing in the parking
industry. Based on a graphical Hotelling model wherein each garage has information for
its incoming parking demand, we consider a general competitive spatial pricing in park-
ing systems under asymmetric information structure. We focus on the impact of urban
network structure on the incentive of information sharing. Our analyses suggest that
the garages are always better off in a circular-networked city, while they could be worse
off in the suburbs of a star-networked city. Nevertheless, the overall revenue for garages
is improved and the aggregate congestion is reduced under information sharing. Our re-
sults also suggest that information sharing helps garages further exploit the customers
who in turn become worse-off. Therefore, policy-makers should carefully evaluate their
transportation data policy since impacts on the service-providers and the customers
are typically conflicting. Using the SFpark data, we empirically confirmed the value
of information sharing. In particular, garages with higher price-demand elasticity and
lower demand variance tend to enjoy larger benefits via information sharing. These
insights support the joint design of parking rates structure and information systems.
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1 Introduction

Parking is an important industry overlooked by the revenue management community. It

is estimated that revenue from parking in the US alone will increase from $25 billion in

2017 to nearly $29 billion by 2018 (Zanona, 2016). The recent development in technologies

enables new pricing instruments in the parking industry, which can potentially reshape the

market and contribute to smart parking. Price instruments make it possible to shift parking

demand spatially and temporally. Many city municipalities have pioneered the “demand-

responsive pricing”. New York City’s PARK Smart varies parking prices depending on the

time of day. San Francisco’s SFpark program was launched in 2011. They coined the so-

called “performance-based rates”, in which parking prices increase or decrease depending on

garages’ occupancy. The complexity of this system is surpassed by Berkeley’s GoBerkeley,

in which parking prices vary by time of the day, location, and even duration.

The essence of these parking instruments is to comprehend “market signals” from avail-

able demand information. Motivated by this idea, we focus on the transmission and pro-

cessing of market signals in the parking market. For example, a parking data analytics

company, Smarking, has been building information systems for garage owners. Keeping

track of occupancy data, Smarking helps garage owners predict parking demand by shar-

ing and analyzing historical data. Since the success of Smarking relies crucially on garage

owners’ willingness to open their data, a natural question arises: what are garage owners’

incentives for information sharing? Besides, how does such information sharing affect the

parking industry in general?

In this paper, we establish quantitative methods to address these questions. We con-

sider the pricing competition among parking garages and investigate how an information

service provider can be a game-changer by coordinating their pricing strategies through in-

formation sharing. We extract the demand structure from the Hotelling model (Hotelling,

1929) and incorporate uncertainties. Since garages have different information accesses to

the demand uncertainties, they engage in price competition with incomplete information.
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Each garage chooses a parking rate to maximize her conditional expected payoff and they

reach a Bayesian-Nash equilibrium. However, the equilibrium payoff is changed if they

opt to share their private information in advance. Our analysis reveals that information

sharing produces win-win outcomes for all participants in most cases.

The contributions of this paper are as follows. We expand the application of infor-

mation management in the parking industry, which contributes to a crucial part of the

general framework of smart cities. We establish a game-theoretic framework to analyze the

influence of information sharing among competing urban garages. We focus on the impact

of urban network structure on the incentive of information sharing: while the garages are

always better off in a circular city, they could be worse off in the suburbs of a star city.

Through the graph Laplacian matrix, we isolate the effect of network structure and analyze

how the uncertainties in the intrinsic parking utility propagate. As a result of informa-

tion sharing, the overall revenue for garages is improved and the aggregate congestion is

reduced. However, our results also suggest that information sharing helps garages further

exploit the customers who in turn become worse-off. Therefore, policy-makers should care-

fully evaluate their transportation data policy since impacts on the service-providers and

the customers are typically conflicting. We empirically confirmed the value of information

sharing through a case study using the SFpark data. In particular, garages with higher

price-demand elasticity and lower demand variance tend to enjoy larger benefits via in-

formation sharing. These insights support the joint design of parking rates structure and

information systems.

Section 2 reviews relevant literature. In Section 3, we introduce the Hotelling model

setup and the parking price competition and derive its Bayesian-Nash equilibrium. In

Section 4, we analyze the impact of information sharing under two typical graph structures.

In Section 5, we apply our model on the SFpark data to show the potential benefit from

information sharing in reality. Section 6 concludes the paper. In the online supplement

materials, we present model extensions and mathematical proofs.
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2 Literature review

The Hotelling model on networks has a long tradition in economics literature, e.g., Sa-

lop (1979) and Eiselt and Laporte (1993). Recent interests are emerging in extending

Hotelling’s model of price competition to a general graph, e.g., Heijnen and Soetevent

(2018). Our model is most closely related to service pricing in Hotelling models. Xu et al.

(2016) study the pricing in Hotelling queue with flexible customers. Yang et al. (2014)

present a duopoly waiting-time competition model based on a hub-spoke Hotelling queue-

ing network. Our model is also related to spatial pricing in OM literature, e.g., He et al.

(2017) and Bimpikis et al. (2019).

In terms of information sharing, our paper is closest to Liao et al. (2019), wherein

information sharing decisions are made in a Hotelling market. Our model is a mirrored

version such that the producers are distributed on the Hotelling line therein, instead of the

consumers in our model. The questions regarding the incentive of information sharing are

known as the “endogenous information structure” problems in the economic theory. For

example, Vives (1988) shows that the investments in information are strategic complements

in certain economies. Zhou and Chen (2016) demonstrate the power of targeted information

release. Information sharing is also studied in the context of supply chain management, e.g.,

in Lee et al. (2000). Our findings are consistent with theirs in the sense that information

sharing is more beneficial given more correlated demands.

We learn from a long stream of literature in economics and operations research on

price competition with incomplete information. Gal-Or (1985) and Raith (1996) study

the incentives for information sharing in oligopoly. Morris and Shin (2002) consider the

value of a public forecast in coordinating agents’ actions. Colombo et al. (2014) model the

interaction of public and private information, as a recent extension along this stream of

research. We consider a class of equilibria wherein each agent’s action depends linearly on

its forecast and forms Bayes’ estimator for others’ forecasts (Radner, 1962). Our model

adopts a price competition economy with general networked substitutions and an arbitrary
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demand covariance matrix.

Optimizing parking policies is one of the direction to reduce and/or eliminate cruising

behavior, e.g., designing parking permits (Zhang et al., 2011; Wang et al., 2018), managing

parking reservations (Chen et al., 2015; Wang and Wang, 2019), and applying dynamic

pricing strategies (Qian and Rajagopal, 2014; Lei and Ouyang, 2017). One of the most

well-known parking economic experiments is SFpark, in which demand-responsive pricing

has been implemented by San Francisco municipalities. Transportation researchers analyze

the SFpark experiment to study the impact on garage occupancy, price-elasticity, cruising

reduction, and eventually social welfare (see, e.g., Millard-Ball et al. (2013); Chatman

and Manville (2014)). On the other hand, Mackowski et al. (2015) seek a quantitative

framework for optimal parking prices, taking into account the price-demand relationship.

A theoretical counterpart has been conducted in Anderson and De Palma (2004), where

they analyze the equilibrium distribution of customers on a single line. Arnott and Inci

(2006) also use theoretical models to analyze the effects of parking fees on traffic congestion

and social welfare. Different from existing literature, our model emphasizes two directions

of parking pricing competition: (1) the price-demand relationship is multi-dimensional,

which requires the idea of cross-elasticities; (2) we focus on the information asymmetry

since the demand knowledge is private and uncertain.

3 Model setup

3.1 A basic graphical Hotelling model

We start with a generalization of the traditional Hotelling model of spatial price compe-

tition (Hotelling, 1929). We model the urban parking market via an undirected graph

(N,E), where the vertex set N records garage locations and the edge set E documents

the parking demand induced from the transportation network. We consider a single-period

setting, which can be viewed as an arbitrary time period during a day. (A multi-period
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Figure 1: A graphical structure of the parking competition

extension is provided in the online supplement §A.1.) The garages, indexed by the vertex

set N = {1, 2, · · · , n}, engage in a price competition. Each garage i sets a parking price

pi, given a unit parking space cost ci. In this paper, we assume every garage is controlled

by a different entity, whereas, in the online supplement §A.3, we relax this assumption and

analyze the competition among garage coalitions.

Figure 1 depicts a star-shaped city structure as an example. Specifically, each node

denotes a parking garage in the competition. On each link, we have customers who are

looking for parking spots in the area. We assume that each customer only chooses from two

candidate garages. So the potential customers choosing from garage i and garage j form

the cruising traffic represented by an undirected link ij. Suppose infinitesimal customers

are evenly distributed on each link ij with density λij . Let lij be the length of the link.

Note that we do not model the intended destination of each customer. Instead, we assume

customers are close to their destinations when they begin searching for parking spots. The

behavior of these customers is modeled by the utility method introduced next.

Customers. Consider a customer on ij with her distance to garage i being x, and

thus lij − x to the garage j. She chooses to park at either garage i or garage j, based on
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the following utility evaluation. Her utility for parking at garage i is calculated as

uij(x) = vi − pi︸ ︷︷ ︸
net intrinsic parking value

− ct · x︸︷︷︸
travel cost

− cw · λij · x2︸ ︷︷ ︸
congestion cost

. (1)

Here, vi is a heterogeneous intrinsic service value if parking at garage i. pi is the price

charged to every customer, leaving vi−pi being the net intrinsic parking value for garage i.

ct is the cost coefficient for traveling a unit distance, and cw is the cost coefficient for unit

congestion. We assume a convex cost structure to characterize the negative externality

of parking (e.g., Anderson and De Palma, 2004). The x-squared term, which is referred

as the congestion cost, represents any cost growing superlinearly when more customers

are directed to the same garage, e.g., extra time spent on searching for an available spot.

Moreover, quadratic from produces tractable closed form equilibrium for further analytical

discussion. Throughout the paper, we assume that vi is high enough to maintain a highly

competitive environment, which will be further discussed in the later section.

Alternatively, this customer can also travel a distance of lij − x to park at garage

j. Similarly, her utility for parking at garage j is symmetrically defined. Every customer

chooses the garage which maximizes her payoff. Thus, the position of the marginal customer

who is indifferent between garage i and j is given by solving x from

vi − pi − ct · x− cw · λijx2 = vj − pj − ct · (lij − x)− cw · λij(lij − x)2, (2)

which results in

xij =
lij
2

+
vi − vj − (pi − pj)

2(ct + cwλijlij)
. (3)

The position given by Equation (3) indicates that if a customer on link ij has a distance to

garage i within [0, xij ], she chooses garage i; Otherwise, she goes to the alternative garage

j. Here, we impose an assumption on all Hotelling model’s parameters such that xij always

lies in [0, lij ]. This excludes the extreme case where a garage attracts every customer on a

link from her competitor.
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Based on the above customer behavior, the aggregate demand to garage i is

di =
∑
j:ij∈E

λij

[
lij
2

+
vi − vj

2(ct + cwλijlij)

]
−pi ·

∑
j:ij∈E

λij
2(ct + cwλijlij)

+
∑
j:ij∈E

λij
2(ct + cwλijlij)

·pj .

(4)

The demand to each garage takes a linear function of the parking prices. We further

investigate the interactive behaviors of garages and customers through a multi-agent pricing

game with uncertainty and information asymmetry.

3.2 Pricing game with asymmetric information

Garages. Recall from Equation (4) that the parking demand di for garage i is linearly

decreasing in her own parking rate pi, but increasing in pj of other garages. Suppose

the capacity of each garage is always sufficient. Then, all garages form a Bertrand price

competition (Bertrand, 1883). Here, we extend (4) to consider a linear demand function,

di = αi − βiipi +
∑
j 6=i
−βijpj + θi,∀i ∈ N, (5)

or in a compact form, d = α− βp+ θ, where α, θ, d, p ∈ Rn and β ∈ Rn×n.

Here, αi > 0 corresponds to the market potential, i.e., the baseline demand driven

by dedicated customers. As we analyze one slice in time, we abstract away from its inter-

temporal variability. βii > 0 is the price elasticity. Our market structure setup corresponds

to a scenario wherein garages are not price-takers but enjoy the market power. βij ≤ 0 is

the cross-price elasticity which captures the fact that the parking demand increases as the

price of her competitor increases. Finally, the parking demand exhibits random deviations

θi for each garage. The deviations originate from the uncertain valuation of parking garages

from the customer’s perspective.

Relating (5) to the Hotelling demand (4), the price elasticities are analogs of the coef-

ficients in front of prices in (4); the demand potentials together with the noise terms are

related to the service value v with uncertainties. We will elaborate on their connections

and link the pricing game model back to the Hotelling model in Section 4.
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The payoff function of garage i ∈ N can be expressed as

πi = di · (pi − ci) =

αi − βiipi +
∑
j 6=i
−βijpj + θi

 (pi − ci) , (6)

which is the demand times the profit of providing a unit parking spot. The physical meaning

of the cost ci can be generic. This cost not only includes infrastructure and operating costs,

but also reflects a shadow price for holding this spot for future release.

Information structure and sequence of events. We assume that θ := [θ1, θ2, ..., θn]>

is drawn from a multivariate normal distribution with a zero mean, i.e., θ ∼ Nn (0,Σ). Σ

is the covariance matrix. Without information sharing, garage i can only predict its own

demand uncertainty θi but not the others’.

The sequence of events is as follows. First, each garage forecasts her demand uncertainty

θi. For the base model, we assume the demand forecast is 100% accurate. That is to say

that garage i observes θi without error. Extension for inaccurate demand forecast is in the

online supplement §A.2. Meanwhile, they estimate the competitors’ demand uncertainties

based on the Bayesian estimator θ̂j = E(θj |θi). Then, each garage i makes her pricing

decision pi. Finally, the market clears and demands di are determined; each garage receives

a corresponding payoff πi.

Pricing equilibrium. We briefly introduce the equilibrium concept. We focus ex-

clusively on the linear Bayesian-Nash equilibrium when garage i chooses a parking rate

pi to maximize her payoff, i.e., pi = Ai + Biθi,∀i ∈ N for some constant scalars Ai and

Bi’s. We can interpret Ai as the baseline price; Bi as the response factor with respect

to the signal θi. If information is shared among all garages, then garage i can utilize all

her known signals to set her parking rate, i.e., pi = Ai +
∑
j
Bijθj . In her calculation for

the expected market price, she forms an expectation of the other garages’ prices. Such

equilibrium concept is commonly seen in the literature, e.g., Vives (1988) and Morris and

Shin (2002).

Under a certain information structure, the baseline prices and response factors in the
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equilibrium pricing strategy are determined by the market structure. In Section 3.3, we

present the analysis of two-garage symmetric model to explore the intuition. The equilib-

rium in a general model is provided in Section 3.4.

3.3 Analysis of two-Garage models

We begin with a stylized setup with two symmetric garages. β11 = β22 = β̂, β12 = β12 =

−β, and c1 = c2 = c: 
d1 = α− β̂p1 + βp2 + θ1,

d2 = α+ βp1 − β̂p2 + θ2,

(7)

We assume that signals are drawn from symmetric bivariate normal distribution (θ1, θ2)> ∼

N2

0, σ2

 1 ρ

ρ 1

. As a standard stability constraint, we require 0 < β < β̂.

Under the above symmetric setting, the equilibrium pricing under the private informa-

tion structure of both garages is denoted as pi = A+Bθi where A,B ∈ R.

Proposition 1. The following comparative statics hold:

1. Baseline parking rates decrease in price elasticity, i.e., ∂A
∂β̂

< 0, and increase in

cross-price elasticity, i.e., ∂A
∂β > 0;

2. Response factor toward private signals is always positive, i.e., B > 0, while the

response is more aggressive when private signals are more correlated, i.e., ∂B
∂ρ > 0;

3. Garages’ payoffs decrease in private elasticity, i.e., ∂Eπ
∂β̂

< 0, and increase in cross-

price elasticity, i.e., ∂Eπ
∂β > 0;

4. Garages’ payoffs increase in the degree of demand correlation, i.e., ∂Eπ
∂ρ > 0.

5. Information sharing is always preferred.

The key to understanding this proposition is our assumption of the positive cross-price

elasticity, which implies a strategic complement: an increase in one garage’s rate will lead
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to a higher demand for another garage. The first three statements in the proposition

are straightforward. Firstly, baseline rates decrease in price elasticity (due to the inverse

relationship between price and demand) and increase in cross-price elasticity (due to the

strategic complements). Consequently, garages’ payoffs decrease in private elasticity and

increase in cross-price elasticity.

The fourth statement provides an interesting result: garages’ expected payoff is higher

when demands are more positively correlated. The additional payoff stems from taking

advantage of the demand deviation through known information. If demand signals are more

positively correlated, due to demand cross-elasticity, the behavior of garage 2 amplifies the

demand fluctuation of garage 1. Then, garage 1 reacts more aggressively on θ1 and obtains

a higher expected payoff. On the contrary, if demand is more negatively correlated, the

behavior of garage 2 dampens the demand fluctuation of garage 1, resulting in a lower

expected payoff. In other words, demand signals, even if being private, serve as a collusion

instrument. A higher correlation will strengthen the belief in such positive feedback.

Finally, it is proven that both garages are always better off when sharing signals. This

complies with the intuition that demand signals serve as a collusion instrument to exploit

demand fluctuation. This effect is intensified now due to communication.

3.4 General model

In this subsection, we present the n-garage equilibrium under asymmetric information. We

first clarify the algebraic notations and assumptions applied throughout the rest of the

paper.

Notations. Recall N = {1, · · · , n} and suppose S, S′ ⊂ N are index sets. For a matrix

(boldface) G ∈ Rn×n, we define its submatrix GSS′ ∈ R|S|×|S′| which takes rows of G

indexed by S and columns indexed by S′. In particular, let Gij be the element at row-i

and column-j. (Vectors is a specific matrix with one dimension, and therefore follow the

same subscript scheme). When either S or S′ takes N , we simply denote it by ?, i.e.,
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GS? is the submatrix by picking rows indexed by S from G, while G?j stands for the jth

column vector of G. We denote O as the zero-matrix, I as the identity matrix, and e as

the column all-ones vector such that ee> is the all-ones matrix.

Assumption 1. βii ≥ 0, βij ≤ 0,∀j 6= i, and β is positive semidefinite; Σ is symmetric

positive semidefinite.

Information structure. We define the information structure as a boolean ma-

trix M ∈ {0, 1}n×n: Mij = 1 if garage i knows θj ; otherwise, Mij = 0. Let Ni :=

{j ∈ N : Mij = 1} be the set of garages whose information is known by garage i. Garage

i sets her parking rate pi = Ai +
∑
j∈Ni

Bijθj based on her known signals. By enforcing

Bij = 0,∀j /∈ Ni, i.e., garage i cannot utilize her unknown information θj , we have an n×n

matrix B representing all the pricing coefficients on the signals. Then, the pricing policies

is compactly written as p = A +Bθ. The following proposition solves the Bayesian-Nash

equilibrium given an arbitrary M .

Proposition 2. Under the information structure M , the equilibrium pricing strategy is

pi = Ai +
∑
j∈N

Bijθj ,∀i ∈ N , where parameters A and B are determined by the following.

A = [A1, A2, ..., An]> = Q−1 [α1 + β11c1, α2 + β22c2, ..., αn + βnncn]> , (8) Qi?BΣ?Ni − ΣiNi = 0,∀i ∈ N,

Bij = 0,∀Mij = 0.
(9)

Here, Q := β + diag[β] is the elasticity matrix with its diagonal entries doubled and

Ni := {j ∈ N : Mij = 1} is the information index set of garage i.

The equilibrium payoff is given by

E [πi] = βii (Ai − ci)2 + βiiBi?ΣB
>
i?. (10)

For each garage i, her pricing policy pi = Ai +
∑
j∈N

Bijθj is a combination of two parts.

First, Ai represents a baseline parking rate. Second, {Bij : j ∈ Ni} are response factors
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that form a rate adjustment based on the garage i’s known information θNi . The baseline

price A is determined by the demand structure but irrelevant to the information structure

M , while the response factor B is crucially affected by M . Utilizing this property, we

isolate the effect of the information structure.

Information value. We define the information value as the second term in (10),

Vi := βiiBi?ΣB
>
i?. (11)

Note that if we remove the demand signals θ from the model, garages engage in a standard

Bertrand competition which has equilibrium prices pi = Ai and (expected) payoff πi =

βii (Ai − ci)2. This can be verified by taking M = O or Σ = O in Proposition 2. Thus, the

information structureM results in an additional expected payoff Vi. The minimum possible

information value is achieved at M = O. Private information structure corresponds to

M = I. M = ee> is the sharing (complete) information structure. In this paper, we

mainly focus on the comparison between the private information structure and the sharing

information structure. We use value of information sharing to denote the increase in

Vi from the M = I case to the M = ee> case. In the online supplement §A.4 and §A.5,

we further discuss garages’ endogenous preference on other information structures.

4 Urban network structures

In this section, we examine the effect of information sharing on Hotelling networks with

homogeneous links. To analytically demonstrate the benefit of information sharing, we

studied two specific network structures — circular city, where identical garages are evenly

distributed on a circle; and star city, where a central garage is surrounded by m = n − 1

peripheral ones. All traffic parameters lij and λij are assumed to be identical on every

link. Then, we derive the pricing equilibrium with or without information sharing. The

results suggest that information sharing not only improves the aggregate expected profit for

garages but also reduces the overall congestion cost for customers on the links. However,
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information sharing helps garages to exploit total customer welfare.

First, we established the transformation from the Hotelling model to the linear price-

demand formulation, with some homogeneity assumptions and parameter definitions. The

homogeneity assumptions are made to retain tractability of our model so that we can

highlight the impact of network topology and information sharing.

Link homogeneity. Assume λij = λ and lij = l,∀ij ∈ E. This leads to identical

cross-price elasticities −βij = λ
2(ct+cwλl)

=: β0,∀ij ∈ E.

Service value with homogeneous uncertainties. Assume that v follows a multi-

variate normal distribution with identical variances var [vi] = σ2
v , ∀i, and identical correla-

tions corr (vi, vj) = ρv,∀i 6= j. Namely, v ∼ N
(
v̄, σ2

v

(
(1− ρv) I + ρvee

>)) where v̄ is the

exogenous mean service value vector. The variability of vi represents the fluctuation in the

internal “attractability” of garage i. For example, an on-sale period at a mall potentially

increases the value of parking at its nearby garage. The random outcome of vi is private

knowledge to garage i while the entire distribution is common knowledge to all garages.

The uncertainty in the service value v results in fluctuation in demand potentials.

In the next lemma, we will show that the Hotelling model can be reduced to a Bertrand

price competition. The key message is concerning how the uncertainties in the intrinsic

parking utility propagate to shape the covariance in the demand function. The key to

unfold this propagation and isolate the effect of network structure is through the graph

Laplacian matrix.

Definition 1. (Laplacian Matrix) For a given simple graph (N,E), its Laplacian matrix

L is an n× n matrix defined as:

Lij =


degree of node i, if i = j,

−1, if ij ∈ E,

0, otherwise.

(12)

Lemma 1. Given a homogeneous Hotelling network with Laplacian matrix L, the demand

function (4) is equivalent to d = α−βp+θ, wherein deterministic coefficients α = λl
2 diagL+
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β0Lv̄, and β = β0L. The noise term θ ∼ Nn (0,Σ) where

Σ = β2
0L var [v]L> = β2

0σ
2
v (1− ρv)LL>. (13)

We mainly focus on the price elasticity matrix β and demand covariance Σ as these

terms are the ones affecting information sharing. Given the homogeneities, the cross-price

elasticity is β0 > 0 on each link and 0 between unconnected garages. The price elasticities

increase as the customers’ costs ct, cw go down or the population density λ goes up. For

each garage i, the sum of cross-price elasticity equals the self-price elasticity in absolute

value. This means that $1 increase in price pi and $1 decrease in all i’s neighbors result in

the same amount of demand reduction on i. This is nevertheless a stylized assumption due

to the reduction from the networked Hotelling model, while at the same time automatically

satisfied the stability condition in the Bertrand price competition. This assumption is not

crucial.

Due to the spatial substitution in the parking demand, a higher correlation coefficient

reduces overall demand uncertainty. Equation (13) shows that the uniform covariance

ρv = corr (vi, vj) only proportionally changes each component of Σ. Since varying ρv does

not essentially affect the demand covariance structure, we restrict to σ2
v = 1 and ρv = 0 in

the following discussions. This symmetry in the covariance is again due to the reduction

from the networked Hotelling model. By abstracting away from the correlation in the

intrinsic parking valuation, we focus on the network structure, as the covariance depends

crucially on the Laplacian matrix.

Customer welfare and customer congestion. We define customer welfare as the

expected total utility of customers under equilibrium garage pricing. The customer welfare

on link ij is

Uij = E
[∫ xij

0

(
vi − pi − ctx− cwλx2

)
λdx+

∫ l−xij

0

(
vj − pj − ctx− cwλx2

)
λdx

]
. (14)

Here, the expectation is taken with respect to the randomness of intrinsic values v. The

the equilibrium prices p rely on v according to Proposition 2. Furthermore, xij is implicitly
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determined by v and p through Equation (3). Similarly, we define the aggregate cost of all

customer on link ij,

Cij := E
[∫ xij

0

(
ctx+ cwλx

2
)
λdx+

∫ l−xij

0

(
ctx+ cwλx

2
)
λdx

]
. (15)

We identify Cij as a metric of congestion on link ij since it stems from the travel cost and

congestion cost of individual customers.

In particular, we are interested in the change in the customer welfare Uij and congestion

Cij when the garage information structure alters. The following lemma indicates that the

change in Uij and Cij can be measured by the change in the variance of the position of the

marginal customer xij .

Lemma 2. Suppose garages always set their prices according to the equilibrium strategy

given by Proposition 2. When information structure is altered, we use ∆ to denote the

incremental change in a certain quantity. Then,

∆Cij = ∆Uij =
λ2

2β0
∆ {var [xij ]} . (16)

Moreover, the total change is

∆

∑
ij∈E

Cij

 = ∆

∑
ij∈E

Uij

 =
β0

2
∆ {〈L, var [v − p]〉} . (17)

wherein the 〈·, ·〉 term denotes the Frobenius inner product of the two n× n matrix, graph

Laplacian L and covariance matrix of net value vector v − p.

Lemma (2) shows that the change in customers’ aggregate cost depends crucially on

the variance of the position of the marginal customer. Therefore, the information structure

that minimizes the variance of xij will result in the least transportation cost on link ij.

Intuitively, this means that customers are more steadily allocated among garages in the

long run. However, the change in their net payoffs is twice as much so that the increase

in customer utility is identical to that in the aggregate cost. As we reduce the congest
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cost, customer welfare will decrease as well. A social welfare planner would be interested

in the trade-off between garage welfare and customer welfare. In this paper, we mainly

focus on the analysis of information value and road congestion. To measure the aggregate

cost on the graph, (17) provides a calculation method through the graph Laplacian and

the customer net payoff vector v − p.

In the remaining part of this section, we utilize the relations established in Lemmas 1

and 2 to compare the system’s performance between information sharing and information

asymmetry, under different urban structures. Two types of representative graph structure

are studied. A circular city (or many-sided polygons) is the simplest symmetric network

possible. It represents the parking problem along a “ring road”. On a larger scale, there

are city designs with urban circumferential routes, such as Berlin, Bangkok, and Beijing).

On a smaller scale, this structure models the parking problem around a large center area

(e.g., a crowded CBD region). It is representative of some multi-centered metropolitans

(such as the San Francisco Bay Area).

As a comparison to the circular city structure, we then investigate the star city structure

where a central garage is surrounded by peripheral ones. Some European cities have a clear

radial design, such as Coevoerden and Palmanova. In general, the star city is representative

of the vast majority of American cities with downtown and suburbs.

For these two specific structures, we show that information sharing improves garages’

aggregated payoff and alleviates traffic congestion. Table 1 lists the set of relative value

metrics that will be used. Note that the numerical difference between the relative value

metric and its original definition is a constant term that is invariant under all information

structures.

4.1 Circular city structure

Consider a symmetric circular city based on a variant of the circular Hotelling model

(Lerner and Singer, 1937). This stylized setup eliminates the “corner” difficulties of the
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Table1:RelativeValueMetrics

Quantities Definitions RelativeValueMetrics

GarageProfit i∈NE[πi] i∈NVi(=totalinformationvalue)

Congestion ij∈ECij L,var[v−p](=aggregatecost)

Customer Welfare ij∈EUij L,var[v−p]

Social Welfare =GarageProfit+Customer Welfare

originalHotelling,andallowsafocusontheessentialinteractionsofserviceproviders

(Salop,1979).Supposengarageslocateontheverticesofaregularn-sidedpolygonwith

afixedsidelengthl. Welabelallgaragesfrom1toninacircularway.Theneachgarage

iislinkedtoitsneighbori−1andi+1(modn).Assumingthetotalnumberofgarages

isn≥4,thegraphLaplacianisgivenby

L:=











2 −1 −1

−1 2
...

...
... −1

−1 −1 2











=2In−




In 1

1



−




1

In 1



, (18)

whereInistheidentitymatrixofsizen×n.

Inthesymmetriccircularmodel,allgaragesareidentical.Theymaintainthesamepric-

ingstrategyandearnthesameinformationvalue.Thefollowingpropositionsummarizes

theeffectofinformationsharingundercircularcityscenario.

Proposition3.Inthecontextofsymmetriccircularcitywithn≥4,informationsharing

improvestheexpectedpayofftoeachgarageandreducescongestioncost.Thecorresponding

informationvalue(pergarage)andaggregatecost(perlink)arelistedasinTable2.

Inthiscase,informationsharingincreasesgarages’informationvalueandreducesthe

aggregatecongestioncost. Theeffectisevenmoresignificantforinstanceswithsmaller

n.Informationsharingstrictlyincreasestheexpectedpayofftoeachgarage. Fromthe
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Table 2: Circular city: information value and aggregate cost

Private Information Information Sharing

Information value 27/64 · β0 < 2
3(yn−1)

(
1
3 (4yn−1 + yn) + n− 3

)
· β0

Aggregate cost 29/128 · β0 > 1
3(yn−1)

(
ȳn−1−ȳn

ȳ1
+ yn − n

)
· β0

Here yk := cosh
(
k ln

(
2 +
√

3
))

, and ȳk := sinh
(
k ln

(
2 +
√

3
))

4 6 8 10
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0.45

0.5
Information Value for Each Garage

private
sharing

4 6 8 10

0.15

0.2

0.25

Aggregate Cost on Each Link
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0.65

0.655

Relative Social Welfare per Garage

Figure 2: Circular city: relative value metrics (in β0) under private/sharing information

garages’ perspective, everyone is better off under information sharing. Thus, they have the

incentives to exchange their demand information.

Figure 2 plots the comparison for the circular city model. The solid curves stand for

the results under information sharing while the dashed curves are the results under private

information. The increment in information value decreases asymptotically to a constant.

For the circular model, a smaller n implies more intense interaction among garages. There-

fore, information sharing exhibit greater benefit. As the number of garages increases, the

model approaches an infinite line (a circle with an infinite perimeter). The payoff under in-

formation sharing approaches a limiting value, still dominating the outcome when garages

stick to their private information. Note that these revenue-maximizing garages intend to

set higher prices under higher demand (i.e, lager parking value vi’s). Information sharing

helps their exploitation of demand. This follows from the two-player model as we have

discussed: the demand signals serve as a collusion instrument for the garages to set higher

rates with higher payoffs even without communication.
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For a large n, information sharing reduces the aggregate cost. To understand the

impact of information sharing on the aggregate cost, we need to examine the position of

the marginal customer xij . Since xij is determined by comparing the relative value of the

intrinsic parking utility v−p, a more informed pricing strategy will offset higher uncertainty

v and thus more predictable market sizes (lower variations in xij). As we discussed in

Lemma 2, lower variance in the threshold point xij indicates lower aggregate cost for the

customers. Thus, information sharing among garages finally results in congestion cost

reduction on the roads.

In the circular city model, social welfare marginally increases under information sharing.

In particular, the garage welfare increases while the customer welfare decreases. This is

not surprising as information sharing shifts the competitive pricing closer toward collusive

pricing. Therefore, information sharing helps garages further exploit the customers.

Here, as the length of link l is fixed, the size of the city is expanding when n increases.

On the other hand, if we consider a circle with a fixed perimeter such that garages become

denser as n increases (i.e., substituting l by l
n only affects the common factor β0 in Table

2), similar results and intuitions hold. In addition, it is more convenient to compare the

circular city with the star city of the same link length, to isolate other effects of the network

structure.

4.2 Star city structure

As a comparison to the circular city structure, we then investigate the star city structure

where traffic mainly falls on a spoke-hub network. Consider a symmetric star city with

a central garage i and m identical peripheral garages. The graph Laplacian takes the
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Table 3: Star city: information value and aggregate cost

Private Information Information Sharing

Information value (center)
(

2m
7m−1

)2
(m+ 1) · β0 < 1

9 (m+ 1) · β0

Information value (peripheral) 2
(

3m−1
7m−1

)2
· β0 > 13m−5

36m · β0

Total information value
2m(11m2−4m+1)

(7m−1)2
· β0 < 17m−1

36 · β0

Aggregate cost on each link 2m(5m−3)

(7m−1)2
· β0 > 13m−5

72m · β0

following form.

L =


m −1 · · · −1

−1 1
...

. . .

−1 1

 =

 m −e>

−e Im

 (19)

The first row and first column stand for the central garage, while the rest are peripheral

garages.

We summarize the analytical result for star city in Proposition 4.

Proposition 4. In the context of symmetric star city with m ≥ 3, information shar-

ing improves the expected payoff to the central garage but reduces that to the peripheral

garages. Their total information value increases and the congestion cost is reduced. The

corresponding information value (per garage) and aggregate cost (per link) are listed as in

Table 3.

Figure 3 illustrates the comparison of the quantities in Table 3 with the number of

peripheral garages varying. If information sharing is applied, the center garage benefits

the most, especially when the number of garages is large. The peripheral garages are

subject to loss in their payoff. However, the payoff gain from the central garage dominate

the payoff loss from the peripheral garages. Thus, their aggregate (or average) payoff

increases under information sharing.
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Figure 3: Star city: relative value metrics (in β0) under private/sharing information

The central garage stands in a pivotal position in the network and the demand un-

certainties from all peripheral garages propagate to its demand. Thus, the central garage

is willing to acquire peripheral demand signals in addition to her own forecast. Once the

information is shared, it benefits the most from leverage on the prices in response to the

peripheral demand uncertainties. Therefore, it has the highest incentive to acquire private

demand information from others.

For the peripheral ones, it turns out that they prefer keeping their information. If all

signals are revealed, peripheral garages’ prices under equilibrium become less correlated

with the demand fluctuation. This can be interpreted as overreacting to the demand

signals as they compete under complete information. They respond to all demand signals

at a more intensive rate than they do in the private information scenario, resulting in a

less efficient pricing outcome. Even though this phenomenon suggests that all garage may

not spontaneously agree to information sharing, they still can achieve information sharing

through some kind of payoff transfer contract. Because information sharing increases their
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aggregate expected payoff.

On the customers’ side, similar to the results from the circular city, information sharing

reduces the congestion as well as the customer welfare. The aggregate cost reduction on

each link is increasing in the number of garages but asymptotically constant. Different

from the circular city, the total social welfare slightly decreases after information sharing.

But the difference is still marginal.

Unlike the circular model, the benefits of information sharing (information value en-

hancement and aggregate cost reduction) are greater as the scale of the star graph increases.

This implies that information sharing is more welcomed when more peripheral garages are

linked to the hub garage. This outcome is consistent with the general insight that infor-

mation sharing provides greater improvement when garages are more closely and intensely

correlated. As the number of peripheral garages increases, the center garage interacts with

more opponents. Thus, more complete demand information is more appealing to her. How-

ever, for peripheral garages, they maintain direct competition only with the center garage.

Thus, the scaling effect to peripheral ones is minor. Cost reduction is also more signifi-

cant for a “denser” city structure. Therefore, information sharing improves both supply

side and demand side simultaneously and it reveals greater power in cities that are more

intensely connected and congested.

5 Case study

So far, we have shown the benefit of information sharing from symmetric demand struc-

tures. The goal of this case study is to further investigate information sharing under an

empirical demand structure.

Since 2011, SFpark in the city of San Francisco has been using demand-responsive

pricing to regulate parking availability among garages. SFpark adopts technologies such

as parking sensors and smart meters to keep track of garages’ real-time occupancy and to

implement data-driven parking pricing. A parking rate is set for each garage (or street
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Table 4: Price-occupancy data sample ($ per hour for rates)
Period 2011-08 2011-10 2016-06

Street Block Rate Occupancy Rate Occupancy ... Rate Occupancy

01ST ST 200 3.5 56% 3.25 62% ... 2.5 62%
02ND ST 300 3.5 75% 3.5 66% ... 3.5 60%

... ... ... ... ... ... ... ...
VALENCIA ST 900 2 57% 1.75 54% ... 1.5 64%

parking block) during a time slot (by weekday/weekend and morning/afternoon/evening).

After each period (usually 2 to 4 months), the parking rate is adjusted based on the recent

performance. A garage with a relatively high (low) occupancy will increase (decrease) its

rate in the next period. SFpark records the rates and average occupancies by garage and

time slot. Table 4 is a sample of the price-occupancy data of a specific time slot (weekday

mornings). The data source and more detailed adjustment rules are available at SFpark

(2017).

We utilize their data records to learn an empirical demand structure, especially the

price elasticities and demand contrivances. The original dataset contains over 200 parking

garages and 18 periods of price adjustments from Oct 2011 to Jun 2016. We filter out

garages that have 1) a complete historical data record over all periods, 2) a capacity no

less than 10, and 3) a relatively significant price-elasticity. 28 garages are selected to run

the experiment. Then, we extract a demand structure (5) from the price-occupancy data

through linear regression. We assume the demand is represented by the occupancy data so

that the demand value is normalized. Although capacities are not equal (typically, ranging

from 10 to 30), adjusting for capacity only proportionally affects the price elasticities and

the information value. This is further explained after we present the regression model.

Besides, we ignore the unobserved demand due to capacity limits. For those most occu-

pied garages, the SFpark rate adjustment policy tends to drive down the period average

occupancy below 80%. Therefore, we assume excessive demand is negligible.

Regression Learning Model. Let
(
p(t), d(t)

)
be the price-occupancy data in period
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t = 1, 2, · · · , T . Denote p(t) =
(
p

(t)
1 , p

(t)
2 , · · · , p(t)

n

)>
as the parking rate vector in period

t and d(t) =
(
d

(t)
1 , d

(t)
2 , · · · , d(t)

n

)>
as the occupancy vector. We apply the following high-

dimensional regression method to estimate the linear coefficients α and β in (5) and the

signal covariance Σ. They are calculated by solving a constrained least square optimization

problem.

Σ̂ :=
1

n

(
d−

(
α̂− β̂p

))(
d−

(
α̂− β̂p

))>
(20)

α̂, β̂ := arg min
α∈Rn,β∈Rn×n

T∑
t=1

∥∥∥α− βp(t) − d(t)
∥∥∥2

2
(21)

s.t. βii > 0,∀i = 1, · · · , n (22)

βij ≤ 0,∀i, j = 1, · · · , n and i 6= j (23)

βii +
∑
j 6=i

βij > 0,∀i = 1, · · · , n (24)

Garage capacity does not affects demand structure learned from the regression. Suppose

the demand vector is adjusted from d(t) to κd(t) for all t, where κ ∈ Rn×n is a diagonal

matrix numerically scaling up the demands. Regression outcome changes proportionally.

Parameters α̂, β̂, and Σ̂ become κα̂,κβ̂, and κΣ̂κ>, respectively. Then, followed from

Proposition 2, the information values V = (V1, V2, · · · , Vn)>scale up to κV . That is, the

numerical value of Vi is multiplied by the garage i′s capacity if we adjust for the garage’s

capacity.

We compute β̂ and Σ̂ from the regression model. We report their diagonal values in

Figure 4 (since the full regression result is high-dimensional). The mean square errors of

the high-dimensional regression is given by the diagonal elements of Σ̂. The average mean

square error is 38.32 (occupancy%-squared).

A comparison between the information value for each garage under two information

structures is given in Figure 5. The dark-colored bars represent the information value

when garages keep their private information, while the light-colored bars represent the

additional benefit from information sharing. As shown in the figure, all 28 garages benefit
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from information sharing, but the additional gain in information value varies depending on

the demand structure. Garages with higher self-elasticities and lower demand uncertainties

(e.g., garage No.1,2,17,25,26,27,28) tend to enjoy larger percentages of increase in infor-

mation value upon complete information sharing. For these garages, their own demand

uncertainty is predictable but they are more sensitive to the price competition. Typically,

these garages represent the parking lots located in busy downtown areas. Their inherent

demand pattern is predictable for a fixed time window, but drivers strategically choose

the parking lots with lower rates in the vicinity. Information sharing helps these garages

better predict their competitors’ rates and price their own garages accordingly. Con-

versely, the garages with low self-elasticity and higher demand uncertainty (e.g., garage

No.11,12,13,16,24) benefit less from information sharing. Even though the extra profit

from information sharing is less, there is still a positive gain for doing so.

6 Conclusion

In this paper, we study the effect of information sharing among competing parking garages.

For the two-garage scenario, it is proved that they are always better off sharing signals. For

the general model with n garages, we quantify the value of information by defining it as the

portion of the expected payoff that is directly influenced by the information structure. By

examining two specific graph structures, we find that information sharing not only improves

the garages’ overall payoff but also reduces the aggregate cost for customers. This implies

that information sharing has the potential to alleviate road congestion. Furthermore, when

the interactions among garages are more significant, information sharing exhibits greater

power. Intuitively, information sharing help to navigate customers toward the right garages.

However, our analysis also suggests that it helps garages further exploit customer welfare.

The numerical study on SFpark data shows that garages with higher self-elasticities and

lower demand uncertainties benefit most from information sharing. These garages are likely

to be the parking lots in busy downtown areas, whose demand is predictable but price-
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sensitive. For other garages, the benefit from information sharing is less significant but

still positive. Numerical results suggest that information sharing tends to be attractive to

garages and congestion improving in reality. The results provide evidence for Smarking to

convince garage owners and city municipalities to participate in building such a centralized

information sharing platform in the form of dashboards and mobile apps.

In the online supplement, we generalize the pricing competition model in various direc-

tions (e.g., involving garage capacity, noisy demand signal, garage coalition, and endoge-

nous information structure). Most extensions confirm our findings from the base model.

Future work is required to holistically understand the optimality of information sharing.

Besides, incorporating imperfect (noisy and biased) forecasts of private demand will extend

our work to better reflect reality.
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A Extensions

A.1 Capacitated garages with multiple periods
Suppose that we model garage capacity explicitly and consider a planning horizon of mul-
tiple periods, for instance, the entire morning rush hour until the garages are filled up. We
index time periods by t = 1, 2, ..., T . The baseline demand α[t] as well as the random shock

θ
[t]
1 are both changing inter-temporally. The random shocks {θ[t]

i }’s are independent and
identically distributed, with identical variance σ2, and correlation ρ[t] = ρ, ∀t. The under-
lying economy is stationary such that β[t] = β and β̂[t] = β̂,∀t. Garages are symmetric
with the same capacity W . In this case, the garages’ equilibrium is characterized by the
following best-response functions:

max
p

[t]
1 ,t=1,2,...,T

π1 =
T∑
t=1

d
[t]
1

(
p

[t]
1 − c

)
, (25)

max
p

[t]
2 ,t=1,2,...,T

π2 =

T∑
t=1

d
[t]
2

(
p

[t]
2 − c

)
, (26)

T∑
t=1

d
[t]
1 ≤W1,

T∑
t=1

d
[t]
2 ≤W2, (27)

wherein

d
[t]
1 = α[t] − β̂p[t]

1 + βp
[t]
2 + θ

[t]
1 ,

d
[t]
2 = α[t] + βp

[t]
1 − β̂p

[t]
2 + θ

[t]
2 . (28)

We summarize the results for this extension in the following proposition.

Proposition 5. The following results for the symmetric capacitated model over multiple
periods hold:

1. When c > 2β̂−β
β̂(β−β̂)

· WT −
β̂

β̂(β−β̂)
·
∑T

t=1 α
[t]

T , the capacity constraints are not binding,

the parking rates in equilibrium remain the same as in the static incapacitated model:

p
[t]
i =

α[t] + β̂c

2β̂ − β
+

θ
[t]
i

2β̂ − βρ
, (29)

∀t = 1, 2, ..., T and i = 1, 2.
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2. Otherwise, the parking rates in equilibrium are given by

lim
T→∞

p
[t]
i →

α[t]

2β̂ − β
+

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
+

θ
[t]
i

2β̂ − βρ
, (30)

almost surely, ∀t = 1, 2, ..., T and i = 1, 2.

3. When W1 6= W2, an one-period snapshot is equivalent to an incapacitated static model
with heterogeneous cost c1 and c2, wherein c1 and c2 ≥ c.

4. Compared with the static incapacitated version, while the baseline rates suffer from
a constant downward distortion, the response to a private signal remains the same,
and thus, the incentives for information sharing remains the same.

5. When β

β̂
∈ (0, 1], the parking rates as well as the aggregate payoff over T periods

(limT→∞ Eπ) decrease in total capacity W , but increase in average market potentials∑T
t=1 α

[t]

T . (The converse is true when β

β̂
∈ (1, 2).)

From this proposition, as a robustness check, we are assured that the results from a
single-period snap-shot extend naturally toward multiple-periods. The proof is via a dual
approach wherein we use Lagrangian multipliers to calculate the shadow price of limited

capacity. When c > 2β̂−β
β̂(β−β̂)

· WT −
β̂

β̂(β−β̂)
·
∑T

t=1 α
[t]

T , the cost of selling one unit capacity

is less costly than its shadow price, and thus capacity constraint is not binding. In the
same vein, when W1 6= W2, an one-period snapshot is equivalent to an incapacitated static
model with heterogeneous cost c1 and c2, wherein c1 and c2 ≥ c. The additional costs c1−c
and c2 − c capture the shadow price for limited capacity.

In fact, if we extend the restriction of elasticities to β < 2β̂ (allow the cross-price
elasticity to be greater than price elasticity), the capacity W (or average market potentials∑T

t=1 α
[t]

T ) poses opposite effect toward parking rates/payoffs when β > β̂. In fact, let

κ = W/T − β

(2β−β̂)
·
∑T

t=1 α
[t]

T (which is increasing in total capacity W and decreasing

in average baseline rates
∑T

t=1 α
[t]

T ) capture the extra capacity which satisfies per-period

price-sensitive demand. When β > β̂, i.e., price elasticity is more dominant than cross-
price elasticity, the inverse price-demand relationship within a garage dominates. Since an
higher extra capacity κ satisfies higher price-sensitive demand, this implies a lower parking
rate. Therefore, the parking rates (and consequently the aggregate payoff) decrease in the

extra capacity κ, and thus increases in W and decreases in
∑T

t=1 α
[t]

T . Conversely, when

β > β̂, i.e., the strategic complement between two garages dominates, and thus an higher
capacity κ implies higher parking rates from the other garage.
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A.2 Noisy demand forecasting
In the basic model, we assume that private signals are received via a noiseless information
channel. We find this to be a harmless assumption by examining real-time parking demand
data, as private demand forecasts tend to be fairly accurate using historical data (with error
rates around 5%). Nevertheless, we generalize the basic model in this section to incorporate
noisy demand forecast. Suppose that there are two symmetric garages, β11 = β22 = β̂,
β12 = β12 = −β, and c1 = c2 = c:

d1 = α− β̂p1 + βp2 + θ1,

d2 = α+ βp1 − β̂p2 + θ2, (31)

We further assume that (θ1, θ2)> are drawn from symmetric bivariate normal distribution

N
(

0, σ2

[
1 ρ
ρ 1

])
. As a standard stability constraint, we require 0 ≤ β < β̂. In addition,

the garages cannot accurately forecast their demand. Instead, each garage observe a noisy
signal xi = θi + εi, where εi ∼ N(0, γ2). We assume observation channels are independent,
i.e., ε1⊥ε2.

Proposition 6. The following statements are true for the symmetric uncapacitated model
with two garages and noisy demand forecasting:

1. Baseline parking rate structure remains the same as that with perfect demand fore-
casting.

2. In addition, all comparative statics in Proposition 1 hold, i.e., ∂B
∂ρ > 0, ∂B

∂σ > 0,
∂Eπ
∂β̂

< 0, ∂Eπ
∂β > 0 and ∂Eπ

∂ρ > 0.

3. Garages respond more aggressively toward private signals when they are more accu-
rate, and the payoff increases, i.e., ∂B

∂γ < 0 and ∂Eπ
∂γ < 0.

The first two statements confirm our structural results in the basic model with per-
fect demand forecasts, which serve as robustness check with general demand forecasting
accuracy. Not surprisingly, garages respond more aggressively toward private signals when
they are more accurate, and the payoff increases since the value of information increases.
However, information sharing is not always desirable in general, and information sharing
being unprofitable is more likely to happen when forecasting noise increases. Note that
information sharing is always favorable if the demand correlation is positive, since the
knowledge sharing helps garages reduce demand uncertainty and further take advantage of
their monopoly power. Fixing forecasting accuracy and price elasticities, there is a nega-
tive region of demand correlation such that information sharing is not preferred. Usually,
garages tend to positively respond to the other’s signal when information is shared, i.e.,
B12 > 0, since the competitor’s demand surge potentially increases her demand through
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cross-price elasticity. However, under some environment where demand signals are nega-
tively correlated, they form an equilibrium where garages strongly negatively respond to
the shared signal. In the long run, this causes both garages to price lower than the the-
oretical optimum. This underutilization of the demand on average reduces the expected
payoff for both garages.

A.3 Garage coalition model
It is worth noting that multiple garages in an urban area may be controlled by a single
entity and thus not independent in the pricing game. In this subsection, we show that
our insights on information sharing do not heavily rely on the assumption of independent
garages. The model in Section 3.4 can be generalized to a pricing competition among
garage coalitions. (A garage coalition is a parking firm that owns several garages in the
city.) We derive the pricing equilibrium of the coalition competition.

Consider K as a set of independent garage coalitions controlling all garages N =
{1, 2, · · · , n}. Each coalition K ∈ K corresponds to a subset of N , and K is a parti-
tion of N . Every coalition has access to a certain set of demand information, decides the
prices of her garages, and maximizes her total expected payoff. Let N (K) be the informa-
tion index set of coalition K. That is, information θj can be used for the pricing of garage
i ∈ K if and only if j ∈ N (K). Given information θN(K), every coalition K decides the
price vector pK to maximize her own expected total payoff

Eθ
[
Π (K)| θN(K)

]
= Eθ

[∑
i∈K

πi

∣∣∣∣∣ θN(K)

]
= Eθ

[∑
i∈K

dipi

∣∣∣∣∣ θN(K)

]
. (32)

Proposition 7. Suppose coalition K observes signals θN(K). Then, the equilibrium pricing
strategy is given by p (θ) = A+Bθ, where coefficients A ∈ Rn and B ∈ Rn×n are determined
by

A = Q−1 (α+ (Q− β) c) , (33){
QK?BΣ?N(K) − ΣKN(K) = 0,∀K ∈ K,
BKj = 0,∀j /∈ N (K) ,

(34)

and
Q := β + diag

[(
β>KK

)
K∈K

]
. (35)

The equilibrium payoff is given by

Eθ [Π (K)] = 〈AK − cK , βKK (AK − cK)〉+
〈
BK?ΣB

>
K?, βKK

〉
, ∀K ∈ K. (36)

where 〈·, ·〉 is the Frobenius inner product of two vectors/matrices of the same dimension(s).
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This proposition extends the pricing equilibrium (Proposition 2) to the case where
garages are owned by competing coalitions. Here, Equations (33) & (34) are the extensions

of Equations 8 & 9. The definition of Q has slightly changed. In (35), diag
[(
β>KK

)
K∈K

]
is

an n×n block diagonal matrix whose main-diagonal blocks are square matrices β>KK ,∀K ∈
K. In particular, if every coalition K contains only one garage, this proposition reduces to
Proposition 2. In Equation (36),

〈
BK?ΣB

>
K?, βKK

〉
corresponds to the information value

for coalition K in the coalition model.
The connection between the original model and the coalition model lies in the di-

mensionality of the pricing decision. The coalition model is high-dimensional: Instead of
deciding a single price pi, each entity decides a set of prices pK to maximize the total payoff∑

i∈K πi. The base model is a special case of a single dimension pricing. Therefore, we
start from the base model without coalition formation to capture the main insight related
to information sharing, which is robust shown in this extension. Furthermore, we will show
in the next example additional insights derived from this coalition version.

Consider a symmetric duopoly setting where each garage coalition owns m garages in
the city. The total 2m garages are assumed to have a symmetric influence on each other.
Specifically, βii = 1, σii = 1, and σij = ρ, βij = −β,∀i 6= j. (Note that Assumption

1 requires 1
2m−1 ≤ ρ ≤ 1 and 0 ≤ β ≤ 1

2m−1 β̂.) Then, under the coalition setting,
we can show properties similar to the ones in Proposition 1. In Figure 6, we extend
the 4th observation in Proposition 1 to the coalition competition. As the demand signals
become more positively correlated, the information value (also the expected payoff since the
baseline payoff is independent of ρ) increases. Figure 7 illustrate the additional value gain if
information sharing is adopted. This result echoes Proposition 1 in that information sharing
always generates positive value even if coalition formation is allowed. It also confirms that
information sharing is more beneficial when the cross-elasticity β is higher. The value
gain from sharing is non-monotone in the signal correlation. Because information is most
useful when demand signals are weakly correlated. In the extreme case when demand
signals are perfectly correlated, information sharing has 0 marginal value since competitor’s
information is already contained in the knowledge of demand correlation.

A.4 Optimal information assignment
Proposition 2 presents the exact equilibrium solution for an arbitrary observation matrix
M . A natural question one would be curious about is: among a set of possible infor-
mation structures, which one of them would result in an equilibrium that maximizes the
expected payoff of a particular garage (or their total expected payoff). The result for two-
garage model in Section 3.3 indicates that information sharing is beneficial to both garages.
However, this does not always hold in general.

From the perspective an information service provider, a natural question to ask is
who should know what and how much they should know. The insights from answering
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Figure 6: Information value under private information structure increases in the demand
correlation ρ

Figure 7: Information value increased from sharing
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such questions facilitate the design of information systems. In general, to identify an
information structure that maximizes the total information value, we need to solve the
following optimization problem

max
B,M

{
Bi?ΣB

>
i? : B and M satisfy (9)

}
. (37)

This is a mixed integer program with quadratic objective function (convex-maximization).
Or generally, we can get rid of binary decision variables M and rewrite it as an Quadrati-
cally Constrained Quadratic Program (QCQP)

max
B∈Rn×n

{
Bi?ΣB

>
i? : (QBΣ−Σ) ∗B = O

}
. (38)

Solving the above programs awaits future computational studies, which in itself, is
of great interests. In this research, we focus on the strategic aspects of this operational
challenge. In Section A.5, we consider a certain type of symmetric information structure
— group information sharing. Assume we have one (or multiple) information exchange
platform. Every garage can choose to be a member of the platform and share her private
signal within the group. In section A.5, we will see that such platform benefits their
members and appeals to garages not in the group.

A.5 Information exchange platform
We return to the general model where all parameters can be asymmetric. In this subsection,
we discuss the motivation for garages to form an information sharing group. Proposition
8 states that if all garages are using the information exchange platform, then no one has
an incentive to quit from the group.

Proposition 8. All agents joining the group is a Nash equilibrium.

The equilibrium in Proposition 8 refers to a Nash equilibrium of the group entering
strategy. Proposition 8 applies to arbitrary demand correlations as well as cross-elasticities,
which is more general than existing literature (Raith, 1996) in this regard, to our best
knowledge. It states that given every garage inside the platform, no one can achieve
higher profit by unilaterally withdrawing from it. For a two-garage system, Proposition
8 apparently shows that sharing their signal is in the interest of both garages. For a
system with more than 2 garages, Proposition 8 ensures that everyone in the group is an
equilibrium. The study of the uniqueness and global optimality of such an equilibrium
remains for future research.
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B Proofs.
In this appendix, we provide detailed proofs of the main results. We use * in the proofs to
denote component-wise multiplication of two matrices of identical dimensions.

Proof of Propositions 1 and 2.

Proof. Propositions 1 is a special case of Proposition 2. Here we prove Proposition 2.
Garage i maximizes expected payoff by taking first-order condition:

∂πi
∂pi

=

αi −∑
j

βijpj + θi

+ βii (pi − ci) . (39)

Garage i observes information θNi . Then, her conditional expectation of the entire θ vector
is given by

E [θ |θNi ] = Σ?NiΣ
−1
NiNi

θNi . (40)

Therefore, her anticipation of the pricing vector p is

E [p |θNi ] = E [A+Bθ |θNi ] = A+BΣ?NiΣ
−1
NiNi

θNi . (41)

Setting the expected first-order condition to 0, namely E
[
∂πi
∂pi
|θNi

]
= 0, we obtain(

αi − βi?
(
A+BΣ?NiΣ

−1
NiNi

θNi

)
+ ΣiNiΣ

−1
NiNi

θNi

)
− βii

[
A+BΣ?NiΣ

−1
NiNi

θNi − c
]
i

= 0.

(42)
Matching the coefficient of θNi , we get

(−Qi?BΣ?Ni + ΣiNi) Σ−1
NiNi

θNi −Qi?A+ αi − [β ∗ I]i?c = 0, (43)

where ∗ represents entry-wise multiplication, and Q = β + β ∗ I is the matrix defined in
the proposition. This is a linear equation with respect to θNi . And it holds for any θNi .
Thus, we can get the decision A,B by solving{

−Qi?A+ αi + [β ∗ I]i?c = 0
−Qi?BΣ?Ni + ΣiNi = 0

,∀i ∈ N. (44)

Rewriting the first equation above in vector form, we have

A = Q−1 (α+ [β ∗ I] c) . (45)

Together with the 0 entry constraint, we obtain the system of linear equations which
determines our B matrix {

Qi?BΣ?Ni − ΣiNi = 0,∀i ∈ N
Bij = 0,∀Mij = 0

. (46)
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Note that, excluding those Bij = 0 entries, we have
∑
i,j
Mij unknowns and

∑
i
|Ni| =∑

i
Mij equations. Thus, there exists at least one solution to this system. In general, the

solution is unique.
The expected payoff of garage i conditioned on her observation θNi is given by

E [πi |θNi ] = E [(αi − βi?p+ θi) (pi − ci) |θNi ] = (αi − βi?E [p |θNi ] + θi) (pi − ci) , (47)

which is a convex quadratic function of pi. Thus, substitute p = A + Bθ which satisfies
the first-order condition, we obtain the expected payoff under equilibrium

E [πi |θNi ] = βii(pi − ci)2 = βii(Ai +BiNiθNi − ci)
2. (48)

The expected payoff before the observation of θNi is

E [πi] = EθNi

[
βii(Ai +BiNiθNi − ci)

2
]

= βii

(
(Ai − ci)2 +BiNiΣNiNiB

>
iNi

)
. (49)

Proof of Lemma 2.

Proof. Rewrite equation (3) in a simpler format,

xij =
l

2
+
β0

λ
((vi − vj)− (pi − pj)) . (50)

The expectation of v is exogenously given. Thus, ∆E [v] = 0. Since E [θ] = 0, and followed
from Proposition 2,

E [p] = E [A+Bθ] = A.

A is independent of the information matrix M as stated in (8). Therefore, ∆E [p] = 0, and
then ∆E [xij ] = 0.

Note that

Cij = E
[∫ xij

0

(
ctx+ cwλx

2
)
λdx+

∫ l−xij

0

(
ctx+ cwλx

2
)
λdx

]
= λE

[
1

2
ctx

2
ij +

1

3
cwλx

3
ij +

1

2
ct (l − xij)2 +

1

3
cwλ (l − xij)3

]
= λ (ct + cwλl)E

[
x2
ij

]
+ constant term.

(51)
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Thus, ∆Cij = λ (ct + cwλl) · ∆ {var [xij ]} = λ2

2β0
∆ {var [xij ]}. For the aggregate cost

summed over all links,

∑
ij∈E

var [xij ] =

(
β0

λ

)2 ∑
ij∈E

var [(vi − pi)− (vj − pj)]

=

(
β0

λ

)2 ∑
ij∈E

(var [vi − pi] + var [vj − pj ]− 2cov (vi − pi, vj − pj))

=

(
β0

λ

)2

〈L, var [v − p]〉 .

(52)

Hence, ∆

{ ∑
ij∈E

Cij

}
= β0

2 〈L, var [v − p]〉.

Similarly,

Uij + Cij = E
[∫ xij

0
λdx+

∫ l−xij

0
(vj − pj)λdx

]
= λE [((vi − pi)− (vj − pj))xij ] + constant term

=
λ2

β0
E
[
x2
ij

]
+ constant term

= 2Cij + constant term.

(53)

Thus, ∆Uij = ∆Cij .

Proof of Proposition 3.

Proof. Both Proposition 3 and 4 are derived from solving (9) for M = In and M = ee>.
Then, (11) to solve the information value and (16) to obtain aggregate cost. We omit the
algebra for solving B and present the solution directly.

In the private information scenario, Bii = 3
16β
−1
0 , ∀i. Then,

vi = 2β0B
2
iiΣii =

27

64
β0. (54)

〈L, var [v − p]〉 =
29

64
n · β0

2
. (55)

For the circular model, the B solution is symmetric, i.e., Bij only depends on the
distance between i and j but not i or j. Thus, we simply give the solution B1?.

B1? =


β−1

0
4yn/2−2yn/2−1

[
yn/2, yn/2−1, · · · , y1, y0, y1, · · · , yn/2−1

]
, if n is even,

β−1
0

4yn/2−2yn/2−1

[
yn/2, yn/2−1, · · · , y1/2, y1/2, · · · , yn/2−1

]
, if n is odd.

(56)
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Here yk is a constant defined in Table 2.
Then, by manipulating the hyperbolic functions, the two cases merge to a single ana-

lytical format in terms of information value and aggregate cost.

vi =
2

3 (yn − 1)

(
1

3
(4yn−1 + yn) + n− 3

)
β0 →

(
2− 8

9

√
3

)
β0 ≈ 0.4604β0 as n→∞.

(57)

〈L, varr〉 =
2n

3 (yn − 1)

(
ȳn−1 − ȳn

ȳ1
+ yn − n

)
· β0

2λ
→ 2n

3
√

3
· β0

2
as n→∞. (58)

Proof of Proposition 4.

Proof. For private information case, let index 1 denote the center garage. Then,

B11 = 2
7m−1β

−1
0 ,

Bjj = 3m−1
7m−1β

−1
0 ,∀j 6= 1.

(59)

The individual information values are,

v1 =
(

2m
7m−1

)2
(m+ 1)β0,

vj = 2
(

3m−1
7m−1

)2
β0,∀j 6= 1.

(60)

The aggregate information value is

v1 +mvj =
2m
(
11m2 − 4m+ 1

)
(7m− 1)2 β0 →

22

49
mβ0 as m→∞. (61)

The aggregate cost is

〈L, var [v − p]〉 =
4m2 (5m− 3)

(7m− 1)2 · β0

2
→ 20

49
m · β0

2
as m→∞.

For the complete information case, we also list the intermediate and final solutions.

B =

(
1

3m

[
2 e>

e ee>/2

]
+

1

2

[
0 0
0 I

])
β−1

0 . (62)

v1 = 1
9 (m+ 1)β0,

vj = 13m−5
36m β0, ∀i 6= j.

(63)

v1 +mvj =
17m− 1

36
β0 →

17

36
mβ0 as m→∞. (64)

〈L, var [v − p]〉 =
13m− 5

36
· β0

2
. (65)
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Proof of Proposition 5.

Proof. We begin by writing a general dual form, using Lagrangian multipliers λ1 and λ2 > 0
to relax the capacity constraints:

max
p

[t]
1 ,t=1,2,...,T

L1 =

T∑
t=1

(
α[t] − β̂[t]p

[t]
1 + β[t]p

[t]
2 + θ

[t]
1

)(
p

[t]
1 − c

)
−λ1

[
W1 −

T∑
t=1

(
α[t] − β̂[t]p

[t]
1 + β[t]p

[t]
2 + θ

[t]
1

)]
, (66)

max
p

[t]
2 ,t=1,2,...,T

L2 =
T∑
t=1

(
α[t] − β̂[t]p

[t]
2 + β[t]p

[t]
1 + θ

[t]
2

)(
p

[t]
2 − c

)
−λ2

[
W2 −

T∑
t=1

(
α[t] − β̂[t]p

[t]
2 + β[t]p

[t]
1 + θ

[t]
2

)]
. (67)

We can decompose these problems by t = 1, 2, ..., T , and each sub-problem can by solved
by

p
[t]
1 =

α[t] + β̂[t] (c+ λ1)

2β̂[t] − β[t]
+

θ
[t]
1

2β̂[t] − β[t]ρ[t]
,

p
[t]
2 =

α[t] + β̂[t] (c+ λ2)

2β̂[t] − β[t]
+

θ
[t]
2

2β̂[t] − β[t]ρ[t]
. (68)

Plug in prices

T∑
t=1

α[t] − β̂[t]

[
α[t] + β̂[t] (c+ λ1)

2β̂[t] − β[t]
+

θ
[t]
1

2β̂[t] − β[t]ρ[t]

]

+β[t]

[
α[t] + β̂[t] (c+ λ2)

2β̂[t] − β[t]
+

θ
[t]
2

2β̂[t] − β[t]ρ[t]

]
+ θ

[t]
1 = W1, (69)

T∑
t=1

α[t] − β̂[t]

[
α[t] + β̂[t] (c+ λ2)

2β̂[t] − β[t]
+

θ
[t]
2

2β̂[t] − β[t]ρ[t]

]
(70)

+β[t]

[
α[t] + β̂[t] (c+ λ1)

2β̂[t] − β[t]
+

θ
[t]
1

2β̂[t] − β[t]ρ[t]

]
+ θ

[t]
2 = W2, (71)

under stationary conditions: β̂[t] = β̂, β[t] = β, ρ[t] = ρ, we have
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β̂

2β̂ − β

T∑
t=1

α[t] +
T β̂β

2β̂ − β
(c+ λ2)− T β̂2

2β̂ − β
(c+ λ1) +

β̂ + β(1− ρ)

2β̂ − βρ

T∑
t=1

θ
[t]
1 = W1,

β̂

2β̂ − β

T∑
t=1

α[t] +
T β̂β

2β̂ − β
(c+ λ1)− T β̂2

2β̂ − β
(c+ λ2) +

β̂ + β(1− ρ)

2β̂ − βρ

T∑
t=1

θ
[t]
2 = W2.(72)

When W1 = W2 = W , and limT→∞

∑T
t=1 θ

[t]
i

T → Eθ
[t]
i almost surely, due to Strong Law of

Large Numbers, we have

β̂

2β̂ − β

T∑
t=1

α[t] +
T β̂
(
β − β̂

)
2β̂ − β

(c+ λ) +
β̂ + β(1− ρ)

2β̂ − βρ

T∑
t=1

θ
[t]
i = W,

λ =
2β̂ − β

β̂
(
β − β̂

) · W
T
−

(
2β̂ − β

) [
β̂ + β(1− ρ)

]
β̂
(
β − β̂

) [
2β̂ − βρ

] · Eθ[t]
i −

β̂

β̂
(
β − β̂

) · ∑T
t=1 α

[t]

T
− c, (73)

whenever this is non-negative. Plug this in the pricing strategies, and Eθ
[t]
i = 0, we obtain

p
[t]
1 =

α[t]

2β̂ − β
+

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
+

θ
[t]
1

2β̂ − βρ
,

p
[t]
1 =

α[t]

2β̂ − β
+

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
+

θ
[t]
2

2β̂ − βρ
. (74)

When W1 6= W2, a similar procedure returns λ1 6= λ2, a one-period snapshot is equivalent
to an incapacitated static model with heterogeneous cost c1 = c+ λ1, and c2 = c+ λ2. For
finite T,

p
[t]
i =

α[t] + β̂ (c+ λi)

2β̂ − β
+

θ
[t]
i

2β̂ − βρ
, (75)

wherein λi will be function of both θ
[t]
1 and θ

[t]
2 , which is inconsistent, and thus we need

E
(
p

[t]
2 |θ

[t]
1

)
to solve garage 1’s maximization problem. This problem is fundamentally more

complicated and awaits future research.
Alternatively, when

2β̂ − β

β̂
(
β − β̂

) · W
T
−

(
2β̂ − β

) [
β̂ + β(1− ρ)

]
β̂
(
β − β̂

) [
2β̂ − βρ

] · Eθ[t]
i −

β̂

β̂
(
β − β̂

) · ∑T
t=1 α

[t]

T
− c < 0, (76)
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we have non-binding capacity constraint (λ = 0). This case is trivial, with

p
[t]
i =

α[t] + β̂c

2β̂ − β
+

θ
[t]
i

2β̂ − βρ
. (77)

Compared with the static incapacitated version:

lim
T→∞

p
[t]
i − pi =

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
− β̂c

2β̂ − β
< 0,

which means the response to a private signal remains the same, while the baseline rates
suffer from a constant downward distortion. The aggregate payoff is

lim
T→∞

Eπ =

T∑
t=1

β̂

 α[t]

2β̂ − β
−

c−
 W/T(

β − β̂
) − β̂(

2β̂ − β
)(

β − β̂
) · ∑T

t=1 α
[t]

T

2

+
β̂σ2

(2β̂ − βρ)2

 ,

which is decreasing in W and increasing in
∑T

t=1 α
[t]

T when β̂ > β, the converse is true when
β
2 < β̂ ≤ β.

Proof of Proposition 6.

Proof. From Proposition 2, we can obtain the equilibrium pricing strategy pi = A +
Bxi,∀i =1,2, and Eπ1 = Eπ2 = Eπ = β̂

(
(A− c)2 +B2σ2

)
. Garage i maximize expected

payoff by taking first-order condition:

∂E (π1|x1)

∂p1
= α− β̂p1 + βE (p2|x1) + E (θ1|x1)− β̂ (p1 − c) , (78)

Plug in pi = A+Bxi, E (θ1|x1) = 1/γ2

1/σ2+1/γ2x1 = σ2

σ2+γ2x1, and

E (x2|x1) = E (θ2 + ε2|x1) = E (θ2|x1) = E [E (θ2|θ1, x1) |x1] = ρE (θ1|x1) =
ρσ2

σ2 + γ2
. (79)

The first-order condition becomes:

α− 2β̂ (A+Bx1) + β

[
A+B

ρσ2

σ2 + γ2
x1

]
+

σ2

σ2 + γ2
x1 + β̂c = 0. (80)

Matching coefficients:

α− 2β̂A+ βA+ β̂c = 0,
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− 2β̂B + βB
ρσ2

σ2 + γ2
+

σ2

σ2 + γ2
= 0, (81)

we have

A =
α+ β̂c

2β̂ − β
,B =

σ2(
2β̂ − βρ

)
σ2 + 2β̂γ2

. (82)

To summarize:

pi =
α+ β̂c

2β̂ − β
+

σ2(
2β̂ − βρ

)
σ2 + 2β̂γ2

· xi, (83)

Eπ = β̂

[
α+ β̂c

2β̂ − β
− c

]2

+

 σ2(
2β̂ − βρ

)
σ2 + 2β̂γ2

2

· β̂Ex2
i (84)

= β̂

[
α− (β̂ − β)c

2β̂ − β

]2

+
β̂σ4(σ2 + γ2)[(

2β̂ − βρ
)
σ2 + 2β̂γ2

]2 . (85)

It can be checked that ∂B
∂ρ > 0, ∂B

∂σ > 0, ∂B
∂γ < 0, ∂Eπ

∂β̂
< 0, ∂Eπ

∂β > 0 and ∂Eπ
∂ρ > 0.

Suppose that garages share information. We can obtain the equilibrium pricing strategy
p1 = A+B1x1 +B2x2, p2 = A+B2x1 +B1x2. We have

E (θ1|x1, x2) = E [E (θ1|x1, x2, θ2) |x1, x2]

= E [E (θ1|x1, θ2) |x1, x2] , (86)

with marginal distribution being θ1|θ2 ∼ N(ρθ2, σ
2
(
1− ρ2

)
),

E (θ1|x1, θ2) =
σ2
(
1− ρ2

)
σ2 (1− ρ2) + γ2

· x1 +
γ2ρθ2

σ2 (1− ρ2) + γ2
, (87)

E (θ1|x1, x2) =
σ2
(
1− ρ2

)
σ2 (1− ρ2) + γ2

· E (x1|x1, x2) +
γ2ρ

σ2 (1− ρ2) + γ2
· E (θ2|x1, x2)

=
σ2
(
1− ρ2

)
σ2 (1− ρ2) + γ2

· x1 +
γ2ρ

σ2 (1− ρ2) + γ2
· σ2

σ2 + γ2
· x2. (88)

E (θ1 |x1, x2 ) =
σ2

(σ2 + γ2)2 − (ρσ2)2

[
σ2
(
1− ρ2

)
+ γ2, ργ2

] [ x1

x2

]
.
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Garage i maximize expected payoff by taking first-order condition:

∂E (π1|x1, x2)

∂p1
= α−2β̂(A+B1x1+B2x2)+βE (A+B2x1 +B1x2|x1, x2)+E (θ1|x1, x2)+β̂c.

(89)
Matching coefficients:

α−
(

2β̂ − β
)
A+ β̂c = 0⇒ A =

α+ β̂c

2β̂ − β
, (90)

−2β̂(B1x1+B2x2)+βE (B2x1 +B1x2|x1, x2)+
σ2

(σ2 + γ2)2 − (ρσ2)2

[
σ2
(
1− ρ2

)
+ γ2, ργ2

] [ x1

x2

]
= 0

− 2β̂B1 + βB2 +
σ2

(σ2 + γ2)2 − (ρσ2)2 ·
[
σ2
(
1− ρ2

)
+ γ2

]
= 0, (91)

− 2β̂B2 + βB1 +
σ2

(σ2 + γ2)2 − (ρσ2)2 · ργ
2 = 0, (92)

which gives

B1 =
γ2(2β̂ + βρ) + 2β̂(1− ρ2)σ2

4β̂2 − β2

σ2

(σ2 + γ2)2 − (ρσ2)2 ,

B2 =
γ2(2β̂ρ+ β) + β(1− ρ2)σ2

4β̂2 − β2

σ2

(σ2 + γ2)2 − (ρσ2)2 . (93)

Since 2β̂ > β, garages respond positively toward signals.

Eπ = β̂

[
α− (β̂ − β)c

2β̂ − β

]2

+ β̂σ2 σ2(σ2 + γ2)[(
2β̂ − βρ

)
σ2 + 2β̂γ2

]2 . (94)

Eπ′ = β̂

[
α− (β̂ − β)c

2β̂ − β

]2

+ β̂σ2
(
B2

1 +B2
2 + 2ρB1B2

)
. (95)

Recall that E (θ1|x1, x2) has two parts, one associated with forecasting via x1, the
other associated with forecasting indirectly via x2, since θ1 and θ2 is correlated. We can
explicitly observe the corresponding information value in the expression of B1 and B2.
It can be checked that Eπ′ − Eπ > 0 as β/β̂ → 2, i.e., information sharing is desirable
when β/β̂ → 2. More comprehensive characterization can be obtained when γ → 0, as in
Proposition 1.
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Proof of Proposition 7.

Proof. For conciseness, we present the proof of proposition using a two-coalition formula-
tion. The proof naturally extends to the multiple-coalition cases.

We use a sequence of vector-matrix formulations to prove the proposition. To clarify
the notations, 〈·, ·〉 is the Frobenius inner product of two vectors/matrices of the same
dimension(s); zK = [z]K takes the subvector from vector z based on the index set K.
Suppose the two coalitions are denoted by index sets K1 and K2

Π (K1) = 〈dK1 , pK1 − cK1〉 = 〈αK1 − βK1?p+ θK1 , pK1 − cK1〉 .

Define Q := β +

[
β>K1K1

O

O β>K2K2

]
. Utilizing the expression of Q and the linear pricing

p = A+Bθ, we have Since E
[
θ|θN(K1)

]
= Σ?N(K1)Σ

−1
N(K1)N(K1)θN(K1), we have

∂Π (K1)

∂pK1

= −β>K1K1
(pK1 − cK1) + αK1 − βK1?p+ θK1

= [−Qp+ (Q− β) c+ α+ θ]K1
,

= [−QA+ (Q− β) c+ α+ (I −QB) θ]K1
.

E
[
∂Π (K1)

∂pK1

∣∣∣∣ θN(K1)

]
=
[
−QA+ (Q− β) c+ α+ (I −QB) Σ?N(K1)Σ

−1
N(K1)N(K1)θN(K1)

]
K1

.

Under the equilibrium pricing strategy, the R.H.S is 0 for every θN(K1). Therefore, we have

[−QA+ (Q− β) c]K1
= 0,

ΣK1N(K1) −QK1?BΣ?N(K1) = 0.

The same relations apply to K2 as well. Thus, we obtain (33) and (34). (The 0 entries in
B are enforced by the information structure.)

K1’s expected payoff given the information θN(K1) is

E
[
Π (K1)| θN(K1)

]
= E

[
〈αK1 − βK1?p+ θK1 , pK1 − cK1〉| θN(K1)

]
=

〈
E
[
αK1 − βK1?p+ θK1 | θN(K1)

]
, pK1 − cK1

〉
=

〈
β>K1K1

(pK1 − cK1) , pK1 − cK1

〉
.

The last equality follows from the equilibrium condition

E
[
∂Π (K1)

∂pK1

∣∣∣∣ θN(K1)

]
= E

[
−β>K1K1

(pK1 − cK1) + αK1 − βK1?p+ θK1

∣∣∣ θN(K1)

]
= 0.
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Finally, the expected payoff is

Eθ [Π (K1)] = Eθ
[
Π (K1)| θN(K1)

]
= Eθ

[〈
β>K1K1

(pK1 − cK1) , pK1 − cK1

〉∣∣∣ θN(K1)

]
=

〈
β>K1K1

(AK1 − cK1) , AK1 − cK1

〉
+ Eθ

[〈
β>K1K1

BK1?θ,BK1?θ
〉]

〈
β>K1K1

(AK1 − cK1) , AK1 − cK1

〉
+
〈
BK1?ΣB

>
K1?, βK1K1

〉
.

This is equivalent to (36) and we conclude the proof. �

Proof of Proposition 8.

Proof. Let S = N\ {n} be the set group members, and n be the only agent outside the
info-sharing group. We need to prove the information value vn under this structure is less
than the value when all agents are in the group.

Bnn satisfies {
QSSBSSΣSS +QSnBnnΣnS − ΣSS = 0
QnSBSSΣSn +QnnBnnΣnn − Σnn = 0

. (96)

Eliminate BSS , we get

Bnn = −
QnSQ

−1
SSΣSn − Σnn

QnnΣnn −QnSQ−1
SSQSnΣnSΣ−1

SSΣSn

. (97)

Thus,

vn = βnnB
2
nnΣnn = βnn

(
QnSQ

−1
SSΣSn − Σnn

QnnΣnn −QnSQ−1
SSQSnΣnSΣ−1

SSΣSn

)2

Σnn. (98)

If all agents are in the group, utilizing the inverse of block matrix, we have

B̃n? =
[
Q−1

]
n?

= − 1

Qnn −QnSQ−1
SSQSn

[
QnSQ

−1
SS ,−1

]
. (99)

ṽn = βnnB̃n?ΣB̃
>
n? =

QnSQ
−1
SSΣSS

(
QnSQ

−1
SS

)> − 2QnSQ
−1
SSΣSn + Σnn(

Qnn −QnSQ−1
SSQSn

)2 · βnn (100)

Then, we prove vn < ṽn.

vn
βnn

=
(

QnSQ
−1
SSΣSn−Σnn

QnnΣnn−QnSQ
−1
SSQSnΣnSΣ−1

SSΣSn

)2

Σnn =
QnSQ

−1
SS

ΣSnΣnS
Σnn

(QnSQ
−1
SS)
>−2QnSQ

−1
SSΣSn+Σnn(

Qnn−QnSQ
−1
SSQSn

ΣnSΣ−1
SS

ΣSn
Σnn

)2

<
QnSQ

−1
SS

ΣSnΣnS
Σnn

(QnSQ
−1
SS)
>−2QnSQ

−1
SSΣSn+Σnn

(Qnn−QnSQ
−1
SSQSn)

2 <
QnSQ

−1
SSΣSS(QnSQ

−1
SS)
>−2QnSQ

−1
SSΣSn+Σnn

(Qnn−QnSQ
−1
SSQSn)

2 = ṽn
βnn

.

(101)
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The first inequality follows from
ΣnSΣ−1

SSΣSn

Σnn
< 1 (since Σ is positive definite) and Qnn,

QnSQ
−1
SSQSn, Qnn −QnSQ−1

SSQSn > 0. The second inequality holds since ΣSS − ΣSnΣnS
Σnn

is
positive definite.
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