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Abstract

Inspired by new technologies to monitor parking occupancy and process market
signals, we aim to expand the application of demand-responsive pricing in the parking
industry. Based on a graphical Hotelling model wherein each garage has information for
its incoming parking demand, we consider a general competitive spatial pricing in park-
ing systems under asymmetric information structure. We focus on the impact of urban
network structure on the incentive of information sharing. Our analyses suggest that
the garages are always better off in a circular-networked city, while they could be worse
off in the suburbs of a star-networked city. Nevertheless, the overall revenue for garages
is improved and the aggregate congestion is reduced under information sharing. Our re-
sults also suggest that information sharing helps garages further exploit the customers
who in turn become worse-off. Therefore, policy-makers should carefully evaluate their
transportation data policy since impacts on the service-providers and the customers
are typically conflicting. Using the SFpark data, we empirically confirmed the value
of information sharing. In particular, garages with higher price-demand elasticity and
lower demand variance tend to enjoy larger benefits via information sharing. These
insights support the joint design of parking rates structure and information systems.

Keywords: Smart parking; Information systems design; Bertrand competition; Game with
incomplete information.

*Corresponding author, email: xin.wang@wisc.edu



1 Introduction

Parking is an important industry overlooked by the revenue management community. It
is estimated that revenue from parking in the US alone will increase from $25 billion in
2017 to nearly $29 billion by 2018 (Zanona, 2016). The recent development in technologies
enables new pricing instruments in the parking industry, which can potentially reshape the
market and contribute to smart parking. Price instruments make it possible to shift parking
demand spatially and temporally. Many city municipalities have pioneered the “demand-
responsive pricing”. New York City’s PARK Smart varies parking prices depending on the
time of day. San Francisco’s SFpark program was launched in 2011. They coined the so-
called “performance-based rates”, in which parking prices increase or decrease depending on
garages’ occupancy. The complexity of this system is surpassed by Berkeley’s GoBerkeley,
in which parking prices vary by time of the day, location, and even duration.

The essence of these parking instruments is to comprehend “market signals” from avail-
able demand information. Motivated by this idea, we focus on the transmission and pro-
cessing of market signals in the parking market. For example, a parking data analytics
company, Smarking, has been building information systems for garage owners. Keeping
track of occupancy data, Smarking helps garage owners predict parking demand by shar-
ing and analyzing historical data. Since the success of Smarking relies crucially on garage
owners’ willingness to open their data, a natural question arises: what are garage owners’
incentives for information sharing? Besides, how does such information sharing affect the
parking industry in general?

In this paper, we establish quantitative methods to address these questions. We con-
sider the pricing competition among parking garages and investigate how an information
service provider can be a game-changer by coordinating their pricing strategies through in-
formation sharing. We extract the demand structure from the Hotelling model (Hotelling,
1929) and incorporate uncertainties. Since garages have different information accesses to

the demand uncertainties, they engage in price competition with incomplete information.
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Each garage chooses a parking rate to maximize her conditional expected payoff and they
reach a Bayesian-Nash equilibrium. However, the equilibrium payoff is changed if they
opt to share their private information in advance. Our analysis reveals that information
sharing produces win-win outcomes for all participants in most cases.

The contributions of this paper are as follows. We expand the application of infor-
mation management in the parking industry, which contributes to a crucial part of the
general framework of smart cities. We establish a game-theoretic framework to analyze the
influence of information sharing among competing urban garages. We focus on the impact
of urban network structure on the incentive of information sharing: while the garages are
always better off in a circular city, they could be worse off in the suburbs of a star city.
Through the graph Laplacian matrix, we isolate the effect of network structure and analyze
how the uncertainties in the intrinsic parking utility propagate. As a result of informa-
tion sharing, the overall revenue for garages is improved and the aggregate congestion is
reduced. However, our results also suggest that information sharing helps garages further
exploit the customers who in turn become worse-off. Therefore, policy-makers should care-
fully evaluate their transportation data policy since impacts on the service-providers and
the customers are typically conflicting. We empirically confirmed the value of information
sharing through a case study using the SFpark data. In particular, garages with higher
price-demand elasticity and lower demand variance tend to enjoy larger benefits via in-
formation sharing. These insights support the joint design of parking rates structure and
information systems.

Section 2 reviews relevant literature. In Section 3, we introduce the Hotelling model
setup and the parking price competition and derive its Bayesian-Nash equilibrium. In
Section 4, we analyze the impact of information sharing under two typical graph structures.
In Section 5, we apply our model on the SFpark data to show the potential benefit from
information sharing in reality. Section 6 concludes the paper. In the online supplement

materials, we present model extensions and mathematical proofs.



2 Literature review

The Hotelling model on networks has a long tradition in economics literature, e.g., Sa-
lop (1979) and Eiselt and Laporte (1993). Recent interests are emerging in extending
Hotelling’s model of price competition to a general graph, e.g., Heijnen and Soetevent
(2018). Our model is most closely related to service pricing in Hotelling models. Xu et al.
(2016) study the pricing in Hotelling queue with flexible customers. Yang et al. (2014)
present a duopoly waiting-time competition model based on a hub-spoke Hotelling queue-
ing network. Our model is also related to spatial pricing in OM literature, e.g., He et al.
(2017) and Bimpikis et al. (2019).

In terms of information sharing, our paper is closest to Liao et al. (2019), wherein
information sharing decisions are made in a Hotelling market. Our model is a mirrored
version such that the producers are distributed on the Hotelling line therein, instead of the
consumers in our model. The questions regarding the incentive of information sharing are
known as the “endogenous information structure” problems in the economic theory. For
example, Vives (1988) shows that the investments in information are strategic complements
in certain economies. Zhou and Chen (2016) demonstrate the power of targeted information
release. Information sharing is also studied in the context of supply chain management, e.g.,
in Lee et al. (2000). Our findings are consistent with theirs in the sense that information
sharing is more beneficial given more correlated demands.

We learn from a long stream of literature in economics and operations research on
price competition with incomplete information. Gal-Or (1985) and Raith (1996) study
the incentives for information sharing in oligopoly. Morris and Shin (2002) consider the
value of a public forecast in coordinating agents’ actions. Colombo et al. (2014) model the
interaction of public and private information, as a recent extension along this stream of
research. We consider a class of equilibria wherein each agent’s action depends linearly on
its forecast and forms Bayes’ estimator for others’ forecasts (Radner, 1962). Our model

adopts a price competition economy with general networked substitutions and an arbitrary

Page 4 of 54



Page 5 of 54

demand covariance matrix.

Optimizing parking policies is one of the direction to reduce and/or eliminate cruising
behavior, e.g., designing parking permits (Zhang et al., 2011; Wang et al., 2018), managing
parking reservations (Chen et al., 2015; Wang and Wang, 2019), and applying dynamic
pricing strategies (Qian and Rajagopal, 2014; Lei and Ouyang, 2017). One of the most
well-known parking economic experiments is SFpark, in which demand-responsive pricing
has been implemented by San Francisco municipalities. Transportation researchers analyze
the SFpark experiment to study the impact on garage occupancy, price-elasticity, cruising
reduction, and eventually social welfare (see, e.g., Millard-Ball et al. (2013); Chatman
and Manville (2014)). On the other hand, Mackowski et al. (2015) seek a quantitative
framework for optimal parking prices, taking into account the price-demand relationship.
A theoretical counterpart has been conducted in Anderson and De Palma (2004), where
they analyze the equilibrium distribution of customers on a single line. Arnott and Inci
(2006) also use theoretical models to analyze the effects of parking fees on traffic congestion
and social welfare. Different from existing literature, our model emphasizes two directions
of parking pricing competition: (1) the price-demand relationship is multi-dimensional,
which requires the idea of cross-elasticities; (2) we focus on the information asymmetry

since the demand knowledge is private and uncertain.

3 Model setup

3.1 A basic graphical Hotelling model

We start with a generalization of the traditional Hotelling model of spatial price compe-
tition (Hotelling, 1929). We model the urban parking market via an undirected graph
(N, E), where the vertex set N records garage locations and the edge set E documents
the parking demand induced from the transportation network. We consider a single-period

setting, which can be viewed as an arbitrary time period during a day. (A multi-period
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Figure 1: A graphical structure of the parking competition

extension is provided in the online supplement §A.1.) The garages, indexed by the vertex
set N ={1,2,---,n}, engage in a price competition. Each garage i sets a parking price
pi, given a unit parking space cost ¢;. In this paper, we assume every garage is controlled
by a different entity, whereas, in the online supplement §A.3, we relax this assumption and
analyze the competition among garage coalitions.

Figure 1 depicts a star-shaped city structure as an example. Specifically, each node
denotes a parking garage in the competition. On each link, we have customers who are
looking for parking spots in the area. We assume that each customer only chooses from two
candidate garages. So the potential customers choosing from garage ¢ and garage j form
the cruising traffic represented by an undirected link ¢j. Suppose infinitesimal customers
are evenly distributed on each link 7j with density A;;. Let [;; be the length of the link.
Note that we do not model the intended destination of each customer. Instead, we assume
customers are close to their destinations when they begin searching for parking spots. The
behavior of these customers is modeled by the utility method introduced next.

Customers. Consider a customer on ij with her distance to garage ¢ being x, and

thus l;; — x to the garage j. She chooses to park at either garage i or garage j, based on
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the following utility evaluation. Her utility for parking at garage 7 is calculated as

uij(in): Vi — Pi - -z _Cw')\ij'$2. (1)

net intrinsic parking value travel cost  congestion cost

Here, v; is a heterogeneous intrinsic service value if parking at garage i. p; is the price
charged to every customer, leaving v; — p; being the net intrinsic parking value for garage i.
¢t is the cost coefficient for traveling a unit distance, and c¢,, is the cost coefficient for unit
congestion. We assume a convex cost structure to characterize the negative externality
of parking (e.g., Anderson and De Palma, 2004). The x-squared term, which is referred
as the congestion cost, represents any cost growing superlinearly when more customers
are directed to the same garage, e.g., extra time spent on searching for an available spot.
Moreover, quadratic from produces tractable closed form equilibrium for further analytical
discussion. Throughout the paper, we assume that v; is high enough to maintain a highly
competitive environment, which will be further discussed in the later section.
Alternatively, this customer can also travel a distance of l;; — = to park at garage
j. Similarly, her utility for parking at garage j is symmetrically defined. Every customer
chooses the garage which maximizes her payoff. Thus, the position of the marginal customer

who is indifferent between garage 7 and j is given by solving x from
Vi = Pi = Gt @ — Cp - Mg = vj = pj — ¢+ (lij — ) — cw - Nij(lig — 2)?, (2)

which results in

l.‘ Vi — Vi — . m.
Y= g * 22(ctj—|— clf,};\lijlijp)]) 3)
The position given by Equation (3) indicates that if a customer on link ij has a distance to
garage ¢ within [0, z;;], she chooses garage i; Otherwise, she goes to the alternative garage
Jj. Here, we impose an assumption on all Hotelling model’s parameters such that x;; always

lies in [0, l;;]. This excludes the extreme case where a garage attracts every customer on a

link from her competitor.



Based on the above customer behavior, the aggregate demand to garage i is

l, . Vi — Vs
P S V] ZNUIET, R .
! j:ijZGE K 2 2(Ct + cw)\ijlij) ! j:ijZGE' 2(0,5 + C’l,l})\’bjll] Z Ct + CwAz]lz]) J
(4)
The demand to each garage takes a linear function of the parking prices. We further
investigate the interactive behaviors of garages and customers through a multi-agent pricing

game with uncertainty and information asymmetry.

3.2 Pricing game with asymmetric information

Garages. Recall from Equation (4) that the parking demand d; for garage i is linearly
decreasing in her own parking rate p;, but increasing in p; of other garages. Suppose
the capacity of each garage is always sufficient. Then, all garages form a Bertrand price
competition (Bertrand, 1883). Here, we extend (4) to consider a linear demand function,
d; = a; — Biipi + Z —Bijp; +6i, Vi € N, (5)
i
or in a compact form, d = o — Bp + 0, where «,0,d,p € R" and 3 € R"*",

Here, a; > 0 corresponds to the market potential, i.e., the baseline demand driven
by dedicated customers. As we analyze one slice in time, we abstract away from its inter-
temporal variability. B > 0 is the price elasticity. Our market structure setup corresponds
to a scenario wherein garages are not price-takers but enjoy the market power. 8;; < 0 is
the cross-price elasticity which captures the fact that the parking demand increases as the
price of her competitor increases. Finally, the parking demand exhibits random deviations
0; for each garage. The deviations originate from the uncertain valuation of parking garages
from the customer’s perspective.

Relating (5) to the Hotelling demand (4), the price elasticities are analogs of the coef-
ficients in front of prices in (4); the demand potentials together with the noise terms are
related to the service value v with uncertainties. We will elaborate on their connections

and link the pricing game model back to the Hotelling model in Section 4.
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The payoff function of garage i € N can be expressed as

mi=di-(pi— )= | o — Bupi + > —Bijp; +0i | (pi — i), (6)
J#
which is the demand times the profit of providing a unit parking spot. The physical meaning
of the cost ¢; can be generic. This cost not only includes infrastructure and operating costs,
but also reflects a shadow price for holding this spot for future release.

Information structure and sequence of events. We assume that 6 := [0y, 605, ...,0,] "
is drawn from a multivariate normal distribution with a zero mean, i.e., 8 ~ N, (0,X). X
is the covariance matrix. Without information sharing, garage ¢ can only predict its own
demand uncertainty 6; but not the others’.

The sequence of events is as follows. First, each garage forecasts her demand uncertainty
0;. For the base model, we assume the demand forecast is 100% accurate. That is to say
that garage i observes 0; without error. Extension for inaccurate demand forecast is in the
online supplement §A.2. Meanwhile, they estimate the competitors’ demand uncertainties
based on the Bayesian estimator éj = E(0;]6;). Then, each garage i makes her pricing
decision p;. Finally, the market clears and demands d; are determined; each garage receives
a corresponding payoft ;.

Pricing equilibrium. We briefly introduce the equilibrium concept. We focus ex-
clusively on the linear Bayesian-Nash equilibrium when garage ¢ chooses a parking rate
p; to maximize her payoff, i.e., p; = A; + B;0;,Vi € N for some constant scalars A; and
B;’s. We can interpret A; as the baseline price; B; as the response factor with respect
to the signal 6;. If information is shared among all garages, then garage ¢ can utilize all
her known signals to set her parking rate, i.e., p; = A; + ZBijej- In her calculation for
the expected market price, she forms an expectation of tﬁe other garages’ prices. Such
equilibrium concept is commonly seen in the literature, e.g., Vives (1988) and Morris and
Shin (2002).

Under a certain information structure, the baseline prices and response factors in the



equilibrium pricing strategy are determined by the market structure. In Section 3.3, we
present the analysis of two-garage symmetric model to explore the intuition. The equilib-

rium in a general model is provided in Section 3.4.

3.3 Analysis of two-Garage models

We begin with a stylized setup with two symmetric garages. S11 = Po2 = B, B12 = P12 =
—B,and ¢ =cy =c:

dy = o — Bpy + Bp2 + 61,
X (7)
dy = a+ Bp1 — Bp2 + ba,

We assume that signals are drawn from symmetric bivariate normal distribution (61, 92)T ~

p

No | 0,02 . As a standard stability constraint, we require 0 < 8 < 3.

p 1
Under the above symmetric setting, the equilibrium pricing under the private informa-

tion structure of both garages is denoted as p; = A + BO; where A, B € R.

Proposition 1. The following comparative statics hold:

0
oB

1. Baseline parking rates decrease in price elasticity, i.e., < 0, and increase in

cross-price elasticity, i.e., g—’g > 0;

2. Response factor toward private signals is always positive, i.e., B > 0, while the

response is more aggressive when private signals are more correlated, i.e., %—f > 0;

3. Garages’ payoffs decrease in private elasticity, i.e., a(;%“ < 0, and increase in cross-

price elasticity, i.e., % > 0;

4. Garages’ payoffs increase in the degree of demand correlation, i.e., %E—p” > 0.

5. Information sharing is always preferred.

The key to understanding this proposition is our assumption of the positive cross-price

elasticity, which implies a strategic complement: an increase in one garage’s rate will lead

10
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to a higher demand for another garage. The first three statements in the proposition
are straightforward. Firstly, baseline rates decrease in price elasticity (due to the inverse
relationship between price and demand) and increase in cross-price elasticity (due to the
strategic complements). Consequently, garages’ payoffs decrease in private elasticity and
increase in cross-price elasticity.

The fourth statement provides an interesting result: garages’ expected payoff is higher
when demands are more positively correlated. The additional payoff stems from taking
advantage of the demand deviation through known information. If demand signals are more
positively correlated, due to demand cross-elasticity, the behavior of garage 2 amplifies the
demand fluctuation of garage 1. Then, garage 1 reacts more aggressively on 61 and obtains
a higher expected payoff. On the contrary, if demand is more negatively correlated, the
behavior of garage 2 dampens the demand fluctuation of garage 1, resulting in a lower
expected payoff. In other words, demand signals, even if being private, serve as a collusion
instrument. A higher correlation will strengthen the belief in such positive feedback.

Finally, it is proven that both garages are always better off when sharing signals. This
complies with the intuition that demand signals serve as a collusion instrument to exploit

demand fluctuation. This effect is intensified now due to communication.

3.4 General model

In this subsection, we present the n-garage equilibrium under asymmetric information. We
first clarify the algebraic notations and assumptions applied throughout the rest of the
paper.

Notations. Recall N = {1,--- ,n} and suppose S, S’ C N are index sets. For a matrix
(boldface) G € R™ ™ we define its submatrix Gggr € RISIXIST which takes rows of G
indexed by S and columns indexed by S’. In particular, let G;; be the element at row-i
and column-j. (Vectors is a specific matrix with one dimension, and therefore follow the

same subscript scheme). When either S or S’ takes N, we simply denote it by x, i.e.,

11



G s, is the submatrix by picking rows indexed by S from G, while G; stands for the jth
column vector of G. We denote O as the zero-matrix, I as the identity matrix, and e as

the column all-ones vector such that ee! is the all-ones matrix.

Assumption 1. §; > 0, 8;; <0,V # 4, and B is positive semidefinite; X is symmetric

positive semidefinite.

Information structure. We define the information structure as a boolean ma-
trix M € {0,1}""™: M,; = 1 if garage i knows 0;; otherwise, M;; = 0. Let N; :=
{j € N : M;; = 1} be the set of garages whose information is known by garage i. Garage
i sets her parking rate p; = A; + ) B;;0; based on her known signals. By enforcing
Bi; =0,Vj ¢ N;, i.e., garage i canngtE iﬁilize her unknown information 6;, we have an n xn
matrix B representing all the pricing coefficients on the signals. Then, the pricing policies

is compactly written as p = A + Bf. The following proposition solves the Bayesian-Nash

equilibrium given an arbitrary M.

Proposition 2. Under the information structure M, the equilibrium pricing strategy is

pi = Ai + > B;j0;,Vi € N, where parameters A and B are determined by the following.
JEN
A=[A1, Az, s Ag) T = Q7  ag + Bricr, a2 + Bazca, oy i + Brncn] (8)

Qi-BE., — Zin, = 0,Vi € N,
Bij = 0,YM;; = 0.

9)

Here, Q := B + diag|B3] is the elasticity matriz with its diagonal entries doubled and
N;:={j € N : M;; = 1} is the information index set of garage i.
The equilibrium payoff is given by

E [mi] = Bii (A — ¢;)* + Bii B S By (10)

For each garage 4, her pricing policy p; = A; + > B;;0; is a combination of two parts.
JEN
First, A; represents a baseline parking rate. Second, {B;; : j € N;} are response factors

12
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that form a rate adjustment based on the garage i’s known information 6y,. The baseline
price A is determined by the demand structure but irrelevant to the information structure
M, while the response factor B is crucially affected by M. Utilizing this property, we
isolate the effect of the information structure.

Information value. We define the information value as the second term in (10),
Vi = BiiBi. B (11)

Note that if we remove the demand signals # from the model, garages engage in a standard
Bertrand competition which has equilibrium prices p; = A; and (expected) payoff m; =
Bii (A — ci)Q. This can be verified by taking M = O or 3 = O in Proposition 2. Thus, the
information structure M results in an additional expected payoff V;. The minimum possible
information value is achieved at M = O. Private information structure corresponds to
M = 1. M = ee' is the sharing (complete) information structure. In this paper, we
mainly focus on the comparison between the private information structure and the sharing
information structure. We use value of information sharing to denote the increase in
V; from the M = I case to the M = ee' case. In the online supplement §A.4 and §A.5,

we further discuss garages’ endogenous preference on other information structures.

4 Urban network structures

In this section, we examine the effect of information sharing on Hotelling networks with
homogeneous links. To analytically demonstrate the benefit of information sharing, we
studied two specific network structures — circular city, where identical garages are evenly
distributed on a circle; and star city, where a central garage is surrounded by m =n — 1
peripheral ones. All traffic parameters [;; and \;; are assumed to be identical on every
link. Then, we derive the pricing equilibrium with or without information sharing. The
results suggest that information sharing not only improves the aggregate expected profit for

garages but also reduces the overall congestion cost for customers on the links. However,

13



information sharing helps garages to exploit total customer welfare.

First, we established the transformation from the Hotelling model to the linear price-
demand formulation, with some homogeneity assumptions and parameter definitions. The
homogeneity assumptions are made to retain tractability of our model so that we can
highlight the impact of network topology and information sharing.

Link homogeneity. Assume \;; = A and [;; = [,Vij € E. This leads to identical
cross-price elasticities —3;; = m =: By, Vij € E.

Service value with homogeneous uncertainties. Assume that v follows a multi-
variate normal distribution with identical variances var [v;] = 02, Vi, and identical correla-
tions corr (vj,v;) = py, Vi # j. Namely, v ~ N (9,02 ((1 — pu) I + pyee’)) where © is the
exogenous mean service value vector. The variability of v; represents the fluctuation in the
internal “attractability” of garage i. For example, an on-sale period at a mall potentially
increases the value of parking at its nearby garage. The random outcome of v; is private
knowledge to garage ¢ while the entire distribution is common knowledge to all garages.
The uncertainty in the service value v results in fluctuation in demand potentials.

In the next lemma, we will show that the Hotelling model can be reduced to a Bertrand
price competition. The key message is concerning how the uncertainties in the intrinsic
parking utility propagate to shape the covariance in the demand function. The key to
unfold this propagation and isolate the effect of network structure is through the graph

Laplacian matrix.
Definition 1. (Laplacian Matrix) For a given simple graph (N, E), its Laplacian matrix
L is an n X n matrix defined as:

degree of node i, if i = j,
Lij = -1, if ij € E, (12)
0, otherwise.

Lemma 1. Given a homogeneous Hotelling network with Laplacian matriz L, the demand

function (4) is equivalent to d = a—Bp+6, wherein deterministic coefficients o = %diagL—l—

14
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BoLv, and B = BoL. The noise term 6 ~ N, (0,X) where
Y =fLvar[v]L" = 2062 (1 —p,) LL". (13)

We mainly focus on the price elasticity matrix 8 and demand covariance 3 as these
terms are the ones affecting information sharing. Given the homogeneities, the cross-price
elasticity is By > 0 on each link and 0 between unconnected garages. The price elasticities
increase as the customers’ costs ¢, c,, go down or the population density A goes up. For
each garage i, the sum of cross-price elasticity equals the self-price elasticity in absolute
value. This means that $1 increase in price p; and $1 decrease in all 7’s neighbors result in
the same amount of demand reduction on 7. This is nevertheless a stylized assumption due
to the reduction from the networked Hotelling model, while at the same time automatically
satisfied the stability condition in the Bertrand price competition. This assumption is not
crucial.

Due to the spatial substitution in the parking demand, a higher correlation coefficient
reduces overall demand uncertainty. Equation (13) shows that the uniform covariance
py = corr (v, v;) only proportionally changes each component of . Since varying p, does
not essentially affect the demand covariance structure, we restrict to 02 = 1 and p, = 0 in
the following discussions. This symmetry in the covariance is again due to the reduction
from the networked Hotelling model. By abstracting away from the correlation in the
intrinsic parking valuation, we focus on the network structure, as the covariance depends
crucially on the Laplacian matrix.

Customer welfare and customer congestion. We define customer welfare as the
expected total utility of customers under equilibrium garage pricing. The customer welfare

on link 77 is
L5 l—:l?ij
Uij =E [/ (vi = pi — a1 — cwAz?) Az + / (vj — pj — ax — cpra?) Adz| . (14)
0 0

Here, the expectation is taken with respect to the randomness of intrinsic values v. The

the equilibrium prices p rely on v according to Proposition 2. Furthermore, z;; is implicitly

15



determined by v and p through Equation (3). Similarly, we define the aggregate cost of all

customer on link ij,
Xiq lfmy
Cij =E [/ ’ (ctx + cw/\xQ) Adx +/ ’ (ct:z + cw)\xQ) Adzr| . (15)
0 0

We identify Cj; as a metric of congestion on link ¢j since it stems from the travel cost and
congestion cost of individual customers.

In particular, we are interested in the change in the customer welfare U;; and congestion
C;; when the garage information structure alters. The following lemma indicates that the
change in U;; and C;; can be measured by the change in the variance of the position of the

marginal customer x;;.

Lemma 2. Suppose garages always set their prices according to the equilibrium strategy
given by Proposition 2. When information structure is altered, we use A to denote the
incremental change in a certain quantity. Then,

2

A
ACij = AUij = TIBOA {Val‘ [ZEU]} . (16)

Moreover, the total change is

ALY Gy =AUy b= PALL var o ). a7)

ijeER ijeEE
wherein the (-,-) term denotes the Frobenius inner product of the two n x n matriz, graph

Laplacian L and covariance matrixz of net value vector v — p.

Lemma (2) shows that the change in customers’ aggregate cost depends crucially on
the variance of the position of the marginal customer. Therefore, the information structure
that minimizes the variance of x;; will result in the least transportation cost on link 4j.
Intuitively, this means that customers are more steadily allocated among garages in the
long run. However, the change in their net payoffs is twice as much so that the increase

in customer utility is identical to that in the aggregate cost. As we reduce the congest

16
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cost, customer welfare will decrease as well. A social welfare planner would be interested
in the trade-off between garage welfare and customer welfare. In this paper, we mainly
focus on the analysis of information value and road congestion. To measure the aggregate
cost on the graph, (17) provides a calculation method through the graph Laplacian and
the customer net payoff vector v — p.

In the remaining part of this section, we utilize the relations established in Lemmas 1
and 2 to compare the system’s performance between information sharing and information
asymmetry, under different urban structures. Two types of representative graph structure
are studied. A circular city (or many-sided polygons) is the simplest symmetric network
possible. It represents the parking problem along a “ring road”. On a larger scale, there
are city designs with urban circumferential routes, such as Berlin, Bangkok, and Beijing).
On a smaller scale, this structure models the parking problem around a large center area
(e.g., a crowded CBD region). It is representative of some multi-centered metropolitans
(such as the San Francisco Bay Area).

As a comparison to the circular city structure, we then investigate the star city structure
where a central garage is surrounded by peripheral ones. Some European cities have a clear
radial design, such as Coevoerden and Palmanova. In general, the star city is representative
of the vast majority of American cities with downtown and suburbs.

For these two specific structures, we show that information sharing improves garages’
aggregated payoff and alleviates traffic congestion. Table 1 lists the set of relative value
metrics that will be used. Note that the numerical difference between the relative value
metric and its original definition is a constant term that is invariant under all information

structures.

4.1 Circular city structure

Consider a symmetric circular city based on a variant of the circular Hotelling model

(Lerner and Singer, 1937). This stylized setup eliminates the “corner” difficulties of the

17



Table 1: Relative Value Metrics

Quantities Definitions Relative Value Metrics
Garage Profit YienE[m] Y ien Vi (= total information value)
Congestion > ijer Cij (L,var [v — p|) (= aggregate cost)
Customer Welfare }_.. p Ui; (L, var [v — p|)

Social Welfare = Garage Profit + Customer Welfare

original Hotelling, and allows a focus on the essential interactions of service providers
(Salop, 1979). Suppose n garages locate on the vertices of a regular n-sided polygon with
a fixed side length I. We label all garages from 1 to n in a circular way. Then each garage
i is linked to its neighbor ¢ — 1 and 7 + 1 (mod n). Assuming the total number of garages

is n > 4, the graph Laplacian is given by

.
L:= — 21, — - (18)

where I,, is the identity matrix of size n X n.
In the symmetric circular model, all garages are identical. They maintain the same pric-
ing strategy and earn the same information value. The following proposition summarizes

the effect of information sharing under circular city scenario.

Proposition 3. In the context of symmetric circular city with n > 4, information sharing
improves the expected payoff to each garage and reduces congestion cost. The corresponding

information value (per garage) and aggregate cost (per link) are listed as in Table 2.

In this case, information sharing increases garages’ information value and reduces the
aggregate congestion cost. The effect is even more significant for instances with smaller

n. Information sharing strictly increases the expected payoff to each garage. From the

18
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Table 2: Circular city: information value and aggregate cost

Private Information Information Sharing
27/64 - Bo < m (3 (4yn—1+yn) +n—3) - Bo
29/128 - By > i (B ) B
Here gy, := cosh (kln (2 + \/3)), and gy = sinh (k:ln (2 + \/3))

Information value

Aggregate cost

Iongormation Value for Each Garage Aggregate Cost on Each Link Relative Social Welfare per Garage

0.25
o 0.655
045( 4 ———
0.2
777777777 - 0.65
o4r A e e e e
— — private 0.15
sharing 0.645
0.35
4 6 8 10 4 6 8 10 4 6 8 10

n n n

Figure 2: Circular city: relative value metrics (in 8y) under private/sharing information

garages’ perspective, everyone is better off under information sharing. Thus, they have the
incentives to exchange their demand information.

Figure 2 plots the comparison for the circular city model. The solid curves stand for
the results under information sharing while the dashed curves are the results under private
information. The increment in information value decreases asymptotically to a constant.
For the circular model, a smaller n implies more intense interaction among garages. There-
fore, information sharing exhibit greater benefit. As the number of garages increases, the
model approaches an infinite line (a circle with an infinite perimeter). The payoff under in-
formation sharing approaches a limiting value, still dominating the outcome when garages
stick to their private information. Note that these revenue-maximizing garages intend to
set higher prices under higher demand (i.e, lager parking value v;’s). Information sharing
helps their exploitation of demand. This follows from the two-player model as we have
discussed: the demand signals serve as a collusion instrument for the garages to set higher

rates with higher payoffs even without communication.
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For a large n, information sharing reduces the aggregate cost. To understand the
impact of information sharing on the aggregate cost, we need to examine the position of
the marginal customer x;;. Since z;; is determined by comparing the relative value of the
intrinsic parking utility v—p, a more informed pricing strategy will offset higher uncertainty
v and thus more predictable market sizes (lower variations in x;;). As we discussed in
Lemma 2, lower variance in the threshold point x;; indicates lower aggregate cost for the
customers. Thus, information sharing among garages finally results in congestion cost
reduction on the roads.

In the circular city model, social welfare marginally increases under information sharing.
In particular, the garage welfare increases while the customer welfare decreases. This is
not surprising as information sharing shifts the competitive pricing closer toward collusive
pricing. Therefore, information sharing helps garages further exploit the customers.

Here, as the length of link [ is fixed, the size of the city is expanding when n increases.
On the other hand, if we consider a circle with a fixed perimeter such that garages become
denser as n increases (i.e., substituting { by % only affects the common factor By in Table
2), similar results and intuitions hold. In addition, it is more convenient to compare the
circular city with the star city of the same link length, to isolate other effects of the network

structure.

4.2 Star city structure

As a comparison to the circular city structure, we then investigate the star city structure
where traffic mainly falls on a spoke-hub network. Consider a symmetric star city with

a central garage ¢ and m identical peripheral garages. The graph Laplacian takes the
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Table 3: Star city: information value and aggregate cost

Private Information Information Sharing
2
Information value (center) (7%”11> (m+1)-6y < S(m+1)- B
2
Information value (peripheral) 2 <§Tm”j> - Bo > 1%@; 3. By
. . 2m(11m?—4m+1) 17m—1
Total information value — Gy < 55— Bo
. 2m(5m—3) 13m—5
Aggregate cost on each link “Im 1 Bo > 2o Bo
following form.
m —1 —1
-1 1 m —e!
L= . = (19)
: . — I,
- 71 1 -

The first row and first column stand for the central garage, while the rest are peripheral
garages.

We summarize the analytical result for star city in Proposition 4.

Proposition 4. In the context of symmetric star city with m > 3, information shar-
ing improves the expected payoff to the central garage but reduces that to the peripheral
garages. Their total information value increases and the congestion cost is reduced. The
corresponding information value (per garage) and aggregate cost (per link) are listed as in

Table 3.

Figure 3 illustrates the comparison of the quantities in Table 3 with the number of
peripheral garages varying. If information sharing is applied, the center garage benefits
the most, especially when the number of garages is large. The peripheral garages are
subject to loss in their payoff. However, the payoff gain from the central garage dominate
the payoff loss from the peripheral garages. Thus, their aggregate (or average) payoff

increases under information sharing.
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Figure 3: Star city: relative value metrics (in fy) under private/sharing information

The central garage stands in a pivotal position in the network and the demand un-
certainties from all peripheral garages propagate to its demand. Thus, the central garage
is willing to acquire peripheral demand signals in addition to her own forecast. Once the
information is shared, it benefits the most from leverage on the prices in response to the
peripheral demand uncertainties. Therefore, it has the highest incentive to acquire private
demand information from others.

For the peripheral ones, it turns out that they prefer keeping their information. If all
signals are revealed, peripheral garages’ prices under equilibrium become less correlated
with the demand fluctuation. This can be interpreted as overreacting to the demand
signals as they compete under complete information. They respond to all demand signals
at a more intensive rate than they do in the private information scenario, resulting in a
less efficient pricing outcome. Even though this phenomenon suggests that all garage may

not spontaneously agree to information sharing, they still can achieve information sharing

through some kind of payoff transfer contract. Because information sharing increases their
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aggregate expected payoff.

On the customers’ side, similar to the results from the circular city, information sharing
reduces the congestion as well as the customer welfare. The aggregate cost reduction on
each link is increasing in the number of garages but asymptotically constant. Different
from the circular city, the total social welfare slightly decreases after information sharing.
But the difference is still marginal.

Unlike the circular model, the benefits of information sharing (information value en-
hancement and aggregate cost reduction) are greater as the scale of the star graph increases.
This implies that information sharing is more welcomed when more peripheral garages are
linked to the hub garage. This outcome is consistent with the general insight that infor-
mation sharing provides greater improvement when garages are more closely and intensely
correlated. As the number of peripheral garages increases, the center garage interacts with
more opponents. Thus, more complete demand information is more appealing to her. How-
ever, for peripheral garages, they maintain direct competition only with the center garage.
Thus, the scaling effect to peripheral ones is minor. Cost reduction is also more signifi-
cant for a “denser” city structure. Therefore, information sharing improves both supply
side and demand side simultaneously and it reveals greater power in cities that are more

intensely connected and congested.

5 Case study

So far, we have shown the benefit of information sharing from symmetric demand struc-
tures. The goal of this case study is to further investigate information sharing under an
empirical demand structure.

Since 2011, SFpark in the city of San Francisco has been using demand-responsive
pricing to regulate parking availability among garages. SFpark adopts technologies such
as parking sensors and smart meters to keep track of garages’ real-time occupancy and to

implement data-driven parking pricing. A parking rate is set for each garage (or street
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Table 4: Price-occupancy data sample ($ per hour for rates)

Period 2011-08 2011-10 2016-06
Street Block Rate Occupancy Rate Occupancy ... Rate Occupancy
01ST ST 200 3.5 56% 3.25 62% e 25 62%
02ND ST 300 3.5 75% 3.5 66% . 3.5 60%

VALENCIA ST 900 2 57% 1.75 54% . 15 64%

parking block) during a time slot (by weekday/weekend and morning/afternoon/evening).
After each period (usually 2 to 4 months), the parking rate is adjusted based on the recent
performance. A garage with a relatively high (low) occupancy will increase (decrease) its
rate in the next period. SFpark records the rates and average occupancies by garage and
time slot. Table 4 is a sample of the price-occupancy data of a specific time slot (weekday
mornings). The data source and more detailed adjustment rules are available at SFpark
(2017).

We utilize their data records to learn an empirical demand structure, especially the
price elasticities and demand contrivances. The original dataset contains over 200 parking
garages and 18 periods of price adjustments from Oct 2011 to Jun 2016. We filter out
garages that have 1) a complete historical data record over all periods, 2) a capacity no
less than 10, and 3) a relatively significant price-elasticity. 28 garages are selected to run
the experiment. Then, we extract a demand structure (5) from the price-occupancy data
through linear regression. We assume the demand is represented by the occupancy data so
that the demand value is normalized. Although capacities are not equal (typically, ranging
from 10 to 30), adjusting for capacity only proportionally affects the price elasticities and
the information value. This is further explained after we present the regression model.
Besides, we ignore the unobserved demand due to capacity limits. For those most occu-
pied garages, the SFpark rate adjustment policy tends to drive down the period average
occupancy below 80%. Therefore, we assume excessive demand is negligible.

Regression Learning Model. Let (p(®),d®) be the price-occupancy data in period
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t =1,2,---,T. Denote p{t) = (pgt),p;), . ,pg)> as the parking rate vector in period
O — (a® q® ... g®)" o hi

t and d (d ydy e dy ) as the occupancy vector. We apply the following high-

dimensional regression method to estimate the linear coefficients o and 3 in (5) and the

signal covariance 3. They are calculated by solving a constrained least square optimization

problem.

(= (0-80) (- (+-20)) =

&, 3 := arg min Z Ha Bp d(t)Hz (21)

S

s.t. By >0,Vi=1,---,n (22)
Bit+ > By >0¥i=1,-+,n (24)
J#i

Garage capacity does not affects demand structure learned from the regression. Suppose
the demand vector is adjusted from d® to kd® for all ¢, where k € R™*" is a diagonal
matrix numerically scaling up the demands. Regression outcome changes proportionally.
Parameters d,,@’, and ¥ become K,d,h‘,ﬁ, and I@ZA)&T, respectively. Then, followed from
Proposition 2, the information values V' = (Vq, Vo, - -- ,Vn)Tscale up to kV. That is, the
numerical value of V; is multiplied by the garage i's capacity if we adjust for the garage’s
capacity.

We compute 3 and 3 from the regression model. We report their diagonal values in
Figure 4 (since the full regression result is high-dimensional). The mean square errors of
the high-dimensional regression is given by the diagonal elements of 3. The average mean
square error is 38.32 (occupancy%-squared).

A comparison between the information value for each garage under two information
structures is given in Figure 5. The dark-colored bars represent the information value
when garages keep their private information, while the light-colored bars represent the

additional benefit from information sharing. As shown in the figure, all 28 garages benefit
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from information sharing, but the additional gain in information value varies depending on
the demand structure. Garages with higher self-elasticities and lower demand uncertainties
(e.g., garage No.1,2,17,25,26,27,28) tend to enjoy larger percentages of increase in infor-
mation value upon complete information sharing. For these garages, their own demand
uncertainty is predictable but they are more sensitive to the price competition. Typically,
these garages represent the parking lots located in busy downtown areas. Their inherent
demand pattern is predictable for a fixed time window, but drivers strategically choose
the parking lots with lower rates in the vicinity. Information sharing helps these garages
better predict their competitors’ rates and price their own garages accordingly. Con-
versely, the garages with low self-elasticity and higher demand uncertainty (e.g., garage
No.11,12,13,16,24) benefit less from information sharing. Even though the extra profit

from information sharing is less, there is still a positive gain for doing so.

6 Conclusion

In this paper, we study the effect of information sharing among competing parking garages.
For the two-garage scenario, it is proved that they are always better off sharing signals. For
the general model with n garages, we quantify the value of information by defining it as the
portion of the expected payoff that is directly influenced by the information structure. By
examining two specific graph structures, we find that information sharing not only improves
the garages’ overall payoff but also reduces the aggregate cost for customers. This implies
that information sharing has the potential to alleviate road congestion. Furthermore, when
the interactions among garages are more significant, information sharing exhibits greater
power. Intuitively, information sharing help to navigate customers toward the right garages.
However, our analysis also suggests that it helps garages further exploit customer welfare.

The numerical study on SFpark data shows that garages with higher self-elasticities and
lower demand uncertainties benefit most from information sharing. These garages are likely

to be the parking lots in busy downtown areas, whose demand is predictable but price-
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sensitive. For other garages, the benefit from information sharing is less significant but
still positive. Numerical results suggest that information sharing tends to be attractive to
garages and congestion improving in reality. The results provide evidence for Smarking to
convince garage owners and city municipalities to participate in building such a centralized
information sharing platform in the form of dashboards and mobile apps.

In the online supplement, we generalize the pricing competition model in various direc-
tions (e.g., involving garage capacity, noisy demand signal, garage coalition, and endoge-
nous information structure). Most extensions confirm our findings from the base model.
Future work is required to holistically understand the optimality of information sharing.
Besides, incorporating imperfect (noisy and biased) forecasts of private demand will extend

our work to better reflect reality.
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Supplemental Online Materials to “Competitive Spatial Pric-
ing for Urban Parking Systems: Network Structures and
Asymmetric Information” by Yuguang Wu, Qiao-chu He, and
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A Extensions

A.1 Capacitated garages with multiple periods

Suppose that we model garage capacity explicitly and consider a planning horizon of mul-
tiple periods, for instance, the entire morning rush hour until the garages are filled up. We
index time periods by t = 1,2, ...,T. The baseline demand altl as well as the random shock
Hgﬂ are both changing inter-temporally. The random shocks {Qz[t]}’s are independent and
identically distributed, with identical variance o2, and correlation p[t] = p,Vt. The under-
lying economy is stationary such that S/ = 8 and Bl = j vt Garages are symmetric
with the same capacity W. In this case, the garages’ equilibrium is characterized by the
following best-response functions:

[t (, [t
max m =) dy (pi—c¢), (25)
pt=12...T ; 1 ( 1 )
. [t ([t
(1t
max  my =) dy (py —¢), 26
pf=12,..T tzl 2 (2 ) (26)
T T
Sdh<w, Sl <wn, 27
t=1 t=1
wherein
d[lt] = (X[t] — Bp[lt] + 5}?[;] 4 egt]’
dy = o+ gl — Bl + 63, (28)

We summarize the results for this extension in the following proposition.

Proposition 5. The following results for the symmetric capacitated model over multiple
periods hold:

3 3 T [t]
1. When ¢ > 52(2:533) : % — B(ﬁﬁfé) . thjlat , the capacity constraints are not binding,
the parking rates in equilibrium remain the same as in the static incapacitated model:
[t] L A [¢]
a4+ Be 0
ph=the, b (29)
26—-8  28-Pp

Vi=1,2,...,T andi=1,2.



2. Otherwise, the parking rates in equilibrium are given by

A~

g, ol w/T B ST el gl
TE;OPJ%?B—B—F(ﬁ_B) (2@_5)<5_B> t:; +2B_ﬁp

almost surely, Vt =1,2,....7T and i =1,2.

3. When W1 # Wa, an one-period snapshot is equivalent to an incapacitated static model
with heterogeneous cost cq and co, wherein ¢1 and cy > c.

4. Compared with the static incapacitated version, while the baseline rates suffer from
a constant downward distortion, the response to a private signal remains the same,
and thus, the incentives for information sharing remains the same.

5. When g € (0,1], the parking rates as well as the aggregate payoff over T periods
(limT_wo Ew) decrease in total capacity W, but increase in average market potentials
ol 1a . (The converse is true when g €(1,2).)

From this proposition, as a robustness check, we are assured that the results from a
single-period snap-shot extend naturally toward multiple-periods. The proof is via a dual
approach wherein we use Lagrangian multlphers to calculate the shadow price of limited

BB W _ _B_ . Zigg ol , the cost of selling one unit capacity

5(p-8) T B(e-B) T
is less costly than its shadow price, and thus capacity constraint is not binding. In the
same vein, when Wy # Wy, an one-period snapshot is equivalent to an incapacitated static
model with heterogeneous cost ¢; and co, wherein ¢y and ¢y > ¢. The additional costs ¢; —c¢
and co — ¢ capture the shadow price for limited capacity.

In fact, if we extend the restriction of elasticities to 8 < 203 (allow the cross-price
elasticity to be greater than price elasticity), the capacity W (or average market potentials
Zt 1 alt

capacity. When ¢ >

) poses opposite effect toward parking rates/payoffs when 5 > B In fact, let

k= W/T — € BB— 7 . Et*%a (which is increasing in total capacity W and decreasing
Sz, ol
T

in average baseline rates

price-sensitive demand. When 8 > B, i.e., price elasticity is more dominant than cross-
price elasticity, the inverse price-demand relationship within a garage dominates. Since an
higher extra capacity x satisfies higher price-sensitive demand, this implies a lower parking

rate. Therefore, the parking rates (and consequently the aggregate payoff) decrease in the
Sl ald
T

) capture the extra capacity which satisfies per-period

extra capacity x, and thus increases in W and decreases in Conversely, when
B > p, i.e., the strategic complement between two garages dominates, and thus an higher

capacity « implies higher parking rates from the other garage.
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A.2 Noisy demand forecasting

In the basic model, we assume that private signals are received via a noiseless information
channel. We find this to be a harmless assumption by examining real-time parking demand
data, as private demand forecasts tend to be fairly accurate using historical data (with error
rates around 5%). Nevertheless, we generalize the basic model in this section to incorporate
noisy demand forecast. Suppose that there are two symmetric garages, $11 = [oo = B,
P2 =Pz =—PF,and c1 =g = ¢

di = a—Bp1+ Bps+ 64,
dy = a+ fBp1— Bp2+ s, (31)

We further assume that (01, 92)T are drawn from symmetric bivariate normal distribution

1 . . . 5 .-
N <O, o2 { p f ]) As a standard stability constraint, we require 0 < 5 < . In addition,
the garages cannot accurately forecast their demand. Instead, each garage observe a noisy
signal z; = 0; + ¢;, where ¢; ~ N(0,7?). We assume observation channels are independent,

i.e., €1 Les.

Proposition 6. The following statements are true for the symmetric uncapacitated model
with two garages and noisy demand forecasting:

1. Baseline parking rate structure remains the same as that with perfect demand fore-
casting.

2. In addition, all comparative statics in Proposition 1 hold, i.e., %—Jg > 0, g—f > 0,
OEm OEx OExm
3,6’ <O’Tﬁ>0andTp>0

3. Garages respond more aggressively toward private signals when they are more accu-
rate, and the payoff increases, i.e., %—5 <0 and aalwﬂ < 0.

The first two statements confirm our structural results in the basic model with per-
fect demand forecasts, which serve as robustness check with general demand forecasting
accuracy. Not surprisingly, garages respond more aggressively toward private signals when
they are more accurate, and the payoff increases since the value of information increases.
However, information sharing is not always desirable in general, and information sharing
being unprofitable is more likely to happen when forecasting noise increases. Note that
information sharing is always favorable if the demand correlation is positive, since the
knowledge sharing helps garages reduce demand uncertainty and further take advantage of
their monopoly power. Fixing forecasting accuracy and price elasticities, there is a nega-
tive region of demand correlation such that information sharing is not preferred. Usually,
garages tend to positively respond to the other’s signal when information is shared, i.e.,
Bis > 0, since the competitor’s demand surge potentially increases her demand through



cross-price elasticity. However, under some environment where demand signals are nega-
tively correlated, they form an equilibrium where garages strongly negatively respond to
the shared signal. In the long run, this causes both garages to price lower than the the-
oretical optimum. This underutilization of the demand on average reduces the expected
payoff for both garages.

A.3 Garage coalition model

It is worth noting that multiple garages in an urban area may be controlled by a single
entity and thus not independent in the pricing game. In this subsection, we show that
our insights on information sharing do not heavily rely on the assumption of independent
garages. The model in Section 3.4 can be generalized to a pricing competition among
garage coalitions. (A garage coalition is a parking firm that owns several garages in the
city.) We derive the pricing equilibrium of the coalition competition.

Consider K as a set of independent garage coalitions controlling all garages N =
{1,2,--- ,n}. Each coalition K € K corresponds to a subset of N, and K is a parti-
tion of N. Every coalition has access to a certain set of demand information, decides the
prices of her garages, and maximizes her total expected payoff. Let N (K) be the informa-
tion index set of coalition K. That is, information 6; can be used for the pricing of garage
i € K if and only if j € N (K). Given information 0y g, every coalition K decides the
price vector px to maximize her own expected total payoff

>

€K

Eo [11(K)|On(x)] = Eo

Z d;p;

€K

9N(K)] =Ey

HN(K)] . (32)

Proposition 7. Suppose coalition K observes signals O (). Then, the equilibrium pricing
strategy is given by p (6) = A+B0, where coefficients A € R™ and B € R™*" are determined

by

A=Q '(a+(Q-p)c), (33)
{ QK*BE*N(K) - EKN(K) =0,VK €K, (34)
Brj=0,Yj ¢ N(K),
and
Q := [+ diag {(5;1{) KGIC} : (35)

The equilibrium payoff is given by
Ep [I1(K)] = (Ak — ¢k, Bk (Ak — ck)) + <BK*ZBIT<*75KK> VK eK.  (36)

where (-, -) is the Frobenius inner product of two vectors/matrices of the same dimension(s).
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This proposition extends the pricing equilibrium (Proposition 2) to the case where
garages are owned by competing coalitions. Here, Equations (33) & (34) are the extensions

of Equations 8 & 9. The definition of @ has slightly changed. In (35), diag [(BI—EK)KEIC}

an n X n block diagonal matrix whose main-diagonal blocks are square matrices B[T{ K VK €
K. In particular, if every coalition K contains only one garage, this proposition reduces to
Proposition 2. In Equation (36), <B K*EB[T( o BK K> corresponds to the information value
for coalition K in the coalition model.

The connection between the original model and the coalition model lies in the di-
mensionality of the pricing decision. The coalition model is high-dimensional: Instead of
deciding a single price p;, each entity decides a set of prices px to maximize the total payoff
> ick Ti- The base model is a special case of a single dimension pricing. Therefore, we
start from the base model without coalition formation to capture the main insight related
to information sharing, which is robust shown in this extension. Furthermore, we will show
in the next example additional insights derived from this coalition version.

Consider a symmetric duopoly setting where each garage coalition owns m garages in
the city. The total 2m garages are assumed to have a symmetric influence on each other.
Specifically, fi; = 1, 05 = 1, and 045 = p, Bij = —B,Vi # j. (Note that Assumption
1 requires 2mlil <p<land 0 < g < 2m171 A.) Then, under the coalition setting,
we can show properties similar to the ones in Proposition 1. In Figure 6, we extend
the 4th observation in Proposition 1 to the coalition competition. As the demand signals
become more positively correlated, the information value (also the expected payoff since the
baseline payoff is independent of p) increases. Figure 7 illustrate the additional value gain if
information sharing is adopted. This result echoes Proposition 1 in that information sharing
always generates positive value even if coalition formation is allowed. It also confirms that
information sharing is more beneficial when the cross-elasticity S is higher. The value
gain from sharing is non-monotone in the signal correlation. Because information is most
useful when demand signals are weakly correlated. In the extreme case when demand
signals are perfectly correlated, information sharing has 0 marginal value since competitor’s
information is already contained in the knowledge of demand correlation.

is

A.4 Optimal information assignment

Proposition 2 presents the exact equilibrium solution for an arbitrary observation matrix
M. A natural question one would be curious about is: among a set of possible infor-
mation structures, which one of them would result in an equilibrium that maximizes the
expected payoff of a particular garage (or their total expected payoff). The result for two-
garage model in Section 3.3 indicates that information sharing is beneficial to both garages.
However, this does not always hold in general.

From the perspective an information service provider, a natural question to ask is
who should know what and how much they should know. The insights from answering
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such questions facilitate the design of information systems. In general, to identify an
information structure that maximizes the total information value, we need to solve the
following optimization problem

max {Bi*EBZ-T* . B and M satisty (9)} . (37)
This is a mixed integer program with quadratic objective function (convex-maximization).

Or generally, we can get rid of binary decision variables M and rewrite it as an Quadrati-
cally Constrained Quadratic Program (QCQP)

max {Bi*sz; . (QBE - %)+ B = 0} . (38)
BERnxn

Solving the above programs awaits future computational studies, which in itself, is
of great interests. In this research, we focus on the strategic aspects of this operational
challenge. In Section A.5, we consider a certain type of symmetric information structure
— group information sharing. Assume we have one (or multiple) information exchange
platform. Every garage can choose to be a member of the platform and share her private
signal within the group. In section A.5, we will see that such platform benefits their
members and appeals to garages not in the group.

A.5 Information exchange platform

We return to the general model where all parameters can be asymmetric. In this subsection,
we discuss the motivation for garages to form an information sharing group. Proposition
8 states that if all garages are using the information exchange platform, then no one has
an incentive to quit from the group.

Proposition 8. All agents joining the group is a Nash equilibrium.

The equilibrium in Proposition 8 refers to a Nash equilibrium of the group entering
strategy. Proposition 8 applies to arbitrary demand correlations as well as cross-elasticities,
which is more general than existing literature (Raith, 1996) in this regard, to our best
knowledge. It states that given every garage inside the platform, no one can achieve
higher profit by unilaterally withdrawing from it. For a two-garage system, Proposition
8 apparently shows that sharing their signal is in the interest of both garages. For a
system with more than 2 garages, Proposition 8 ensures that everyone in the group is an
equilibrium. The study of the uniqueness and global optimality of such an equilibrium
remains for future research.



B Proofs.

In this appendix, we provide detailed proofs of the main results. We use * in the proofs to
denote component-wise multiplication of two matrices of identical dimensions.
Proof of Propositions 1 and 2.

Proof. Propositions 1 is a special case of Proposition 2. Here we prove Proposition 2.
Garage ¢ maximizes expected payoff by taking first-order condition:

671’1'
o, =|ao;— Z Bijp; +0; | + Bii (pi —ci) - (39)
! J

Garage 7 observes information 6y,. Then, her conditional expectation of the entire 6 vector
is given by
E[0]0n,] = Sun, By, v, 0N, (40)

Therefore, her anticipation of the pricing vector p is
Elplon,] = E[A+ BI|0x,] = A+ BSan Sy 0. (41)

om;
Op;

Setting the expected first-order condition to 0, namely E [ \HNZ.} = 0, we obtain

<Ozi — Bix <A + BE*NiE]_VilNiHNz‘) + EiNiEJ_VilNiONi) — B [A + BZ*NiZJ_VilNiQNi —c| =0.
(42)

Matching the coefficient of fy,, we get
(_Qi*BE*Ni + EiNi) E]_V}NiaNi - Ql*A + a; — [/6 * IL’*C = 07 (43)

where * represents entry-wise multiplication, and Q = 8 + 8 * I is the matrix defined in
the proposition. This is a linear equation with respect to y,. And it holds for any ;.
Thus, we can get the decision A, B by solving

—QuA+a;+[fxI],,c=0 _
{ —QixBYN, +2in;, =0 Vi€ N. (44)

Rewriting the first equation above in vector form, we have
A=Q  (a+[Bx1]c). (45)

Together with the O entry constraint, we obtain the system of linear equations which
determines our B matrix

{ QixBXn, — 2N, =0,Vi € N

Bij = 0,YM;; = 0 (46)

8
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Note that, excluding those B;; = 0 entries, we have ) M;; unknowns and ) |V;| =
i

4,3
> M;; equations. Thus, there exists at least one solution to this system. In general, the

7
solution is unique.
The expected payoff of garage i conditioned on her observation 8y, is given by

E 7 [0n,] = E [(a; — Bixp + 0:) (i — i) |On,] = (0 — Bix E [p|On, ] + 6i) (i — ci),  (47)

which is a convex quadratic function of p;. Thus, substitute p = A + B which satisfies
the first-order condition, we obtain the expected payoff under equilibrium

E (7 |0n,] = Bii(pi — i)? = Bii(Ai + Bin,On, — ¢i)*. (48)

The expected payoff before the observation of Oy, is
E [m] = Eoy, [5@‘1‘(/11‘ + Bin,On, — Ci)2:| = Bii ((Ai —c)’ + BiNiENZ-NiBZ'TNi) : (49)
O

Proof of Lemma 2.

Proof. Rewrite equation (3) in a simpler format,

L, Bo
zij = 5+~ (i = v;) = (i = pj)) - (50)
2 A
The expectation of v is exogenously given. Thus, AE [v] = 0. Since E [f] = 0, and followed

from Proposition 2,
Elp] =E[A+ B = A.

A is independent of the information matrix M as stated in (8). Therefore, AE [p] = 0, and
then AE [z;;] = 0.
Note that

Tij l—x;;
Cij =E [/ ’ (et + copAa?) Adx + / ’ (et + cpAa?) /\dx]
0 0

1 1 1 1
= AE [2613.%'12]- + gcw)\x;?’j + ict (1 - -%'ij)Q + gcw/\ (I - wz‘j)g}

= At + cwA)E [mfj] + constant term.



Thus, AC;; = A(ct + cpAl) - A{var [z;5]} = ;‘—;OA {var [z;;]}. For the aggregate cost
summed over all links,

> var [z;;] = <ﬂ)\0>2 > var [(vi — pi) = (v; — p))]

ijEE ijEE
_ (&Y 52
=\ Z (var [v; — p;] + var [v; — pj] — 2cov (v; — pi,v; —p;))  (52)
ijeE

— <B)\0)2 (L,var [v —p]).

Hence, A{ > Cij} = % (L, var [v — p]).

ijeE
Similarly,
Tij l—2x45
Uij—i—Cij =K [/ )\d$—|—/ (vj—pj))\dx
0 0
= AE [((vi — pi) — (vj — pj)) z4j] + constant term (53)
=—FE [x”] + constant term
Bo

= 2C;; + constant term.

Thus, AU” = ACZJ ]

Proof of Proposition 3.

Proof. Both Proposition 3 and 4 are derived from solving (9) for M = I, and M = ee'.
Then, (11) to solve the information value and (16) to obtain aggregate cost. We omit the
algebra for solving B and present the solution directly.

In the private information scenario, B;; = %ﬁa ! Vi. Then,

27
v; = 2B0BiY; = aﬁo- (54)
2
(L,var [v—p]) = G—Zn : % (55)

For the circular model, the B solution is symmetric, i.e., B;; only depends on the
distance between ¢ and j but not ¢ or j. Thus, we simply give the solution Bi,.

Bt . .
By, = 74%/2_02?{”/271 [yn/27yn/2—1a L YL Yo, Y1, ayn/Q—l] , if n is even, (56)
B . .
2 [yn/zvyn/%la o Y/2 Y12, 7yn/271i| , if n is odd.

AYn/j2—2Yn/2-1

10
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Here g, is a constant defined in Table 2
Then, by manipulating the hyperbolic functions, the two cases merge to a single ana-
lytical format in terms of information value and aggregate cost.

2 1 8
PYPRETY D <3 (AYyp—1+ Yn) +n — 3> Bo — <2 — 9\/§> Bo =~ 0.46045y as n — oo.

v, =
3 (Yn
(57)
2n Yn—1 — Yn ) ﬁO 2n BO
L,varr) = — +Yp—n) —— —=-—asn— Q. 58
< ) 3(yn—1)< ) o 20 3v3 2 (58)
O
Proof of Proposition 4.
Proof. For private information case, let index 1 denote the center garage. Then,
Pummhy, (59)
Bjj = 7=1By Vi # L.
The individual information values are,
2 ) (m o+ 1)
U1 = ( ) 0
Tm—1 (60)
= 2(2m=1) v £ 1
The aggregate information value is
2m (11m? — 4m + 1 22
v +muj = m (1m m )Bgé—mﬁoasm%oo (61)

(Tm —1)? 49
The aggregate cost is

m2(5m—3) Bo 20 By
L B | L A N Al N
(L, var [v — p]) (Tm 1 5 9" o as Mmoo,

For the complete information case, we also list the intermediate and final solutions.

1 [2 el 1[0 0 .
B_<3m[e eeT/2]+2[O I])ﬁo’ (62)
v = 5 (m+1) fo,
m . 63
Vj = :?),6m5/807VZ7éJ- ( )
1"m —1 17
vl + mu; = TBO — %mﬁo as m — o0o. (64)
13m -5
(L,var [v—p]) = 3”;76% (65)
O

11
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Proof of Proposition 5.

Proof. We begin by writing a general dual form, using Lagrangian multipliers A\; and A2 > 0
to relax the capacity constraints:

T
max Ly = Y (am By gl Hgt]) (p[lt} _ C)
Pl t=12,..1 ]
T ~
t=1
T ~
,max Ly = 3 (a[t] _ puplt 4 gl | eg}) (p[;] N C)
Pl t=12,..T P
T A
=1

We can decompose these problems by t = 1,2,...,7T, and each sub-problem can by solved
by

= ol + 8l (e + M) oy
! 92418 — pltl 9218 — Bl plt)’
= ol + Bl (e + N9) 0y (68)
2 9241t — pltl 92/l — Bl plt)’
Plug in prices
ZT: ol — B ol 4 8 (c+ M) 0} ]
P 241t — pltl 2318 — Bl plt]
1 4 Bl 4
pg |0t ) % o = w, (69)
241t — Bl 2318 — Bl plt]
r o [alt) 4 Bl g
Za[t] _ B[ﬂ @ +A5t (C":)Q) - 92 — ] (70)
p 92/t — plt] 921t — Bl plt]
[t] L Alt) [t]
pgu |2 O ler M) G +05 = W, (71)
241t — Bl 2318 — Bl plt]

under stationary conditions: Sl = 3, gl = 3, pl) = p, we have

12
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B d T3> B+B01—p) &
(4 Ao) — — A — W,
- Z Bc Y S AR T R ; '
3 r 48 T3 B4 B(1=p) N~ i
—i—)\ — — + A 9 = Wo(72
26— BZ 6 R B Y Je ; #12)

T [t]
When W7 = Wy = W, and limp_, Zt%(t — Eﬁl[t] almost surely, due to Strong Law of
Large Numbers, we have

B <. TA<5_B) B+B(1—p) =i
2 — ﬁza s TG, ;

)\:237_5_@_ (%—5) [ﬁJrﬁ(l—P)} g _ B _Zlea[ﬂ
B(B-8) T B(8-8)[28- 50 B(s-5) T
whenever this is non-negative. Plug this in the pricing strategies, and E@Z[t] = 0, we obtain

m_ ol W/T 8 TSI al) gl
plf = 5 5+<ﬂ B) (B )( ) =l +23iﬁp’
B

ol wW/T
pll = /

—c, (73)

. Zthl alf 4 Qg]
265 (5—5) (28-8)(8-8) T 28-5
When W7 # Wa, a similar procedure returns Ay # Ao, a one-period snapshot is equivalent

to an incapacitated static model with heterogeneous cost ¢; = ¢+ A1, and ¢co = ¢+ Ag. For
finite T,

(74)

1 4 B (c+ A ol
woo A bleth) b (75)
26— 26— Bp
wherein A\; will be function of both Hgt] and Hg], which is inconsistent, and thus we need

e (e}

to solve garage 1’s maximization problem. This problem is fundamentally more

complicated and awaits future research.
Alternatively, when

28— 8 K_@B_ﬁ) [BJrﬁ(l—p)]Eem_ 3 ‘Zzﬂ:la[t}
6(6 B) T B(8-8) |25~ IR I

13

—c<0, (76)



we have non-binding capacity constraint (A = 0). This case is trivial, with

i ol + e . sz
’ 26—-8  28-Pp

Compared with the static incapacitated version:

A~ A~

r .M
lim p — ;s = w/T B Iy Be

T (6-8) (5-5)(s-5) T  2-5

0,

(77)

which means the response to a private signal remains the same, while the baseline rates

suffer from a constant downward distortion. The aggregate payoff is

R I O 7 p XEal!
=\ R N o R s e

iy ol
T

which is decreasing in W and increasing in

I
(26 — Bp)?

when B > (3, the converse is true when

S <B<B. O
Proof of Proposition 6.
Proof. From Proposition 2, we can obtain the equilibrium pricing strategy p; = A +

Bx;,Vi =1,2, and Er; = Emg = Emr = ﬁ ((A —c)? + 3202). Garage 7 maximize expected

payoff by taking first-order condition:

OE (m1|x R R
) — = iy + B ko) + E (1) — B o1 — ),
2
PIUg in p; = A+ Bz, IE(91|x1) = 1/512/11/72 xr1 = Uztf,ﬁxla and

po’

E (z2]z1) =E (02 + e2|lx1) = E (02|z1) = E[E (62|01, z1) |x1] = pE (01|x1) =

The first-order condition becomes:

2 2

a—2B8(A+Bx))+3|A+B Po

m.’ﬂl ml’l + 66 =0.

Matching coefficients:

a—2BA+ BA+ Be=0,

14

0—2+72'

(78)

(79)

(80)
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0.2

2
— 2B+ pB-L2

=0 81
02+72+02+72 ’ (81)

we have

A:oz—i—ﬁc o? (82)

26 - P (25 5;)) o2 42072

To summarize:

a+Bc o?
P = —= + ~ — - Tj, 83
Y (25—5;))02%572 ’ (%)
Er = 3|% C]+ — | . BEs? 84
' 25-5 (28— 8p) o2+ 2872 ’ *
fa—(B-pc] Bot(o? + )
= 5 y + - —. (85)
L 266 (28~ Bp) 02 +25+?]

It can be checked that ‘9B >0, ‘gf >0, %5 <0, 653” <0, adEﬁ” >0 and aE’T > 0.
Suppose that garages share information. We can obtain the equlhbrlum pricing strategy

p1 = A+ Bix1 + Boxa, po = A+ Boxq + Bixo. We have

E (01|x1,22) = E[E(01|z1,22,602) |21, 22]
= E[E(@ﬂxl,eg) ]wl,xg], (86)

with marginal distribution being 61|02 ~ N(pba, 2 (1 — p?)),

o* (1-p?) 7*pbs
E = .
(O1]21,602) = — -t o + 3 A=) 12 (87)
o (1-¢%) V?p
E (6 = -E -E (6
(01]71, z2) oy SR g (z1]z1, 22) + oy S g (02|21, 22)
o2 (1 4?) +p 52
_ . 2. 88
o (1 - )+7 T RTE Er (83)
2
g 2 2 2 21| T1
E(el‘xl)xQ):(0_2_’_72)2_(/)0_2)2 [U (1_p)+’y’pf}/] |:$2:|

15
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Garage ¢ maximize expected payoff by taking first-order condition:

OE . )
M = a—20(A+Bix1+Boxa)+PE (A + Baxy + Biza|z, z2)+E (01|21, x2)+Pc.

Op1
(89)
Matching coefficients:
- - o+ Bc
—(26—-0B)A+Bc=0= A= — , 90
o~ (28-8) A+ b Y (90)
A 2
—28(B1z1+Baxa)+SE (Baxy + le2|x1,x2)+(0_2 n 72;72 ~ (p0’2)2 [02 (1 — p2) + 72,p72] [ 2 ] =0
. 2
~2WBH Bt [o* (1= p*) +7°] =0, (91)
. 2
—28Bs + 3By + (02 + 12 — (po?)? 0 =0, (92)
which gives
B _ 28+ 8p) +26(1— )0 o’
b 4p2 — 2 (02 +92)* = (po?)*’
2094 2\ 2 2
4p% — 3 (0% +7%)" = (po?)
Since 23 > (3, garages respond positively toward signals.
— (B — 2 R 2( .2 2
EW:B[“ BBl | g H7) (94)
20 (28~ Bp) 02 + 25?]
. 2
Er' = [W + Bo® (B} + B3 +2pB1 Bs) . (95)

Recall that E (0;|x1,x2) has two parts, one associated with forecasting via xp, the
other associated with forecasting indirectly via xo, since #; and 6 is correlated. We can
explicitly observe the corresponding information value in the expression of By and Bs.
It can be checked that Ex’ — Exr > 0 as 8/ B — 2, i.e., information sharing is desirable
when 3/ ﬁ — 2. More comprehensive characterization can be obtained when v — 0, as in
Proposition 1. ]

16
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Proof of Proposition 7.

Proof. For conciseness, we present the proof of proposition using a two-coalition formula-
tion. The proof naturally extends to the multiple-coalition cases.

We use a sequence of vector-matrix formulations to prove the proposition. To clarify
the notations, (-,-) is the Frobenius inner product of two vectors/matrices of the same
dimension(s); zx = [z]) takes the subvector from vector z based on the index set K.
Suppose the two coalitions are denoted by index sets K7 and Ky

II (K1) = (dk,, P, — cK,) = (ak, — Br«p + 0K, DK, — CK,) -

Bk, O
Define Q := 3 + [ 1481
O ﬂI—EQKQ

p = A+ B#, we have Since E [HIHN(Kl)] = E*N(Kl)E;fl(Kl)N(Kl)HN(Kl)a we have

] . Utilizing the expression of Q and the linear pricing

oIl (K
M = 7'8[—21K1 (pr, — ¢Ky) + ok, — Br,«p + 0K,

oK,
= [-Qp+(@Q—-B)cta+b,
QA+ (Q—-B)ct+a+(I-QB)0, -
E [81_[ (K1)
Oprc,
Under the equilibrium pricing strategy, the R.H.S is 0 for every 0 (k). Therefore, we have

[-QA+(Q—-B)dk, = 0,
0

2I(ll\f(f(l) _QKl*Bz*N(Kl) =

HN(Kl):| = [—QA +(@—-B)ct+a+(I-QB) E*N(Kl)EHKl)N(KI)HN(Kl) .

The same relations apply to K as well. Thus, we obtain (33) and (34). (The 0 entries in
B are enforced by the information structure.)
K’s expected payoff given the information 0y (g, is

E [H (Kl)‘ QN(KI)} = E [<QK1 - ﬁKl*p + 0K17PK1 - CK1>| 9N(K1)]
- <E [aKl _/8K1*p+0K1’9N(K1)] 7]71(1 _CK1>

= </8f—;1K1 (pKl _CKI)?pKl _CK1>-
The last equality follows from the equilibrium condition

. [ a1l (K1)
OpK,

9N(K1)} =E [_/BITﬁKl (pr: — ¢ry) + ak, — Brywp + Oy HN(Kl)} = 0.

17



Finally, the expected payoff is
Eo [I1(K1)] = Eo [TI(K1)| On )]
= Ey [<51T<1K1 (P, — CcKy) PEY — CK1>) 9N(K1)}
= </81T(1K1 (Ak, — k1) s Ary — CK1> + Eq KB;T(lKlBKI*@, BK1*9>}
<5;T<1K1 (Ax, —cry) s Ak — CK1> + <BK1*EB;T(1*, BK1K1> :
This is equivalent to (36) and we conclude the proof. J O
Proof of Proposition 8.

Proof. Let S = N\ {n} be the set group members, and n be the only agent outside the
info-sharing group. We need to prove the information value v, under this structure is less
than the value when all agents are in the group.
B,,,, satisfies
{ RssBssXss + QsnBunXins — Xgs =0 (96)
QnSBSSESn + anBnnZnn — X =0 ’

Eliminate Bgg, we get

QnSQgé’ESn — Ynn

By = — — — . (97)
" anznn - QnSQSéQSnznszséZSn
Thus,
QnsQetSn — % ?
S gg4Sn — “nn
Vn = BanB2, Znn = B n - - : (98)
" e " (anzrm - QnSQSéQSnEnszséESn "
If all agents are in the group, utilizing the inverse of block matrix, we have
~ 1
B =[Q7Y],, =— = QnsQgs: —1] - (99)
i [ ]n* an - QnSQSé‘QSn [ " 5 ]
~ 5 5T QnSQEéESS (QnSQgé')T - 2QnSQ§é’ESn + Xnn
Up = ﬁnan*EBn* = 1 2 : Bnn (100)
(an - QnSQSSQSn)
Then, we prove v, < o,.
1 2 —1Z5p¥ng —1\T _ -1
Un ( QnSQSSESn_Znn ) _ QnSQSS Snn (QnSQSS) QQnSQSSES7L+Enn
Brn QunSnn—QnsQgiQsnEnsSgatsn ) ~M" (Qm_ 0nsQ310sn znsg;snézsnf
QnsQ5s 258705 (Q,5Q58) | —2QusQ5 iEsn +5nn - QnsQ54Ts5(QnsQsh)  —2QnsQ5iTsn+TZun _ 5,
(Qnn—QnsQs5iQsn)” (Qnn—QusQsiQsn)” B *
(101)
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. . ThsEoiTen . . .. .
The first inequality follows from % < 1 (since X is positive definite) and Qpy,

QnngéQsm Qnn — QnngéQsﬂ, > 0. The second inequality holds since Xgg — % is
positive definite.

O
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Demand Elasticity
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Information Value
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. . Parking garages
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