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Abstract

With the rising need for efficient and flexible short-distance urban transportation,
more vehicle sharing companies are offering one-way car-sharing services. Electrified
vehicle sharing systems are even more effective in terms of reducing fuel consump-
tion and carbon emission. In this article, we investigate a dynamic fleet management
problem for an electric vehicle (EV) sharing system that faces time-varying random
demand and electricity price. Demand is elastic in each time period, reacting to the
announced price. To maximize the revenue, the EV fleet optimizes trip pricing and EV
dispatching decisions dynamically. We develop a new value function approximation
(VFA) with input convex neural networks (ICNNs) to generate high-quality solutions.
Through a New York City case study, we compare it with standard dynamic program-
ming methods and develop insights regarding the interaction between the EV fleet and
the power grid.

Keywords: Dynamic programming; Revenue management; Vehicle sharing; Electric vehicle;
Value function approximation.

1 Introduction

Emerging shared mobility services have been developed to overcome the low utilization of

private vehicles. Instead of owning private cars, people pay for their rides to other drivers
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who share vehicles (e.g, Uber, Lyft) or rent cars from car-sharing companies (e.g., Zipcar,

car2go, etc) by trips to meet their daily travel needs. Zipcar, a representative US car-

sharing company, offers short-term car rental services. As of 2019, Zipcar has more than

12,000 vehicles in service distributed over 500 cities (Zipcar, 2019). Through its mobile

app, members can reserve vehicles for different trip durations (from an hour to two days).

Other car-sharing companies have also emerged in big cities across the globe. In addition to

increasing transportation efficiency, achieving sustainable and eco-friendly transportation

is another task of smart cities. Car-sharing companies incorporate hybrid and/or pure

electric vehicle (EV) fleets to reduce carbon emissions.

Despite the benefits in transportation efficiency and sustainability, EV sharing is con-

fronted with various operational difficulties. The fleet has to be dynamically rebalanced to

serve the demand, which is fluctuating and unbalanced. Rebalance challenges have been

seen in the context of bike-sharing, car-sharing, and other resource allocation problems. In

typical fleet management cases, vehicles are rebalanced by paid staff. Demand-responsive

pricing is another efficient tool besides manual rebalancing. The EV operator can set

low prices (or even pay customers) for trips from oversupplied origins to undersupplied

destinations, and set high prices vice versa.

For electric fleets, an additional difficulty is to maintain sufficient battery levels. Due to

complicated demand scenarios, it may not be optimal to charge vehicles following myopic

policies. Charging EV proactively can significantly increase the profit and service quality

(He et al., 2021). The interaction with the power grid also affects the charging decision.

More cost can be saved if the EV fleet can systematically plan for the possible electricity

price fluctuation across the day.

In this article, we consider an EV fleet controlled by a centralized, profit-maximizing

EV operator over a finite planning horizon. The EV operator dynamically decides the

customer trip pricing and vehicle dispatching in each time period, facing random, time-

varying electricity cost and price-elastic customer demand. We adopt a neural network
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approximation method that produces good quality solutions in numerical experiments using

New York City TLC data.

The contributions of this article are as follows. We present an MDP model to study

the possibility of EV sharing fleets achieving self-rebalancing through origin-destination

(OD) pricing. We deliver interesting managerial insights through numerical studies. For

example, the demand-responsive pricing instrument produces higher operational profit,

reduces manual rebalancing, and stabilizes the electricity consumption of the EV fleet.

On the methodology side, we propose an input convex neural network (ICNN) method to

approximately solve the EV fleet management problem. ICNN method allows both value-

based and gradient-based learning. It shows high approximation accuracy in solving the

EV fleet management problem of a small/medium scale.

The remainder of this article is organized as follows. In Section 2, we review the related

literature. In Section 3, we present the MDP formulation of the problem. In Section 4, we

provide the dispatching strategy based on value function approximation methods. Section

5 constructs a pricing strategy that is induced from the value functions. Section 6 presents

the case study with insights into the EV fleet’s behavior. Section 7 concludes the article.

2 Literature review

Given the need for user flexibility, two important aspects of EV operational are addressed

in EV systems, the upfront infrastructure planning and vehicle relocation in operation

(Hodgson, 1990; Melkote and Daskin, 2001; Yao et al., 2010). Some other work modeled

both decisions jointly. Nair and Miller-Hooks (2011) generated the least-cost short-term

vehicle redistribution strategy which satisfies all demand realizations with at least a certain

probability. de Almeida Correia and Antunes (2012) presented a profit maximization model

to depot location in one-way car-sharing systems where vehicle stock imbalance issues are

addressed. Li et al. (2016) presented a Continuum Approximation (CA) model for the

design of a one-way EV sharing system that determines the optimal EV sharing station
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locations and the corresponding EV fleet sizes. He et al. (2017) studied the planning

problem faced by the EV-sharing service providers in designing a geographical service

region in which to operate the service. Chang et al. (2017) considered location design

together with relocation problems for sharing a mixed fleet of cars under CO2 emission

constraints.

Studies of EVs also have been focusing on the interaction of charging and operation

decisions. Electric engineering models have been established to capture the pattern of

the charging demand of large EV fleets (e.g., Li and Zhang (2012)). Pan et al. (2010)

studied how to best site battery exchange stations in terms of how they can support both

the transportation system and the power grid. Adler and Mirchandani (2014) applied

a Q-learning method to optimize the online routing and battery reservations of EVs in

a transportation network with battery swapping stations. Boyacı et al. (2017) solved a

multi-objective mixed-integer linear programming model to optimize operational decisions

for vehicle and personnel relocation in a car-sharing system. Zhang et al. (2021) studied

both facility planning decisions and fleet operation decisions in EV sharing systems with

vehicle-to-grid (V2G) integration via a two-stage stochastic integer program.

Models for high-level EV system planning usually oversimplifies the stochastic and dy-

namic nature of EV sharing operations. Another stream of literature, investigating the

dynamic resource allocation problem, provide useful solution strategies in solving the dy-

namic EV systems. A comprehensive review of the usage of approximate dynamic program-

ming (ADP) in resource allocation problems can be found in Powell and Topaloglu (2006).

Godfrey and Powell (2002) considered a stochastic version of a dynamic resource allocation

problem. To solve the intractable program, they proposed using separable piecewise linear

functions to approximate the value functions in the Bellman Equation. Vehicle relocation

is a special case of the generic resource allocation problem. The separable function method

was then utilized in many fleet management problems Hajibabai and Ouyang (2016); Lei

and Ouyang (2017). In particular, Topaloglu and Powell (2007) used the framework as a
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subroutine and optimized the upper-level pricing decisions for fleet management problems.

Lei et al. (2019) utilized the ADP method to solve the proposed multi-stage game-theoretic

model, which addresses dynamic pricing and idling vehicle dispatching problems in ride-

sharing systems. Al-Kanj et al. (2020) studied a similar dynamic planning problem of

autonomous EV fleets using linear approximations and hierarchical aggregation. In this

article, we extend the value function approximation method using neural networks with

special architecture that guarantees input convexity. The architecture is first proposed by

Amos et al. (2017) to improve neural network training and inference efficiency.

3 Model

We model the EV fleet management problem as a discrete-time Markov decision process

(MDP). In each time period, the centralized EV fleet manager makes a two-stage decision,

pricing and dispatching, facing environmental randomnesses, such as uncertain demand and

electricity price. In this section, we first introduce the notations to describe the EV sharing

network. Next, we define the random price-demand relationship for customer trips. Then,

we formally present the states, decisions, and transitions in the MDP. Lastly, we formulate

the profit maximization problem. The summarized definitions of the model notations can

be found in the supplemental online materials §A.

EV Sharing Network and Notations

Consider a centralized one-way EV sharing system, in which an EV fleet operator

makes the pricing and vehicle dispatching decisions over a discrete finite planning horizon

T = {1, · · · , T}. Let J be the finite set of EV charging stations, where each EV can be

picked up and returned. Station j ∈ J can hold up to k̄j EVs. All EVs in the fleet are

assumed to be identical with finite state of charge (SoC) levels E = {0, 1, · · · , ē}. Let rjet

be the number of EV inside station j ∈ J with SoC level e ∈ E . Denote rt = {rjet}j∈J ,e∈E
as the fleet state vector. In this article, we would like to focus on a large scale, spatially

dense EV fleet. Therefore, we adopt a continuous formulation of EV flows, so rjet is defined
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over the real-valued interval
[
0, k̄j

]
.

In the base model, we assume the travel time between any pair of stations is one unit

time period (Godfrey and Powell, 2002). Thus, at the beginning of each time period, all

EVs are settled down in the stations. We present an extended model that incorporates

multi-period travels in the supplemental online materials §E.

We adopt a general definition of “travel lanes” to characterize the possible duties for

EVs in each period. A lane represents either a physical EV movement between stations,

in the form of demand-serving or rebalancing, or a non-moving behavior, in the form of

charging or idling. Each lane l is associated with four attributes, the origin station ol,

the destination station dl, the start-end SoC difference εl, and the revenue/cost plt if an

EV travels along the lane. We then explain the physical meaning of the attributes for the

specific types of lanes.

The set of demand-serving lanes is denoted as LD. For each l ∈ LD, ol and dl stand for

the origin-destination pair; εl (< 0) is the required energy to complete the corresponding

EV trip; plt is the EV service price. Let pDt = {plt}l∈LDbe the price vector for demand-

serving trips in period t. Similarly, we have the set of rebalancing lane LR. The only

difference is that plt (< 0) represents the cost to achieve the rebalance movement of an

EV from ol to dl in period t. The set of charging lanes and idling lanes are denoted as

LC and LI , respectively. They have ol = dl, assuming charging only can be completed in

stations. εl (> 0) is the amount of energy charged to an EV in one period. plt (< 0) is

the cost of occupying a charging spot in station ol in period t. Similarly, we let εl = 0 for

l ∈ LI , i.e., the SoC does not change for idle EVs. plt (≤ 0) is the cost of occupying a

non-charging spot in station ol. We let pnDt = {plt}l∈LR∪LC∪LI be the revenue/cost vector

for the non-demand-serving lanes.

The set of all lanes are defined as L = LD ∪ LR ∪ LC ∪ LI . Figure 1 is an illustration

of an eight-lane network regarding two stations i and j.

To summarize, in each period, an EV dispatched to lane l will 1) move from ol to dl,
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Figure 1 A sketch of the four service types

2) change its SoC from e to e′ = min {e+ εl, ē}, and 3) contribute revenue/cost plt to the

fleet. Trip pricing pDt is a decision controlled by the EV operator. Non-demand-serving

revenue/cost pnDt are given by the environment.

Demand-Price Relation

We consider a stochastic, time-varying, and price-elastic customer demand pattern.

The actual demand λlt on lane l serves as the upper bounds of the numbers of EV to

be dispatched to the lane in period t. We assume EV customers have alternative transit

methods so that unmet demand in each period is lost. Suppose λlt follows a linear demand-

curve

λlt = (alt − bltplt + θlt)
+ ,∀l ∈ LD (1)

Here, alt + θlt contributes as the demand potential, blt > 0 is the price elasticity, and plt

is the real-time EV service price. Specifically, alt and blt are information known before

pricing, and θlt is a zero-mean noise known only after the price is announced.

We suppose the demand parameters alt and blt are predicted by an exogenous forecasting

model. Consider a real-time demand forecasting model that passes down the parameters to

the EV fleet manager at the beginning of the time period t before pricing customer trips.

After the trip price plt is decided, the actual demand is observed with the noise θlt.

Exogenous Information

We define ωt =
(
{alt, blt}l∈LD ,p

nD
t

)
as the (pre-pricing) information state. The in-

formation state contains random exogenous parameters observed at the beginning of the
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Figure 2 MDP dynamics and value-to-go functions

period, including forecasts of demand curves and random non-demand-serving costs. Note

that ωt is defined in a generic form for notational simplicity, and not all components of ωt

are necessarily random. The demand noise θt = {θlt}l∈LD is referred to as the post-pricing

information.

Sequence of Events and Decisions

The system alternates between pre-decision states and post-decision states illustrated

by Figure 2. At the beginning of time period t, the fleet manager keeps track of the state

vector (rt,ωt). Then, the trip price vector pDt is decided and revealed to customers. Next,

the post-pricing information θt is observed, and the actual demand is determined by (1).

Finally, each EV is dispatched to exactly one lane l ∈ L for the period. Let xlet ≥ 0

be the (real-valued) number of vehicles with SoC level e dispatched to lane l ∈ L, and

xt = {xlet}l∈L,e∈E be the dispatching decision vector. All services are completed in the

time period. At the end of the period, the fleet reaches a new physical state rt+1. Along

with the t + 1 information state ωt+1, the system advances to the next time period and

the decision process repeats.

In this article, we assume the probability distributions of the exogenous information are

time-dependent, known and Markovian (i.e., independent of the MDP history). Practically

speaking, we suppose ωt and θt can be sampled effortlessly through offline Monte Carlo

simulation. The random information could depend on the corresponding post-decision state
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prior to the information revalation. That is, the distribution of θt may rely on
(
rt,ωt,p

D
t

)
and the distribution of ωt+1 may rely on rt+1.

In each cycle, there are four transition steps denoted by (i) to (iv) in Figure 2. Transi-

tions (i), (ii), and (iv) are the previous state joining by the corresponding new information

(or prices). Transition (iii) captures the single-period movement of EVs, which is defined

by

rj,e′,t+1 =
∑

{(l,e)∈L×E:dl=j,min{ē,e+εl}=e′}

xlet,∀j ∈ J , ∀e′ ∈ E . (2)

The dispatching decision xt is subject to a set of constraints. Given
(
rt,ωt,p

D
t ,θt

)
, the

set of possible EV dispatching decisions as well as the next fleet state are jointly constrained

by the following set Y
(
rt,ωt,p

D
t ,θt

)
. Note that we extensively regard rt+1 as a part of

the dispatching decision since rt+1 is determined by xt through (2).

Y
(
rt,ωt,p

D
t ,θt

)
:= {(xt, rt+1) :

Constraints (2),∑
{l∈L:ol=j}

xlet = rjet, ∀j ∈ J , ∀e ∈ E , (3)

rje,t+1 ≤ k̄j , ∀j ∈ J , (4)∑
e∈E

xlet ≤ (alt + θlt − bltplt)+ , ∀l ∈ LD, (5)

xlet = 0, ∀l ∈ L, ∀e+ εl < 0, (6)

xlet = 0, ∀l ∈ LC ,∀e ≥ ethr (7)

xlet ≥ 0, ∀l ∈ L,∀e ∈ E }. (8)

Constraints (2) and (3) are inbound/outbound flow conservation constraints. Constraints

(4) are the station capacity constraints. Constraints (5) bound the number of demand-

serving trips below the actual realized demand. (6) ensures the EVs have sufficient energy

to meet the need of the corresponding trips. Constraints (7) enforce a maximum threshold

SoC level ethr for EVs to be charged. We assume ethr is predetermined for the purpose of

maintaining battery health. Finally, Constraints (8) enforce the nonnegativity.
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EV Profit Maximization

The EV sharing system collects all the trip fares pDt and pays for costs pnDt . To max-

imize the expected profit, the fleet manager determines the pricing rule pDt = P πt (rt,ωt)

and the dispatching rule xt = Xπ
t

(
rt,ωt,p

D
t ,θt

)
where π denotes the overall decision

policy.

V1 (r1) = max
π

Eω,θ

[∑
t∈T

∑
l∈L

∑
e∈E

pltxlet

]
(9)

s.t. pDt = P πt (rt,ωt)

xt = Xπ
t

(
rt,ωt,p

D
t ,θt

)
(xt, rt+1) ∈ Y

(
rt,ωt,p

D
t ,θt

)
We rewrite the EV profit maximization problem (9) as a sequence of Bellman optimality

equations with the help of value-to-go functions.

Vt (rt,ωt) = max
pDt

Eθt
[
Ut
(
rt,ωt,p

D
t ,θt

)]
(10)

Ut
(
rt,ωt,p

D
t ,θt

)
= max

xt,rt+1

∑
l∈L

∑
e∈E

pltxlet + Eωt+1
[Vt+1 (rt+1,ωt+1)] , (11)

s.t. (xt, rt+1) ∈ Y
(
rt,ωt,p

D
t ,θt

)
(12)

Here, Vt (·) denotes the optimal value-to-go function before setting prices, and Ut (·) denotes

the optimal value-to-go function before dispatching EVs. At the bottom of Figure 2, we

illustrate the value-to-go functions and their relations to the MDP states. Given the

terminal value VT+1 (·) ≡ 0, we have (10) and (11) recursively defined for all t = T, T −

1, · · · , 1.

Theoretically, the optimal policy is obtained by solving (10) and (11) backward from

t = T to t = 1. However, solving for the optimal policy is impractical given the high-

dimensional continuous state-action-probability space. In Sections 4 & 5, we introduce a

tractable method that produces practical EV fleet decision policies.
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4 Solution strategies

In this section, we focus on the optimal dispatching problem, assuming the pricing policy

is given. Fixing pDt = P πt (rt,ωt) in (11), we are left with the following dynamic program.

For all t = T, T − 1, · · · , 1,

Vt (rt,ωt,θt;P
π) = max

xt,rt+1

∑
l∈L

∑
e∈E

pltxlet + E [Vt+1 (rt+1,ωt+1,θt+1;P π)] (13)

s.t. (xt, rt+1) ∈ Y
(
rt,ωt,p

D
t ,θt

)
(14)

pDt = P πt (rt,ωt) (15)

The expectation in (13) is taken with respect to (ωt+1,θt+1). Here Vt (rt,ωt,θt;P
π)

denotes the optimal value-to-go function given the pricing policy P π. Without causing

confusion, we will drop the indicator P π.

We replace the value-to-go term is with tractable value function approximation (VFA)

V̄t+1 (rt+1) in (13).

V̄t (rt) ≈ E(ωt,θt)

[
V̂t (rt,ωt,θt)

]
, (16)

V̂t (rt,ωt,θt) = max
xt,rt+1

∑
l∈L

∑
e∈E

pltxlet + V̄t+1 (rt+1) , (17)

s.t. (xt, rt+1) ∈ Y
(
rt,ωt,p

D
t ,θt

)
(18)

pDt = P πt (rt,ωt) (19)

Specifically, we start from t = T with V̄T+1 (·) ≡ 0 and construct VFAs backward. In each

period t, we establish a VFA V̄t (rt) through a sampling phase and a learning phase. In the

sampling phase, we sample a set of fleet states and random realizations (rt,ωt,θt). For

each sampled (rt,ωt,θt), we solve (17) to obtain an objective value V̂t (rt,ωt,θt). Then,

in the learning phase, we construct state-value function approximation V̄t (rt) that fits the

sampled state-value pairs. V̄t (rt) approximates the expected value of being in the fleet

state rt at the beginning of period t before knowing the information state, i.e., (16).
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The functional structure of VFAs is critical to the solution quality. The more so-

phisticated the functional structure we have, the higher the approximation quality we

can possibly get in (16). However, a complicated V̄t+1 (rt+1) results in inefficiency or

intractability in solving the optimization problem (17). One possible VFA approach is

the separable piecewise linear (SPWL) approximations (Godfrey and Powell, 2002), where

V̄t (·) is assumed to be the sum of a group of (concave) piecewise linear scalar functions. For

large-scale problems, linear approximations are more practical, e.g., Al-Kanj et al. (2020).

In this article, we apply and develop an input convex neural network (ICNN) VFA

method to generate good quality solutions. (We discuss the necessity of using concave

VFAs in the supplemental online materials §B.) ICNN has a wider range of functional rep-

resentability, which potentially produces finer approximations of the target value functions.

Neural networks also enables value-based learning. The SPWL method requires learning

via sampled gradients, which may not be available in our case. Problem (17) involves

state-dependent prices. Therefore, the sample gradient needs additional consideration.

According to the envelop theorem and the chain rule, the exact (sub)gradient is

∇rt V̂t =
∂V̂t
∂rt

+
∂V̂t

∂pDt

∂pDt
∂rt

, (20)

(assuming continuity in P πt ). Here, ∂V̂t
∂rt

represents the (sub)gradient assuming the pricing

pDt is fixed, which is the classic dual solution corresponding to constraints (3). ∂V̂t
∂pDt

rep-

resents the value sensitivity with respect to the pricing, which can be obtained from the

primal solution to (17). However, the availability of
∂pDt
∂rt

varies depending on the structure

of P πt .

In the rest of the section, we introduce a partial path based VFA algorithm for the

fleet management problem. We provide the details about the ICNN architecture and the

training method in the supplemental online materials §C & §D, respectively.

A Reinforcement Learning Framework

Suppose we have established the subroutines of training VFAs and solving optimization
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(17) to generate training data for the previous stage. The algorithm defines a scheme that

generates training points and updates VFAs alternately.

We adopt a partial sample path training method. Whenever we finish solving a for-

ward step via (17) from fleet state rt, we obtain one state-gradient-value training data(
rt,∇rt V̂t, V̂t

)
for the VFA V̄t (·). Different from using full sample paths, we simulate par-

tial paths from period τ to period τ + ∆τ every time, starting from a uniformly generated

initial state rτ . Repeating the partial paths generation for B times, we collect a batch

of B training data for each VFA V̄t (·) , t = τ, τ + 1, · · · , τ + ∆τ . Then, we update each

VFA using the batch. In the outer loop, we move the starting time period τ backward

from the last period to the first, so that VFAs are established backward. We call ∆τ as

the rolling length. Figure 3 is an illustration of the algorithm with a rolling length of

two. Algorithm 1 rigorously defines the partial path training method. Algorithm 1 is not

limited to the specific choice of VFAs. But for the specific problem and the choice of VFAs,

hyperparameters ∆τ , B and α have to be tuned for better training outcomes.

On one hand, we use partial paths to improve learning efficiency. Before V̄t+1 (·) is

established with a roughly good shape, the training data at t generated from solving

(17) tends to be far from the target value. Nonetheless, solving (17) costs considerable

computation time. Therefore, we focus on the critical segments of sample paths and build

VFAs through a backward scan.

On the other hand, to obtain good quality VFAs from training points, we need a

“smart” spread of visits on the state space. Ideally, V̄t (·) should capture both the global

behavior of E
[
V̂t (·)

]
and the local behavior around the states which are frequently visited

by the optimal policy. This is achieved via sample path training. Although starting from

a uniformly generated initial state, the states visited in the later periods distribute non-

uniformly because of optimal forward actions. We also need to retain some visits to the

“unlikely” states. This is handled by the exploration probability α in each forward step.
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(a) The Outer Backward Induction Loop

(b) The Inner Forward Partial Path

Figure 3 Illustration of Algorithm 1
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Algorithm 1: A reinforcement learning framework

5 Pricing strategy

The VFA techniques cannot be easily extended to (10) when pricing decisions need to be

optimized as well. The main reason is that tractable VFA methods (e.g., linear/concave

approximation) fail to adequately capture the non-convex shape of the value function Ut (·)

(even in low-dimensional, simple cases). Therefore, researchers have turned to other meth-

ods to optimize the pricing policy. Topaloglu and Powell (2007) develop a numerical method

to find a set of predetermined prices for the EV operating horizon. Their model accounts

for the temporal demand imbalance and improves operating profit, but does not react to

real-time supply-demand mismatch due to demand uncertainties. Al-Kanj et al. (2020)
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introduce a surge-pricing model that decides prices by maximizing the product of price

and acceptance rate. The acceptance rate functions are characterized by logistic models

and updated by a Bayesian approach. In this article, we use a pricing approach by solving

a program embedded in the original EV fleet problem (9).

Our idea is to set prices assuming the demand noise θlt vanishes. When θlt degenerates

to 0, (10) and (11) reduce to a one-stage problem. For a given fleet state rt and information

state ωt and at time t, the optimal pricing and dispatching are obtained by solving the

following system.

max
pDt

max
(xt,rt+1)∈Y(rt,ωt,pDt ,0)

∑
l∈L

∑
e∈E

pltxlet + Eωt+1
[Vt+1 (rt+1,ωt+1)] . (21)

In (21), the pricing and dispatching decisions are made simultaneously. The optimal pricing

is always the highest value given the number of cars assigned to the corresponding customer

trip. That is,

plt =
1

blt

(
alt −

∑
e∈E

xlet

)
, ∀l ∈ LD. (22)

We define Ȳ
(
rt,ωt,p

D
t

)
as a modified feasible set by replacing (5) with (22). Our pricing

strategy is to set

P πt (rt,ωt) =

[
arg max

xt,rt+1,p
D
t

∑
l∈L

∑
e∈E

pltxlet + Eωt+1
[Vt+1 (rt+1,ωt+1)]

]
pDt

(23)

s.t. (xt, rt+1) ∈ Ȳ
(
rt+1,ωt,p

D
t

)
(24)

The outer bracket [·]pDt represents the pricing components of the optimal solution.

The proposed pricing method only relies on the value functions Eωt [Vt (rt,ωt)] ,∀t ∈

T , which is handled by VFA methods. The pricing policy is automatically updated as

we update VFAs in Algorithm 1. This saves us the effort to maintain an independent

pricing model. Except for the value-to-go term, (23) is a concave quadratic program if

we substitute pDt with xt using (22). Thus, when applying linear/concave VFA to the

value-to-go function, (23) remains a concave maximization problem that can be efficiently

solved.
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(a) Selected zones (b) Hourly demand and electricity price

Figure 4 Input empirical data

6 Numerical experiments

We use New York City TLC data to generate station-to-station demand distribution and

perform various numerical experiments on the dynamic EV fleet management problem.

We compare the performance of the two VFA methods on a deterministic problem. We

apply ICNN method to solve the rest stochastic instances. We show some micro-level

characteristics of the policy and sample paths produced by the policy. We also study the

interaction between the demand fluctuation and the wholesale electricity price surge using

ICNN VFAs.

6.1 Experiment setup

All experiments setup are based on the TLC Trip Records (Green Taxi June 2018) in

Brooklyn. TLC divides the entire Brooklyn region into 61 zones. Trip records indicate that

the majority of the travels occur in the north part of Brooklyn. The grayed 28 zones in

Figure 4a account for over 80% of the total trip counts. (We preprocess the zones, merging

three adjacent zone pairs: (54,52), (34, 217) and (190, 62) since they have relatively small

travel demand.) Assume one EV station is built in each zone. Station capacity is assumed
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to be 25 and the total number of EVs operating in the system is 10 times the number of

stations. We let each operational period be 30 minutes. This time step setup is assumed

according to the taxi data and the estimation from Google Map.

The linear demand curve on each lane is generated from the TLC Trip Records. The

solid line in Figure 4b illustrates the average number of trips among these zones every 30

minutes in a day. We assume the price elasticity to be blt ≡ 0.125 per dollar. Then, the

average demand potential on lane l at time t is given by ālt = the average number of trips+

blt× the average trip fare. On the certain lanes where there is no trip occurred in a period,

we assume the demand potential alt = 1.

For the EVs in the fleet, we assume their configuration based on the profile of the 2018

Smart Fortwo electric drive (Daimler AG), which is used in car2go car-sharing services.

The battery capacity is ē = 5 SoC units (or 15kWh so that 1 SoC unit = 3kWh). The

charging rate is 3 SoC units per period (i.e., 9kWh/30min). The energy consumption for

driving is 1 SoC unit per trip.

A typical hourly electricity price pattern in NYC is illustrated by the dashed line in

Figure 4b. The price on average is about 23 cents per kWh (SAJIP, 2019) and fluctuates

between 12 cents and 35 cents per kWh in a day. Thus, we assume a time-varying charging

cost p̄Ct per period, ranging from $0.6 to $1.7 per SoC unit. Besides, we assume the

rebalance cost is $5 per period for moving a car between any pair of stations, and the idle

cost is 0.

We assume the random information (predicted demand potential, demand noise, and

the electricity price) in the model is sampled based on the following parameterized distri-

butions.

alt ∼ Gamma Distribution with mean ālt and CV = CVD, ∀l ∈ LD (25)

θlt ∼ Normal Distribution with mean 0 and sdv. = σθ · alt,∀l ∈ LD (26)

plt ∼ Normal Distribution with mean p̄Ct and CV = CVE ,∀l ∈ LC (27)
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Table 1 Exogenous model parameters

Model Notation Meaning Default Value Range

|J | # of EV stations 7 {7, 25}∑
j,e rjet Total # of EVs 10× |J |
ē Maximum SoC level 5
T # of periods 48

|εl| , l ∈ LC Charging Speed 3 {1, 2, 3, 4, 5}
ethr Charging threshold 2 {0, 1, 2, 3, 4}
CVD Demand coefficient of variation 0 ≥ 0
CVθ Demand noise coefficient of variation 0 ≥ 0
CVE Electricity price coefficient of variation 0 ≥ 0

Here, “CV” stands for the coefficient of variation. CVD, σθ, and CVE control the relative

variance of the random variables.

We summarize the exogenous model parameters in Table 1. A specific configuration

of the parameters is referred to as a numerical instance. If a parameter is not explicitly

declared, it takes the default value indicated in Table 1.

6.2 Case study results

In the base case, we examine the deterministic instance. Then, we run stochastic instances

with different parameter settings.

We start from a small scale problem to demonstrate the performance of the ICNN

method and the intuition of the EV fleet’s policy. We consider the travel demand in the

dark gray region (in Figure 4a) in a 24-hour planning horizon (i.e., 48 time periods). Let

2:30 a.m. be the beginning period and 2:00 a.m. (next day) be the ending time. We

incorporate the low-demand periods from late night to early morning, so that the charging

and rebalancing behavior can be better observed. Having the low-demand period at the

beginning of the planning horizon also alleviates the influence of truncating the planning

horizon, making our 24-hour policy more applicable to the day-by-day long term planning.

At the end of the finite planning horizon, the fleet typically reaches a “poor” state (cars
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Table 2 Optimality of VFA methods

SPWL ICNN
Initial State Opt pred. simul. %opt pred. %opt simul. %opt

random 12448.7 3028.0 12192.8 97.9% 12681.8 101.9% 12361.5 99.3%
±sdv. ±6.5 ±12.3 ±7.5 ±4.7 ±8.9
all 1 SoC 12419.7 2984.9 12166.3 98.0% 12655.4 101.9% 12339.7 99.4%
all 3 SoC 12460.3 3017.3 12206.0 98.0% 12688.1 101.8% 12382.5 99.4%
all 5 SoC 12489.7 3046.3 12236.0 98.0% 12709.3 101.8% 12413.7 99.4%
end-state 12333.3 2602.6 12073.4 97.9% 12607.8 102.2% 12256.8 99.4%

unbalanced and in low-battery). Regardless, they are going to be rebalanced and charged

in the low-demand period to prepare for the morning customers.

6.2.1 VFA optimality gap

We use a deterministic 7-station experiment to show the performance of the ADP methods.

For both the ICNN method and the SPWL method, we train the value functions using

Algorithm 1 with fine-tuned hyperparameters until the value functions are stabilized. Table

2 records the V̄ -predicted profits and actual profits obtained under different methods. The

column “Opt” is the optimal profit obtained from solving the extensive formulation of the

deterministic dynamic program. A column “pred.” denotes the value V̄1 (r1) predicted by

the value function at initial state r1. Under the column “simul.”, we have the actual profit

(i.e., the sum of the profit generated in all 48 periods) produced by the corresponding policy.

In the “%opt” columns, we compute their optimality as percentages of the optimal value.

We report the predicted and simulated values for different initial states. The first row is the

average profit for 50 uniformly generated initial states, with their standard deviations in

the next row. The next four rows are initial states where each station contains 10 vehicles

with the same SoC. The last column is an “end-state” after a 48-period warm-up phase.

This is an exhausted state in which vehicles have no battery left and are ill-distributed.

The results in Table 2 show that ICNN outperforms the SPWL method on both prof-
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Figure 5 Optimality gap of a deterministic instance

itability and prediction accuracy. Even though the SPWL method produces a good quality

solution, the ICNN approximation is able to further slightly improve policy performance.

Besides, the approximation value V̄t (·) is much closer to the actual profit produced under

the forward path simulation. In terms of the VFA prediction, the SPWL method ap-

proximates the marginal value of state variables, not the total cost, so the value function

approximations would not be a prediction of the performance of the policy. The ICNN

functions contain predictions close to the simulation result.

We use 10000 training points on each V̄t (·) for both methods, i.e., B = 10000 in

Algorithm 1. A one-hidden-layer ICNN value function takes 100 training epochs to reach

a minimum training loss, where an epoch corresponds to one scan of the entire training

data set. The SPWL method uses two to three epochs to stabilize. In the experiments,

the ICNN structure is 42-100-1. The rolling time length and the exploration rate are 3 and

0.2, respectively.

We solve the optimal profit of the deterministic instance to demonstrate the optimality

gaps. The gap decreases as shown in Figure 5 when the training batch size increases.

The SPWL method requires a small number of training data points to reach maximum

performance. With B = 200, the SPWL method gets close to a 2% optimality gap.

Additional training does not help the SPWL policy to further improve. The ICNN method

gets within a 1% gap with B ≥ 5000. The SPWL method runs for 1.1 hours given a batch

size B = 200. The ICNN method runs for 8.3 hours given a batch size B = 5000. The

processor running the experiments is an Intel i5-6500 CPU @ 3.20GHz.
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Table 3 Varying the charging speed

Charging Speed Total Energy Injection Charging Times Total Profit

5 1754.7 (+2.54%) 400.4 (-29.8%) 12518.7 (+2.08%)
4 1746.3 (+2.05%) 576.5 (-20.7%) 12456.1 (+1.57%)
3 1711.3 (-0%) 570.2 (-0%) 12263.7 (-0%)
2 1533.1 (-10.41%) 766.5 (+34.4%) 11537.8 (-10.27%)
1 1252.7 (-26.80%) 1252.7 (+119.6%) 9736.4 (-26.37%)

Table 4 Varying the maximum charging threshold ethr

ethr Total Energy Injection Charging Times Avg. Charg. Speed Total Profit

4 1712.1 (+0.09%) 576.9 (+1.18%) 2.97 12243.1 (+0.01%)
3 1710.9 (+0.02%) 576.5 (+1.11%) 2.97 12242.5 (+0.00%)
2 1710.5 (-0%) 570.2 (-0%) 3 12242.4 (-0%)
1 1693.7 (-0.98%) 564.6 (-0.98%) 3 12192.6 (-0.41%)
0 1680.8 (-1.74%) 560.3 (-1.74%) 3 12152.1 (-0.74%)

6.2.2 Policy characteristics

The effects of charging speed and charging threshold

We adjust the charging speed from 1 to 5 SoC per period. (Recall the maximum

battery capacity is 5 SoC and the trip energy consumption is 1 SoC per trip.) The results

are shown in Table 3, using the average statistics from multiple simulations. It appears

that a charging speed of 3 is sufficient to support the fleet operation. The fleet gains a thin

profit margin (1%˜2%) by further increasing the charging speed. However, if the charging

speed is dropped below 3, the operational performance is more significantly impaired. The

fleet loses 26% profit if the charging speed is only 1 SoC per period.

In Table 4, we also display the effect of the charging threshold. Recall that the threshold

forbids EVs with SoC above ethr from being charged. The threshold barely affects opera-

tional profit. In fact, the VFA policy is “intelligent” enough to prioritize the charging of

low-battery EVs (by evaluating the marginal value of SoC). Therefore, charging near-full

batteries does not happen often.
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(a) Trip price vs OD EV supply (b) Trip price vs station EV supply

Figure 6 Pricing Strategy Visualization

State-dependent OD pricing

Figure 6a illustrates the supply and pricing variation across the planning horizon for a

pair of selected OD (station #40 and #60). The trip pricing mainly follows the trend of

customer demand.

The pricing policy presented in Section 5 is also state-dependent. To visualize the

effect of supply on the pricing, we pick a specific period and fix the demand at the average

level. We show the price and supply relationship of a specific station j in Figure 6b. We

uniformly generate rt from the fleet state space and compute the average of outbound trip

prices {plt : l ∈ LD, ol = j} and the average of inbound trip prices {plt : l ∈ LD, dl = j}.

The average prices are plotted against the EV supply in the station, which is quantified as

the number of EV with non-zero SoC in station j, i.e.,
∑

e>0 rjet. Note that the displayed

supply-price relationship has some variation since we aggregate the high-dimensional fleet

state into a scalar supply quantity. Figure 6b shows the trend of the average trip price

given different supply quantities. If the EV supply in a station is higher/lower, the EV

operator tends to decrease/increase the outbound trip prices, and vice versa for the inbound

trip prices. A particularly high outbound price occurs when the supply is close to 0. The

inbound trip prices also account for their destination supply shortage. A low inbound price
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Figure 7 Deterministic forward path

will direct more EVs to station j in the next period.

Sample Path Display

Before preceding to the stochastic model, we show some statistics of the forward path

simulation in Figure 7. Figure 7(a) shows the revenue and cost generated in each period.

We start from a near-zero-battery end-state. The fleet gradually increases its electricity

storage during the first 8 periods (the 4-hour window from 2:00 to 6:00 in the morning) as

shown in Figure 7(d). During this time, the fleet mainly gets charged while serving some

customer demand. Then, it maintains a charging rate roughly equal to the consumption

rate in the middle periods of the day. As the time approaches the end of the planning period,

fewer charging tasks are made and the fleet electricity storage drops back to 0. Figures

7(b) and (c) show that the sales and electricity usage remains stable throughout the day,

except for the few periods around the period boundaries. With the pricing instrument, the

demand is shifted spatial-temporally. The rebalance at a cost of $5 per trip is never used

throughout the day. The EV fleet, with dynamic pricing, consumes electricity steadily. In

the next subsection, we show that similar observations hold when the fleet faces random

demand.
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Figure 8 Random sample path (CVD = 1)

Figure 9 The standard deviation of the number of vehicles assigned to demand serving

(left) and charging (right) under different CVD

6.2.3 Impact of stochastic demand

We run instance (CVD = 0.3, CVθ = 0.5, CVE = 0.1) to visualize the fleet’s behavior when

facing stochastic demand. With uncertain demand potentials (Figure 8(b)), the fleet ad-

justs its pricing accordingly. This demand-responsive action not only maximizes the profit

but also stabilizes the electricity consumption (Figure 8(c)). The electricity storage (Fig-

ure 8(d)) exhibits a very similar trend as what we get from the deterministic simulation.

Figure 8(a) summarizes the revenue and cost in each period.

To further demonstrate that dynamic pricing stabilizes electricity consumption, we

examine the following two statistics when CVD varies. Let xDt :=
∑
l∈LD

∑
e∈E

xlet be the total

number of vehicles assigned to demand serving at time t. When facing stochastic demand
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CVD > 0, the assignments are uncertain decision variables. We compute the sample

standard deviation of xDt over all sampled demand scenarios, and then take the average

over all periods, denoted as std [xDt], which characterizes the uncertainty of the fleet’s

electricity consumption rate. Similarly, we define std [xCt] as the average sample standard

deviation of the number of vehicles assigned charging, standing for the uncertainty of

electricity refueling.

Figure 9 shows the trend of these two statistics when CVD varies from 0.1 to 1.5. As

a benchmark, we plot (in dashed lines) the same statistics when a flat rate is used. The

solid lines show the uncertainty trend when dynamic pricing is applied. The uncertainty in

electricity is significantly reduced when the fleet uses dynamic pricing to regulate demand

spatial-temporally. In the simulation of the flat-rate strategy, the fleet also makes assign-

ment decisions anticipating the demand trend. But without the pricing instrument, the

fleet operates in a way less responsive to demand surges. The fleet’s electricity charging

rate is more volatile than that in the dynamic pricing framework.

6.2.4 Impact of electricity outage

This part studies the behavior of the fleet when there is a power outage. Although the

electricity price could be fluctuating throughout the day, its impact on the fleet’s behavior

is minor. Comparing to the sales revenue and other major costs, the electricity price is

too low to affect the fleet’s charging decision. However, this is not to say that the fleet

can operate independently without interacting with the power grid. For a large EV fleet,

electricity consumption is substantial. Under energy shortage, the grid may limit the fleet’s

electricity usage (e.g., by setting a charging cap or applying a price surge). Furthermore,

a fleet can provide ancillary services to the grid during a power outage. In these scenarios,

the fleet will have an operating period with a low or even zero electricity supply. Thus, it

makes more sense to study the behavior of the fleet during an electricity outage.

Figure 10 shows a sample path with a 2-hour power outage in the middle of the day.
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Figure 10 Sample path with a 2-hour power outage (from t = 25 to 28)

From period 25 to 28, the EV cannot be charged. After the power is back, we can see an

apparent energy replenishment at period 29. The sales begin to drop at period 26 after

the outage, and this impact continues to period 29. After period 29, the fleet operates at

a normal charging rate and selling rate. In the experiment with ē = 3, the 2-hour outage

drains any EV’s battery if the vehicle keeps serving demand. However, once there are very

few available EVs, the fleet applies higher sales prices to regulate the demand so that the

sharing system can keep functioning for longer periods.

6.3 Insights from the numerical results

With real demand parameters learned from NYC taxi data, we show that the ICNN based

ADP method generates good policy and reasonable value predictions. Then, we apply

the method for further study on the behavior of the EV fleet. The EV operator gradu-

ally charges and rebalances the fleet in the first 4 hours to prepare for morning demand.

With the demand-responsive pricing instrument, very little manual rebalancing is adopted.

Moreover, throughout the entire day, EV usage is relatively stable. We also show that the

EV fleet significantly reduces the sales and electricity usage variation when customer de-

mand is subject to large uncertainty. The electricity storage inside the fleet is steady
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during its main operating period. Even for EVs with small battery capacity, the fleet

shows resiliency to electricity power outage.

7 Conclusions

In this article, we presented a dynamic programming model that generates the optimal

pricing and EV dispatching decisions for a one-way EV sharing system in a multi-period

planning horizon. We showed that, the EV fleet, given the ability set demand-responsive

prices for trips over the planning horizon, 1) generates higher operational profit, 2) signifi-

cantly reduces the need for manual rebalancing, and 3) shows greater resistance to demand

fluctuation and stabilize its electricity consumption.

We extended the separable piecewise linear approximation to the input convex neural

network (ICNN) approximation. Our method contributes to the dynamic fleet management

problem (and other concave dynamic programming problems) in the following aspects.

Firstly, ICNNs have greater function representability, and thus better approximate the

underlying true value functions. Secondly, ICNN inherits the ability to utilize gradient

information in VFA training and further allows the value-based training. The value-based

training is helpful when the gradient information cannot be accurately obtained.

This article motivates EV fleet research in various directions. On the modeling side,

extending the problem to stochastic multi-period travel time could be interesting but chal-

lenging. Future research also can explore the active demand learning of vehicle sharing in

dynamic decision processes. On the methodology side, the ICNN method lays the founda-

tion for using non-separable convex VFAs in fleet management problems. It is intriguing

to quantify the benefits of non-separable VFAs in solving stochastic dynamic programs.
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