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ABSTRACT

Thermal fields exist widely in engineering systems and are critical for engineering operation,
product quality and system safety in many industries. An accurate prediction of thermal
field distribution, that is, acquiring any location of interest in a thermal field at the present
and future time, is essential to provide useful information for the surveillance, maintenance,
and improvement of a system. However, thermal field prediction using data acquired from
sensor networks is challenging due to data sparsity and missing data problems. To address
this issue, we propose a field spatiotemporal prediction approach based on transfer learning
techniques by studying the dynamics of a 3D thermal field from multiple homogeneous
fields. Our model characterizes the spatiotemporal dynamics of the local thermal field varia-
tions by considering the spatiotemporal correlation of the fields and harnessing the informa-
tion from homogeneous fields to acquire an accurate thermal field distribution in the
future. A real case study of thermal fields during grain storage is conducted to validate our
proposed approach. Grain thermal field prediction results provide a deep insight of grain
quality during storage, which is helpful for the manager of grain storage to make further
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decisions about grain quality control and maintenance.

1. Introduction

Thermal fields exist widely in engineering systems,
and an accurate thermal field distribution, that is,
acquiring any location of interest in a thermal field at
the present and future time, is essential to provide
useful information for the surveillance, maintenance,
and improvement of systems in various industries,
including advanced manufacturing (Li, Jin, and Yu
2018), cyber infrastructure (Jiang et al. 2013), meteor-
ology (Liu et al. 2017), and microenvironment (Yan,
Li, and Tu 2017). For example, grain temperature is
the most commonly used index for grain quality mon-
itoring during storage. Obtaining an accurate grain
thermal field distribution can provide thorough infor-
mation for timely and effective monitoring of grain
quality, which is critical for preventing unnecessary
grain losses. Such thermal field distributions are gen-
erally determined by a series of extrinsic factors (e.g.,
ambient temperature or radiation power) and intrinsic
factors (e.g., self-interaction within the system) as well
as the structure and operational modes of the system.
Hence, understanding extrinsic and intrinsic factors

and the associated operation mechanism that may
influence a thermal field is important for acquiring
the thermal field distribution.

Using partial differential equations (PDEs) to study
the thermodynamics of a system enables the predic-
tion of the thermal field distribution by considering
extrinsic factors (Jia, Sun, and Cao 2000). Such PDEs
are established on the basis of complete understanding
of the operational mechanism of a system, and the
structures and associated parameters in PDEs should
be verified through experimental tests or deductive
reasoning. However, in practice, solving PDEs for a
complex engineering system is not feasible at all times
because the explicit structures cannot be easily
obtained and the parameters in PDEs are not consist-
ently treated as constants. Finite element analysis
(FEA) method is used extensively to obtain numerical
solutions for PDEs and considers time-varying param-
eters in thermal systems (Wang et al. 2020). However,
FEA models usually acquire the thermal field distribu-
tion under ideal conditions. These models are adept
for obtaining the global trend of the thermal field
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Local thermal variations

Figure 1. Thermal field distribution of a 3D granary with local thermal variations. (The cloud represents the grain thermal field,

and the black points represent sensor locations.).

caused by extrinsic factors but usually fail to capture
local thermal variations caused by intrinsic factors,
which is of importance for providing useful informa-
tion regarding the severity and risks of the actual
thermal system.

Throughout the thermal field distribution of a sys-
tem, practitioners have focused on local thermal vari-
ation because such changes usually trigger systematic
changes or even system fajlure. For example, local
thermal variations exist in a 3D granary, as shown in
Figure 1. A small local temperature increase due to
the overheat by the grain self-breath or mildewing
may induce an extensive temperature increase spread-
ing across the granary, thereby leading to the unex-
pected grain deterioration before releasing to the
grain processing plants. In view of the severity of local
thermal variations, accurately predicting the thermal
field distribution at the present and future time points
is of considerable necessity.

Wireless sensor networks and information technol-
ogies have emerged as key support for linking sensor
observations; moreover, studying the thermodynamics
of a 3D thermal field caused by intrinsic factors (e.g.,
local thermal variations) using the sensor observations
shows a remarkably promising research orientation.
However, thermal field distribution prediction using
sensor observations has encountered two major prob-
lems. First, the ‘data sparsity’ problem exists. ‘Data
sparsity’ means that only sparse sensors are engaged
in sensor networks for data collection due to the lim-
ited budget for sensor deployment. Therefore, only
sparse sensor data are available for thermal field dis-
tribution prediction. Second, missing data invariably
exist among sensor observations in the sensor network
for unexpected reasons, such as sensor aging and
wireless communication failure.

To address the issue of data sparsity and missing
data, we find thermal fields with similar external con-
ditions have homogeneous properties in engineering
practices, so that temperature in this fields has similar

profiles. As shown in Figure 2(a), we use grain storage
as an example. Several columns of granaries with
similar storage conditions (within the red boxes),
including locations, volumes of granaries, stored
grains, and environmental surroundings, are found in
this grain depot. Granaries with similar storage condi-
tions have homogeneous properties, which makes
temperature in these granaries have similar profiles.
When we predict a grain thermal field of a target
granary, we can try to capture available sensor data in
its neighboring homogeneous granaries to support the
thermal field prediction of the target granary. We also
present a demonstrative example of thermal sensor
observations at the same location in three adjacent
granaries with similar storage conditions in
Figure 2(b). The curves of the global trend are
obtained using the thermodynamic PDE model, and
the local thermal variations marked with dots are the
values of the deviance of the sensor observations from
the global trend. We can see the local thermal vari-
ation in each granary has similar profiles, and exhibits
considerable spatial and temporal correlations.

Transfer learning, which shares knowledge or infor-
mation from data sources in homogeneous subjects,
provides an unprecedented opportunity for thermal
field modeling with limited sensor observations and
addresses data sparsity and missing data problems. In
recent years, transfer learning has been studied by
numerous researchers and applied to various engin-
eering domains, including speech emotion recognition
(Song, Jin, and Zhao 2014), manufacturing shape
deviation (Shao et al. 2017), engine degradation proc-
esses (Lin et al. 2018), and disease telemonitoring
(Yoon and Li 2018). However, existing transfer learn-
ing approaches mainly focus on the prediction of a
subject at the current time, that is, estimating the cur-
rent values of points of interest on the sensor loca-
tions. Thermal field prediction in the upcoming time
(that is, forecasting the future values of points of
interest on and off the sensor locations) cannot be
directly solved by existing approaches.
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Thermal field prediction generally involves twofold
objectives: one is to estimate the entire thermal field
distribution at the current time by using the collected
data from the sparse sensors, and the other is to fore-
cast the future distribution in the upcoming time. In
recent years, studies have been done for field predic-
tion by modeling spatiotemporal correlations, includ-
ing the kriging method (Stein 2012; Inoue, Sasaki, and
Washio 2012), sparse matrix algorithms (Furrer,
Genton, and Nychka 2006), reduced rank techniques
(Cressie and Johannesson 2008), and Gaussian
Markov random field (GMRF; Xu and Huang 2012).
These studies mainly focus on field distribution esti-
mation at the current time by considering the spatio-
temporal correlation structures within the field.
However, they require dense observations for an
accurate field distribution. When sensor sparsity or
missing data problems exist, these studies fail to
achieve accurate field distribution modeling and esti-
mation results. Currently, few studies have concen-
trated on the field forecast in the upcoming time.
Therefore, developing an effective method for thermal
field prediction given limited sensor observations with
data sparsity and missing data problems is essential.

Three challenges are involved in predicting a 3D
thermal field distribution in our study: 1) estimating
the values of points of interest off the sensor locations
at the current time points; 2) forecasting the thermal
field distribution (i.e., values of points of interest on
and off the sensor locations) at the upcoming time
points; and 3) handling sensor data sparsity and miss-
ing data problems to acquire an accurate thermal field
distribution. To address these challenges, this study
presents a spatiotemporal transfer learning-based pre-
diction (TLP) approach to learn a 3D thermal field
distribution when only sparse sensor observations are
accessible and missing data problems exist. For the
first two challenges, in view of the complex spatiotem-
poral structures of the thermal field, our approach
combines the ideas of field estimation and forecast to
acquire a distribution of the entire thermal field at the
current and upcoming time points. For the third chal-
lenge, we develop the TLP approach to handle the
data sparsity and missing data problems by sharing
the information from data sources in homogeneous
thermal fields.

The remainder of this paper is organized as follows.
Section 2 presents a literature review in terms of ther-
mal field prediction, including field estimation and
forecast. Section 3 introduces the methodology of
transfer learning-based thermal field prediction.
Section 4 shows a real case study of grain thermal

fields for evaluating the proposed model performance.
Section 5 provides a summary.

2. Literature review

The goal of this study is to predict a 3D thermal field
distribution using sensor observations with data spars-
ity and missing data problems. In this section, we
review relevant physical models and statistical spatio-
temporal approaches for the modeling of thermo-
dynamic systems and the methods for solving data
sparsity and missing data problems.

2.1. Physical models and mixed models

Conventional methods for thermal field distribution
modeling capture thermal field dynamics by using
physical models, which consider extrinsic factors and
rely on physical principles (e.g., heat exchange mech-
anism) to describe the field. For example,
Khatchatourian and De Oliveira (2006) applied a
hydromechanical model to characterize the airflow
and dynamics of a thermal field. Wang and Zhang
(2015) simulated a thermodynamic process in a cubic
granary by considering the environmental factors,
solar radiation, and heat transmission among the
grains. The physical models mainly describe thermo-
dynamics on the basis of PDEs and rely on FEA
method to obtain numerical solutions (Thijssen 2017).
However, these methods model thermal field distribu-
tion under ideal conditions by only considering
extrinsic factors. Uncertainties caused by intrinsic fac-
tors (e.g., local thermal variations) cannot be accur-
ately captured, thereby leading to a large discrepancy
between the predicted and actual thermal fields.
Studies that combine global and local models have
been conducted to address this issue. In such mixed
models, the global model captures the global trend
caused by extrinsic factors, whereas the local model
captures the local variations caused by intrinsic fac-
tors. For example, Ba and Joseph (2012) proposed a
novel nonstationary Gaussian process model that is a
composite of two Gaussian processes in which the
first one captures the global trend and the second one
captures local variations. Yan, Paynabar, and Shi
(2018) developed a spatiotemporal smooth sparse
decomposition method that decomposes the original
data stream into the functional mean, sparse anoma-
lies, and random noises. These models consider the
mean and local models as data-driven models and can
fully capture the spatiotemporal correlation from sen-
sor data. However, when only limited sensor data are



available, these models may not work well in captur-
ing the complex spatiotemporal structures of fields. In
addition, these methods do not consider engineering
knowledge, such as thermal principles, which is crit-
ical in most engineering cases.

2.2. Statistical spatiotemporal models

Statistical spatiotemporal approaches have been vastly
developed to address the uncertainties of dynamic
fields using sensor observations. Previous studies have
modeled spatiotemporal correlations of a dynamic
field by assuming that spatial and temporal parts are
independent of each other (Huang 2010; Katzfuss and
Cressie 2011; Zheng, Liuand, and Hsieh 2013). One
limitation in these studies is that the independent
form of the spatial and temporal parts cannot charac-
terize the spatiotemporal correlations of fields. To
overcome this limitation, some studies have attempted
to model spatiotemporal correlations of a dynamic
field. In particular, the kriging method has been
widely used in modeling spatiotemporal correlation by
considering a spatiotemporal covariance function for
field distribution modeling (Stein 2012; Inoue, Sasaki,
and Washio 2012). However, the computational issue
generally arises in the kriging method for large data-
sets. Many approaches, including sparse matrix algo-
rithms (Furrer, Genton, and Nychka 2006), reduced
rank techniques (Cressie and Johannesson 2008), and
full-scale approximation method (Zhang, Sang, and
Huang 2015), have been developed to reduce compu-
tational burdens for large datasets. However, these
methods, which describe the spatiotemporal correla-
tions of a field by a covariance function, are applicable
to simple systems only. For complex systems, such as
3D thermal fields, the modeling accuracy of these
methods is unsatisfactory because complex spatiotem-
poral dynamics in the systems cannot be adequately
captured by the covariance function.

To address this issue, studies that combine spatial
and temporal modeling methods have been conducted
to characterize spatiotemporal dynamics among com-
plex systems. For spatial modeling, the GMRF has
received considerable attention in recent years. For
example, spatial modeling by GMRF, which considers
grid-based neighborhood structures to model spatial
correlation of a complex system, has been well vali-
dated in nanowire growth (Xu and Huang 2012).
However, given that the GMRF can only be adopted
when the sampled data in the entire structured field
are complete, temperature off the sensor locations
cannot be directly predicted by the conventional
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GMRF method. To solve the problem, some research-
ers have adopted methods that combine GMRF and
kriging models (Hartman and Hossjer, 2008;
Perdikaris et al. 2015). Xu and Choi (2012) proposed
a Gaussian process built on a GMRF to model mobile
distribution given resource-constrained mobile sensor
networks. Wang et al. (2019) integrated a kriging
model into a GMRF model by fully using grid-based
sensor data. However, these methods mainly focus on
field estimation for points of interest at the current
time points and still fail to forecast field distribution
in a short time period. In other words, these methods
cannot characterize the temporal evolution of the field
in the near future.

To address the aforementioned issue, Mariella and
Tarantino (2010) proposed a spatiotemporal condi-
tional autoregressive (STCAR) model, which is an
autoregressive model for a temporal sequence of
GMRPFs, to forecast field distribution in the near
future. Liu, Gopal, and Kalagnanam (2018) improved
the STCAR model to forecast weather radar reflectiv-
ity fields by considering the motion of the weather
system and a spatiotemporal process that governs the
growth or decay of the strength of radar reflectivity.
The two methods integrate a time series model into a
spatial model to forecast field distribution in the near
future by characterizing the spatiotemporal correlation
of the field. Given that the STCAR model can only be
adopted when the sampled data in the entire struc-
tured field are accessible, temperature off the sensor
locations still cannot be directly predicted by the
STCAR method. To predict the field distribution,
the thermal quantities should not only forecast on the
deployed sensor locations but also those off the sensor
locations. In addition, the aforementioned methods
generally require sufficient sensor observations for
acquiring an accurate field distribution. However, in
practice, only limited sensor observations may be
available due to data sparsity and missing data prob-
lems. Therefore, given limited sensor observations,
developing an effective method to predict the field
distribution is necessary.

2.3. Models for data sparsity and missing
data problems

Some researchers have applied interpolation methods to
fill missing data using existing sensor observations of
the thermal field, including linear, spline (Aliaga 2017),
and Lagrange (Cheng and Mark 2010) interpolations.
However, this strategy may result in inaccurate interpo-
lated values when the number of missing data is large,
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Figure 3. Main idea of the transfer learning-based prediction approach.

thereby demonstrating its tendency to lose the chance
to capture local thermal variations. Transfer learning
provides an opportunity for thermal field distribution
modeling with limited sensor observations by capturing
local thermal variations and handling data sparsity and
missing data problems. This approach aims to improve
the accuracy of the target thermal field by sharing
knowledge or information from its homogeneous ther-
mal fields. Multitask learning, which improves model
performance of a target task by learning multiple simi-
lar-but-not-identical tasks and sharing the information
of each task, has emerged as one of the popular focuses
in transfer learning. Shao et al. (2017) developed a
multitask learning model to predict a 2D machined-
surface shape by characterizing the spatial correlation
on the basis of the sensor data of related surface shapes.
This model mainly focuses on static spatial surfaces but
cannot describe spatiotemporal dynamic systems that
vary across space and time. For spatiotemporal data
modeling, Goncalves, Banerjee, and Von Zuben (2017)
proposed a hierarchical multitask learning method to
predict climate systems. However, this method can be
only applied to 1D spatiotemporal data. Bonilla, Chai,
and Williams (2008) proposed a multitask Gaussian
process prediction model, which characterizes the spa-
tiotemporal correlation of simple systems by a covari-
ance function in the Gaussian process. However, in
complex  spatiotemporal  systems, spatiotemporal

correlation may not be accurately characterized by only
a simple covariance function. Moreover, existing trans-
fer learning approaches model 1D profiles and 2D sur-
faces, and few studies model 3D dynamic fields. In
addition, existing transfer learning approaches mainly
focus on field distribution estimation, that is, estimating
the values of points of interest off the sensor locations
at current time points. Few studies regarding transfer
learning have addressed the issue of forecasting a ther-
mal field at future time points.

3. Transfer learning-based field prediction
model

In this study, we propose a spatiotemporal TLP
approach for a 3D thermal field using limited sensor
observations with data sparsity and missing data prob-
lems. We develop the TLP model by combining the
ideas of field estimation and forecast and integrating
transfer learning approach to address the data sparsity
and missing data problems to acquire an accurate local
thermal variation distribution at current and future time
points. The TLP model is substantially an autoregressive
model for a temporal sequence of spatial transfer learn-
ing processes, which characterizes spatiotemporal correl-
ation of local thermal variations using sensor
observations from homogeneous data  sources.
Specifically, we model the spatial transfer learning
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processes by establishing a multitask Gaussian process
framework, which is characterized by a covariance
matrix that can describe the spatial correlation structure
of a field and the feature correlation among fields.

The contributions of the proposed model are pre-
sented in the following aspects. First, our model can pre-
dict a 3D thermal field distribution at any point of
interest and at any current or future time point. Second,
our model can address the sensor data sparsity and miss-
ing data problems by establishing a multitask Gaussian
process framework that fully utilizes limited sensor
observations from homogeneous data sources. Third, our
model focuses on the modeling of local thermal varia-
tions and effectively captures spatiotemporal correlations
of the local thermal variations by integrating time series
models and spatial transfer learning processes.

As shown in Figure 3, we assume that L homoge-
neous thermal fields exist, and these fields demonstrate
different missing data patterns. We take a thermal field
I as an example, and the idea of transfer learning is
that we predict the thermal field I by using sensor data
in all L thermal fields. The common feature and spatial
correlation among thermal fields are captured at each
time point from the sensor data in all L thermal fields,
and the thermal fields also evolve over time because of
temporal correlation. The thermal field prediction
includes estimating the entire field distribution at the
current time points (e.g., t;, ..., fy) and forecasting
the future field distribution at the upcoming time
points (e.g., far41). Figure 4 presents the flowchart of
the proposed research methodology. The proposed
approach will be introduced in detail as follows.

3.1. Mixed-effect model framework

A thermal field, including the global and local thermal
variations, should follow the heat transfer principle.

autoregressive structure for
prediction (3.3.2)

However, this can only be achieved under the
assumption that all the parameters of the heat transfer
function can be determined over time. In reality, the
parameters are not only affected by environmental
factors but also by some intrinsic factors in most
cases. Furthermore, they vary over time and could not
be directly measured or determined. For example,
local thermal variations tend to be triggered by intrin-
sic factors, such as grain self-breath and local over-
heat, and the property of the heat-transfer medium
varies over time. This fact could not be directly cap-
tured by using the conventional PDE model, which
might mainly consider extrinsic factors, such as the
thermal field boundary or environmental factors with
static parameters. The sensor data collected in the
thermal field provide us the opportunity to model
local thermal variations using the data-driven method.
On this basis, we decompose the modeling of a ther-
mal field into two parts: the global trends and the
local thermal variations.

We define a complete set of the thermal field dis-
tribution for L fields at time ¢, with t =1, ..., M, as
G = (g1(51) -8 (Sn) - 8 (i) o 8F (1) 8F (50))
where gf(si) denotes the thermal value at location s;
and time t of field [; moreover, there are a total of n
locations at each time point. We adopt the following
mixed-effect model framework to represent the ther-
mal field distribution for L fields and jointly charac-
terize the global trends and the local thermal
variations:

Gt = u[+vt) (1)

where p, is the set of the global trend distribution for
L fields at time t. The residual of G, after the global
trends p, represents the set of the local thermal distri-
bution for L fields at time ¢, which is denoted as V;.
We adopt a thermodynamic function to capture the
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global trends, which models the main profile of the
thermal field, and develop a data-driven method to
capture the local thermal variations from the sensor
data that can reflect the local status of the ther-
mal field.

3.2. Modeling global trends

In view of the extrinsic factors and thermal mechan-
ism, we adopt a thermodynamic function to character-
ize the global trends of thermal fields. For the thermal
field! (I=1, 2, ..., L), the thermodynamic function
is modeled as the following unsteady heat transmis-
sion equation:

D 82 |
=) das5Hi(s) =0, (2)
dz::l os:"t

where d denotes the index of the space dimension, D
is the number of the space dimension, and s; repre-
sents the space location of dimension d. The param-
eter oy of dimension d is determined on the basis of
thermal properties. For stored grains, oy denotes the
thermal diffusivity of the grains. We use the FEA
method to solve the unsteady heat transmission equa-
tion:

ihr(s) =T (4(9)), )

where we take a 3D space as an example, and location
s in Eq. (2) is denoted as (sy,s,s;) in a Cartesian
coordinate system:

Atocx
A 2 ,ut(strl) Sys SZ)

AtOCX AtOC
As? :“z(sx L Sy Sz)+ $2 '“t(s"’ 1> 52)
)’
Atofy 1 At %z
+ ASZ :ut(SX’ Syfly Sz)+ Az lu“t(sx’ Sy’ SZJrl) (4)
Y
Ato,
+ As2 ,ut(sxa Sy; Sz— l)

4

2Ato,  2Ata,  2Ato
+ (1 - x y Z) ult(sx, Sy» Sz)-

2 2 2
As2 Asy As?

Here, As,, As,, As,, and At are the grid spacings in
the x-, y-, and z-directions of the spatial and temporal
domains. Given the grain temperature at time ¢, as
the initial value and grain temperature on the granary
as the boundary condition, Eq. (4) can
be solved.

walls

3.3. Modeling local thermal variations

Local thermal variations throughout the thermal field
distribution of a system usually trigger systematic
changes or even system failures, which provides useful
information regarding the severity and risks of the
thermal system. In comparison with global trends,
local thermal variations play a crucial role in engin-
eering systems to provide useful information for
the surveillance, maintenance, and improvement of a
system. In this section, we develop a TLP approach
for acquiring local thermal variation values at any
point of interest and at any current or upcoming
time point.

Spatiotemporal correlation should be considered in
the modeling of local thermal variations to predict a
3D thermal field distribution accurately. At each time
point, local thermal variations at adjacent locations
tend to exhibit strong spatial correlation when the dis-
tance between their locations is small in a thermal
field. Temporal evolution also exists among thermal
fields as time goes. In practice, sparse sensor observa-
tions are accessible and missing data problem exists,
thereby complicating the modeling of a thermal field
distribution when only using such sensor observa-
tions. Homogeneous thermal fields under similar con-
ditions are known to share a common spatiotemporal
structure. This motivates us to consider multisource
sensor observations from homogeneous thermal fields
for the thermal field prediction to handle the data
sparsity and missing data problems effectively.

The local thermal distribution V; for L fields at
time t is decomposed into two independent parts,
namely, the latent function Z; of the local thermal dis-
tribution for L fields and the noise term &;. Thus, we
have V, = Z; + 9, where V,, Z;, and J; are the sets
in terms of vi(s,-), zi(s,-), and 5i(si), which denote the
local thermal distribution, its corresponding latent
function, and the noise at location s; and time t of
field I, respectively. 5i(s,~) is assumed to be an inde-
pendent and identically distributed Gaussian white
noise with the variance eﬁ, that is, 5i(s,-) ~ N (0, sit).
Thus, we have vj(s;) ~ N(z(s:), &,)-

3.3.1. Gaussian process with built-in GMRF for
spatial and feature covariance

Given the essential role of local thermal variations in
engineering applications, we remove the global trends
from the sensor observations of the thermal field
I (I=1, .., L) and use the residuals, which are
denoted as the deviance of sensor observations hl(s;)
from global trends rii(s;) (e, yi(si)) = hi(si) — pl(s:))
to model local thermal variations. At time ¢, with



t=1, ..., M, we assume that the local thermal latent
functions of L fields follow a Gaussian process with
zero mean. The covariance of the Gaussian process
describes the spatial correlation of fields and the fea-
ture correlation among fields as follows:

(4(5)2()) = DK (ss). 5)

Eq. (5) denotes the covariance of two local thermal

latent functions z/(s) at location s of field / and zf(s‘)
at location s' of field I, where k*(LI') is a feature
covariance that specifies the similarities between fields
I'and I, and k(s,s') is a spatial covariance between s
and s' at time t that characterizes the spatial correl-
ation of the fields. Particularly, for the local thermal
latent function in field [ at time t, the covariance
between locations s and s' is proportional to the spa-
tial covariance, that is, (2/(s),2(s)) = ck(s,s') o
ki(s,s’), where cl is a non-negative constant in terms
of the feature covariance for field / at time ¢.

3.3.1.1. Modeling spatial covariance. We now intro-
duce the modeling of the spatial covariance for each
thermal field. The GMRF has received considerable
attention for modeling the spatial dynamic fields in
recent years. In a 3D thermal field, sensor observa-
tions are collected from grid-based sensor networks,
wherein sensors are uniformly distributed in the sys-
tem; thus, we can fully use the grid-based sensor net-
work structures that correspond to the neighborhood
structures in GMRF. However, GMRF can only be
used when the sampled data in the entire structured
field are complete. Hence, the conventional GMRF
method cannot be directly applied to predict a ther-
mal field distribution, wherein field values off the sen-
sor locations are unknown. To address this issue, we
propose to employ a Gaussian process model with a
built-in GMRF to predict thermal values off the sen-
sor locations by characterizing the spatial covariance
at each time point and fully combining the ideas of
Gaussian process and GMRF under the grid-based
sensor network structure.

We assume v, = (y,(p1). Ve(P2): -+ yt(pI))T to be a
zero-mean GMRF model in the spatial domain at
time ¢, where p; denotes the location of point i on the
lattice, and I is the number of points on the lattice.
We refer to such locations of points on the lattice as
generating points, and select the grid-based sensor
locations as the generating points in our model. At
time ¢, the local thermal latent function z!(s) of field !
with [ =1, ..., L is modeled by a Gaussian process
with a built-in GMRF, which is defined as follows:

JOURNAL OF QUALITY TECHNOLOGY 9

1
2(s) = S \Jdi(spn(e) = han  (©)
i=1

where A(s,p;) is a weighting function for location s
and the generating points p;, and A = (A(s,p1),

A(8,Di)s +eos )L(s,pj)).

For the variable 7y,(p;), with i=1, .., I, we
consider a spatial domain of the generating
points S={1, .., I} in the GMRF model,

and the neighborhood of p; is defined as N; =
{j € S:j is a neighbor of i, j# i}. Given
{y,(pj), jGN,-}, the conditional distribution of
7¢(pi) is a Gaussian, which can be expressed as
follows:

@) J# 5 JE N}

N N<pt 3 ﬂi,m),ait), )

j¢i> jeNi
where p, is the overall effect of spatial dependence at
time t, oﬁt is the variance of p; at time ¢, f3; i is a nor-
malized adjacency parameter of p; and p;, f;; =0,
and B;; = B, ;- We denote 8, ; = w; j/wi;, where

_ [ o@ip) forjENi and j#i,
Wi,j = .
0, otherwise.
Here, w;, = Z;';l w;j, where n; is the number of i’s
neighbors, and ¢ is a non-increasing function of the
distance between p; and p;. We denote a systematic
adjacency matrix W= (w;; f -1 Wp =
diag{wy, way, ..., wii}, and o7, = g;w;!. Then,
we obtain the joint probability density function of vy,
as follows:

-1
Ve ™~ N<0’ [% (Wp — ptW):| >’ (8)

t

where o2 is the overall variance at time t. The inverse
covariance matrix (precision matrix) of vy, is Q; =
L (Wp — p;W), and thus Q, is a symmetric positive
definite matrix.

Therefore, by inserting Eq. (8) into Eq. (6), we
obtain the distribution of z!(s), which is also a
Gaussian, as follows:

Z(s) ~ N(0, cnQ;"nT). 9)

3.3.1.2. Local thermal distribution with spatial and
feature. We consider the set of local thermal distribu-
tion V; for L fields at time t, with t =1, ..., M. We
denote A € R™! to be a matrix obtained by (k),] =
A(si-pj), where s; denotes the location of the point of
interest i. Then, we acquire the distribution of V; as a
Gaussian, as shown as follows:
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V, ~N(0, KXQK; +E®1I,), (10)

where K = {kz(ll,lz)}i)lzzl is an L x L matrix of the
feature covariance among L fields; K = AQ, 'A" is an
n x n matrix of the spatial covariance; E; denotes an
L x L diagonal matrix in terms of the noise variance
in which the [ th diagonal element is ¢}, that is, E, =
diag{e] &3 ,,....é7,}; I is an n x n identity matrix;
and ® denotes the Kronecker product.

3.3.2. Transfer learning-based autoregressive
structure for prediction

On the basis of Eq. (10), the distribution of V; is a
Gaussian at time t with t = 1,..., M. We denote V; ~
N(0,D;), where D; =K/ QK;+E®I, and t=
1,...,M. For ease of exposition, we illustrate our pro-
posed model by considering V;_; and V, as the tem-
poral sequence of two Gaussian models, namely,
Vi-1 ~N(0,D;—;) and V,;~ N(0,D;), respectively.
Then, the vector of (Vt,l,Vt)T follows a multivariate
Gaussian distribution:

Vi 0 -1 o
~N , ’ )], ar
( V; > <<0> < i1 it (1)

where X;; = ZtT_U, i 1,t-1 =Dy, and Z, ;=
D;. The joint probability density function can be
obtained as the product of the conditional and mar-
ginal probability density functions, f(V;—1,V;) =
f(Vi|Vi_1)f (Vi1). In particular, we have the follow-
ing equations based on the properties of the multivari-
ate Gaussian distribution:

E(V(|Vio1) = Zt,tflz;_ll)t_lvtfla
Var(Vi|[Vioy) = Z4 — Zt,tflzt__ll)t_lztfl,t'

Let Coy=Z%,%,, and Xy, -3, %,
214t = Zigi-1- Eq. (11) can be written as

(%) ~~(()

A two-step parameter J

estimation approach

l
I |

- : — N
Estimation of spatial- and N Estimation of temporal-
field-associated parameters assocaited parameters

L 4.1.1) )L 4.12)

| |

Expectation-Maximization
algorithm

Generalized least squares
method

Figure 5. Two-step parameter estimation procedure.

Xio1-1 (Ct—lzt—l,t—l)T . (12)
CaZinr Zgpr + thlztfl,tflc;r_l

In this way, we propose the spatiotemporal TLP
model, where V,; depends linearly on itself V,_; lagged
by one time unit as follows:

Vi=C 1V +1,. (13)

In Eq. (13), we define C;_; as a spatiotemporal autor-
egressive matrix as follows:

-1
Ct—l = rlDtDt,p

where r; is the temporal-associated parameter at time
t—1. Let n,~ (0,KI®K; +E®I,) be a pseudo
error process with spatiotemporal and feature covari-
ance coefficients. At this point, the generalization
of the model in Eq. (13) is straightforward. Given a
temporal of local thermal
{Vi-1,.... Vi_q}, we propose the general expression of
the spatiotemporal TLP model for V, as follows:
Q
V, = Z DD, Vi g+, (14)
q=1

sequence variations

where 7, is the temporal-associated parameter at time
t — g, and Q is the order of the TLP model. With g =
1,..,Q, we use a temporal-associated parameter r,,
spatial matrices D,D,”', and the product of a tem-
poral-associated parameter and spatial matrices
rthD;lq to characterize the local thermal variations
in the same location at different time, those in nearby
locations at the same time point, and those in nearby
locations at different time points, respectively.

4, Parameter estimation and field prediction
4.1. Parameter estimation

The proposed model contains a set of parameters to
be estimated, including the feature covariance matrix
K? at time t, the overall variance 0'% at time t, the
overall effect of spatial dependence p, at time ¢, the
noise variance &, of field [ at time ¢, and the tem-
poral-associated ~parameter r = {r,1,..,7q}. As
shown in Figure 5, we develop a two-step approach to
estimate these unknown parameters. We initially esti-
mate the spatial-associated parameters o7 and p,, and
field-associated parameters K and &, at each time
t(t=1,...,M) using an expectation-maximization
(EM) algorithm by excluding the temporal depend-
ence. Afterward, we estimate the temporal-associated
parameter r using the generalized least squares
method by excluding the spatial dependence.



We denote the set of the deviance of sensor observa-
tions from the global trends of L fields as Y =

1 1 ]
(yl’l,...,yl’Nl’l,L...,yMl,. ,yM Nagp? oo ,ym, ...... )’%1’
o ¥ N o Vi o Vi Ny, ) Where yp; denotes  the
deviance of field [ at location s; and time ¢, and M

time points and N;; locations exist at time t (t =
I,...M) in field I (I=1,...,L). We initially interpolate
the missing data of each thermal field / using the
Gaussian process model in Eq. (6). Then, we obtain a proc-
essed dataset of L fields Y, where M time points and N
locations are found at each time point in each field.

4.1.1. Estimation of spatial- and field-associated
parameters
Notably, our proposed model is reduced to the
Gaussian process model in Eq. (10) by excluding the
temporal dependence, that is, r; =r =..=ro =0.
Let Ac RN be a matrix obtained by (A); =
A(si>pj), where s; is the location of the i th processed
data of each field. Afterward, the spatial covariance
matrix in terms of the processed data of each field is
denoted as K; = AQ;'A”. We apply an EM algorithm
to estimate the spatial- and field-associated parameters
0, Kf and Slz,t' The log-likelihood function in terms of
these parameters is

Z N Z L i
Z(Kt’et’glz,t) = _Elog|Kt| - 510g|Ki|

— S ul(K) 12 (&) 2

N L
-5 Z logsit
I=1

~

B %tr[(Yt - Zt)Efl(;[t ~2)"]

NL
-5 log2m, (15)

where 0, = {o?,p,}, 17, denotes an LxN

matrix in terms of the processed data of L fields at time
t, and Z; indicates the expectation of ;G Z; is obtained
((KZ®K ) Ky, (KZ®K ) —
K;%Kf@ii)), where y, = (y},... ¥4 ...y5)"
(;ﬂ " ;i )" is the processed data of field [ at

time t; K, = KZ®K +E;®Iy; and Iy is an N x N
identity matrix. The EM algorithm has the following

from p(zt|;t, KZ,0,) =
(K; ®K;)
andyl =

updates on the parameters 0, K; and &7, :

0, = argming,

(Nlog z] (ﬁi(ﬂt))flzt 1o

+uog|f<i<et>|>,
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1 ~ooa 7
Kt:NZtT(Kt(Gt)> Z, (17)

2 Ly N(w
8l,t:_ Y — 2% Y: — %) (18)

where 0,, K K, T and & 8” denote the estlmated 0;, K7 and
&, and z} is the expectation of y!. In Eq. (16), 0, is
obtained by minimizing ithe log-likelihood function
(00~ NiogZF (K(0) 2+ LoghCl0y).  The
detailed parameter estimation algorithm of 0, is intro-
duced in Appendix A.

4.1.2. Estimation of temporal-associated parameters
Estimating the temporal-associated parameters r =
{ri,12,..,7q} is feasible after substltutmg the esti-
mated spatial- assoc1ated parameter 67 and field-associ-
ated parameters Kt and & e,)t into Eq. (14). Our proposed
model is reduced to a linear model by excluding the
spatial dependence, that is, p, = 0 for all ¢ :

Q
Vi=)Y U g+, (19)
q=1

where U;_; =C;;Vi 4 Ciy= D, 15 is a constant

t—
matrix, and 1, NN(O, 2K, ® (AW BIXT)). r can be
estimated using the generalized least squares method,
which is introduced in Appendix B in details.

4.2. Field prediction

Given the sensor observations of L fields at time ¢
(t =1,..., M), we obtain the processed dataset of devi-

ance Y. At the current time points, we predict the
points of interest off the sensor locations by V, =

(K2 ®K§)TK; 13! to acquire the local thermal distribu-
tion at each time point ¢ (¢t = 1,..., M). The thermal
field distribution of L fields is then obtained by com-
bining the global trend and the predicted local ther-
mal distribution using Eq. (1).

At future time points, we forecast V.., by

using the conditional distribution of V|
(Vs s Va_gr1) at time M+1, which can be
expressed as follows:
V] (VM, o VM7Q+1)
Q
~ N(quDM+1DJ\_/Il_q+1VMq+1,
q=1
Kl ®Ky + Env ®In>, (20)

where we 1n1t1ally denote GMH =G0ty Patsr = Par
~Z
Ky = KM, and SZM_H = 8lM because the spatial-
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and field-associated parameters are similar at two con-
secutive time points. After obtaining VM+1, we esti-
mate the spatial- and field-associated parameters at
time M + 1 to update the current values. Then, the
thermal field distribution of L fields at time M + 1
can be acquired by

Gyl = B + Vst

where the global trend i), is obtained by Eq. (3).
The thermal field distribution at time M +2, M + 3,
and other future times can be forecasted similarly.

In summary, we acquire the thermal field distribu-
tion of L fields at current and future time points. If
we regard thermal field I, which is one of the L
homogeneous fields, as the target task, then we can
directly obtain its distribution from the thermal field
distribution of L fields using our proposed approach.
In addition, we provide the computational cost of our
proposed approach in Big-O notation and add the
illustration to Appendix C.

5. Real case study
5.1. Dataset description

We conducted a real case study of grain thermal fields
during storage to validate the performance of our pro-
posed model. We selected two adjacent conventional
cuboidal granaries comprising the same volume and
stored the same type of grains in a national grain depot
located in Central China. The thermal sensor observa-
tions of each granary were collected from grid-based
sensor networks (Figure 1). In Figure 1, 240 evenly
spaced thermal sensors were distributed in the granary
with the length, width, and height of 46, 26, and 6m,
respectively. The sensors were deployed at the initial
positions of 0.5, 0.5, and 0.3 m in the x-, y-, and z-direc-
tions, respectively, and located at 5m intervals in the x-
and y-directions and 1.8m intervals in the z-direction.

Table 1. Estimated values of p, and o?.

We selected a sensor dataset that was synchronously col-
lected every 7days, and a total of 13 time points
(91 days) were set. At the first 10 time points, we
selected sensor data once every other point in the x-, y-,
and z-directions at each time as the training dataset and
set the remaining sensor data to the test dataset to be
estimated. At the last three time points, all the sensor
data were set to the test dataset to be forecasted.

We adopted an estimation and a t-step-ahead fore-
cast (t = 1,2,3) to obtain the grain thermal field dis-
tribution of the target granary. We considered the
root mean square errors (RMSEs) between the test
data and the estimated values and the forecast values
of the target granary, as shown as follows:

. 1 L - N 2

RMSE — Estimation = \/W ;; (gt (si) — & (Si)) »
1 M+t Np » " 2

RMSE — Forecast = mt;;q;(gt (si) — & (si)> >

(21)

where g!'(s;) is the observation in the test dataset of
the target granary at location s; and time ¢, and
gﬁ (si) is the corresponding thermal value acquired by
the proposed model; Nr and Np denote the number
of test data at each time point for estimation and fore-
cast, respectively. Here, RMSE — Estimation is used to
evaluate the model estimation performance for the
points of interest off the sensor locations at the cur-
rent time points. Meanwhile, RMSE — Forecast is used
to evaluate the model forecast performance for the
entire thermal field distribution (including points on
and off the sensor locations) at the near future
time points.

5.2. Parameter estimation

For the mean function, the static parameters in the
thermodynamic model were determined by physical

Date 1 8 15 22 36 43 50 57 64
P 5.546 5.504 5.505 5519 5.484 5.491 5.506 5.527 5.546 5519
a? 17.143 17.155 15.657 17.542 16.296 15.677 16.254 15.193 17.001 17.540
Table 2. Estimated values of Kj.
Date 1 8 15 22 29
K 1.466 1.457 1.585 1.498 2391 2.264 2.841 2.861 3.298 3.456

¢ 1.457 1.584 1.498 1.455 2264 2.217 2.861 2.913 3.456 3.702
Date 36 43 50 57 64
K 3.398 3.356 4.194 3.952 4.957 4.912 4.328 4.408 4.606 4.658

t 3.356  3.465 3.952 3.772 4912 4.918 4.408 4.593 4.658 4.767




Table 3. Estimated temporal-associated parameter and its
corresponding RMSE — Forecast with different orders.

Estimated temporal

Order associated parameter r RMSE — Forecast
1 t = (1.0128) 0.0708
2 t = (0.7649, 0.2567) 0.0704
3 t = (0.7121, 0.3243, 0.0132) 0.0719

properties of the stored grains. Mixed wheat was
stored in the granaries. The thermal diffusivity of the
grains in the x-, y-, and z-directions were 5.56, 5.55,
and 1.50 (x107®m?/s), respectively. We acquired the
sensor data of the granary walls collected by the sen-
sors on the walls and adopted a Gaussian process
model (Rasmussen 2004) for interpolation using the
sensor data of the granary walls. In this manner, we
obtained the boundary conditions of the thermo-
dynamic model. Then, we acquired the global trends
of the two homogeneous granaries using Egs. (2)-(4).

We calculated the deviance of the training data
from the global trends for each granary to model the
local thermal variations. The spatial-associated param-
eters g7 and p, and field-associated parameters K?
and sit at each time t(t =1,...,M) were estimated
using the EM algorithm described in Egs. (15)-(19).
A unique feature in grain thermal fields was the vari-
ous spatial correlation patterns of local thermal distri-
bution in different directions of the granary. Thus, we
considered an anisotropic spatial-correlated weighting
function to characterize the spatial correlation
between a location in the granary and the generating
points; that is,

A(s,p) = exp

Sx — Px ? Sy — Py g Sz — Pz ?

52 (52 - ) )
x y z
where s denotes a location in the granary; p indicates
the location of a generating point; s,, s,, and s, cor-
respond to the coordinates of s in the x-, y-, and
z-directions, respectively; p,, p,, and p, are the coor-
dinates of p in the x-, y-, and z-directions, respect-
ively; and 0y, 6y, and 0, are the range parameters in
the x-, y-, and z-directions, respectively; these range
parameters correspond to the intervals between two
adjacent sensor locations. We defined ¢(p;,p;) simi-
larly to 4 to characterize the weights in the neighbor-
hood structures of the GMREF.

Table 4. RMSE — Estimation values in the six groups.
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Tables 1 and 2 list the estimated spatial-associated
parameters p, and o2 and feature covariance matrix of
fields K7 using the training dataset. In Table 1, the p,
values, which characterize the overall effect of spatial
dependence at time ¢, remain steady during the first
10 time points. The results are consistent with the
actual conditions of grain storage, that is, the spatial
dependence structure slowly changes over time. The
O'f values, which characterize the overall variance at
time ¢, do not dramatically change over the first 10
time points, thereby indicating that the grain storage
is under favorable condition. In Table 2, the feature
covariance matrix K? captures the correlation between
the target thermal field and its homogeneous thermal
field. The target thermal field and its homogeneous
thermal field are highly correlated at each time point.
Then, we estimated the temporal-associated parameter
r using the generalized least squares method. As
shown in Table 3, we estimated the temporal-associ-
ated parameter r with different orders g = 1,2,3 and
obtained the corresponding RMSE — Forecast using
the local thermal variation data in the training dataset.
That is, we forecasted the local thermal distribution at
time t = Q + 1 using the training data at t =1,...,Q.
Similarly, we acquired the forecast values of the local
thermal distribution at time ¢t = Q+ 2,...,M. Then,
we calculated the RMSE — Forecast using the forecast
values and the actual values at time t =Q+ 1, ..., M.
We selected the order g = 2, which had the minimal
RMSE — Forecast value. The order q can also be
selected by some model selection criteria such as AIC
or BIC.

5.3. Model performance

5.3.1. Missing data generation
To validate the model performance of field prediction
when data are missing, we generated two missing data
situations S1 and S2 because the missing data scenario
usually emerges due to two aspects, namely, sensor
failure and data reading errors.

1. Situation S1: The missing data problem was
caused by the failure of some
Consequently, sensor observations were not gath-
ered at fault sensor locations continuously until
the fault sensors were repaired. To generate the
missing data scenario caused by sensor failure, we

SENsors.

Group S1-A S1-B S1-C S2-A S2-B S2-C
Mean of RMSE — Estimation 0.2416 0.2615 0.2818 0.2411 0.2613 0.2812
Standard deviation of RMSE — Estimation 0.0060 0.0066 0.0069 0.0156 0.0164 0.0169
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Table 5. RMSE — Forecast values in the six groups.

Mean of Standard deviation Mean of Standard deviation
Group Date RMSE — Forecast of RMSE — Forecast Group Date RMSE — Forecast of RMSE — Forecast
S1-A Day 71 0.2428 0.0087 S2-A Day 71 0.2482 0.0114
Day 78 0.2515 0.0116 Day 78 0.2510 0.0116
Day 85 0.2680 0.0137 Day 85 0.2669 0.0119
S1-B Day 71 0.2514 0.0102 S2-B Day 71 0.2482 0.0126
Day 78 0.2592 0.0139 Day 78 0.2587 0.0137
Day 85 0.2766 0.0183 Day 85 0.2761 0.0157
S1-C Day 71 0.2610 0.0115 S2-C Day 71 0.2645 0.0142
Day 78 0.2655 0.0153 Day 78 0.2680 0.0147
Day 85 0.2884 0.0242 Day 85 0.2880 0.0215
Table 6. Computational time of the proposed model.
Group S1-A S1-B S1-C S2-A S2-B S2-C
Computational time /s 51.27 51.41 51.44 51.24 51.31 51.47
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Figure 6. Examples of the thermal profiles at different locations acquired by our proposed model using the training data of Group
S1-A. (Example coordinates: (a) (5.5, 15.5, 3.9)m; (b) (15.5, 40.5, 2.1)m; (c) (15.5, 25.5, 3.9)m; (d) (10.5, 15.5, 3.9)m).

randomly selected sensor locations from the train-
ing dataset and assumed that the sensor data at
the selected sensor locations were missing during
the entire period. We considered three groups of
data with different levels of missing data to evalu-
ate the proposed model performance, that is, the
proportions of missing data to the entire training

data were set as 30% (S1-A), 40% (S1-B), and
50% (S1-C).

Situation S2: The missing data problem was
caused by data reading errors that could occur at
any location and time point. To generate the
missing data scenario caused by data reading
errors, we randomly selected data at any location
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Table 7. Model comparison results for field estimation.
RMSE-Estimation Improvement

Thermodynamic STPF- TLP vs Thermo- TLP vs TLP vs
Group model Kriging GMRF TLP dynamic model Kriging STPF-GMRF
S1-A 0.3504 0.2702 0.2506 0.2416 31.05% 10.58% 3.59%
S1-B 0.2892 0.2732 0.2615 25.37% 9.58% 4.28%
S1-C 0.2960 0.3087 0.2818 19.58% 4.80% 8.71%
S2-A 0.2701 0.2500 0.2411 31.19% 10.74% 3.56%
S2-B 0.2892 0.2730 0.2613 25.43% 9.65% 4.29%
S2-C 0.3088 0.2957 0.2815 19.66% 8.84% 4.80%

Note: the improvement of model 1 vs model 2 is equal to (RMSE-Estimation of model 1— RMSE-Estimation of model 2)/ RMSE-Estimation of model 2.

Table 8. Model comparison results for field forecast.

RMSE Improvement
Thermodynamic STPF- TLP vs Thermo TLP vs TLP vs
Date Group model Kriging GMRF TLP dynamic model Kriging STPF-GMRF
Day 71 S1-A 0.4320 0.3759 0.2892 0.2428 43.80% 35.41% 16.04%
S1-B 0.3843 0.3089 0.2514 41.81% 34.58% 18.61%
S1-C 0.3926 0.3284 0.2610 39.58% 33.52% 20.52%
S2-A 0.3759 0.3073 0.2482 42.55% 33.97% 19.23%
S2-B 0.3847 0.3294 0.2582 40.23% 32.88% 21.62%
S2-C 0.3929 0.3487 0.2645 38.77% 32.68% 24.15%
Day 78 S1-A 0.4393 0.4097 0.2957 0.2515 42.75% 38.61% 14.95%
S1-B 0.4140 0.3159 0.2592 41.00% 37.39% 17.95%
S1-C 0.4183 0.3358 0.2655 39.56% 36.53% 20.94%
S2-A 0.4097 03115 0.2510 42.86% 38.74% 19.42%
S2-B 0.4142 0.3338 0.2587 41.11% 37.54% 22.50%
S2-C 0.4185 0.3535 0.2680 38.99% 35.96% 24.19%
Day 85 S1-A 0.4473 0.4325 0.3000 0.2680 40.08% 38.03% 10.67%
S1-B 0.4346 0.3214 0.2786 37.72% 35.90% 13.32%
S1-C 0.4368 0.3423 0.2884 35.52% 33.97% 15.75%
S2-A 0.4325 0.3144 0.2669 40.33% 38.29% 15.11%
S2-B 0.4347 0.3380 0.2761 38.27% 36.48% 18.31%
S2-C 0.4368 0.3588 0.2880 35.61% 34.07% 19.73%

Note: the improvement of model 1 vs model 2 is equal to (RMSE-Forecast of model 1— RMSE-Forecast of model 2)/ RMSE-Forecast of model 2.

and time point from the training dataset and
assumed that these data were missing. Similar to
S1, we also considered three groups of data with
different levels of missing data to evaluate our
model performance, that is, the proportions of
the missing data to the entire training data were
set as 30% (S2-A), 40% (S2-B), and 50% (S2-C).

Six groups of data, namely, S1-A, S1-B, S1-C, S2-A,
S2-B, and S2-C, were used. Furthermore, we repeated
the procedure in each group 1000 times by randomly
selecting missing data to evaluate the proposed model
performance.

5.3.2. Field estimation and forecast

For each group, the parameter estimation procedure was
similar to the aforementioned ones without missing data
in Section 5.2 and are thus not detailed here. We esti-
mated the points of interest (test data+ missing data)
using the remaining training data at the first 10 given
time points from days 1 to 64 and calculated the corre-
spondingRMSE — Estimation. We forecasted the thermal
field distribution (test data) on day 71 (one-step fore-
cast) using our proposed model and calculated the

corresponding RMSE — Forecast. Similarly, the thermal
field distributions on days 78 (two-step forecast) and 85
(three-step forecast) were iteratively forecasted.

Tables 4 and 5 summarize the mean and standard
deviation of RMSE-Estimation and RMSE-Forecast
under 1000 replications using the six groups of training
data. Our proposed model achieves a favorable estima-
tion result and excellent one- and two-step forecast
results in both situations. Our model still performs
well when the proportion of missing data was moderate
(< 40%, i.e., S1-A, S1-B, S2-A, and S2-B). The forecast
accuracy decreases but remained within the acceptable
range when the proportion of missing data increases (>
40%, i.e., S1-C and S2-C). We calculated the computa-
tional time for the six groups S1-A, S1-B, S1-C, S2-A,
S2-B, and S2-C using the proposed model. Table 6 lists
the average computational time for field prediction, and
the average computational time for each group is about
51s. In the case study of grain storage, the grain tem-
perature changes slowly during storage, and thus the
sampling frequency of the grain temperature sensor data
is low to reduce the data storage and processing costs.
The computational time of the proposed model is com-
parably acceptable under this scenario.
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Figure 6 shows four examples of thermal profiles at
different locations acquired by our proposed model
using the training data of Group S1-A. Figures
6(a)-(c) present the thermal profiles at the sensor
locations. Our model can evidently estimate the ther-
mal value on sensor locations with missing data
accurately before day 64 and provide a good forecast
performance for days 71 and 78. Figure 6(d) presents
the thermal profiles off the sensor locations. Our model
can accurately capture local thermal variations for field
estimation and one- and two-step field forecasts.
Figure 7 depicts the forecasted thermal field distributions
of the entire granary on days 71, 78, and 85 using the
training data of Group S1-A. Our proposed model char-
acterizes the spatiotemporal correlation of the thermal
field. The forecasted thermal field distribution is practic-
ally important for monitoring the quality of grains and
reducing grain loss during storage.

We compared our proposed model with two alterna-
tive models, namely, the kriging model and the spatio-
temporal Gaussian process with a built-in GMRF
(STGP-GMRF) model. Similar to our proposed model,
the two models use the mixed-effect model framework
(Eq. (1)) and the thermodynamic model (Eq. (2)) to
characterize the global trends; however, these models
characterize local thermal variations using only the sen-
sor data collected from the target granary. In the kriging
model, the spatiotemporal correlation of local thermal
variations is characterized by a covariance function in
terms of space and time. The detailed information about
kriging can be found in the paper of Inoue, Sasaki, and
Washio (2012). Similar to our proposed model, STGP-
GMREF uses a Gaussian process with a built-in GMRF to
characterize the spatial correlation at each time point
and applies a conditional autoregressive temporal
sequence model to characterize the temporal correlation.
Compared with our proposed model, the STGP-GMRF
model disregards transfer learning. We implemented the
three models 1000 times and calculated their RMSEs —
Estimation and RMSEs — Forecast.

Figures 8 and 9 show the boxplots of the RMSE-
Estimation and RMSE-Forecast values using the three
models under 1000 replications. Our proposed model
clearly performs better in terms of estimation and
forecasting compared with the kriging model, espe-
cially in field forecasting, because our model accur-
ately captures the spatiotemporal effects of the
thermal field, that is, the spatial-correlated neighbor-
hood structure and the conditional autoregressive
temporal sequence. Additionally, our proposed model
obtains better estimation and forecast results com-
pared with the STGP-GMRF model by adopting the

transfer learning idea, given other sensor observations
from multiple homogeneous fields. Specifically, we
listed the model comparison results about the pro-
posed model, the STPF-GMRF model, the kriging
model, and the thermodynamic model in Tables 7
and 8 for field estimation and forecast. In Table 7 for
field estimation, the comparison of our proposed
model and the STGP-GMRF model aims to show the
superiority by using transfer learning. The RMSE of
our proposed model has about 4% improvement com-
pared with the STPF-GMRF model, which shows our
proposed model performs better by using transfer
learning. The comparison of our proposed model and
the kriging model aims to show the superiority of the
spatiotemporal modeling part and the transfer learning
part in our proposed model. The RMSE of our proposed
model has about 9% improvement compared with the
Kriging model, which shows our proposed model per-
forms better for spatiotemporal modeling and transfer
learning. The thermodynamic model is used to capture
the global trends. The comparison of our proposed
model and the thermodynamic model aims to show the
superiority of the proposed model by developing the
transfer learning-based spatiotemporal statistical method
for the modeling of local thermal variations. The RMSE
of our proposed model has about 25% improvement
compared with the thermodynamic model, which shows
our proposed model performs much better for develop-
ing the novel method for the modeling of local thermal
variations. Similarly in Table 8 for field forecast, we can
see that our proposed model performs much better by
developing the transfer learning-based spatiotemporal
statistical method for local thermal variations.

6. Conclusion

Thermal field prediction plays an essential part in
engineering domains. Obtaining an accurate thermal
field distribution can provide useful and thorough infor-
mation for quality control, system improvement and
maintenance. Estimating and forecasting a thermal field
distribution using data acquired from sensor networks is
typically challenging due to the complex spatiotemporal
structures of the thermal field and data sparsity and
missing data problems. This study proposes an innova-
tive TLP approach to predict a 3D thermal field distri-
bution using sensor observations from homogeneous
data sources. The TLP approach is characterized by an
autoregressive model for a temporal sequence of spatial
transfer learning processes to capture spatiotemporal
dynamics of the thermal field and address the issue of
data sparsity and missing data. Particularly, we model
the spatial transfer learning processes by establishing a



multitask Gaussian process framework, in which we
model spatial correlation at each time point by a
Gaussian process with a built-in GMRF on the basis of
a grid-based sensor network.

Our proposed method offers deep insights into the
spatiotemporal dynamics of a thermal field and has
been validated to have a good prediction performance
through a real case study of grain storage. The pro-
posed model framework can be generalized and applied
to the thermal field prediction of other engineering
cases, such as the air temperature prediction for
research on regional weather change, ocean field pre-
diction to identify climate variability and global ocean
circulation, and land temperature prediction to capture
interactions between the Earth’s surface and the atmos-
phere. In addition, the idea of the proposed method
can be applied to other PDE-based systems in engin-
eering cases, which satisfy the following conditions: (1)
Sensor data of the systems are collected; (2) Physical
parameters of the PDE are known, which can be either
obtained by engineering knowledge or experimental
studies; (3) The boundary conditions and initial values
of the PDE are known, so that the PDE can be solved
analytically or has the numerical solution by approxi-
mation methods, e.g., the finite different method and
the variation method. In engineering cases, there are a
great number of PDE-based systems that satisfy the
aforementioned conditions, such as the thermal stratifi-
cation of sodium fast reactors based on the mass,
momentum, and energy conservation equations, the
acoustic field based on the wave equation, and the con-
vection—diffusion of pollution sources based on the
convection—diffusion equation . To apply this approach
successfully on these engineering cases, the target field
and its homogeneous fields should have similar struc-
tures, and data acquisition should be operated under
similar external conditions.

In the future work, given the predicted thermal
field distribution by the proposed model, we will focus
on establishing an effective strategy for simultaneously
monitoring multiple homogeneous thermal fields.
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Appendix A. Parameter estimation of 0;

We denote 0, = {6?,p,}. The log-likelihood function of 6

—1 -
is 1(6;) = Nlog|ZT( ((-)t)) Zi| + Llog|K;(0,)|. 0, is esti-
mated by minimizing the log-likelihood function 1(8;) on
the basis of its partial derivatives as follows:

ole,) _
00,

{ (z{ (f(j) _lzt> 712{(
+ Ltrace{ (IN(i) B g—%}},

—Ntrace

where
K
90 = A(Wp — p,W)AT,
K _ .
a—pt = a2 A(Wp — p,W) "W (Wp — p,W)'AT.
t

Eq. (Al) can be conveniently solved by using a numerical
optimization approach, such as steepest gradient method.
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Appendix B. Generalized least squares method
for estimating temporal-associated parameters

Following Eq. (19), the temporal-associated parameters r =
{r1,12,...,7q} can be estimated using the generalized least
squares method as follows:

t = (r’'er,)” rlar,, (A2)

where Q= dlag{ 2o Kou®@(Awyt AT,

( K,® Aw—lAT)> } is an LN(M — Q) xLN(M — Q)

matrix, ro = {CQ+1’1Y1, cees CQ+1>QYQ; ey CM,M*QYMfQ’ ceey

CM,M,I;IM_I} is an LN(M — Q) x Q matrix, and T’} =

{;'Q+1> ...,;IM}T is an LN(M — Q) x 1 vector.

Appendix C. lllustration of the computational
complexity of using TLP

At each time point t,, the local thermal variation V, fol-
lows a Gaussian distribution with the covariance matrix D;.
We consider L homogeneous fields and have N points in
the spatial domain, and thus D; is a LN x LN matrix. The
covariance matrix D, contains (LN)® elements, and each
element should be considered in the operation for each spa-
tial point s; (i = 1,...,N) in each field / (I = 1,...,L). In con-
clusion, the computational cost of TLP is O((LN)?) at each
time point.
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