
Swarm Contracts:
Smart Contracts in Robotic Swarms with Varying Agent Behavior

Jonathan Grey
DePaul University
Chicago, IL, USA

Email: jgrey5302@gmail.com

Isuru Godage
DePaul University
Chicago, IL, USA

Email: IGODAGE@depaul.edu

Oshani Seneviratne
Rensselaer Polytechnic Institute

Troy, NY, USA
Email: senevo@rpi.edu

Abstract—Multi-agent robotic systems are becoming pervasive
in many real-world applications from search and rescue mis-
sions to future household robotic appliances that might need
to work together to achieve specific tasks. We propose and
implement a collaborative environment for secure communica-
tion of robotic agents in a prototype agent system that mimics
the interactions between agents of varying behaviors using
special-purpose smart contracts titled “Swarm Contracts.”
This paper describes how Swarm Contracts and blockchain
technologies increase the interaction efficacy between agents
by providing a more trusted information exchange to reach
consensus under trustless conditions, assess agent productivity,
allocate plans and tasks to deploy distributed solutions, and
carry out joint missions. All these features are encapsulated
in Swarm Contracts, making the decentralized applications
that use them a viable alternative to centralized command and
control applications that are pervasive in multi-agent robotics
applications of today. We have evaluated the utility of the
developed Swarm Contracts in adversarial settings and report
the results that are very promising for future applications of
such decentralized heterogeneous robotic agent interactions.

1. Introduction
The ongoing technological development and globaliza-

tion are paving the way for sophisticated and dexterous
robots. They offer an increasingly effective, fast, and safe
approach in many application areas such as search and
rescue in humanitarian disasters [1]. In conventional cen-
tralized robotic planning systems, different capabilities may
not conform to a uniform hardware and software architec-
ture. A system designer could arbitrarily update the domain
knowledge with a new constraint disrupting the agreed-
upon communication between the agents already deployed
in the system. Delayed execution of an agent may lead to
a state that is different from another agent’s expectation.
Fuel/battery updates from robots may dictate which are
the viable assets to be deployed. A robot may encounter
an obstacle in the real world that the centralized planning
system was not aware of, making it impossible to achieve its
goal. An operator may add new goals or override the urgency
of existing ones, affecting how/whether the plan will be
completed by the robotic agents already in the system.

Therefore, tracking all the inputs and activities, fed into and
generated by the centralized robotic planning process, how
they are aggregated or transformed, and pertinent facts in a
dynamic execution environment are crucial to establishing
trust in the robotic agents in assessing whether they can
complete their mission.

Furthermore, anticipating upcoming semi and fully au-
tonomous robots, it is essential to follow a scalable and
secure global standard for communication agents (swarming
robots and human agents) for seamless and efficient col-
laboration efforts. Then there is the problem of command
architecture, i.e., who takes priority and command, mainly
when the robots belong to mutually distrusting parties.
Surrendering the control of such robots to other parties is
also not an option due to security concerns. For instance,
UAVs meant to assist ground vehicles could be weaponized
should the UAVs’ control systems are compromised. The
centralized commanding hierarchy also inherits the same
security vulnerabilities.

We propose Swarm Contracts to solve these limitations
in centralized robotic planning applications. Swarm con-
tracts are tailored smart contracts for robots to facilitate
complete and uncompromising communication and collabo-
ration to achieve tasks such as search and rescue objectives
securely and in a decentralized manner among mutually
distrusting and heterogeneous parties.

2. Swarm Contracts
We designed our robotic collaboration protocol using

the Swarm Contracts to maximize efficiency, minimize the
possibility of exploitation, and guarantee the trustworthiness
of all parties involved. With these goals in mind, we borrow
two important concepts from the real world in the swarm
contract design. (1) We must facilitate trust between several
mutually untrustworthy parties, several of which have a view
into the state of the system that other parties may not be
privy to. Therefore, in addition to the standard distributed
ledger primitives, we introduce a “board” of mutually trust-
worthy other parties, i.e., the neutral adjudicators to decide
on the completion of a given task with the promise of public
accountability. (2) A standard job offer, job interview, and
hiring where the employee works at the will of the employer
requires the trust of each new employee in the real world.



However, in a decentralized trust-free system, there could
be a significant number of new ‘employees’ (i.e., workers
in our Swarm Contract) that must guarantee that they will
perform the work they undertake. We have modeled this
guarantee in the form of a collateral. The end goal
of the contract is to ensure that all participating agents are
motivated using rewards, not orders, unlike in traditional
centralized command architectures and that all participating
agents have a greater motivation to do the right thing.
2.1. Contract Variables

The smart contract stores public variables that describe
the job. The contract’s price describes the reward for
completing the job described by the contract (as well as
the amount of cryptocurrency required to post the contract).
The contract also stores data that describes the completion
conditions of the contract. In this contract, the data is defined
as x and y, which have specific meaning for the smart
contract simulation on the Cartesian coordinate system.
However, the data definition is unimportant and could be
changed if the parameters of use change. The contract also
stores the deadline, which indicates the point in time
when the contract will be evaluated. The purpose of these
variables and the reason for their public declaration is to
enable agents who would accept the contract to analyze the
feasibility, that is, to determine if the contract is possible to
be completed given the current state (i.e., physical condition)
of the agent and the contract parameters and if the contract
is profitable to complete given the price and parameters.

The contract also stores several public variables, as
described below, so that both parties can evaluate its ultimate
fairness. The contract requires a list of adjudicators
in order to function, which is public, so that both the
adjudicators’ presence before the contract is accepted and
their performance in the judgment of the contract can be
evaluated by all agents who see the contract, possibly in-
forming an agent’s willingness to accept the contract and an
agent’s future decisions to trust or not to trust an adjudicator.
Similarly, the contract also stores public information on the
judged status of the contract, viewable by all parties to
determine the truthfulness of adjudicators’ judgment and
their overall accountability. Finally, the contract acceptor
address is also publicly viewable, primarily so that other
agents can know the contract was accepted.
2.2. Adjudication

The adjudication is the process by which it is deemed
that the workers have completed the work, and they are
compensated appropriately. In our smart contract, we define
the number of adjudicators as three, as three adjudicators
retain the relative simplicity of one or two adjudicators.
Three adjudicators also have, to some extent, the advantage
of a significant number of adjudicators such as relative in-
corruptibility, and the possibility of a numeric majority and
the ability to establish trustworthiness. Theoretically, as the
number of adjudicators increases, the more costly it would
be to corrupt all of them. As the number of adjudicators
increases, the more costly for the contract owner to provide
fair compensation for their services, gas prices for storing

their verdicts notwithstanding. Also, depending on the cost
of each adjudicator, there is significant potential for loss
prevention on average.

2.3. Functions
The job described by the contract is accepted by a

worker rather than assigned by a hierarchical superior. The
constructor declares and sets every variable except the con-
tract acceptor to facilitate this. The constructor provides
various of checks to ensure that the contract is valid and
harbors no inherent and apparent conflicts of interest. To this
end, the contract requires that (1) the given price reflects
the actual account value as paid by the contract creator,
(2) the selected adjudicators are not null, (3) the selected
adjudicators are not identical to the contract creator, and (4)
the selected adjudicators are not identical to each other.

The accept function allows agents to accept the contract
at will. In a legalistic sense, an account that calls the con-
tract’s accept function assumes responsibility for carrying
out the job defined in the data and deadline variables.
The function also ensures that conflicts of interest do not
occur, prohibiting the already-selected adjudicators from
accepting the contract. The accept function is defined as
payable and requires a value sent to the contract, which
is at least half of the price of the contract. To ensure the
agent who accepts the contract has an incentive to work, the
upfront value sent to the contract works as collateral against
the completion of the contract. If the contract acceptor
has a stake in the contract, it would be against its best
interest to accept contracts which it cannot or does not
intend to complete, creating a safer variant of the standard
“half now, half later” form of business dealing which would
be too easy to exploit in the at-will employment system.
The specific proportion of one-half was selected because it
ensures that (1) the worker has a proportional stake in the
completion of the labor, (2) the worker has a smaller stake
in the completion of the labor than the owner, which gives
the worker less of a risk than the owner, (3) the worker has
a significant stake which gives the worker enough risk to
promote caution and security concerning the contract.

The revoke function allows the contract’s creator to
reclaim all of the funds contained in the contract if the
deadline of the contract has expired, and the accept function
of the contract has not been called. The rest of the contract’s
design would mean that any funds the contract possesses
when the aforementioned conditions are met would be in-
accessible. The selected adjudicators cannot judge in this
case and, therefore, cannot drain funds from the contract
as payment for their services. Assuming that the contract is
created in a marketplace with a sufficient number of workers
and the contract has a fair price and is possible to complete
before its deadline, the revoke function will not ordinarily
be called.

The adjudicate function requires that the current block
time is beyond the deadline, and the accept function
of the contract had been successfully called. Any account
may successfully call the adjudicate function, but for the
sake of efficiency, the check for a valid adjudicator happens



with the check for a valid adjudication. This means that
only adjudicators will be able to judge the contract and
receive rewards. Each adjudicator is only allowed to call
the adjudicate function once. Following the setting of the
result of the adjudication, the contract transfers a sum to
the adjudicator equal to a preset proportion of the original
price of the contract. Once the last judgment has been made,
the contract ends and sends its entire value to the party
that the adjudicators decided to have completed the work by
the majority vote. This process will occur only on the last
call of the adjudicate function, regardless of any previously
established majority, to allow each adjudicator to work and
claim the payment for rendering judgment.
2.4. Usage

When the constructor of the Swarm Contract is called,
it is put on the blockchain. Since the blockchain is public
knowledge, agents willing to accept contracts can detect
them as they appear. After an agent has decided to accept
a specific contract, the agent calls the accept function.
Adjudicators also detect contracts on the blockchain, since
they have a financial incentive to do so. Once the deadline
has been reached, relative to the block time that is theo-
retically uniform, the contract is adjudicated, and crypto-
tokens are dispensed to the determined winner. The system’s
fundamental requirements are that each agent knows the
blockchain and the contract’s design, but no more require-
ments are directly necessary.

The protocol uses collateral from the workers who ac-
cept the jobs to reduce the contract owner’s risk. The same
parameters and risks exist for the contract acceptor and are
ameliorated in the same way by trusting the majority of
the adjudicators. Even a small shared network of trusted
adjudicators could facilitate every interaction between en-
tirely trust-less agents. Such a feature severely reduces the
future risk of losing tokens through adverse interactions with
untrustworthy agents by using trial and error to determine
which agents can be trusted.
2.5. Extensibility

The Swarm Contract is modifiable for the particular
needs of an application. The job description parameters
could be changed (even autonomously) as long as agents
who would accept the contract and the adjudicators selected
to judge the contract have full knowledge of the implications
of the job description data. The number of adjudicators
could be modified to reflect the size of the pool of available
adjudicators or any specific needs of a situation, as was dis-
cussed previously. The collateral proportion and adjudicator
pay could also be modified based on the monetary concerns
of a particular situation.

3. Methodology
The validation of the Swarm Contracts is carried out

on a virtual physics environment, implemented using Py-
Bullet, a Python wrapper for the Bullet Physics engine
(https://pybullet.org), with a sidenet private blockchain,
implemented using Ethereum (https://ethereum.org) and a
Ganache (https://www.trufflesuite.com/ganache) client. The

implementation of the simulation was created entirely in
Python. During its implementation, no performance or scal-
ability issues were detected in the simulation. A physics
environment was necessary because it provides a set of
constraints on the system that are arbitrary but similar to the
real world, particularly objects having a location in space
and moving to other locations. The constraints of space
and time allowed for the conceptual construction of variable
costs and the possibility of task completion or failure. The
simulation contained various agents, each with their specific
role and behavior set. There were three types of agents:
chiefs, adjudicators, and workers.
3.1. Agent Types

Chiefs distill a request (e.g., designate a particular geo-
metric formation for workers to form into) into a series of
contracts. Chief agents cannot control the price of contracts,
nor could they control the deadline of contracts. However,
they can control the selection of adjudicators, and this
defined their behavioral subtypes (explained in Section 3.2).

Workers participate in a swarm physically (i.e., in the
virtual physical environment). Workers are unique in their
physical manifestation, and uniquely incurred costs for per-
forming work, symbolically representing paying for energy.

Adjudicators are used specifically for the judgment of
the completion of the work accepted by the workers. While
it is indeed possible that workers and chiefs can fill the role
of an adjudicator in contracts, for practical purposes having
separate agents make more sense to reduce the complexity
of each agent and to measure better the effectiveness of each
agent in a monetary sense.

The charger provides energy to the worker agents (for
a price), gives requests for maneuvers for chiefs to organize
(for compensation), and generates energy from workers’
position, which allows both the chiefs and the workers to
profit as de facto employees of the charger, while the charger
acts as the single sink of monetary value. The charger
profits, too, but with a surplus of abstract goods produced by
its de facto employees produced at the cost of the currency.
3.2. Agent Behaviors

All agent behaviors could be categorized as: fair, adver-
sarial, and random. These general categories were designed
to stress-test the system. The fair agents made choices that
align most with what would be considered “good”, “just,” or
perhaps “pro-social.” The adversarial agents made choices
that attempt to get something for nothing. The random
agents made choices at random with each possible choice
having the same probability. Outside of the simulation envi-
ronment, there could be several reasons for agents to be ad-
versarial and collude, such as a criminal profit motive. There
are many ways agents can collude, including cryptocurrency
or other currency transfers, other contracts, or even an
exchange of physical goods. This transfer of value would
change the system’s results by increasing the profits of
adversarial adjudicators at the cost of reducing the profits of
adversarial workers and chiefs. However, there would be no
commensurate rise in legitimate transactions because trust
will be lost with respect to the adversarial adjudicators, as



Agent Behavior Description
Fair Only assigns adjudicators that have in the past exclusively judged based on reflective reality.
Adversarial Only assigns adjudicators that have in the past exclusively judged in favor of the contract owner, i.e. itself.Chief
Random Assign any adjudicator to a contract regardless of the adjudicators’ past judgments.
Fair Only accepts a contract if at least two of the three adjudicators will decide fairly, and will perform work.
Adversarial Only accepts a contract if at least two of the three adjudicators will decide in its favor, but will not perform work.Worker
Random Accept any contract regardless of adjudicators, and will perform work.
Fair Produces judgments which reflect objective reality.

Worker-biased: Produces judgments always in favor of the worker, regardless of the work done.Adversarial Owner-biased: Produces judgments always in favor of the contract owner, and may disadvange the worker.Adjudicator

Random Produces a judgment of random, with a 50% chance of reflecting objective reality.
TABLE 1. DIFFERENT AGENTS AND BEHAVIORS SUPPORTED BY THE SWARM CONTRACTS

will be shown. Regardless of the extrinsic motivation for the
behavior, our system will be identical to a system in which
no such motivations exist. That is, the transactions or lack
thereof will take place in the same way in both situations.
The goal of the system is to show long-term behaviors, and
the system will better show long-term behaviors through
monetary interactions in a more precise manner when there
only things represented are contract-related transactions.
It should also be noted that while the non-random non-
adjudicator agents have trust methodologies to ensure their
behavior style can continue unaltered, these agents only
consider trusting adjudicators. At no point does a chief
make a note of any workers, although it would make no
difference since the contracts are at-will from the worker’s
side. Similarly, at no point does a worker make a note of any
chiefs. Such a lack of interaction implies that there is indeed
a trust-free relationship between the workers and the chiefs.
The workers behave as if each non-adjudicator agent in a
contract had just interacted with the other non-adjudicator
agent for the first time. Besides, the only interactions that
existed were direct, meaning that workers and chiefs would
only notice the behavior of adjudicators they interacted
within a contract. While a promotion or denunciation or a
gossip model would have hastened the development of trust
between agents, it was certainly not necessary nor expected,
and so was omitted. Table 1 outlines the various agent types
and their behaviors.

3.3. Incentive Analysis for the Swarm
Since currency availability is limited in the system, the

system is designed to be cyclical, meaning that money
is paid by the charger to the chief, by the chief to the
worker, and by the worker to the charger. However, there
are several drains on the system, as explained below. Since
the system is fully decentralized and non-coercive, at each
transaction, there must be some profit incentive to spur
action. Trade requires a double coincidence of want, so both
parties must profit from a transaction, either in currency
or goods. Also, the need for adjudicators adds a volun-
tary tax on every transaction that would not reenter the
economy, further draining resources from the system (gas
costs notwithstanding). The cooperative production of goods
using hired labor would, in theory, create surplus goods for
the owners who also could be sold for a profit. However, by
closing the loop, inefficiencies and drains on the system are
introduced. The surplus of goods generated by the system

is effectively a drain on the system because the system will
not measure these profits since they are measured in goods
rather than currency. Compared to real-world economies,
the marketplace for the work through the smart contract
enables swarm behavior to emerge through self-interest. The
assumption in a marketplace that every agent acts in its
self-interest is equally as powerful as the assumption that
every agent acts per mandates from the central authority
in a classical centralized swarm. The marketplace enabled
through our smart contracts are capable of creating a swarm
through self-interest without mandates or pre-determined
trust. While there is undoubtedly hierarchy in the system,
as evidenced by the act of working in the service of others,
the hierarchy is purely a result of voluntarism. It should be
noted that rewards are constrained by the innate properties of
a distributed system. The contract has a theoretical minimum
price. When the gas cost of the adjudicate function, which
is the amount of gas to run the function on the blockchain,
is multiplied with the system’s gas price and is higher than
the payment to adjudicators, there would be no incentive to
make an adjudication.

3.4. System Operation
The overarching unit of work in the system is called

the request. These requests originate with the charger and
take the form of sets of points forming a geometric shape:
either a square, a line, or a triangle. This unit of work differs
from the contract-level task, which only defines one point.
Therefore, there is a ratio of either three (line, triangle) or
four (square) contracts to each request. The request comes
with several implications. First, there is a reward of four
tokens (Ξ) to the chief for every point in the geometric
shape. There is a worker near enough to the point of the
geometric shape within an individual tolerance. Second, if
there are no relevant contracts associated with a request
to simplify the process, while the assigned chief is com-
pensated for the completion of the request, the request is
enforced as a mandate by the charger agent. Third, there
is a predetermined deadline for the request. The deadline
is known to both the assigned chief and the charger. While
the request very well could have associated contracts and
adjudication, this would require additional complexity for no
benefit as any problems emerging from adversarial behavior
between the charger(s) and chiefs would be identical to
the problems between the chiefs and workers, except on
a slightly larger scale and for slightly higher stakes.



Figure 1. Interactions between the various agents in Swarm Contracts

The contracts, including assigned adjudicators, are
posted to the blockchain, where they were detected by all
agents involved. Workers then examine the contract and
decide to attempt to accept the contract. Only one worker
is successful at accepting the contract by the nature of
the contract. After the workers accept the contract, they
assume responsibility to complete the task within the time
allotted. The contract then becomes dormant in the system
until the deadline passes. Once the deadline has passed, the
adjudicators detect worker positions and judge the contract,
which automatically disperses to the worker or the chief
based on the judgment. If a smart (non-random) worker
or chief participated in the contract, they would judge the
adjudicators in turn. Fair workers would remove an adju-
dicator from its list of acceptable adjudicators if it ruled
in favor of the contract owner. Adversarial workers would
remove an adjudicator from its list of adjudicators if it
ruled in favor of the contract owner since this was what
it decided to be in its best interest. It is worth noting that
these workers perform the same action for their treatment of
adjudicators, but will end up with different lists of accept-
able adjudicators. The fair worker would believe that both
fair adjudicators and adversarial worker-biased adjudicators
are acceptable because the fair worker is ignorant of the
adversarial worker-biased adjudicator’s other decisions and
could not tell the difference between an adversarial worker-
biased adjudicator telling the truth by accident and a fair
adjudicator telling the truth on purpose. However, every type
of adjudicator, except the adversarial worker-biased types,
would initially decide against the adversarial worker, so even
with the same logic for decisions, the adversarial worker and
the fair worker would create different lists of acceptable
adjudicators. Chiefs operate in much the same way, except
fair chiefs would remove adjudicators that did not reflect
reality, even if the adjudicator decided in their favor. Because
of the asymmetric nature of the contract, the fair chiefs

are required by their nature to select against their short-
term self-interest to select for their long-term self-interest.
Figure 2 demonstrates the virtual-physical component of the
simulation. The black disks represent worker robots. Con-
tracts for a robot to go to a certain point make up requests
to form a certain shape. After the contract is completed,
workers idle until they accept a new contract. Idling workers
can be moved out of the way by other workers. In the third
panel of Figure 2, the adversarial workers can be seen in
the middle, close to where they started. Adversarial workers
perform no work and therefore are always idle because
movement costs energy and would be against their best
interest.
A video recording of the simulation is available at
https://swarmcontract.github.io.

4. Results
The contract was first given a thorough direct adver-

sarial test to ensure that there are no loopholes in the
contract, which would allow the draining of funds or any
other improper usage. Several requirements were added as
a result of this testing. Fundamentally, the behavior-based
subtypes of all agents represent predators, prey, and self-
defensive categories of agents. As might be assumed, with
no protection for the prey, predators take full advantage of
the prey.

In initial testing, the worst performance of any agents
appears to be the random behavior of workers, who quickly
lost money. The cause of this was apparent: adversarial
chiefs, with the blessing of adversarial owner-biased ad-
judicators, take advantage of free labor cashing in on the
contract collateral. The fair workers perform reasonably well
since they could prevent losses due to trusting predatory
adjudicators by not accepting contracts. The adversarial
workers appear to be a non-issue, since they tend not to work



Figure 2. The Swarm Contract in action. (1) The left-most sub-figure depicts the initial state of the world, (2) the middle sub-figure depicts when the first
request is received to form a square shape, and (3) the right-most sub-figure depicts several other requests to form a line and a triangle with adversarial
workers bumped out the way of the requests.

at all because most contracts were not up to their exacting
standards. Chiefs can fully control the adjudicators and are
therefore not very susceptible to attacks of this manner,
assuming they could learn. Even random chiefs who are
unable to learn are able to randomly select adjudicators who
may support their interest by accident, frequently enough
that adversarial workers could not make money quickly or
easily. Adjudicators are unable to lose money by their nature
but tended to earn money at different rates. However, the rate
of adjudicators earning money reflected a greater extent the
decisions of chiefs and the nature of adjudicators, rather
than the choices of adjudicators.

Figure 3 shows both types of results from both simu-
lations. The transactions or adjusted transactions measure
shows the number of legitimate transactions the agents
made. The profit per transaction is related to the number of
transactions and indicates an agent’s average profitability.
These results are a proxy for success within the system.
Profit alone could be considered a success but could measure
blatant exploitation without long-term cooperation. Transac-
tions alone could be considered a success but could measure
victimization. Therefore, success in the system is measured
by a relatively high profit and a relatively high amount of
transactions. Failure in the system can be characterized by a
relatively low amount of profit or transactions. Low profits
and a low number of transactions indicate an agent that is
not trustworthy enough to work with others, and it is unsuc-
cessful in its exploitation of other agents. High profits but a
low number of transactions indicate successful exploitation,
which is not a good long-term strategy. Low profits (or
negative profits) with a high number of transactions indicate
frequent exploitation by an adversarial agent.
4.1. Simulation with all (including random) agents

The first simulation was designed to show the interaction
of every agent together. The simulation contained two of

each type of chiefs, six of each type of worker, and four
of each type of adjudicator. The initial testing had several
implications. First, few things can be determined as to the
nature and effectiveness of adjudicators. The adjudicators
work at the will of the chiefs. The inability to work is far
more dependent on the chiefs’ design and function, rather
than the adjudicators’. Second, the presence of random
workers allowed a “criminal” element to proliferate, both the
adversarial owner-biased adjudicators who are opportunistic
and the adversarial chiefs who are exploitative by nature.
Third, simple trustworthiness solutions can go a long way to-
ward loss prevention. Establishing a system of trust and only
using trustworthy adjudicators can relatively quickly lead to
security with profits. Fourth, the contract’s nature means that
agents who issue contracts have a much higher opportunity
for “criminal” activity than agents who accept contracts.
Fifth, exploiting a fair worker’s collateral payment is the
most profitable vector of “criminality” because it allows a
contract creator to profit twice – once from the compensation
that incentivizes the transaction in the first place, and from
claiming the worker’s collateral. As a corollary, exploiting a
contract creator’s payment while not working is one of the
least effective vectors of “criminality” because a contract
creator agent can choose whichever adjudicator it prefers;
even random selection of adjudicators might shut down this
vector purely by accident.

4.2. Simulation with only ‘smart’ (non-random)
agents

The second simulation was designed to show the es-
tablishment and, ultimately, the benefits of trust develop-
ment. The simulation contained two fair and two adversarial
chiefs, six fair and six adversarial workers, and four of
each type of adjudicator. The main difference between the
second and the first simulations is the absence of random



Figure 3. The scatter plot on the left shows the results of the first simulation that includes all agents. The scatter plot on the right shows the results of the
second simulation, which had no random workers or chiefs, and adjusted for the number of transaction due to the disparity caused by adversarial agents.

non-adjudicator agents in the second test. These random
agents cannot learn and therefore, cannot establish a system
of trust. The second simulation allows for complete trust
development, preventing adversarial agents from taking ad-
vantage of naivety. The results of the simulation have several
implications. First, this simulation conclusively proved that
fair agents who establish trust could be the most successful
in the environment. The fair agents were able to perform
more transactions, which is evidence of interaction with the
contracts, and were able to earn more money. Conversely,
adversarial agents only were able to act a limited amount
of time, which is evidence of their lack of success. As
in the first simulation, adversarial workers lost the most
as their lack of effectiveness in adversarial behavior was
again displayed. The adversarial chiefs were able to have
limited effectiveness, but only for a short time, after which
their contracts go unfulfilled and have to be revoked. Such
behavior causes a disparity in the number of transactions
by doubling the number of transactions after worker agents
begin to distrust the adjudicators the adversarial chiefs as-
sign. Even when the quantity of transactions is adjusted to
account for this fact by setting it equal to the average of the
fair chiefs, the amount of money made by the adversarial
chiefs remains constant over time, putting them financially
behind the fair chiefs. It should also be noted that only
the fair adjudicators had a high amount of transactions in
the second simulation. While adversarial chiefs will assign
adversarial (owner-biased) adjudicators, they will ultimately
not perform their job because the contract would invalidate
it.

4.3. Achieving Equilibrium
The simulation was designed to evenly distribute tasks

and opportunity through random chance, when possible.
Each request was given from the charger to chiefs in order,

each chief selected random adjudicators from its list, and
each worker is delayed by a random amount of time, which
ensures a random worker has the first shot at accepting
a contract. As might be surmised, the simulation would
start at a disequilibrium. Both workers and chiefs of all
behaviors would start by acting in a manner closest to
entirely at random. As the simulation progressed, the smart
agents (non-random non-adjudicators) shortened their lists
of acceptable adjudicators as they interacted with them.
Eventually, the simulation would reach an equilibrium in
which behavior converged on the predicted behavior.

Depending on how the equilibrium is defined and the
composition of the simulation, the simulation will reach
an equilibrium at a different rate. The equilibrium can be
defined strictly, meaning the work is performed consistently
well, or the equilibrium can be defined loosely, meaning
trust has been established in the system. When the equi-
librium is defined strictly, it takes significantly longer for
the simulation to reach equilibrium, and it does so at a
much slower rate. However, the loose definition of equilib-
rium allows the simulation to achieve equilibrium extremely
quickly as adjudicators can quickly be discovered to be
favorable or unfavorable.

5. Related Work
Previous work on blockchain technologies applied to

robotic systems addresses some of the challenges, ap-
proaches, benefits, and limitations in robotic systems. Sev-
eral notable works include blockchain approaches to solve
collective decision-making problems in swarm robotics [2],
multi-robot path planning [3], detecting robotic anoma-
lies [4], ontology-oriented robots’ coalition formation in
cyber-physical systems [5], workload logging in robot
swarm [6], and managing byzantine robots in a swarms’



collective decision-making scenario [7]. In all of these
systems, a new blockchain system is introduced, without
utilizing an existing community adopted platform, and the
heterogeneity and the mutually distrusting nature of the
agents are not factored in. Distributed decision-making al-
gorithms have been adopted in many robotic applications,
including dynamic task allocation, collective map building,
and obstacle avoidance [8]. However, there is no economic
incentive in their proposed work to motivate the autonomous
robotic agents. SwarmDAG [9] aims to provide an even-
tually consistent DAG-based distributed ledger across a
swarm assuming network partitions are not permanent. That
work focuses on the swarm to achieve consensus rather
than utilizing the smart contract to coordinate the swarm
tasks. Robot-Human agreements and financial transactions
enabled by Blockchain and Smart Contracts [10] explores an
interaction model that enables a robot to engage in human-
like financial transactions and enter into agreements with a
human counterpart. We have adopted a similar model in our
work to compensate the robotic agents. However, unlike in
their work, we cater to heterogeneous agents with varying
behaviors that provide a good approximation for the real-
world applications. Blockchain technology for robot swarms
on shared knowledge and reputation management system for
joint estimation is introduced in [11]. Shared knowledge is
a critical feature in our system as well, but we have utilized
a more scalable method for reputation management with
collateral and adjudication by a subset of the agents in the
system.

6. Conclusion
We have demonstrated a smart contract that models

the swarm behavior of decentralized heterogeneous robotic
agents. The contract is robust in the face of adversarial
behavior of all the different agents involved, as demon-
strated in a simulation environment. The Swarm Contract is
theoretically capable of subcontracting, although it was not
tested nor implemented in our simulation. Subcontracting,
or creating a new contract to hire another agent to com-
plete the job the original agent accepted, could have some
applications in the case of a graceful malfunction or failure
state that diminishes the agent’s ability to complete the job
as requested. In such a case, a subcontract could allow the
agent to recoup at least some of the collateral’s cost from
a failed job by hiring out the job to another worker agent.
Subcontracting could have several important considerations.
The first and most likely common would be job scalping. If
a contract creator created a contract for which the price was
significantly above the going market rate for a similar job,
a scalping agent could accept the contract and subcontract
it at the market price to take advantage of the market
inefficiency. The second consideration is the emergence of
a risk mitigation market, in which chief agents offer high-
price contracts for low probability work and the agents
which accept offer subcontracts for less money for making
attempts. We believe that the cooperation among robotic
agents, as explained in this paper, will pave the way for
future autonomous robotic systems that need to coordinate

to achieve a standard set of tasks, which is a much different
architecture to the current state of the art of centralized
command and control. The ultimate goal of this work is to
extend human capabilities in situations such as search and
rescue by utilizing robotic agents with diverse skills and
objectives. Blockchain systems may eventually provide an
infrastructure for robotic swarm systems to follow specified
legal and safety regulations as they become increasingly
integrated into human society, which could even result in
new interaction models and business models for swarm
operation as proposed in this paper.

Acknowledgement
This work supported in part by the National Science

Foundation grants IIS-1718755 and and IIS-2008797.

References
[1] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Ta-

dokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima et al.,
“Emergency response to the nuclear accident at the fukushima daiichi
nuclear power plants using mobile rescue robots,” Journal of Field
Robotics, vol. 30, no. 1, pp. 44–63, 2013.

[2] T. T. Nguyen, A. Hatua, and A. H. Sung, “Blockchain approach to
solve collective decision making problems for swarm robotics,” in
International Congress on Blockchain and Applications. Springer,
2019, pp. 118–125.

[3] A. Mokhtar, N. Murphy, and J. Bruton, “Blockchain-based multi-
robot path planning,” in 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT). IEEE, 2019, pp. 584–589.

[4] V. Lopes and L. A. Alexandre, “Detecting robotic anomalies using
robotchain,” in 2019 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC). IEEE, 2019, pp. 1–6.

[5] N. Teslya and A. Smirnov, “Blockchain-based framework for
ontology-oriented robots’ coalition formation in cyberphysical sys-
tems,” in MATEC Web of Conferences, vol. 161. EDP Sciences,
2018, p. 03018.

[6] I. Kalyaev, E. Melnik, and A. Klimenko, “Distributed ledger based
workload logging in the robot swarm,” in International Conference
on Interactive Collaborative Robotics. Springer, 2019, pp. 119–128.

[7] V. Strobel, E. Castelló Ferrer, and M. Dorigo, “Managing byzantine
robots via blockchain technology in a swarm robotics collective
decision making scenario,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems,
2018, pp. 541–549.

[8] E. C. Ferrer, “The blockchain: a new framework for robotic swarm
systems,” in Proceedings of the future technologies conference.
Springer, 2018, pp. 1037–1058.

[9] J. A. Tran, G. S. Ramachandran, P. M. Shah, C. B. Danilov, R. A.
Santiago, and B. Krishnamachari, “Swarmdag: A partition tolerant
distributed ledger protocol for swarm robotics,” Ledger, vol. 4, 2019.

[10] I. S. Cardenas and J. H. Kim, “Robot-human agreements and financial
transactions enabled by a blockchain and smart contracts,” in Com-
panion of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction, 2018, pp. 337–338.

[11] M. Dorigo et al., “Blockchain technology for robot swarms: A
shared knowledge and reputation management system for collective
estimation,” in Swarm Intelligence: 11th International Conference,
ANTS 2018, Rome, Italy, October 29–31, 2018, Proceedings, vol.
11172. Springer, 2018, p. 425.


