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Reinforcement Learning for Beam Pattern Design in
Millimeter Wave and Massive MIMO Systems

Yu Zhang, Muhammad Alrabeiah, and Ahmed Alkhateeb

Abstract—Deploying large scale antenna arrays is a key char-
acteristic of current and future wireless communication systems.
However, due to some non-ideal practical conditions, such as the
unknown array geometry or possible hardware impairments, the
accurate channel state information becomes hard to acquire. This
impedes the design of beamforming/combining vectors that are
crucial to fully exploit the potential of the large-scale MIMO
systems or to combat the high path-loss in millimeter wave
(mmWave) communications. In this paper, we propose a novel
solution that leverages deep reinforcement learning (DRL) to
learn the beam pattern that is optimized for a group of users
without the explicit knowledge of the channels. Simulation results
show that the developed solution is capable of finding the near
optimal beam pattern with quantized phase shifters and with
only requiring the beamforming gain feedback from the users.

[. INTRODUCTION

Leveraging the large bandwidth available at millimeter wave
(mmWave) frequency bands requires the deployment of large
antenna arrays. However, to balance the overall hardware cost,
cheap and low-precision radio components might be adopted.
This leads to some non-ideal practical conditions, such as
unknown array geometry or possible hardware impairments.
In this situation, the performance of the commonly used
beams (such as the ones in classical beamsteering codebooks)
degrades drastically due to their unawareness of the envi-
ronment and hardware. Furthermore, the accurate channel
state information is generally hard/prohibitive to estimate due
to the possible hardware impairments and the large number
of antennas. As a result, classical or data-driven beam pat-
tern/codebook design approaches, e.g. [1], may not be feasible.

Prior Work: Designing beamforming codebooks is a key
step in realizing the potential of mmWave MIMO commu-
nications, and it has been an important research topic for
quite some time [2]-[5]. With large-scale MIMO systems,
the hardware limitations (especially at mmWave/THz) and
the use of analog-only or hybrid transceiver architectures
impose new constraints on the codebook design problems.
This has motivated the development of new beamforming
codebooks with single-lobe and narrow beams [6]. Although
very directive, those codebooks bring with them an increased
training overhead. As such, [7] and [8] has explored hierar-
chical codebook structures, which implements different levels
of beam widths.

Contribution: In this paper, we propose a deep reinforce-
ment learning (DRL) based solution to learn the optimized
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beam pattern for a group of users. This is done by utilizing a
novel Wolpertinger architecture [9] which is designed to effi-
ciently explore the large discrete action space. The proposed
model accounts for key hardware constraints such as the phase-
only, constant-modulus, and quantized-angle constraints [10].
This is realized by defining the state directly as the phases of
the analog phase shifters and the action as the change of phases
within the quantized phase set. Simulation results show that
the proposed solution is capable of finding the near optimal
beam pattern and achieving a beamforming gain compared to
that of equal gain combining.

II. SYSTEM AND CHANNEL MODELS

In this section, we introduce in detail our adopted sys-
tem and channel models. We also describe how the model
considers arbitrary array geometries with possible hardware
impairments.

A. System Model

We consider the system model where a mmWave massive
MIMO base station (BS) with M antennas is communicating
with a single-antenna user. Further, given the high cost and
power consumption of mixed-signal components, we consider
a practical system where the BS has only one radio frequency
(RF) chain and employs analog-only beamforming using a
network of r-bit quantized phase shifters. Therefore, the
beamforming vector can be written as

1
VM

where each phase shift 6,, is selected from a finite set ® with
2" possible discrete values drawn uniformly from (—, 7]. In
the uplink transmission, if a user « transmits a symbol z € C
to the base station, where the transmitted symbol satisfies the
average power constraint [|:1:|2] = P,, the received signal at
the base station after combining can be expressed as

. . . T
[e70r, €% . elM] " (1

Yy = wih,r + WHn7 2)

where h,, € CM*! is the uplink channel vector between the
user u and the base station antennas and n ~ N (0,021) is
the receive noise vector at the base station.

B. Channel Model

We adopt a general geometric channel model for h,,.
Assume that the signal propagation between the user v and the
base station consists of L paths. Each path ¢ has a complex
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gain o and an angle of arrival ¢,. Then, the channel vector
can be written as

L
h, =) asa(er), 3)
(=1

where a(¢y) is the array response vector of the base station.
The definition of a(¢¢) depends on the array geometry and
hardware impairments. Next, we discuss that in more detail.

C. Hardware Impairments Model

Most of the prior work on mmWave signal processing has
assumed uniform antenna arrays with perfect calibration and
ideal hardware [3], [6], [8], [10]. In this paper, we consider a
more general antenna array model that accounts for arbitrary
geometry and hardware impairments, and target learning beam
pattern that mitigates the influence of those unknown factors.
While the beam pattern learning solution that we develop in
this paper is general for various kinds of array geometries and
hardware impairments, we evaluate the proposed solution in
Section V with respect to two main characteristics of interest,
namely non-uniform spacing and phase mismatch between the
antenna elements. For linear arrays, the array response vector
can be modeled to capture these characteristics as follows

a(ee) = [ej(m cos(9e)+A01) gilkdz cos(6e)+A02)

. T
ej(de cos(ng)JrABM)} , (4)
where d,,, is the position of the m-th antenna, and A#d,, is
the additional phase shift incurred at the m-th antenna (to
model the phase mismatch). Without loss of generality, we
assume that d,, and A6, are fixed yet unknown random
realizations drawn from the distributions N ((m — 1)d,03)
and N (0,07) respectively, where d is the ideal antenna
spacing, o4 and o, model the standard deviations of the
random antenna position and phase mismatch. Besides, we
impose an additional constraint d; < dy < --- < djs to make
sure the generated antenna positions physically meaningful.

III. PROBLEM DEFINITION

In this paper, we investigate the beam pattern design prob-
lem for mmWave and massive MIMO system with unknown
array geometry and hardware impairment. Given the system
and channel models described in Section II, the SNR after
combining for user u can be written as

|thu|2
[[wl|®

where ||w||> = 1 is implicitly used and p = f—g. Besides, we
define the beamforming/combining gain of adopting w as a
transmit/receive beamformer for user u as

SNR, = p=|win,|"p, 5)

gu = [wh,|”. ©6)

It can be seen that maximizing (6) is equivalent to maximizing
the SNR in (5). Therefore, the objective of this paper is to
design (learn) the beamforming vector w that maximizes the

beamforming/combining gain given by (6) averaged over the
set of the users with similar channels. Therefore, the beam
pattern learning problem can be formulated as

1 2
Wopt:argmaxw Z }WHhu| , @)
w h,€H
1
St Wy = —e Ym=1,.., M, 8
Nl )]
0 €O, VYm=1,.... M, 9)

where w, is the m-th element of the beamforming vector and
“H the channel set that is supposed to contain a single channel
or multiple similar channels. It is worth mentioning that the
constraint in (8) is imposed to uphold the adopted analog-
only system model, and the constraint in (9) is to respect the
quantized phase-shifters hardware constraint.

Due to the unknown array geometry as well as possible
hardware impairments, the accurate channel state information
is generally hard to acquire. This means that all the channels
h, € H in the objective function are possibly unknown. In-
stead, the base station may only have access to the beamform-
ing/combining gain g, (or equivalently the Received Signal
Strength Indicator (RSSI)) reported by each user. Therefore,
problem (7) is hard to solve in a general sense for the unknown
parameters in the objective function as well as the non-convex
constraint (8) and the discrete constraint (9). Given that this
problem is essentially a search problem with feedbacks
in a dauntingly huge yet finite and discrete space, we
consider leveraging the powerful exploration capability of deep
reinforcement learning to efficiently search over the space to
find the optimal or near-optimal solution.

IV. BEAM PATTERN LEARNING

In this section, we present our proposed DRL-based algo-
rithm for addressing the beam pattern design problem (7). It
is worth mentioning that when viewing the problem from a
reinforcement learning perspective, it features a finite yet very
high dimensional action space. This makes the traditional
learning frameworks (such as deep Q-learning, deep determin-
istic policy gradient, etc.) hard to apply. Therefore, we adopt
a novel architecture called Wolpertinger to enable the efficient
search in a large discrete action space, the details of which
can be found at [9].

1) Reinforcement Learning Setup: To solve the problem
with reinforcement learning, we first specify the corresponding
building blocks of the learning algorithm as follows:

« State: We define the state s; as a vector that consists of
the phases of all the phase shifters at the ¢-th iteration,
that is, s; = [01,0a,. .., HM]T. This phase vector can be
converted to the actual beamforming vector by applying
(1). Since all the phases in s; are selected from ©, and all
the phase values in ® are within (—, 7], (1) essentially
defines a bijective mapping from the phase vector to
the beamforming vector. Therefore, for simplicity, we
will use the term “beamforming vector” to refer to both
this phase vector and the actual beamforming vector (the
conversion is given by (1)), according to the context.

446

Authorized licensed use limited to: ASU Library. Downloaded on September 01,2021 at 00:36:33 UTC from IEEE Xplore. Restrictions apply.



DRL Agent Critic Network Base station Environment
Serving b
o ~d erving beam
; ; Processing \ Mobile users
H a
Actor Network Quantizer H ga(lsute a) a YO ~ ’e{o
i Y3 %

Adjust beam phases to new state

S s et

LIS

uonoe 0j0Ig

>

soedbmeers

—

State St Action Q¢

The beam phase vector

The changes of beam phases

Received signal
strength indicator
Loss calculation

+1
. Tt X
Critic target <——c?$ — o

Feedback channel

Fig. 1. The proposed beam pattern design framework with deep reinforcement learning. The schematic shows the agent architecture, and the way it interacts

with the environment.

o Action: We define the action a; as the element-wise
changes to all the phases in s;. Since the phases can
only take values in ®, a change of a phase means that
the phase shifter selects a value from ©. Therefore, the
action is directly specified as the next state, i.e. S;+1 = a.

o Reward: We define a ternary reward mechanism, i.e. the
reward r; takes values from {+1,0, —1}. We compare the
beamforming gain achieved by the current beamforming
vector, denoted by g;, with two values: (i) an adaptive
threshold J;, and (ii) the previous beamforming gain
gi—1. The reward is computed using the following rule

- 9t 2> B =+1;
- gt <Py and gt > g1, 1t = 0;
- gt <pBrand gt < gi1, e = —1.

It is important to note that the adopted adaptive threshold
mechanism does not rely on any prior knowledge of the
channel distribution. The threshold value starts from zero and
whenever the BS tries a new beam and the resulting beamform-
ing gain surpasses the current threshold, the system updates the
threshold by the value of this new beamforming gain. Besides,
since the update of threshold also marks a successful detection
of a new beam that achieves the best beamforming gain so far,
the BS also records this beamforming vector. As can be seen
in the reward definition, in order to calculate the reward, the
system always tracks two quantities, which are the previous
beamforming gain and the best beamforming gain achieved so
far (i.e. the threshold).

2) Environment Interaction: As mentioned in Sections I
and III, due to the possible hardware impairments, accurate
channel state information is generally unavailable. Therefore,
the base station can only resort to the beamforming gain
feedback reported by the users to adjust its beam pattern in
order to achieve a better performance. Upon forming a new
beam w, the base station transmits a pilot « by using this
beam and gets feedback from every user. Then, it averages all
the beamforming gain feedbacks

_ 1 - Hy |2
9= | Z |W hU|

where ‘H represents the targeted user channel set. Recall that
(10) is the same as evaluating the objective function of (7) with

(10)

Algorithm 1 DRL Based Beam Pattern Learning

I: Initialize actor network f(s|0”) and critic network
Q(s,al0?) with random weights 6* and 6%
2: Initialize target networks p’ and @’ with the weights of
actor and critic networks” 0% < 0% and 62" « 6%
3: Initialize the replay memory D, minibatch size B
4: Initialize adaptive threshold /3 0 and the previous
average beamforming gain g; = 0
5: Initialize a random process A for action exploration
6: Initialize a random beamforming vector w; as the initial
state s;
7: for t =1to T do
8:  Receive a predicted action from actor network with
exploration noise a; = u(s¢|0") + N,
9:  Quantize the predicted action to a valid beamforming
vector a; according to (11)

10.  Execute action a;, observe reward r; and update state
to St+1 = Qg

11:  Update the threshold S and the previous beamforming
gain gy

12:  Store the transition (s¢,a, r¢,S¢41) in D

13:  Sample a random mini batch of B transitions
(sb, ap, 1'b, Spr1) from D

14:  Calculate target y, = 75 + Q' (Sp11, 1/ (Sp41]0*)|69)

15:  Update the critic network by minimizing the mean
squared loss L = £ >, (yo — Q(sp, ap[69))?

16:  Update the actor network using the sampled policy
gradlent given by

- B Zb 1 aQ S a)ls sp,a=pu( s;,|9“)v9“ (Sleu)‘s:sb
17:  Update the target networks every C' iterations

18: end for

the current beamforming vector w. Depending on whether or
not the new average beamforming gain surpasses the previous
one as well as the current threshold, the base station gets either
reward or penalty, based on which it can judge the “quality”
of the current beam and decide how to move.

3) Exploration: The exploration happens after the actor
network predicts the action a;,; based on the current state
(beam) s;. Upon obtaining the predicted action, an additive
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Fig. 2. The top view of the considered communication scenario.

noise is added element-wisely to a;4; for the purpose of
exploration, which is a customary way in the context of
reinforcement learning with continuous action spaces [11],
[12]. In our problem, we use temporally correlated noise
samples generated by an Ornstein-Uhlenbeck process [13],
which is also used in [9]. It is worth mentioning that a
proper configuration of the noise generation parameters has
significant impact on the learning process. Normally, the extent
of exploration (noise power) is set to be a decreasing function
with respect to the iteration number, which is commonly
known as exploration-exploitation tradeoff [11]. Furthermore,
the exact configuration of noise power should relate to specific
applications. In our problem, for example, the noise is directly
added to the predicted phases. Thus, at the very beginning, the
noise should be strong enough to perturb the predicted phase
to any other phases in ®. By contrast, when the learning
process approaches to the termination (the learned beam
already performs well), the noise power should be decreased to
a smaller level that is only capable of perturbing the predicted
phase to its adjacent phases in ©.

4) Quantization: The predicted beam (with exploration
noise added) should be quantized in order to be a valid new
beam that can be implemented by the discrete phase-shifters.
Therefore, each quantized phase in the new vector can be
calculated as

1)

[St+1}m = arg min |0 - [gt+l]m| ,Vm = ]., 2, ey M,
0c®

which is essentially a nearest neighbor lookup (i.e. a KNN

classifier with k£ = 1).

5) Forward Computation and Backward Update: The cur-
rent state s; and the new state s;;; (recall that we directly
set s;11 = a;) are then fed into the critic network to
compute the Q value, based on which the targets of both actor
and critic networks are calculated. This completes a forward
pass. Following that, a backward update is performed to the
parameters of the actor and critic networks. A pseudo code of
the algorithm can be found in Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
solution. We first describe the adopted scenario and dataset

used in our simulations and then discuss the results.

A. Scenario and Dataset

In our simulations, we consider the outdoor scenario
‘01_60" which is offered by the DeepMIMO dataset [14] and
is generated based on the accurate 3D ray-tracing simulator
Wireless InSite [15]. This scenario comprises two streets and
one intersection with three uniform x-y user grids, as shown
in Fig. 2. To generate the channels from the users to the base
station, we adopt the following DeepMIMO parameters: (1)
Scenario name: O1_60, (2) Active BSs: 3, (3) Active users:
Row 1200 to 1200, (4) Number of BS antennas in (X, y, z): (1,
32, 1), (5) System bandwidth: 1 GHz, (6) Number of OFDM
sub-carriers: 1 (single-carrier), (7) Number of multipaths: 5.
From the generated dataset, we further select the user at row
1200 and column 181 in the scenario. The locations of both
the selected user and the base station are marked in Fig. 2.

B. Performance Evaluation

We first evaluate our proposed DRL-based beam pattern
learning solution on learning a single beam that serves a
single user with LOS connection to the base station. As
shown in Fig. 3 (a), the proposed solution is capable of
finding where the user is and forming a pointed beam to
serve that user. By comparing the beam patterns of the
equal gain combining/beamforming vector (plotted in red)
and the learned beam (plotted in blue), it is evident that the
proposed solution can capture the main lobe of the equal gain
combining/beamforming vector very well, which explains the
excellent performance it achieves. The slight mismatching is
mainly due to the use of quantized phase shifters. With 3-
bit resolution, each phase shifter can only realize 8 different
values of phase shifts drawn uniformly from (—m,7].

We also compare the performance of the learned single
beam with a 32-beam classical beamsteering codebook, il-
lustrated in Fig. 3 (b). As it is commonly known, classical
beamsteering codebook normally performs very well in LOS
scenario. However, our proposed method achieves higher
beamforming gain than the classical beamsteering codebook
with negligible iterations. More interestingly, with less than
5 x 10* iterations, the proposed solution can reach more than
90% of the equal gain combining (EGC) upper bound. It is
worth mentioning that the EGC upper bound can only be
reached when the user’s channel is completely known and
unquantized phase shifters are deployed. By contrast, our
proposed solution can finally achieve almost 95% of the EGC
upper bound with 3-bit phase shifters and without any channel
information.

The proposed beam pattern learning solution is also eval-
uated on a system where hardware impairments exist (with
the same user considered above). This is a more realistic
and interesting scenario, for mmWave systems are susceptible
to perturbations like antenna spacing mismatch and phase
mismatch. The wavelength in mmWave bands is so small that
even slight mismatching can lead to a drastic degradation of
the performance. This for sure calls for an intelligent design
process that is capable of adapting the beam pattern to the
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Fig. 3. The beam pattern learned for a single user with LOS connection to the
base station. The base station employs a perfect uniform linear array with 32
antennas and 3-bit phase shifters. (a) shows the beam patterns for the equal
gain combining/beamforming vector (red) and the learned beam (blue). (b)
shows the learning process.

hardware, mitigating the loss caused by hardware mismatches.
The simulation results confirm that our proposed solution is
competent to learn such optimized beam pattern for a system
with hardware impairments. Fig. 4 (a) shows the beam patterns
for both equal gain combining/beamforming vector and the
learned beam. At the first glance, the learned beam appears
distorted and has multiple low-gain lobes. However, the per-
formance of such beam is excellent. This can be explained
by comparing the beam patterns of the learned beam and the
equal gain combining/beamforming vector. As can be seen
from the learned beam patterns, our proposed solution
intelligently approximates the optimal beam, where all
the dominant lobes are well captured. By contrast, the
classical beamsteering codebook fails when the hardware is
not perfect, as depicted in Fig. 4 (b). This is because the
distorted array pattern incurred by the hardware impairment
makes the pointed classical beamsteering codebook beams
only able to capture a small portion of the energy, which
further results in an inferior beamforming gain. The learned
beam shown in Fig. 4 (a) is capable of achieving more than
90% of the EGC upper bound with approximately only 10%
iterations, as shown in Fig. 4 (b). This is especially interesting
for the fact that the proposed solution does not rely on
any channel state information. As it is known, the channel
estimation in this case relies first on a full calibration of the
hardware, which is a hard and expensive process.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we developed a DRL-based approach to
learn the optimized beam pattern for a single user or a
group of users with similar channels in mmWave massive
MIMO systems. More specifically, we adopt a novel Wolper-
tinger architecture which is designed to efficiently explore the
large discrete action space. The proposed learning framework
respects key hardware constraints such as the phase-only,
constant-modulus, and quantized-angle constraints. Simulation
results show that the proposed solution is capable of finding
the near optimal beam pattern which achieves a beamforming
gain compared to that of equal gain combining.

150 30

6 == EGC upper bound
— Learned beam pattern with 3-bit phase shifters
4 —— Classical beamsteering codebook (32 beams)

Average beamforming gain

50000 100000 150000 200000 250000
270 Iterations

(2) (b)

Fig. 4. The beam pattern learned for a single user with LOS connection
to the base station. The base station employs a uniform linear array with
32 antennas and 3-bit phase shifters, where hardware impairments exist. The
standard deviation of the antenna position is 0.1 and the standard deviation
of the phase mismatches is 0.327. (a) shows the beam patterns for the equal
gain combining/beamforming vector (red) and the learned beam (blue). A
transformation of /- is used to better show the finer structure of the beams.
(b) shows the learning process.
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