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Abstract—The COVID-19 pandemic is an evolving situation
in the United States and is spreading at alarming rates. The
adoption of public health-informed hygienic practices can have a
large impact on community transmission of COVID-19 including
the wearing of face masks in public settings. Convolutional
Neural Networks (CNN) can be trained to classify people wearing
face masks with impressive accuracy. However, current face
mask datasets contain clear, high-resolution close-up images of
individuals with face masks which is unrepresentative of the lower
fidelity images of distant faces more prominent in urban camera
images. This paper proposes a practical deep learning computer
vision framework for detection and tracking of people in public
spaces and the use of face masks. A custom 6,000 image face mask
dataset curated from over 50 hours of urban surveillance camera
footage is created in this work. CNN-based detectors trained
using the dataset are used to perform person detection and
face mask classification. Then, a multi-target tracking module
extracts individual trajectories from frame-by-frame detection.
By associating detected face masks with tracked individuals,
overall face mask usage can be estimated. The framework is
implemented on several surveillance cameras along the Detroit
RiverWalk, a 5-kilometer pedestrian park connecting various
greenways, plazas, pavilions, and open green spaces along the
Detroit River in Detroit, Michigan. The detection of park user
types is shown to have an average precision of 89 % and higher for
most person classes with the mask detector having an accuracy
of 96%. An interactive web application visualizes the data and
is used by park managers to inform management decisions and
assess strategies used to increase face mask usage rates.

Index Terms—computer vision, multi-object tracking, face
masks, COVID-19

I. INTRODUCTION

On March 11, 2020 the World Health Organization (WHO)
declared the COVID-19 outbreak a pandemic [1]. In the weeks
that followed, federal and state governments in the United
States made efforts to suppress the spread of the disease.
State governments issued stay-at-home orders and retailers and
restaurants were temporally restricted to delivery or curbside
pick-up orders only. Due to economic pressures, states began
reopening in stages at the start of summer allowing in-person
dining and shopping, and other non-essential services to return.
As states have reopened, confirmed daily COVID-19 cases
have once again risen within the United States, setting a record
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for new cases in a day on July 16, 2020 [2]. The earliest
and most optimistic estimates for when a vaccine may be
available is still months away [3]. As restrictions are eased, it
is imperative that cities adopt public health-informed strategies
that aim to help mitigate the spread of COVID-19. Strategies
include wearing face masks and social distancing (maintaining
1.5 meters from others) when in public [4]. Maintaining these
protective measures are essential to resumption of public life
including the use of public spaces like city parks. For these
reasons, it is important for cities to track public face mask
usage and to adopt strategies that encourage increasing face
mask usage.

Recent work in computer vision shows face mask detection
tools based on Convolutional Neural Networks (CNN) are
capable of achieving state-of-the-art results when trained and
tested on popular public face mask datasets [5]. However,
the application space of these tools are currently limited.
Public face mask datasets, such as the MAsked FAces (MAFA)
dataset [6], are primarily composed of high resolution close-
up images of faces, with a large number of pixels detailing
the face and mask. A face mask detection tool trained on
such a dataset will inevitably struggle when working with
much lower fidelity images which are much more common
in practice. For example, cities wishing to utilize such a
framework would likely need to pull images from pre-installed
surveillance cameras in the city, which sit distant from crowds
and are usually incapable of producing close-up images of
faces. Furthermore, as presented, these previously proposed
frameworks only work at the instance level, designed to only
compute how many face masks are detected in the current
frame. Without a tracking component, it would be difficult to
more accurately measure the number of unigue face masks
detected and usage rates could only be a rough estimate.

This paper presents a practical computer vision sensing
framework for person and face mask tracking. The face mask
detection module was trained and validated on a challenging
low resolution face mask dataset curated from 50+ hours
of surveillance camera footage from the Detroit Riverfront.
The face mask dataset is added to the authors’ existing
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Fig. 1: Computer vision based framework for tracking and visualizing face mask usage rates by people in public spaces.

Objects in Public Open Spaces (OPOS) [7] dataset and is so
named OPOS-FM. The proposed framework also includes a
cloud infrastructure that hosts an interactive data visualization
web application for public officials like park managers. The
framework is implemented across several key locations along
the Detroit Riverfront parks and accesses image data from an
existing surveillance camera network installed in the space
for security reasons. Park managers are able to access the
processed data through the interactive online dashboard to
track effectiveness of various strategies used to increase patron
adherence to CDC face mask guidelines. The rest of the paper
is as follows. Section II describes the components of the person
and face mask tracking framework. In section III, the accuracy
of this framework is presented along with results found when
implementing the framework at the Detroit RiverWalk. Lastly,
concluding remarks and direction of future work are given in
Section IV.

II. METHODS

The face mask tracking framework proposed herein uses
state-of-the-art computer vision methods for person and face
mask detection and tracking. Additionally, it leverages Ama-
zon Web Services (AWS) cloud infrastructure to store and
visualize the data online. An overview of the framework
is shown in Fig. 1. First, images from a data source (e.g.,
surveillance camera), are passed into a CNN-based detector
for person detection. The CNN-based detector is trained to
classify people by their various activities such as “cyclist”,
“sitter”, or “skater”. Table I contains the definition of the major
person classes based on the OPOS dataset. Detected classes are
then passed into a multi-target tracker which utilizes Kalman
filtering, CNN feature extraction, and intersection over union
(IoU) matching to assign unique IDs and track people move-
ment. Additionally, cropped images of faces from the detected
classes are passed into a separate CNN-based binary classifier
to mark if the detected classes and their corresponding IDs
are wearing a face mask. The number of detected people,
activity classifications, and percentage wearing face masks is
stored in Amazon’s Simple Storage Service (AWS S3) [8].
An interactive dashboard, which pulls data from AWS S3, is

hosted online through Amazon’s Elastic Beanstalk service [9].

A. CNN-based person detector

While CNN architectures are the most popular choice for
object detection today, there are other well known methods
within the computer vision field. More traditional methods
such as the Viola-Joins detector [10], which is popular with
face detection, utilize handcrafted feature extractors such as
Haar [11] or histogram of oriented gradients (HOG) [12].
These features can then be passed into a cascaded detection
algorithm [10] or into a State Vector Machine (SVM) [12] for
object classification. Recently, deep learning CNN architec-
tures for object classification have become popular due to their
ability to learn feature extractors (convolution kernels) that
convolve with the original image. Additionally, convolution
kernels which convolve with extracted features can be used
to produce more complex and higher-level features. CNN
architectures for object detection are usually classified as
either single-stage [13], [14] or two-stage [15], [16]. Two-stage
detectors first use a region proposal network (RPN) to generate
regions of interest which are then passed to another network
for object classification and bounding box regression. The
popular single-stage architecture such as that used in YOLO
[13] uses a single CNN to segment the input image into a grid
of cells and predict bounding boxes and class probabilities for
each cell. While single-stage detectors are faster than two-
stage, they are less accurate.

Our framework uses the state-of-the-art Mask R-CNN ar-
chitecture [15] to perform person detection and classification.
Mask R-CNN strikes a good balance between inference speed
and detection accuracy. The Mask R-CNN model is a two-
stage detector. First, a CNN backbone structure such as ResNet
[17] is used to extract features from the input image. A RPN
then utilizes the extracted features to generate initial bounding
boxes and region proposals (areas in the image suspected
of containing objects). In the second stage, another neural
network classifies the regions of interest and generates refined
bounding boxes and pixel-wise masks of the detected objects.
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Fig. 2: Examples of Mask R-CNN person detection and activity classifications on frames taken from surveillance cameras at

the Detroit Riverfront.

Examples of detections from the Mask R-CNN model are
shown in Fig. 2.

Loss functions are used in Neural Network training as a
measure of the error between prediction and ground truth.
Loss functions evaluate candidate weights for the network and
are used to find optimal solutions which minimize error. In
this study, all parts of the Mask R-CNN model are trained
together in an end-to-end fashion. The total loss function used
for training is defined as:

LMask R-CNN = (Lrpn obj +Lrpn bbox) + (Lcls +Lbbox+Lmask) (1)

where Ly, obj Tepresents the loss of the RPN classifier (i.e.,
object or not a object) and Ly, vhox represents the loss for
the bounding box regression within the RPN. Ly, Lppox,
and Ly, represent the losses for activity classification (e.g.,
cyclist, sitter), bounding box regression, and mask segmenta-
tion that is performed in the second stage of Mask R-CNN,
respectively.

B. Deep Sort tracker

The Mask R-CNN detector processes each frame indepen-
dently. A multi-object tracker is needed to associate objects
detected in the current frame with the same objects detected

in sequential frames. By doing so, objects can be assigned
unique IDs and total number of unique objects (e.g., cyclists)
can be recorded in time and space. In this study, the Deep
Sort algorithm [18] is used for person tracking and unique ID
assignment. While other deep learning tracking methods exist
[19], the Deep Sort algorithm is selected as it is more robust,
especially in situations with visual occlusions (e.g., when one
pedestrian temporarily occludes, or blocks, the view of another
pedestrian when crossing in front of them).

The Deep Sort algorithm utilizes a Kalman filter, feature
vectors extracted from cropped detections, intersection over
union (IoU) scores, and a Hungarian data association algorithm
[20] for multi-object tracking, as shown in Fig. 3. Appearance
feature vectors for each cropped detection are extracted using
a CNN. The CNN used for feature extraction was trained on
the MARS [21] dataset for person re-identification and outputs
an 1x128 appearance feature vector. It is assumed that an
appearance vector describing a detected person should not
vary strongly from frame to frame (given the absence of any
occlusions). Hence, appearance vectors of current detections
can be compared against appearance vectors of previous detec-
tions by computing their cosine similarity. Cosine similarity
is the cosine angle between two vectors. It is computed by
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Fig. 3: Schematic of the tracking module using detection results from sequential frames.

calculating the dot product of the two vectors and dividing by
the product of the magnitudes of the vectors. IoU scores for
detection bounding boxes in the current frame and detection
bounding boxes in the previous frame are also computed. The
IoU between two bounding boxes is computed by taking the
area of the intersection and dividing by the area of the union.

Additionally, for each detection, a track is created that has
state X = {mc,yc,a,h7ajc,y'c,a,h}, describing the bound-
ing box center coordinates, aspect ratio, height, and time
derivatives, respectively. A Kalman filter [22] is used to track
detected object states as a dynamical system and recursively
generates the current state (Xj) on the k-th video frame using
the previous state (X_1). Predicted states of tracks from the
Kalman filter are compared against detections in the current
frame by computing the squared Mahalanobis distances. The
Mahalanobis distance calculates the distance between a vec-
tor (e.g., state of current detection) and a distribution (e.g.,
predicted state from the Kalman filter).

The Hungarian algorithm uses cosine similarities between
appearance vectors, IoU scores, and squared Mahalonobis dis-
tances for data association and ID assignment. By leveraging
motion information and appearance information, the tracker
is more resilient to issues caused by occlusion. Additionally,
the Deep Sort algorithm is tuned with parameters controlling
when to delete tracks that have not had detection matches for
consecutive frames and how many matches a track must have
before an ID is assigned.

C. Face mask detection module

In this framework, Mask R-CNN handles person detection
and will forward the cropped images of detections to the face
mask detection module. Therefore, the face mask detector only
needs to solve a binary classification problem: is the detected

person wearing a face mask or not? Recent work [5], [6] shows
CNN-based detectors are able to detect facial occlusions with
impressive accuracy when tested on face mask datasets such as
MAFA. The datsets used for training and validation contain
clear, high resolution images of faces. Unfortunately, CNN-
based face mask detectors that have been trained on higher
resolution images with close-up views of faces will struggle
when applied to lower resolution crops of faces taken from
distant cameras. To address this issue, a low resolution face
mask dataset was manually curated from over 50 hours of
surveillance camera footage from the Detroit riverfront. The
dataset is intgrated into the authors’ Objects in Public Open
Spaces (OPOS) [7] dataset and is titled OPOS-FM. OPOS-FM
contains 6,039 images of cropped faces. The cropped images
are on average 3200 px? with the defining feature (face mask)
typically between 100-400 pxZ.

The face mask detector is a CNN-based binary classifier
which utilizes a wide residual network [23] architecture. The
face mask detection module uses the bounding boxes and
tracking information from tracked people. If the velocities
from a track state vector indicate a tracked person is headed
towards the camera, the bounding box coordinates are used
to forward a cropped image of the tracked person to the face
mask detection tool. The top 6 of the cropped image is further
cropped to isolate the head area. The wide residual network
extracts a feature vector from the cropped head through a
series of convolutional layers and then follows with a final
classification layer; this is illustrated in Fig. 4. Face mask
classification results are associated with the unique person IDs
generated from the tracker, so the number of unique masks and
total usage rate can be calculated. If a tracked person never
faces the camera, the face mask classification associated with
the ID is left as “NA”, and the ID is not included in face mask
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Fig. 4: Schematic of face mask detection process using a CNN-based classifier.

usage calculations.

D. Cloud infrastructure for web-based visualization

Cloud infrastructure, powered through AWS, is imple-
mented to enable real-time data visualizations which can be
made accessible online to community members and stakehold-
ers. The IDs of tracked people, their activity classifications
(e.g., pedestrian, cyclist, sitter), and a marker denoting if they
are wearing a face mask is stored in the AWS S3 object
storage service. The data on AWS S3 is then visualized on
an interactive web application which is hosted through AWS
Elastic Beanstalk which is an easy to use service for deploying
and scaling web services and applications. The dashboard is
coded in Python with Dash [24], an open-source productive
Python framework for building web applications. Dash is
an attractive solution for developing interactive dashboards
as it allows for easy integration of powerful Python data
visualization packages.

III. RESULTS
A. Person detection

The Mask R-CNN model used for person detection was
trained and validated with the OPOS dataset. The OPOS
dataset was curated from 18 different surveillance cameras
and contains 7,826 images of scenes of people in public open
spaces. The dataset includes over 17,000 annotated object
bounding boxes and segmentations. Detailed performance met-
rics of the Mask R-CNN detector evaluated on OPOS are
presented in [25]. Average precision (AP) scores for each
person activity class is presented in Table I. The popular AP50
metric is used and measures the precision of the detector on
different classes when an IoU over 0.5 between ground truth
bounding boxes (manual annotations) and detected bounding
boxes is considered a true detection. As is evident in Table
I, AP50 scores for the major OPOS person classes is 89% or
higher.

B. Face mask detection

The face mask detector was trained and validated on the
OPOS-FM dataset. OPOS-FM contains 2,015 images of faces
with face masks and 4,024 images of faces without face masks.
5,133 images were used for training while 906 images were
withheld for validation. The validation subset contains 306
faces with face masks and 600 faces without face masks. When

TABLE I: Performance of Mask R-CNN person detector
evaluated on OPOS testing dataset

Person class  Description AP50 (%)
Pedestrian Person standing, walking, or running 96.36
Cyclist Person riding bicycle 96.50
Scooter Person riding scooter 89.39
Skater Person skateboarding 89.52
Sitter Person sitting on bench or ground 89.14
People-Other  Truncated image 74.08

tested on the validation subset, the detector correctly classified
296 out of the 306 with face masks and correctly classified
574 out of the 600 without face masks, achieving an overall
accuracy of 96%.

C. Implementation

The framework is implemented on several surveillance
cameras at the Detroit RiverWalk, which span approximately
5 kilometers along the Detroit River (Detroit, Michigan).
The RiverWalk is a public space that provides pedestrians
direct access to rails-to-trails greenways, plazas, pavilions,
playgrounds, and open green spaces. The RiverWalk is used
by approximately three million visitors annually who come
to walk, run, bike, and enjoy the scenery [26]. During the
COVID-19 pandemic, the public spaces of the RiverWalk re-
mained open to the public but social distancing and face mask
usage was required. The framework proposed in this paper was
tested on cameras at the RiverWalk in April 2020 and later
fully implemented operating since May 2020. Video footage
must first be downloaded from a camera server maintained by a
contractor to the park manager. Current bandwidth restrictions
on the surveillance camera network limit video processing to
12 hours of footage per day; this daily quota is distributed
across three cameras during peak morning (11:00- 13:00) and
evening (17:00-19:00) times. Additional hardware is currently
being installed to give the framework 24-7 access to real-time
camera streams thereby removing current restrictions.

Using data collected between April 1, 2020 and July 8,2020,
Fig. 5 shows cyclist and pedestrian visitation numbers (re-
ported on an hourly average) as well face mask usage rates.
Most of the spikes in Fig. 5a occur during sunny days while
low activity level is usually associated with gloomy or rainy
weather conditions. Face mask usage rates (Fig. 5b) hit an
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shade represents raining weather.

initial peak in early May, decline in June, and then rise as
new COVID-19 cases begin to surge again. All data is stored
on AWS S3 and is visualized on an interactive website for
park managers and stakeholders. A snapshot of the website
is shown in Fig. 6. The website allows users to select a
camera from the map (top), choose a date range (left side
bar), and see a breakdown of visitation rates and face mask
usage trends. If a user hovers the mouse over a specific day
they will also see a weather summary as well as a breakdown
of visitor activity, such as percentage of cyclists, joggers,
or bench users. The website is being actively used by park
managers to monitor hygienic practices of patrons and inform
effectiveness of tactics used to increase face mask usage. For
example, park managers have used the data from the website to
identify locations where increased signage is needed to remind

patrons to wear face masks.

IV. CONCLUSION

CNN’s can perform person detection and face mask clas-
sification with high accuracy. This paper presents the OPOS-
FM dataset, a manually curated gallery of faces specifically
designed to train CNN-based face mask classifiers for real
world applications, along with a computer vision framework
which integrates multiple modules to achieve person and
face mask detection and tracking. The framework is designed
for use in urban environments and leverages AWS cloud
infrastructure to equip communities and stakeholders with
actionable data. An example of the framework is demonstrated
on surveillance cameras along the Detroit riverfront where
the data is being used by park managers to make informed
decisions regarding COVID-19. With an average precision of
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Fig. 6: Screenshot of the interactive web application for visualizing data captured from cameras along the Detroit RiverWalk.

89% or higher for person classes and a face mask classification
accuracy of 96%, the framework can accurately track number
of individuals and face masks present in a camera’s field of
view. Furthermore, AWS and Dash provide an easy to use
environment for development of scalable web applications.
The Dash platform is thoroughly documented and users can
leverage a plethora of templates for rapid development. How-
ever, the tracking capabilities of the framework are currently
limited to one camera. The framework can not track people
as they move between different fields of view. Additionally,
if a person leaves a camera’s field of view and returns a few
minutes later, the tracker will create a new ID for them and
the person will be counted twice. In the future, to address
these challenges, a re-identification module will be added to
the framework. By doing so, full person trajectories can be
mapped across multiple cameras through large public open
spaces, and individuals can be re-identified when they return
to a camera’s field of view. While the framework is currently
being used primarily for tracking face mask usage rates, the
person tracking and proposed data visualization components
can be leveraged in applications in other urban planning
studies that extend beyond COVID-19.
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