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Abstract— This paper presents a real-time classification 
method of ground-level walking and stair climbing, which is a 
crucial information of natural human locomotion in robotic 
prosthesis control. Two Inertial Measurement Units (IMU) were 
mounted on an earlier developed measurement exoskeleton 
system (one IMU in the shank and the other IMU on the thigh) to 
monitor the locomotion states. A pair of force-sensing resistors 
were also incorporated into the shoe insole for plantar pressure 
measurement. The sensors were interfaced with an 
STM32L476RG microcontroller powered by a rechargeable 
battery. The data collection was performed on two healthy 
subjects. Three features (Thigh IMU x-axis accelerometer 
minimum value, Shank IMU z-axis gyroscope maximum value, 
and x-axis gyroscope variance) were computed from the sensors 
signal.  Classification of ground-level walking vs. stair climbing 
events was performed using Linear Discriminant Analysis 
(LDA). The accuracy, sensitivity, and specificity were obtained 
on the training set as 96.50%, 96.32%, and 96.66%, respectively. 
After implementing the classifier in the embedded system, the 
sensor system was tested in real-time for 26 minutes with an 
accuracy of 87.21%, the sensitivity of 90.48%, and the specificity 
of 86.75%. The results indicate that the system can detect the 
locomotion states with reasonable accuracy, which could be 
further implemented in determining the control strategy of a 
powered intelligent prosthesis in the real-time. 
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I. INTRODUCTION

There are about 2 million people living with limb loss in 
the United States who are suffering from mobility issues [1]. 
Powered lower limb prosthesis is a promising technology that 
can provide greater ability and mobility to transfemoral 
amputees [2]. One major concern of research on robotic lower 
limb prostheses is the locomotion mode recognition, which is 
very important for the effectiveness of the high-level controller 
to allow amputees to perform automatic, seamless transitions 
between locomotion modes. However, current methods to 
detect modes, such as visual or movement commands, are 
unintuitive and impose a cognitive burden. An ideal system 
would provide a safe, automatic, and seamless detection 
locomotion modes without any cognitive burden imposed on 
the user. To accomplish this, an activity recognition software 
must infer the user's locomotion mode in real-time [2][3][4][5]. 
The most frequently used sensors for activity recognition 
include surface electromyogram (sEMG) sensors and 
mechanical sensors. Motion activity recognition based on the 

sEMG was first reported in [6]. Huang et al. [7] first used 
sEMG to classify seven motion states using an artificial neural 
network (ANN). Later, they used a combination of sEMG and 
load cell information for the classification [8]. However, 
sEMG-based systems for prosthesis usually have poor 
performance due to the presence of electrode shifts and 
changes in electrode position [9]. Liu et al. [10] use a 
mechanical sensor-based system consisting of an 
accelerometer, gyroscope, and two pressure sensors. Young et 
al. [11] also built an activity and intend recognition system 
using mechanical sensors only (six-axis inertial measurement 
units (IMUs) and axial load). They collected steady state and 
transitional data from six transfemoral amputees, while five 
locomotion modes were performed.  

The goal of this study was to develop a wearable 
locomotion mode recognition system capable of recognizing 
level-ground walking and stairs ascending in real-time. Two 
IMUs were placed on the healthy leg of the lower limb using 
an earlier developed wearable exoskeleton system which 
allows us to monitor the locomotion of the healthy leg. The 
wearable exoskeleton system ensured reliable locomotion data 
collection, which is a comfortable, portable user interface for a 
variety of limb sizes without restricting the natural range of 
motion of the user. The scope of this research encompasses the 
sensory system development, sensor interfacing, the 
development of a microcontroller-based data acquisition 
framework to capture sensor signals. Two volunteers 
participated in the data collection, and a classifier was 
developed using the data obtained. After that, the classifier was 
embedded in a microcontroller to detect ground-level walking 
and stair climbing. Finally, the system was tested on a healthy 
volunteer to validate the proposed method. 

II. METHODOLOGIES

A. Wearable Exoskeleton

A wearable exoskeleton system [12] is used to mount the
sensors for accurate lower-limb motion data collection, which 
consists of three segments, including a thigh segment, a shank 
segment, and a foot segment.  These segments are connected 
by two joints. The shape of the thigh and shank segment can be 
adjusted to align with the user’s calf curvature using orthotic 
bending irons. The height of the exoskeleton is adjustable with 
a range of approximately 7.6 cm which enables the device to fit 
subjects at different heights in a configuration that ensures the 
joint sensor is fixed on-axis with the rotation of the measured 
joint. Two IMUs of the data acquisition system were placed on  
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Fig. 1. An illustration of sensors placement with skeleton system 

the shank segment and on the thigh segment, respectively 
(shown in fig. 1) to effectively perceive the movement 
information. The FSRs (Force Sensing Resistor)  are embedded 
under the shoe sole were installed at the main force points to 
measure heel and ball pressures under the foot. 

B. Sensors

The sensor system used in data collection consists of two
IMUs (MPU-9250, InvenSense Inc, San Jose, CA), two FSRs 
(FSR 406, Interlink Electronics, Camarillo, USA) and data 
acquisition electronics with a 3.7 V Li-polymer battery of 300 
mAh capacity. This system employed STM32L476RG, a 
Cortex-M4 Ultra-low-power ARM processor (ST 
Microelectronics, Geneva, Switzerland); a 16 GB micro-SD 
card to store data sampled at 1 kHz. The sensor suite was 
capable of monitoring accelerations in all three directions, 
rotations around each axis and change in resistance upon 
applying pressure or mechanical stress. The IMUs were 
interfaced with the MCU through two SPI interfaces. The 
polymer thick film FSR is capable of measuring pressure 
utilizing its property of decreasing resistance with the increase 
in the applied force on its active surface. A resistive divider 
was formed by each FSR and a 500Ω resistor and applied to 
op-amp based voltage followers. The Op-amp output of FSRs 
was interfaced with the MCU's two ADC channels (with 12 
bits of resolution). 

C. Data Collection and Labeling

To collect data for this study, volunteers were recruited.
Two volunteers having age, height, and the weight of 31 and 
27 years, 1.72 and 1.77 meters, 172 and 160 pounds, 
respectively, with no physical and cognitive abnormalities 
participated in the data collection. The study was approved by 
the Institutional Review Board (IRB) at the University of 
Alabama. First, each subject was asked to wear the sensor 
system. Before starting the data collection, the subjects were 
asked to walk normally for 5-10 minutes to get comfortable 
with the device. After that, they performed following 
locomotives activities in the following order: a) Level ground 
walking in self-selected moderate and fast cadence and b) Stair 
ascending  (starting  at   ground   floor  to  the  third  floor). All 
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Fig. 2. The response of IMU sensor while a participant was (a) walking over 
ground (b) Idle and (C) Stair Climbing. 

participants repeat the same activity sequence for 20 times. 
The participants were free to take rest whenever necessary. A 
total of 85 minutes of data (approximately 51 minutes of 
ground walking and 34 minutes of stair climbing) was 
recorded by the system from the subjects. The data contains 
values of accelerometer and gyroscope for x, y, and z-axes 
from both IMUs as well as heel and ball pressure from FSRs. 
Fig. 2 shows an instance of thigh IMU sensor responses while 
a participant was walking, then stopped for a moment and 
started stair ascending at a self-selected speed. The dataset 
was manually reviewed and then labeled by a custom 
MATLAB application for model training and validation. 

D. Feature Extraction and Selection

Initially, 112 (8 features from each signal) features were
defined and extracted from all the sensors signals. Simple and 
computationally less intensive time domain features were 
explored for the easy real-time microcontroller 
implementation. The features were: 1) standard deviation, 2) 
variance, 3) RMS, 4) maximum, 5) minimum, 6) slope sign 
change, 7) number of mean crossing and 8) wavelength. To 
find out the most significant features, a forward feature 
selection technique was implemented. This was an iterative 
method, which started with having no feature in the model. In 
each iteration, a new feature was added which best improved 
the model till an addition of a new variable did not improve the 
performance of the model. A total of ten features were initially 
determined from the forward feature selection method, which 
are: 1) Fea1 (AX2-Minimum  value), 2) Fea2 (GZ1- Maximum 
value), 3) Fea3 (GX1- Variance), 4) Fea4 (GY2- Variance), 5) 
Fea5 (AZ2- Maximum value), 6) Fea6 (GZ2- Mean crossing), 
7) Fea7 (AZ1- Variance), 8) Fea8 (AY1- Slope sign change),
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9) Fea9 (AX1- Mean crossing), and 10) Fea10 (Toe pressure -
Standard deviation). Since too many features may lead to
overfitting, to  find  out  the best performing set of features, the
accuracy of the model for different combinations of the
features were investigated.

E. Classifier

The Linear Discriminant Analysis (LDA) was chosen in
this study. The LDA classifier is simple, easy to implement, 
and computationally inexpensive. The classification rule for 
LDA is very intuitive. This method requires a training phase, 
meaning the computation of the discriminant functions and 
their parameters. The new real-time data can be classified 
simply by solving the appropriate discriminant function for 
each class and applying the classification rule. The training 
dataset contained feature vectors and labels from ground truth 
annotation. The feature vectors were computed in the 
microcontroller environment, and then using those features, a 
classifier was trained in Matlab. A five-fold cross-validation 
technique was utilized to train the classifier. The parameters 
were determined from the training data set and then applied to 
the microcontroller environment for the real-time application. 

F. Real-time Implementation and Testing

For real-time implementation, the trained LDA classifier
was implemented in the embedded software. The embedded 
software was designed to execute the following operations in 
sequence: a) feature computation, and b) find the response 
using the trained LDA classifier. The features were computed 
every after 2.92 seconds of data collections. Once the features 
were computed, the classifier predicted response in this case 
ground walking vs. stair climbing and stored the response in 
the SD card. After the implementation of the classifier in the 
embedded system, the wearable sensor system was tested on 
one volunteer. The volunteer performed similar walking and 
stair climbing sequence as mentioned in the data collection 
section. In this testing, completely different staircase and 
ground walking path were used. 

TABLE I. PERFORMANCE OF CLASSIFIER USING DIFFERENT FEATURE 
COMBINATIONS 

Combination of features Accuracy %

Fea1 94.1077

Fea1, Fea2 95.3498

Fea1, Fea2, Fea3 96.5001

Fea1, Fea2, Fea3, Fea4 97.0665

Fea1, Fea2, Fea3, Fea4, Fea5 97.8454

Fea1, Fea2, Fea3, Fea4, Fea5, Fea6 98.0989

Fea1, Fea2, Fea3, Fea4, Fea5, Fea6, Fea7 98.4030

Fea1, Fea2, Fea3, Fea4, Fea5, Fea6, Fea7, Fea8 98.5298

Fea1, Fea2, Fea3, Fea4, Fea5, Fea6, Fea7, Fea8, Fea9 98.5805

Fea1, Fea2, Fea3, Fea4, Fea5, Fea6, Fea7, Fea8, Fea9, 
Fea10 

98.6565

III. RESULTS

The accuracy of the model for different combinations of the 
features were investigated, and the results are presented in 
Table I. The results show that the addition of new features did 
not increase the classification accuracy more than 1% after 
three features, which was determined to be the optimal feature 
number. Finally, the combination of these top three ranked 
features (AX2- Minimum value, GZ1- Maximum value and 
GX1- Variance) was utilized to train the classifier and 
implement it in real-time. The comparison of performance 
between training and real-time testing is shown in Table II. The 
accuracy, sensitivity, and specificity of the testing are 
comparable with the performance of the model on training 
dataset. The accuracy of the proposed model was 87.21%, 
while the sensitivity and the specificity were calculated as 
90.48% and 86.75% respectively in real-time testing. 

TABLE II. PERFORMANCE OF CLASSIFIER ON TESTING DATA 

Training  Real-time testing  
Accuracy 96.50% 87.21%
Sensitivity 96.32% 90.48%
Specificity 96.66% 86.75%

The classification results of the proposed LDA classifier 
are demonstrated by a confusion matrix, which is presented in 
Fig. 3.  

Fig. 3.  Confusion matrix of the testing 

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a solution for real-time level 
ground walking vs. stair-climbing locomotion Mode Detection 
by successfully implementing in a wearable embedded system. 
The proposed method is simple, easy to implement, yet 
effective to level ground walking vs. stair-climbing. Three 
features were extracted from the sensors signal, and the LDA 
classifier was used. The proposed model achieves an accuracy 
of 87.21%, sensitivity of 90.48%, and specificity of 86.75% in 
real-time testing for around 26 minutes, which shows, the 
initial proof of the concept and demonstrates great promise. 
Since the model was trained and tested with a small amount of 
dataset, to further improve the performance, the model should 
be trained and tested with more data. In addition, the 
experiment was performed on two volunteers only, but with a 
higher number of participants, the model will be more person 
independent. In this study, two locomotion modes were 
considered only. However, in the future work other locomotion 
modes (i.e. stair descending, ramp up, and ramp down, sit to 
stand) can also be investigated. 
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