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a b s t r a c t

Pouring is one of the most commonly executed tasks in humans’ daily lives, whose accuracy is affected
by multiple factors, including the type of material to be poured and the geometry of the source and
receiving containers. In this work, we propose a self-supervised learning approach that learns the
pouring dynamics, pouring motion, and outcomes from unsupervised demonstrations for accurate
pouring. The learned pouring model is then generalized by self-supervised practicing to different
conditions such as using unaccustomed pouring cups. We have evaluated the proposed approach first
with one container from the training set and four new but similar containers. The proposed approach
achieved better pouring accuracy than a regular human with a similar pouring speed for all five cups.
Both the accuracy and pouring speed outperform state-of-the-art works. We have also evaluated the
proposed self-supervised generalization approach using unaccustomed containers that are far different
from the ones in the training set. The self-supervised generalization reduces the pouring error of the
unaccustomed containers to the desired accuracy level.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Pouring is one of the most commonly executed tasks in hu-
ans’ daily lives, especially for food preparation. In cooking sce-
arios, it is the most frequently executed motion [1]. Pouring is a
hallenging task given the variety of containers and materials we
an find in a kitchen. Humans excel at pouring liquids and solid
aterials, a skill that a cooking robot needs to master. This skill
ecomes particularly tricky when there is the need to execute it
ith precision and speed and for different setups and conditions.
ccurate pouring is not a trivial task, and it is affected by many
actors, including the property of the material, the geometry of
he source and receiving containers, the manipulation of the
ource container, to name a few. It is a problem that cannot be
olved using traditional control policies for two reasons:

1. Lack of precise dynamics models: modeling fluid or granu-
lar motion precisely is either impossible or unfeasible be-
cause there are many unobservable parameters and those
parameters vary with many factors such as the material
and the shape of the pouring device.

2. Un-reversible feature of the task: the poured material can-
not come back to the pouring device once it is poured out.
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Therefore, it is not possible to have an overshoot in the
system’s response.

The two difficulties go hand-in-hand. The un-reversible feature
of pouring calls for an approach that can predict. Fig. 1 shows
an example of velocity and volume sequences collected from a
person pouring water. It can be seen that after the backward
rotation starts, the water still comes out of the source container
and the volume in the receiving container keeps increasing for a
while. Therefore, the approach needs to predict when to start the
backward rotation to reach the goal. However, prediction requires
a precise model. In this paper, we propose a self-supervised
learning approach that learns from demonstrations that are ei-
ther unsupervised or performed by unskilled demonstrators. The
approach self-supervises the learning process by taking in all
demonstrations without checking their performance or labeling
them as successful or unsuccessful. Instead, the self-supervised
approach uses the real outcomes of the demonstrations as the
desired goals. It is drastically different from traditional learn-
ing from demonstration approaches (LfD) [2] that learn optimal
motion trajectories from skilled demonstrators.

We designed a data collection system that collected 284 hu-
man pouring demonstrations. This new data collection approach
extends the Daily Interactive Manipulation (DIM) dataset [3]. To
learn water pouring dynamics, pouring motion, and outcomes,
we have developed a peephole long short-term memory (LSTM)
learning structure that used the previous step’s outcome as the
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Fig. 1. An example of human pouring water. It can be seen that when the
rotation is going backward, the volume is still increasing. Velocity: velocity of the
source container measured counter clock-wise, negative radians/seconds means
that the container is going forward and positive means backward. Volume:
volume of water in the receiving container.

current input. The cell unit in the peephole LSTM learns, mem-
orizes, and updates the liquid or granular material’s movement
dynamics over time. It allows the peephole LSTM model to learn
the relationship between the manipulation motion and the dis-
parity between the current outcome and the desired outcome
based on the liquid or granular material’s movement dynamics.

We have evaluated the proposed approach with five con-
ainers: one from the training set and four new containers that
re not significantly different from the training set in terms of
ize. We have observed the mean volume error of those five
ontainers to be as small as 4.12 milliliters (mL) and not higher
han 12.35 mL, a result that is better than the pouring accu-
acy of a regular person. The pouring speeds of the proposed
pproach are on par with a regular human pouring speed that is
bout 5 to 10 times faster than state-of-the-art approaches [4,5].
he learned model exhibits either much higher pouring error
r much greater pouring standard deviation when evaluated on
naccustomed containers that are far different from the ones in
he training set. To generalize the learned model to unaccustomed
ontainers, we propose a self-supervised practicing approach.
t uses the learned model to practice with the unaccustomed
ontainers, collects the motions and outcomes from the practices,
nd uses the real outcomes as the desired outcomes to fine-tune
he model. We refer to this approach as generalization by self-
upervised practicing (GSSP), with which we achieved a reduction
n mean volume error from values of more than 50mL to values
ower than state-of-the-art works.

Our contributions in this work include

1. Data collection system and pouring motion dataset. We
designed a data collection system that captures the motion
signals of human pouring employing a motion tracker and a
force sensor (for volume measurement). We have collected
284 pouring motions for nine different sizes of source
containers.

2. Self-supervised learning from demonstrations and outco-
mes. We present a motion model for accurate pouring
learned from human demonstrations. The pouring target in
the input of the model during training is set to be the ac-
tual poured volume instead of the desired target. It allows
the learning to be self-supervised since the approach does
not have to specify or know the desired outcomes.

3. The learned pouring skill could achieve human-like pouring
accuracy and speed. The proposed approach models the
2

complicated spatial–temporal patterns of human pouring,
and as a result, pours smoothly and as fast as humans.
In our dataset collected from human demonstrations, the
pouring time ranges from 3.2 to 8.7 s, and the duration
executed by our model ranges from 2.8 to 7.6 s. It pours
faster than related methods [4,5] which report 25 s and
20–45 s per pour, respectively. It achieves lower pouring
error than existing methods that also use a single modality
to monitor the poured volume [4,6–8].

4. Generalizing pouring skills by self-supervised practicing.
We present the Generalization by self-supervised Practic-
ing (GSSP) approach, which fine-tunes the model using the
actual pouring outcomes of a robot. It allows the robot
to pour accurately, using unaccustomed containers and
materials.

1.1. Related work on LfD

One popular LfD approach is Gaussian mixture regression
(GMR) [9]. The approach first learns the spatial–temporal relation
of a motion. Then, it produces a novel sequence of the motion by
producing the position or state of the motion corresponding to
each time step. Functional Principal Component Analysis (fPCA)
is another approach for spatial–temporal motion learning. The
traditional PCA can be applied on both the temporal and spatial
axes of a motion to find how the motion varies at different time
steps [10,11]. Functional PCA (fPCA) extends PCA by representing
a motion in a continuous-time format instead of using a collection
of points [12–15]. The spatial–temporal GMR and fPCA in nature
consider the motion as a whole rather than a dynamical system,
which makes it inconvenient to receive timely feedback while
executing the motion. In comparison, GMR can be configured to
learn the relationship between states and actions and thus behave
as a dynamical system [16].

Alternatively, one can use movement primitives (MP). The first
MPs, the dynamic movement primitives (DMP), consist of three
components: (1) a strictly damped string model that guarantees
the convergence of the motion state to a goal state, (2) a forcing
function that contains the shape that the motion is expected to
go through, and (3) a canonical system that modulates the tem-
poral profile of the motion [17]. Its variants include but are not
limited to interactive primitives (IP), which enable the interaction
between two agents [18] and probabilistic movement primitives
(ProMP), which enable more flexibility on the force function [19].
The general GMR, MP, and fPCA involve the usage of a tempo-
ral alignment algorithm of the motion data, such as dynamic
time warping (DTW) [20], which may damage certain spatial–
temporal patterns in the data in unclear ways. In comparison,
a recurrent neural network (RNN) does not require aligning the
motion data in time. It is designed to process time sequences and
is capable of representing dynamical systems [21,22]. RNN has
been successfully applied for text generation as well as motion
generation [23–25].

1.2. Related work on pouring

In [26], the authors propose trajectory planning algorithms
for liquid body transfer that uses fluid simulation, [27] learns to
predict the state of the fluid using neural networks. However, the
fluid model of the liquid is in general difficult to obtain, for which
reason [28] proposes adding goal learning to shape learning with
MP for liquid transfer. [29] considers the amount of the liquid
in the source container while pouring and proposes a liquid
transfer algorithm based on a parametric hidden Markov model.
The difficulty of generating pouring motion increases when pour-

ing accuracy is essential. The demand for accurate pouring is
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bserved in casting factories where molten metal is poured into
olds. [30] proposes predicting the residual pouring amount of

he liquid to increase the accuracy of pouring. [31] introduces
redictive sequence control, which suppresses the increase of
rror when the pouring amount increases.
Humans also control the amount when they pour and for

hich they combine pouring with shaking and tapping [32].
fforts have been made to estimate the volume or height of the
oured amount in the receiving container and to use the estimate
s real-time feedback to a simple PID controller. [4] uses a deep
eural network to estimate the volume of liquid in a cup using
isual data and uses PID controllers to control the rotation of a
obot arm. In 30 pours, the algorithm achieves an average error
f 38 mL with 25 s per pour. [6] uses an RGB-D point cloud
f the receiving cup to determine the liquid height and a PID
ontroller to control the rotating angle of the source cup. They
chieve a mean error of 23.9 mL, 13.2 mL, and 30.5 mL for three
ifferent receiving cups. In both algorithms, the PID controller
tops and rotates the source container back to the original angle
hen the estimated volume/height reaches the target. However,
he before-mentioned technique might lead to over-pouring since
here is still liquid coming out from the source container when
t starts its backward rotation as shown in Fig. 1. Moreover,
he generalization of those vision-based approaches is limited
hen there is variation in the color of the receiving container,
he lighting conditions, the background, or the type of pouring
aterial.
Instead of using PID, [7] learns a policy using reinforcement

earning simulation and transfers the policy to actual robots. The
olicy performs pouring to the same target heights for which it
as trained. It reaches an average error of 19.96 mL over 40 pour-

ng trials. However, the authors also use a vision-based system to
etect the height of the liquid in the receiving container, leading
o the same limitations already discussed. In [33] the authors
ely on an audio spectrogram to determine the volume poured
y the robot. The mean volume errors reported for different
eceiving containers ranged from 6.42ml to 13.79ml, such small
rrors are achieved by the usage of a spout at the opening of the
ouring containers, which reduces the speed of pouring. [5,34]
erives analytical pouring models for the source containers with
nown geometry and extends the model to source containers
ith similar geometry. The most up-to-date work [5] uses both
ision and weight during pouring and achieves a pouring error
f less than 5 mL. However, the proposed system pouring time
anges from 20 to 45 s. Humans can also achieve small pouring
rrors if requested to pour slowly. In our dataset, humans took
.2 to 8.7 s to pour water. The authors in [8] apply model pre-
ictive control (MPC) based on a recurrent neural network for
stimating the poured volume. The approach achieves average
rrors of 14.25 mL, 18.25 mL, and 26.13 mL for three unseen
ource containers. Another work [25] presented a Long-Short-
erm Memory (LSTM) model that was trained using demonstra-
ion data. However, the learned model was only evaluated in
imulation.
In summary, the accurate pouring approach presented in this

aper has a significant improvement over our previous works.
he proposed peephole LSTM approach drastically outperforms
he MPC algorithm presented in [8]. The proposed approach was
pplied to a real robot, whereas in [25] the pouring motion veloc-
ties were generated in simulation. In [35], we presented limited
reliminary results on pouring as an abstract report. A generaliza-
ion in practice (GiP) approach was proposed in [36] with limited
xperiments on pouring water. This paper presents a comprehen-
ive description of the peephole LSTM pouring motion generation
pproach and the generalization by self-supervised practicing
GSSP), both thoroughly evaluated with numerous experiments
n real-world scenarios with a real robotic system.
3

Fig. 2. The sequential pouring process with the input being the current angular
velocity and the current poured volume and the output being the poured volume
for the next time step.

2. Problem description & approach

In this work, we do not consider the transfer of the source
container, which is essentially pick-and-place, and only focus on
controlling the flow of the liquid by manipulating the source
container. We consider the receiving container to be large enough
to prevent spilling. The main movement of the source container
is its rotation, which resides mostly on a 2-dimensional plane. It
enables the motion to be simplified to its rotation. The anchor of
the rotation is fixed to be approximately at the middle point of
the height of each container. This simplification is also applied
in [4–6,34], which makes our assumptions reasonable. Volume
can be perceived visually and is intuitive for measuring liquid.
Therefore, in this work, we use volume to represent the amount
of liquid.

We describe the pouring process as a result of rotating the
source container. Initially, a certain volume of liquid exists in the
source container. If the source container is full, then the liquid
flows out as the source container starts rotating. If the source
container is not full, then there will be a delay of the liquid flow-
ing out after the source container has started rotating. The liquid
flows into and stays in the receiving container, and therefore the
poured volume only increases and never decreases. When the
source container stops rotating, the liquid may either instantly
stop flowing out or keep flowing for a short time until the surface
of the liquid inside the source container is level. The pouring
process is sequential, and the poured volume is determined by
the trajectory of the rotation velocities of the source container.

We model the pouring process as a discrete-time series:
1: for i in (1, 2, . . . ) do
2: t = t1 + (i− 1)∆t
3: θ (t +∆t) = θ (t)+ ω(t)∆t
4: vol(t +∆t) = F (ω(t), θ (t), vol(t))
5: end for
where t1 is the initial time instant, ∆t is the time interval, θ (t)
and ω(t) are the rotation angle and angular velocity of the source
container, respectively, vol(t) is the poured volume, F (·) denotes
the pouring system. We also illustrate the process in Fig. 2. We do
not impose a strict restriction on the initial angle θ (t1) but assume
that it is close to zero. The effect of the velocity ω(t) executed
at time t is observed at the next time step, t + ∆t , and the
effects are the next rotation angle θ (t +∆t) and the next poured
volume vol(t+∆t). Other factors that affect the pouring behavior
considered in this paper are the shape of the source container, the
initial volume in the source container, and the target volume in
the receiving container.

The angular velocity, ω(t), is the action that pushes the pour-
ing process forward. To perform pouring, we can use a motion
model that takes the target volume as input and generates the
velocity as output. At any time step during pouring, the model

takes the current poured volume as input, compares it with the
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arget volume, and adjusts the velocity accordingly. The model is
epresented as

(t) = G(ω(t −∆t), θ (t), vol(t), vol2pour ), (1)

where G(·) denotes the function that relates the previous velocity
ω(t−∆t), current angle θ (t) and volume vol(t), and target volume
vol2pour with the current velocity. The pouring process is written
again as:
1: for i in (1, 2, . . . ) do
2: t = t1 + (i− 1)∆t
3: ω(t) = G(ω(t −∆t), θ (t), vol(t), vol2pour )
4: θ (t +∆t) = θ (t)+ ω(t)∆t
5: vol(t +∆t) = F (ω(t), θ (t), vol(t))
6: end for

2.1. Self-supervised learning from demonstration and outcomes

The learned pouring model should have the targeted volume
as one of the inputs since the pouring behavior should change
based on the target. However, as one of the critical innovations
in our approach, we replace the targets with the actual results
in training. For example, we ask subjects to pour 150 mL, but
the subject pours 165 mL. In this case, the input to the model
is 165 mL, not 150 mL. This change enables the proposed self-
supervised learning since the subjects in the demonstration do
not have to be supervised, and the desired target does not have
to be labeled. The robot can observe the actual outcomes and use
them as training inputs. This approach allows the model to pour
with a human-like pace but achieves better accuracy.

In the model, although taking vol2pour as input, G(·) is not
guaranteed to generate the exact ω(t)’s which will lead to vol2pour .
In reality, given vol2pour , G(·) will generate ω(t)’s whose execu-
tion will lead to a certain final volume volfinal in the receiving
container. Assume the receiving container initially has a volume
volinit , then vold = |volfinal − volinit − vol2pour | reflects the ability
of G(·) to fulfill vol2pour . If vold = 0, then G(·) is perfect in
fulfilling the goal. Reversely, volfinal can be considered as the
result of executing a perfect model G∗(·) assuming its goal is set
o vol2pour = volfinal − volinit . To learn G(·), if we use the actual
ol2pour , i.e., the volume we intend to reach, then the learned
odel will approximate the one that is given by vol2pour but ends
ith volfinal. If we set vol2pour = volfinal−volinit , the learned model
ill approximate the perfect model G∗(·). In the hope of learning
more accurate motion model, we set the motion goal vol2pour
sing the actual outcome volfinal − volinit .

.2. RNN-based pouring skill model

A straightforward design choice for accurate pouring is a sim-
le PID controller. [4,6] have applied PID for accurate pouring, in
hich they both used PIDs with fixed gains. While pouring, as the

iquid flows out of the source container, the plant changes, which
ccordingly requires adjustment to the gains of the PID. Perform-
ng pouring thus requires an adaptive PID whose gains change
heir values throughout the pouring process. We speculate that
his partly limits the achievable accuracy in [4,6]. An adaptive PID,
owever, is no longer a simple controller. That justifies our quest
or a more complicated motion model.

We aim to learn a motion model from pouring demonstrations
hat can perform properly in new settings after being trained in
finite number of settings. In this work, we explore the gener-
lization of the pouring skill model to different shapes of source
ontainers, type of liquid, and granular materials. Generalization
f neural networks has been observed in practice, and active re-
earch has been conducted, which tries to identify possible causes
uch as the norm of network parameters [37], the specialty of the
4

network structure and the landscape of the cost function [38], and
sharpness/flatness of the minima [39].

Apart from generalization, we seek two other properties from
the candidate model:

1. Since all demonstrations are sequences, the model should
be inherently capable of dealing with sequences and cap-
turing the spatial–temporal patterns in the sequences.

2. Since demonstrations vary in length, the model should
be able to learn effectively from sequences with different
lengths.

Due to the successful records of the generalizability of neural
networks and our need for a sequential model, we use RNN
to represent the motion model. RNN is a class of neural net-
works that is designed to process its inputs in order. It feeds
its output from one time step into its input at the next time
step, shown specifically in Eq. (2), where x(t) is the given input,
h(t − 1) and h(t) are outputs from the previous and the current
step, respectively. The weight W and bias b are learned using
Backpropagation Through Time [40].

h(t) = tanh
(
W [h(t − 1), x(t)]⊤ + b

)
(2)

We need to decide the input features to the RNN at any time
step. Each feature corresponds to a type of data. We write Eq. (1)
again below for convenience:

ω(t) = G(ω(t −∆t), θ (t), vol(t), vol2pour ) (3)

The first feature is the previous angular velocity that can be
encoded as the hidden state of the RNN represented by Eq. (2).
We also use θ (t) as a feature. The next two features are vol(t) and
vol2pour , respectively. Corresponding to vol2pour , the initial volume
of liquid in the source container voltotal can be set as a feature.
We can also have features that describe the shape of the source
container. We model the source container as a cylinder and set
both the height H and the body diameter D as features. The
four static features vol2pour , voltotal, H , and D describe a pouring
task and distinguish one task from another. The two sequential
features θ (t) and vol(t) represent the feedback from the rotation
on the source container and the volume change on the receiving
container. Fig. 4 illustrates the six input features. Therefore, the
input and output of the RNN from Eq. (2) become:

x(t) = [θ (t), vol(t), voltotal, vol2pour ,H,D] (4)

ω(t) = K (h(t)) (5)

where the function K (.) relates the hidden state of the RNN to
the scalar angular velocity. The plain RNN as shown in Eq. (2) suf-
fers from the problem of vanishing and exploding gradients [41,
42], which prevents it from learning long-term dependencies
effectively. The problem was solved by long short-term memory
(LSTM) which introduces gates and memory cells [42]. Later,
peepholes were introduced to LSTM to enable the access of all
gates to the memory cell [43]. The mechanism of peephole LSTM
is illustrated in Fig. 3 and is written as:

i = sigm
(
Wi[h(t − 1), x(t)]⊤ + bi + pi ⊙ c(t − 1)

)
(6)

f = sigm
(
Wf [h(t − 1), x(t)]⊤ + bf + pf ⊙ c(t − 1)

)
(7)

g = tanh
(
Wg [h(t − 1), x(t)]⊤ + bg

)
(8)

c(t) = f ⊙ c(t − 1)+ i⊙ g (9)

o = sigm
(
Wo[h(t − 1), x(t)]⊤ + bo + po ⊙ c(t)

)
(10)

h(t) = o⊙ tanh(c(t)) (11)

where i, o, and f are the input, output, and forget gates, re-
spectively. W , W , W , W , b , b , and b are the LSTM cell
i f g o i f g
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Fig. 3. Mechanism of a peephole LSTM block.

Fig. 4. An illustrative pouring scene that shows the six physical quantities to
obtain. vol2pour and voltotal is the target and initial volume. D and H are the
iameter and height of the source container. θ (t) and vol(t) are the sequences
f rotation angle and of the poured volume.

eights to learn. pi, po, and pf are also the peephole connection
eights to be learned for gates i, o, and f , respectively. c(t)

s the long-term memory, h(t) the output, and x(t) the input
f the LSTM block. ‘‘sigm’’ represents the sigmoid function ap-
lied element-wise, and is used to implement gates. ‘‘tanh’’ rep-
esents the hyperbolic tangent function, applied element-wise,
nd is used to avoid vanishing or exploding gradients. ⊙ repre-
ent element-wise multiplication. In this work, we use peephole
STMs.
Taking into account Eqs. (4) to (11) we can see that the

ynamic model of the pouring motion is allocated in the long-
erm memory c(t) of the LSTM. The combination of Eqs. (8) and
9) gives:

(t) = f ⊙ c(t − 1)+ i⊙ tanh
(
Wg [h(t − 1), x(t)]⊤ + bg

)
(12)

where the dynamic model c(t) depends on both the previous
dynamics and the previous input and output. The gate i decides
which part of the current input and past output contributes to
the current dynamic model, and the gate f decides which part
of the past dynamic model contributes to the current dynamic
model. Eq. (11) shows that gate o decides which part of the
dynamic model will be used as the current output. The previous
mechanism allows the LSTM network to predict when to start
the backward rotation of the source container based on the infor-
mation provided by its current input (feedback signals and static
features), its past output (past angular velocity) and its long-term
memory (past dynamic model).

3. Training

3.1. Data collection

We want to collect all the input features that we have iden-
tified for RNN and we need to decide how to measure volume.
Intuitively, the volumes vol and vol can be measured using
total 2pour a

5

Fig. 5. Illustration of the data collection setup. The source container is connected
to the motion tracker through a 3-D printed adapter. The force sensor is placed
underneath the receiving container.

a measuring cup. However, obtaining vol(t) using a measuring
cup requires a real-time video stream of the measuring cup and
a computer vision algorithm that extracts the volume from the
video stream. To simplify the problem that we have to solve,
we decide that we will not include the above vision problem in
our solution, and instead, we compute the volume from other
quantities. The volume can be computed as the mass m divided
y the density ρ, i.e., v = m/ρ. We consider the weight as the
ravitational force acting on an object that keeps the object in
lace. The weight f is the product of mass m and gravitational ac-
eleration g , i.e., f = mg . Therefore, the volume can be calculated
rom the weight:

=
f

ρg
, (13)

e represent voltotal by its corresponding weight ftotal, vol2pour by
weight f2pour , and similarly the current poured volume vol(t) by
weight f (t). Fig. 5 illustrates the setup for our data collection. We
collect data of pouring water from 9 different source containers
into the same receiving container. The 9 source containers are
shown as the left half of Fig. 6. We measure H and D of each
source container in millimeters (mm) using a ruler. We 3D-print
a handle where the source container is mounted on one end, and
a Polhemus Patriot motion tracker is mounted on the other end.
The motion tracker records the rotating angles θ (t)’s of the source
container in degrees. We place an ATI Mini40 force/torque sensor
under the receiving container to record the raw force reading
fraw(t) in pound-force (lbf).

We obtain ftotal and f2pour from fraw(t). f2pour is calculated by
2pour = ffinal − finit , where finit and ffinal are the weights read from
the receiving container before and after a trial, respectively. Thus,
we set f2pour using the actual poured outcome. In each trial, ftotal >

2pour , that is, there is water left in the source container after pour-
ng. Various ftotal and f2pour are recorded to aid the generalizability
f the prospective motion model. θ (t)’s are recorded at 60 Hz and
raw(t)’t are recorded at 1 kHz. The collected pouring data is part
f RPAL Daily Interactive Manipulation (DIM) dataset [3], which
s publicly available. More manipulation datasets can be found

t [44].
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Fig. 6. Source containers used for (left) training and for (right) evaluation. The
red cup was used both for training and for evaluation. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

3.2. Implementation

The neural network can have multiple layers and each layer
an contain multiple peephole LSTM units. By units we mean the
ize of the vectors ct and ht of Fig. 3 formalized by Eqs. (9) and
11), respectively. Dropout [45] is applied between layers to avoid
emorizing the data and aid generalizability. The final layer is a

ully connected layer with linear activation which generates the
ngular velocity. The mechanism of the network with L layers at
ime t is represented as
1: h0(t) = x(t)
2: for i = (1, 2, . . . , L) do
3: hi(t) = LSTM (hi(t − 1), hi−1(t); nunit)
4: hi(t) = Dropout

(
hi(t); pkeep

)
5: end for
6: ŷ(t) = WyhL(t)+ by
here LSTM(·; nunit ) means using an LSTM block from Fig. 3 with

nunit units. Dropout(·; pkeep) means dropout with a keep probabil-
ity of pkeep. ŷ(t) corresponds to a linear layer that converts the
hidden state hL(t) to the final output.

To feed the input features into the network, we group them
into a vector x(t) = [θ (t), f (t), ftotal, f2pour ,H, κ]⊤ for t = 1, . . . ,
T − 1, where T is the length of the trial and

1. θ (t) is the rotating angle of the source container.
2. f (t) is the weight of the poured liquid.
3. ftotal is the weight of the initial amount of liquid present in

the source container before pouring.
4. f2pour is the weight of the target poured amount.
5. H is the height of the source container.
6. κ is the body curvature of the source container.

The body curvature κ of the source container is calculated from
the body diameter, D:

κ = 2/D (14)

The angular velocities ω(1 : T − 1) are computed from θ (1 : T ):

ω(t) = (θ (t + 1)− θ (t))fs, t = 1, 2, . . . , T − 1 (15)

where fs is the sampling frequency of θ (t). For each trial, at time
t ∈ [1, 2, . . . , T −1], the input x(t) and target y(t) of the network
are

x(t) = [θ (t), f (t), ftotal, f2pour ,H, κ]⊤ (16)

(t) = ω(t) (17)

The output of the network is denoted by ŷ(t). Assume we have N
trials in total, and each trial has length Ti, i ∈ [1, 2, . . . ,N]. The
loss function is defined as

c =
1
N

N∑ 1
T − 1

Ti−1∑
(ŷi(t)− yi(t))2. (18)
i=1 i t=1

6

Fig. 7. Our network has 1 layer and 16 peephole LSTM units. Dropout with a
keep probability of 0.5 is applied to non-sequential connections.

3.3. Data preparation

We set the sampling frequency fs = 60 Hz since it is the
ower one between the frequencies of θ (t) and fraw(t). We kept
he recorded θ (t)’s intact and downsampled fraw(t) to 60 Hz. We
btain f (t) by filtering the raw reading from the force sensor
raw(t), specifically

m(1 : t)← median_filter(fraw(1 : t)), window_size = 5, (19)

f (t)← Gaussian_filter(fm(1 : t)), σ = 2. (20)

e normalize each input dimension independently using the
ean and standard deviation of that dimension. The model had
layer and 16 LSTM units. We trained models with different
umbers of layers and LSTM units, and we found the model with
layer and 16 units had a simple structure and performed well.
e set the keep probability of dropout to be 0.5. Specifically, the

omputation for time step t is represented as:

h(t) = LSTM (h(t − 1), x(t)) (21)

d(t) = Dropout (h(t)) (22)

ŷ(t) = Wyhd(t)+ by (23)

The network is shown in Fig. 7.
The learning model involves 284 trials in total, among which

221 are for training and 63 for validation. Each iteration is an
epoch, in which the entire training and validation data are tra-
versed. We ran 2000 epochs and picked the model that has the
lowest validation loss. We used the Adam optimizer and set
the initial learning rate to be 0.001. The code is written using
TensorFlow.

4. Generalization by self-supervised practicing

The robot with the motion model has limited generalizability
related to certain pouring containers for which it achieved high
pouring error. We recorded the outcomes that the robot provided
when pouring with the poor-performing containers. We used
those outcomes to fine-tune the model. We refer to this fine-
tuning process using the outcomes generated by the robot as
generalization by self-supervised practicing (GSSP). GSSP updates
the motion model by training it with data generated by practices.
Although the outcomes in the first few practices may present
a high volume error, they contain the response of the model
to new conditions and are therefore valuable. GSSP mimics the
behavior of humans when they face a new instance of the pouring
task. When we use a cup that we are not familiar with, we pour
based on our experience. Shortly after a few practices, the model
improves and adapts to the new cup. The key component in GSSP
is that the robot uses the actual outcomes instead of the desired
outcomes to fine-tune the model.
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We refer to the process of using the model on a robot to
finish a pouring trial as a practice. We use the robot’s outcome se-
quences that result from several practices to form a new dataset,
which we use to fine-tune the model. The fine-tuning also uses
the actual outcomes as the motion goal. The inputs for the fine-
tuning process are:

• H: height of the source container.
• κ = 2/D: body curvature of the source container with d

being the diameter of the container.
• ftotal: the initial weight of water present in the source con-

tainer before pouring.
• f2pour : the actual weight of water that was poured during the

practice.
• f (t): the sequence of the weight of water in the receiving

container in the practice.
• θ (t): source container’s current angle during the practice.

The output of the fine-tuning is:

• ω(t): angular velocity of the source container in the prac-
tice.

Before fine-tuning, we obtain an initial model through the
presented self-supervised learning from demonstration. The fine-
tuning process in GSSP can be carried out in two ways:

• Gradual Fine-tuning: First, the robot performs n practices,
where n is relatively small. The resulting pouring sequences
form a new dataset, which is used to fine-tune the model.
If the error of the updated model is larger than a prede-
fined threshold, n practices are performed again, the newly
generated n data points are added to the new dataset. The
practices keep being performed and the new dataset keeps
growing until the error of the updated model is below
the predefined threshold. We define the error threshold to
be two times that of an averaged human’s pouring error.
Algorithm 1 describes gradual fine-tuning with n ∈ [5, 15].
• Batch Fine-tuning: First, the robot performs n practices,

where n is relatively large. The resulting pouring sequences
are used to fine-tune the model. Batch fine-tuning is equiva-
lent to conducting one iteration of gradual fine-tuning with
a large n, i.e., n > 35, where 35 is the average number
of samples per source container for the initial training set
discussed in Section 3.

The GSSP approach can be used for any manipulation where
he actual outcomes of several practices can be used as the de-
ired outcomes, i.e., the actual outcome can substitute the desired
utcome for training. Taking throwing objects into bins as an ex-
mple [46], we can practice throwing with the robot using unseen
bjects, record the outcome, and apply GSSP to generalize the
earning model to new objects. Another example can be recording
he state of food ingredients [47], or a state change [48] after
he execution of a manipulation, record the action sequences, use
hem as training samples, and fine-tune the manipulation model
o expand its generalization. However, the GSSP approach may
ot generalize well among different manipulations. For example,
throwing motion model may not be generalized to mixing
anipulations since the two motion models may have different
odel structures. Our latest work on motion code and motion
mbedding [49,50] may help in this kind of cross-motion-type
eneralization.

. Experiments & evaluation

To evaluate the motion model, we built a robotic system that
onsists of the trained RNN, a Dynamixel MX-64 motor, and the
7

Fig. 8. (Left) The robotic system consists of a motor that executes the generated
velocity command and a force sensor that monitors the poured amount. The
source containers are attached to the motor through a 3-D printed adapter.
(Right) Before pouring, we obtain the static features z = [ftotal, f2pour ,H, κ]. At
ime step t , the robotic system obtains θ (t) and f (t), combine them with z, and
end to the network. The network generates velocity command ω(t) which is
xecuted by the motor.

ame force sensor with which we collected the data. The motor
as placed at a certain height above the surface. The force sensor
as placed on the surface close by. The source container was
ttached to the motor. The receiving container was placed on top
f the force sensor. We properly placed the receiving container
along with the force sensor) according to the particular source
ontainer used so that there is little spilling. Fig. 8 (Left) shows
the setup of the robotic system. It runs at 60 Hz, the same as the
data collection. The time between consecutive time steps is ∆t =
0.016 s. Before performing each separate pouring trial, we obtain
the four static features which we denote by z = [ftotal, f2pour ,H, κ].
During the trial, at time step t , we obtain θ (t) from the motor
and f (t) from the force sensor, and we feed the input features
x(t) = [θ (t), f (t), z]⊤ to the model, which then generates the
velocity ω(t). The motor executes the velocity. The above process
repeats at time step t + ∆t . Fig. 8 (Right) shows the working
process of the robotic system at time t .

The robotic system:

1. Normalized every input dimension.
2. Obtained f (t) by filtering the raw force readings.

in the same way as in training. We evaluated the motion model
by testing it on pouring certain kinds of liquid from certain source
containers. The difficulty of the task changes when the liquid and
the source container change. For each pair of liquid and source
containers, the model pours 15 times, each time with arbitrary
voltotal and vol2pour , where voltotal > vol2pour . We show the pouring
error of each pair of liquid and source container in the form of
figures. In the figure, we plot the actual poured volume against
the target volume for all 15 trials. We also show the liquid type,
the mean, and standard deviation of the pouring error: µe and
σe in milliliters. At the bottom right of the figure, we show the
source container that was used. We also show a black dashed line
that illustrates zero pouring error. Translating the force reading to
volume requires the density of the liquid ρ and the gravitational
acceleration g . We used 0.997 g/mL for the density of water and
9.80665 m/s2 for gravitational acceleration.
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Algorithm 1 Generalization by self-supervised practicing (gradual fine-tuning)
1: Minit : Initial model
2: n: Number of practices
3: R← {(r1s , r

1
g ), . . . , (r

n
s , r

n
g )} ▷ r is: start state; r

i
g desired outcome or goal

4: err_th← error threshold
5: D← {}
6: procedure Practice(M , n, R)
7: repeat
8: Robot practices once using one item in R using model M
9: D← D ∪ {d} ▷ d : outcome sequence from the practice
0: until n practices have been performed
1: error← mean error between actual outcome and desired outcome among n practices
2: return error
3: end procedure
4: procedure GSSP
5: Mnew ← Minit
6: while True do
7: err ← Practice(Mnew , n, R)
8: if err < err_th then
9: break
0: else
1: Mnew ← Fine-tune(Mnew,D) ▷ Fine-tune the model using D
2: R← Generate-Random-Practices (n) ▷ Randomly generate n set of requirements for future practices
3: end if
4: end while
5: return Mnew
6: end procedure
1
w

Table 1
Errors of pouring water from different source containers.
Cup Cup in training µe (mL) σe (mL)

Red Yes 3.71 3.88
Water bottle No 4.12 4.29
Bubble No 6.77 5.76
Glass No 7.32 8.24
Fat bottle No 12.35 8.88
Red (by human) n/a 12.37 9.80
Measuring cup No 11.29 12.82
Wine bottle No 51.22 39.61
Blue bottle No 55.84 47.26

5.1. Model evaluation

5.1.1. Model evaluation of pouring water
We started with the task that has the lowest difficulty and

ested the model by pouring water from the red cup that has been
sed for training. Fig. 12(a) shows a small error of µe = 3.71mL,
ndicating that the learning is successful. Then we increase the
ifficulty of the tasks and test the model by pouring water from
ifferent source containers that have not been used for training.
able 1 summarizes the mean and standard deviation of the
rrors, µe and σe, in milliliters of the model pouring water from
ifferent source containers, and of the human pouring water
rom the red cup. Figs. 12 (b) through (e) show the error of
five source containers whose σe is smaller than that of human.
Compared with the error of using the red cup µe = 3.71mL, the
error of using the five source containers is larger, ranging from
µe = 4.12mL to µe = 12.35 mL, which is expected. Based on
the results, we call them ‘‘accustomed containers’’. We have also
evaluated the model on a UR5e robotic arm using the water bottle
(Fig. 10) in which µe = 7.83 mL and σe = 6.62 mL.

We wanted to compare the pouring model with humans and
therefore we asked four human subjects to do accurate water
pouring with the red cup. We made an animation on a computer
screen that shows the target volume and the real-time volume
8

Fig. 9. Actual-vs-target comparison of 4 human subjects pouring water from the
red cup. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

of water that has already been poured. The animation faithfully
shows the fluctuation of the volume reading while pouring. The
subjects were asked to look only at the animation and pour
the target volume. They were asked to pour naturally and with
a single pour. Pouring too fast or too slow was not allowed.
We collected 10 trials with each subject, resulting in 40 total
trials. Fig. 9 shows the results of human accurate pouring: µe =

2.37mL and σe = 9.80mL. Compared with humans, pouring
ater from the red cup (Fig. 12(a)) achieves a lower µe = 3.71mL

and σe = 3.88mL. The model achieves lower error than humans
because the model is trained using the actual outcomes.
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Fig. 10. Evaluating the model on UR5e collaborative robotic arm.

Fig. 11. An example of the robot pouring water using the water bottle.
Velocity: velocity of the source container measured counter clock-wise, negative
radians/seconds means that the container is going forward and positive means
backward. Volume: volume of water in the receiving container. Target: target
volume for the trial.

Fig. 11 shows an example of the resulting ω(t), vol(t), and
ol2pour for a trial of pouring water using the trained model with
he water bottle. The target vol2pour was established as 150mL
rom an initial voltotal of approximately 430mL. The final amount
oured was 149mL, an error of 1mL. We can see that for this
xample the pouring was finished in less than 6 s and the water
topped to be poured out in less than 5 s. The small spike seen
n the volume is due to the force sensor’s noise generated by the
ater movement. We measured the final volume poured once the
ater had stabilized in the receiving container.
We have also tested the model on two containers that are

ignificantly different from the training set: a wine bottle and
blue bottle that were available in our laboratory. As shown in
able 1, their mean volume errors were 51.22mL and 57.06mL,
espectively. The mean volume error for the wine bottle and the
lue bottle is 13 times higher than that of the red cup (3.71mL).
hey are unaccustomed containers to our pouring model because
f their unusual shapes.
Having evaluated the error of the model pouring different but

elatively large amounts of water, we evaluated the error of the
odel pouring a small amount of water. We use the model to
our 20 mL and 15 mL using the red cup, respectively, each for
5 times. For 20 mL µ = 9.68 mL and σ = 7.96 mL. For 15 mL
e e

9

Table 2
Results of pouring with MPC or Switch Controller.
Cup Model Cup in training µe (mL) σe (mL)

Red
MPC

Yes
7.25 4.92

Switch ω1 33.50 7.76
Switch ω2 4.50 1.87

Glass MPC No 14.25 9.11

Bottle MPC No 15.88 5.13

Fat MPC No 18.25 8.30

Bubble
MPC

No
26.13 6.29

Switch (ω1) 56.25 5.85
Switch (ω2) 22.25 4.29

µe = 2.83 mL and σe = 3.33 mL. Both µe and σe for pouring
20 mL are smaller than those of pouring a larger volume with
the red cup (Fig. 12(a)). The error of pouring 15 mL is larger than
both the error of pouring 20 mL and the error of pouring a larger
volume. In Fig. 13, we plot the reading of the force sensor for
a 1.0-lbf weight for 300 s. Fig. 13 also shows the water volume
converted from the corresponding force. For a 1.0-lbf weight, the
force sensor has a nonlinearity error of around 0.01 lbf, which is
1% of 1.0 lbf. The corresponding error in volume is around 5 mL.

5.1.2. Comparison with related works
The difficulty of accurate pouring increases as the duration

it takes to pour decreases. Our model pours as fast as humans.
The duration of each pour in the human demonstrations dataset
ranges from 3.2 to 8.7. The duration range of our model was 2.8
to 7.6 s. In comparison, [4] achieves 38mL error using 25 s for
each pour using similar containers as our accustomed containers,
it takes much longer than ours and causes a larger error. [5]
achieves under 5 mL error and uses 20–45 s for each pour, it
achieves lower error than ours but takes longer than [4]. We are
not aware of any prior art that has evaluated containers as diverse
as ours.

Our approach uses weight to monitor the poured volume. [4,
6,7] also use one single modality (weight or vision) to monitor
the poured volume, whose reported pouring error is 38 mL [4],
23.9 mL, 13.2 mL, and 30.5 mL [6], and 19.96 mL [7] respec-
tively. [5] achieves an error that is under 5 mL, but two modalities
(weight and vision) are used to monitor the poured volume.
It also pours slowly, a behavior that can help with the higher
accuracy achieved. The error reached by the model lies between
3.71 mL and 12.35 mL, lower than the above approaches.

In our previous work [8], we used model predictive control
(MPC) to address the problem of accurate pouring. The proposed
controller uses RNN to predict the weight of the liquid in the
receiving container and controls the angular velocity of the source
container. We evaluated the performance of the controller by
comparing it with a switch controller. The switch controller ap-
plies a constant forward velocity to the source container when
the volume in the destination container is less than the target. It
applies a constant backward velocity when the volume reaches
the target. Table 2 shows the results. The Switch ω1 controller
sed 20 deg/sec as the forward velocity and −30 deg/sec as the
ackward velocity. The Switch ω2 controller used 5 deg/sec as the
orward velocity and −7.5 deg/sec as the backward velocity. We
can see that when the forward angular velocity becomes smaller,
the mean volume error decreases. This result is expected since the
difficulty of controlling the volume in the destination container
decreased. Based on Table 2, the errors for the MPC controller
go from 7.25 mL and 26.13 mL. We can see that model M0 also
performs better than the MPC controller. Without the guaran-
tee that the RNN-generated physics model is highly precise, the
performance of the powerful MPC algorithm is compromised.
Pouring is not a trivial task that can be solved by a traditionally
powerful algorithm.
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Fig. 13. Readings of the force sensor for a weight of 1.0 lbf taken during 300 s.
he bottom subfigure shows the volume converted from force.

.1.3. Model evaluation on different materials
We also tested the model on liquids with different viscosity

rom water such as cooking oil and syrup. We used the red cup
o pour since it is part of the training dataset. However, the
ataset comes from pouring motions of water. We speculate that
iscosity played an important role in the accuracy of pouring
ifferent kinds of liquids. Therefore, Fig. 14 shows the error bars
f pouring water, oil, and syrup with the red cup versus their vis-
osity for 15 pours. The three types of liquids have very different
iscosities. We use 1 centipoise (cps) as the viscosity for water,
5 centipoises for oil, and 2000 for syrup. We plot the viscosities
n a logarithmic scale. We can see that the mean error increases
s the viscosity increases. The relationship is neither linear nor
xponential.
 f

10
Fig. 14. Pouring accuracy of liquids with different viscosity. x-axis plotted in
logarithmic scale.

We also evaluated the model on granular materials poured
in cooking scenarios: beans and rice. We used the same model
trained from pouring water. Fig. 15 shows the result of 15 pours
f beans and rice using the red cup. We changed the unit of
easure to grams (g) as it is more suitable for solid materials than
olume. We can see that the mean error is small for rice, whereas
t is higher for beans. However, the mean errors presented by
he model are similar to those presented in [51], where the
uthors state to have a mean error estimation of 14.3g for red
eans and 4.36g for pouring rice. Their approach is not meant
or accurate pouring but for pouring mass estimation based on
ingertip sensors of a robotic hand.



Y. Huang, J. Wilches and Y. Sun Robotics and Autonomous Systems 136 (2021) 103692

w
m
t
a
c
a
s
p
f
b
t

b
r
b
t
G
t
M

5

M

Fig. 15. Pouring accuracy of beans and rice using the red cup.

Fig. 16. Scatter plot of height vs. diameter for source containers used for
experiments.

5.2. GSSP evaluation — generalization to unaccustomed containers

We evaluated GSSP on the two unaccustomed containers — a
ine bottle and a blue bottle. For comparison, we also added the
easuring cup into the unaccustomed container set. We chose

hose three containers because, as Table 1 shows, the wine bottle
nd blue bottle had the highest mean errors among all the test
ontainers evaluated. Although the measuring cup did not present
significantly high mean error, it did present a much higher

tandard deviation error than humans. Fig. 16 shows the scatter
lot of the height versus diameter of the source containers used
or experiments. We can see that the wine bottle and the blue
ottle are both much taller than the rest of the containers, and
he measuring cup has a much larger diameter.

We evaluated GSSP using batch fine-tuning for the wine bottle,
lue bottle, and measuring cup. We evaluated the accuracy of the
esulting models by pouring water 15 times per experiment for
atch fine-tuning and carried out the experiments maintaining
he same set of volumes for a fair comparison. We also evaluated
SSP using gradual fine-tuning for the wine bottle. We refer to
he initially learned model that was evaluated in Section 5.1 as
0.

.2.1. Wine bottle
We executed a total of 36 practices using the initial model
with the wine bottle for different f and f . Then, we
0 total 2pour

11
Fig. 17. Results for Wine Bottle before and after GSSP.

Table 3
Accuracy for wine bottle after gradual fine-tuning.
Base model Fine-tuned model µe (mL) σe (mL)

M0 80.23 49.13
M0 M2 38.67 11.98
M2 M3 30.04 17.26
M3 M4 18.21 8.76

fine-tuned the model using the obtained dataset. We call the fine-
tuned model M1. Fig. 17 shows the mean and standard deviation
of the error for 15 pours before and after applying GSSP, i.e., using
modelsM0 andM1, respectively. We can see that the wine bottle’s
mean volume error became 15.78mL, a reduction of around 69%
from 51.22mL mean error. After applying GSSP, some trials over
pour but others under pour. When using model M0, all trials over
pour water.

We also tested the gradual fine-tuning approach using the
wine bottle for which we set the number of practices n = 10. The
set of volume variations R = {(f itotal, f

i
2pour )} for i = 1, . . . , 10, was

chosen to be the same for each iteration of the algorithm. Table 3
shows the accuracy evolution of the fine-tuning algorithms we
carried out. The mean and standard deviation errors from the
table’s first row are different from the ones shown in Table 1
as the set R and the number of trials was different for both
experiments. We hypothesize that running more iterations of the
algorithm will further improve the result. However, we believe
that there should exist enough variation in the selection of ftotal
and f2pour to outperform the result of batch fine-tuning for this
particular container.

Comparing the results of Table 3’s fourth row with Fig. 17 after
applying GSSP, we can see that both methodologies yield similar
results. Gradual fine-tuning has the advantage over batch fine-
tuning w.r.t. the cost it takes to collect the practices. However,
there exists a trade-off in training time: batch fine-tuning only
trains once, while gradual fine-tuning trains several times. Nev-
ertheless, gradual fine-tuning allows us to realize whether there
is an improvement or not after the first iteration of the algorithm
using only a few practices. In batch fine-tuning, after taking a
considerable time carrying out practices, we expect that there
exists an improvement, but the practices collected may lead to
unsatisfactory results.

5.2.2. Blue bottle
We decided to apply only batch fine-tuning for the blue bottle.

We executed 54 practices using the blue bottle and fine-tuned
M . We call the resulting model M . Fig. 18 shows the mean
0 5
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Fig. 18. Results for Blue Bottle before and after GSSP.

Fig. 19. Results for Measuring Cup before and after GSSP.

nd standard deviation of the error for 15 pours before and after
pplying GSSP, i.e., using M0 and M5, respectively. We can see a
eduction of 74% in average error from 55.85mL to 14.35mL. We
an also see that there exists an outlier for the target of 160mL
hat may be affecting the standard deviation. However, there was
54% reduction in this statistic from 47.32mL to 21.42mL.

.2.3. Measuring cup
We executed 36 practices using the measuring cup. We also

ecided to use batch fine-tuning for this source container and
pplied GSSP. We call the resulting model M6. Fig. 19 shows the
catter plot of the target versus the actual poured volume for the
easuring cup before and after GSSP, i.e., when using M0 and M6,

respectively. We can see a reduction again in mean error when
comparing the target with the actual volume poured by the robot.

5.3. GSSP evaluation — generalization to new material

We have also carried out GSSP experiments on syrup and red
beans. We used the red cup as the container for pouring with
the model M0. This model comes from training using the human
demonstrations dataset of pouring water. We selected the red cup
as it is the most accurate container for pouring water with model
M .
0 T

12
Fig. 20. Accuracy for syrup before and after 4 gradual fine-tuning iterations.

Table 4
Comparison of accuracy for red cup before and after fine-tuning M0 using data
ollected for red beans.
Source container Model µe (g) σe (g)

Red cup M0 16.27 6.88
M11 11.49 6.98

5.3.1. Syrup
We applied gradual fine-tuning for syrup using model M0 for

which we set the number of practices n = 10. Fig. 20 shows
the evolution of accuracy for 5 iterations of Algorithm 1. We can
see that the initial mean error of 13.84mL was mostly affected
for target volumes lower than 100mL. For the second iteration,
we decided to pour small volumes for which we could see a
mean volume error of 28.07mL. For the third iteration, we could
see a reduction of the mean error from 28.07mL to 16.18mL
(42% reduction). We could see that the improvement was caused
by targets lower than 50mL and higher than 80mL. For the
fourth iteration, we could see an improvement from 16.18 mL to
11.49mL (28% reduction). At this stage, we were able to reduce
the initial mean error from 13.8 4 mL to 11.49mL (17% reduction).
Finally, we carried out a fifth iteration for which the mean error
decreases from 11.49mL to 11.11mL (3% reduction).

5.3.2. Red beans
We collected a total of 36 practices for pouring beans with dif-

ferent initial target weights, where the 15 pouring trials shown in
Fig. 15 are included. Table 4 summarizes the mean and standard
eviation weight errors. Model M11 results from fine-tuning M0
sing the 36 pouring trials collected. We can see that GSSP not
nly works for reducing the error when pouring liquids from new
ource containers. It also can be used to improve the accuracy of
ouring a different material. Interestingly, the model M0 trained
or pouring water has a considerable small error when used for
ouring beans.

.4. GSSP discussion

At this point, we have applied GSSP as formulated in Algorithm
where the dataset used to fine-tune comes entirely from the

obot practices. We performed further experiments to analyze the
ffects of combining the human demonstrations dataset described
n Section 3.1 with the robot practices. The hierarchical diagram
f Fig. 21 illustrates the details of the fine-tuned models that we
ave presented so far and the new ones we will present next.

he models presented in Sections 5.2 and 5.3 correspond to the
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Fig. 21. Model relationships for the application of batch or gradual GSSP to particular datasets, containers, or materials.
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able 5
ccuracy comparison of pouring water using the fine-tuned models.
Source container Base model Fine-tuned model µe (mL) σe (mL)

Wine bottle M0
M1

a 15.78 13.55
M12

b 17.43 13.65

Blue bottle M0
M5

a 14.35 21.42
M13

b 12.65 5.99

Measuring cup M0
M6

a 8.38 8.27
M14

b 8.03 8.34

aModel fine-tuned with robot practices only.
bModel fine-tuned with robot practices plus human demonstrations.

children of the ‘‘Practices’’ branch of Fig. 21. Such models were
erived from fine-tuning M0 with robot practices using the same

model. In the following sections, we will compare the results of
new models fine-tuned with a combination of robot practices and
human demonstrations, versus the models fine-tuned with robot
practices only. We also carried out experiments using the red cup
with the fine-tuned models to verify the impact of accuracy to
the accustomed containers. Finally, we will also show the results
of applying GSSP to the robot practices using a fine-tuned model
instead of M0.

5.4.1. Combination of practices and human demonstrations
We fine-tuned model M0 using the combination of the human

demonstrations dataset with the robot practices. We believe this
is the same as training from scratch using the combined datasets,
the only difference being that the training converges faster as M0
already learned from the human demonstrations. Table 5 shows
the summary of mean and standard deviation errors for the fine-
tuned models. M12 is the fine-tuning of M0 with the training
dataset of human demonstrations from Section 3.1 plus the batch
of wine bottle robot practices from Section 5.2.1. Similarly, M13
andM14 are the results of fine-tuningM0 with the training dataset
of human demonstrations of Section 3.1 plus the blue bottle and
measuring cup batches of robot practices, respectively.

Model M12 has slightly higher mean and standard deviation
errors than model M1 w.r.t. wine bottle, meaning that model M1
is better suitable for pouring accurately with the wine bottle. In-
terestingly, model M13 slightly outperformed model M5 w.r.t. the
blue bottle’s accuracy. Similarly, model M14 marginally outper-
formed model M6. Given this marginal improvement, fine-tuning
using only the robot practices is sufficient to achieve a satisfactory
precision. Moreover, the original human demonstrations dataset
is necessary to generate models M13 and M14 with the increased
ost of training with a larger dataset.
13
Table 6
Accuracy of pouring water with the red cup using the fine-tuned models.
Source container Base model Fine-tuned model µe (mL) σe (mL)

Red cup M0

M1
a 31.88 19.60

M12
b 8.67 5.13

M5
a 25.29 14.98

M13
b 8.52 5.51

M6
a 4.84 2.79

M14
b 6.95 5.57

aModel fine-tuned with robot practices only.
bModel fine-tuned with robot practices plus human demonstrations.

5.4.2. GSSP effect on accustomed containers
We investigated how the fine-tuned models affected the gen-

eralization of pouring containers that already work well with M0.
o this end, we selected the red cup as it was the best performing
ontainer for M0 and is also part of the human demonstrations
dataset. From Table 1, it has µe = 3.71mL and σe = 3.88mL.
able 6 shows the accuracy of 15 pouring trials using the red
up using models fine-tuned with robot practices only and the
ombination of practices with human demonstrations. Based on
he results, we can see that the accuracy of the red cup was
everely affected by the fine-tuned models that come from the
ractices of the wine bottle and the blue bottle, i.e., M1 and M5,
espectively. The accuracy was not drastically impacted by using
6.
We believe this is related to the fact that M0 was already

erforming well with the measuring cup. Therefore, the fine-
uning needed to learn more, e.g., modifies M0 more drastically,
rom the practices of the wine bottle and the blue bottle than
rom the measuring cup’s. Based on this result, we can state that
odels M1 and M5 are specialized models that accurately pour
ith the wine bottle and the blue bottle, respectively. At this
tage, the robot can use a selector such that when it needs to use
he wine bottle, M1 is chosen to pour. Similarly, when it needs to
use the blue bottle, M5 is chosen to pour.

5.4.3. GSSP on a different base model
We also investigated the effect of applying GSSP to different

starting models. We selected model M12 that was the result of
fine-tuning model M0 using the combination of the dataset of
human demonstrations plus the wine bottle robot practices. We
used the blue bottle to collect 54 practices using model M12.
Table 7 summarizes the results. We can see that the blue bottle’s
accuracy using model M12 resulted in µe = 26.38mL and σe =

38.09mL. This result outperforms its counterpart when using
M0, where µe = 55.84mL and σe = 47.26mL. Model M12 is
more accurate to pour with the blue bottle than M0. We fine-
tuned model M using only the blue bottle’s practices, which
12
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able 7
ccuracy of pouring water with the blue bottle fine-tuning model M12 .
Source container Base model Fine-tuned model µe (mL) σe (mL)

Blue bottle
M12 26.38 38.09
M12 M15

a 25.12 27.43
M12 M16

b 28.27 25.07

aModel fine-tuned with robot practices only.
bModel fine-tuned with robot practices plus human demonstrations.

resulted in model M15. Its improvement was marginal around
.7% (25.12mL from 26.38mL). We also used the combination of
he human demonstrations plus the wine bottle practices plus
he blue bottle practices to fine-tune M12. This resulted in model
16. We could see that there was no improvement in the average
rror. Therefore, we believe that the most reliable model to fine-
une is the one that comes from human demonstrations, i.e., M0.
e hypothesize that such model has learned the variations in-
erent to humans. Therefore, it has more information than a
ine-tuned model with the robot practices.

.5. Evaluation summary

Overall, the experiments and evaluation results show that

1. The model trained on data of humans pouring water pours
accurately using accustomed containers not seen during
training. The mean volume error range of pouring water
was from 4.12mL to 12.35mL for such containers.

2. The model also generalizes the accurate pouring behavior
to liquids such as oil and syrup and solid materials such as
rice and beans.

3. By using robot practices as new training data, GSSP lowers
the initial pouring error to values smaller than the state-
of-the-art. For instance, experiments with a wine bottle
showed a reduction of mean volume error from 51.22mL
to 15.78mL (69% reduction).

4. Batch or gradual fine-tuning yield similar results when
there is enough variation on the practices collected.

5. Applying GSSP with the combination of human demonstra-
tions and robot practices does not improve the accurate
pouring generalization results.

. Conclusion

In this work, we presented a self-supervised learning from
emonstrations approach that allows robots to pour as accurately
nd fast as humans. The presented work is based on a peep-
ole LSTM that learns the motion dynamics by using the actual
utcome of the demonstrations, regardless of an expert human
xecution. We evaluated the model using a robotic system that
e devised and a UR5e robotic arm.1 Based on the extensive
xperiments carried out, the presented model pours more accu-
ately and faster than related works that have approached the
ccurate pouring problem. The capability of the model was fur-
her expanded with generalization by self-supervised practicing
GSSP) for containers and materials that presented high pouring
rror.
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