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The energy implication of climate change on urban wastewater systems 1 
 2 
1. Introduction 3 
Wastewater treatment plants (WWTPs) are important energy users in the US, representing around 24 % of 4 
a typical municipality’s energy budget (Edward III, 2004) and around 0.6 % of the nation’s total energy 5 
consumption (Soares et al., 2017). Energy used in WWTPs contributes to 46.4 million metric tons/year of 6 
greenhouse gas emissions in the US (Griffiths-Sattenspiel and Wilson, 2009), in addition to the small but 7 
indispensable amounts of greenhouse gases that are directly released during the treatment processes (Zhao 8 
et al., 2019). Furthermore, a comparable amount of energy is indirectly consumed throughout the supply 9 
chain of the materials/chemicals used in WWTPs (Mo and Zhang, 2012) . WWTPs are also important 10 
energy producers, via means such as combined heat and power (CHP) generation utilizing biogas produced 11 
through sludge digestion (Mo and Zhang, 2013), hydropower generation harnessing the kinetic energy 12 
embedded in wastewater flow (Power et al., 2014), and residual heat recovery from wastewater (Suzuki et 13 
al., 2009). The energy recovery potential of CHP has been estimated to range from 0.4-1.5 times of a 14 
WWTP’s operational energy (Bachmann et al., 2015; Diaz-Elsayed et al., 2019; Gu et al., 2017; Nouri et 15 
al., 2006; Wett et al., 2007). Wastewater hydropower generation potential has been estimated to be around 16 
0.75 % of WWTPs’ operational energy use in the UK on average (Power et al., 2014), while in certain 17 
cases, a full energy offset is possible (Samora et al., 2016). Furthermore, the potential of residual heat 18 
recovery has been estimated to offset at least 50 % of a WWTP’s heating/cooling energy demand (Hao et 19 
al., 2015). Both energy consumption (Li et al., 2018) and energy production (Khalkhali et al., 2018) in 20 
WWTPs are subject to future changes in climate. Increase in precipitation frequency and intensity can 21 
increase pollutant mobilization (Alamdari et al., 2017) , and consequently, the pollution load of combined 22 
sewer systems (Santana et al., 2014), which may lead to higher energy consumptions in the wastewater 23 
treatment processes. Climate also has a direct effect on operational energy and chemical consumptions 24 
through changes in microbial activities (Wilén et al., 2006) and/or chemical reaction rates (Mines et al., 25 
2007). Changes in runoff volume and temperature can also directly influence hydropower generation, the 26 
efficiency of residual heat recovery (Chae and Ren, 2016), and the effectiveness of biogas generation 27 
(Bowen et al., 2014). Nevertheless, our understandings of the trend and the magnitude of such influences 28 
to inform sustainable WWTP management remain limited. 29 

 30 
Efforts have been previously made to quantify the influence of climate change on wastewater quantity (Ma 31 
et al., 2014) and quality (Wang et al., 2017) at WWTPs. These studies commonly use process-based models 32 
or statistical methods. Process-based models take a mechanistic approach to characterize the physical, 33 
chemical, or biological processes in the WWTPs. For instance, Semadeni-Davies et al. (2008) simulated 34 
stormwater and sewer infiltration through hydrological and hydrodynamical models to explore the effect of 35 
climate change on the volume of urban drainage (Semadeni-Davies et al., 2008). Jin et al. (2016) combined 36 
a runoff routing model and a process-based activated sludge model to predict wastewater quantity and 37 
quality under heavy rainfall events (Jin et al., 2016). While process-based models are useful in laying the 38 
theoretical foundation of the relationships between climate and wastewater quantity and quality, they can 39 
be limited in dealing with complex WWTP treatment processes where the underlying mechanisms are less 40 
understood. To address this issue, statistical methods have been applied. Carstensen et al. (1998) found that 41 
a simple regression model based on measured data performed significantly better than a complex 42 
hydrological model in predicting a WWTP’s hydraulic load (Carstensen et al., 1998). Langeveld et al. 43 
(2014) adopted an empirical approach to study the diurnal dynamics of wastewater composition in relation 44 
to climate and predicted the chemical oxygen demand and the ammonium concentrations of the influent 45 
wastewater (Langeveld et al., 2014). Wang et al. (2017) analyzed the influence of cold and warm seasons 46 
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on a Norwegian WWTP using correlation analysis and showed that snow melting has a significant impact 47 
on the quantity and quality of wastewater influent in cold climate area (Wang et al., 2017). None of these 48 
studies, however, further linked climate’s influence to the embedded energy of wastewater treatment.  49 

 50 
During the last decade, there has also been a proliferation of life cycle assessment (LCA) studies 51 
investigating both energy consumptions and productions from WWTPs considering construction, operation, 52 
and end-of-life stages (Mo et al., 2011). These LCAs often include a system boundary of upstream processes 53 
(wastewater collection and transport to the plant) (Lassaux et al., 2007), core processes (treatment processes 54 
in the plant) (Tangsubkul et al., 2006), and downstream processes (the production of by-products such as 55 
electricity/heat by biogas or the residuals and their recycling) (Mo and Zhang, 2012). Functional units based 56 
upon unit volume of wastewater being treated have been commonly adopted. Previously reported net life 57 
cycle energy use in WWTPs ranged from 0.09-1.37 kWh/m3 (Bodik and Kubaska, 2013; CEC, 2005; 58 
McCarty et al., 2011; Mo and Zhang, 2012; Plappally, 2012; Silvestre et al., 2015; Stillwell et al., 2010; 59 
Wang, H. et al., 2016; Wilkinson, 2000). While these LCAs offer important insights into WWTPs’ life 60 
cycle energy compositions, they are mostly static analyses based upon temporally averaged inventory data, 61 
which cannot be easily extrapolated to investigate potential future changes under climate change. Only a 62 
few studies have examined the dynamic relationship between climate and the life cycle energy of water or 63 
wastewater systems. Santana et al. (2014) adopted a linear regression analysis combined with relative 64 
importance analysis to determine the influence of water quality on the embodied energy of a drinking water 65 
treatment plant. They found that the influent water quality variation can cause up to 14.5 % variation in 66 
total operational embodied energy, mainly due to different treatment chemical dosage requirement (Santana 67 
et al., 2014). Mo et al. (2016) and Stang et al. (2018) combined multivariate, regression, and relative 68 
importance analyses to investigate the influence of climate and water quality changes on the energy and 69 
chemical consumptions in drinking water supply. They found future climate change can either increase or 70 
decrease the life cycle energy of water supply depending on geographic locations and treatment processes 71 
(Mo et al., 2016; Stang et al., 2018). Li et al. (2018) is by far the only study that investigated the influence 72 
of rainfall changes on the life cycle energy demand of WWTPs through comprehensive correlation and 73 
regression analyses. They found a positive relationship between rainfall and the studied WWTP’s 74 
environmental impacts, including global warming, acidification, and photochemical ozone creation. 75 
However, future climate scenarios were not used in their prediction of the WWTPs’ dependence on energy.  76 

 77 
Accordingly, this study aims to develop a generalizable modeling and assessment framework to investigate 78 
the influence of climate change on WWTPs’ life cycle energy consumption and recovery, considering a 79 
system boundary that includes the upstream, core, and downstream processes. This modeling and 80 
assessment framework includes a correlation analysis between climate and raw wastewater quantity and 81 
quality indicators, as well as regression and relative importance analyses that further link climate and 82 
wastewater quantity and quality indicators with the life cycle energy consumption and recovery at the 83 
WWTPs. The modeling framework was then applied to a WWTP located in Boston, MA. This study allows 84 
generation of new knowledge and understandings in the following areas: 1) the influence of future climate 85 
change on raw wastewater quantity and quality, 2) the influence of climate on future changes in the 86 
volumetric and total energy consumption (direct and indirect) and generation towards the end of the century, 87 
and 3) the influence of climate change on the seasonal energy consumption (direct and indirect) and 88 
generation patterns.  89 
 90 
2. Methods 91 
This study adopted life cycle assessment as a framework to inventory the historic WWTP direct and indirect 92 
energy consumptions and energy recoveries. The influence of climate change on the energy use and 93 

https://www.sciencedirect.com/topics/engineering/by-product
https://www.sciencedirect.com/topics/engineering/biogas


3 
 

generation at the WWTPs was then quantified through integrated correlation, regression, and relative 94 
importance analyses as described in detail in the following sub-sections. 95 
 96 
2.1. Study site description 97 
Deer Island wastewater treatment plant (DIWWTP), located in Boston, Massachusetts, owned and operated 98 
by the Massachusetts Water Resources Authority, is the second largest WWTP in the US. It provides 99 
wastewater treatment services to 2.2 million people (32 % of the state population) in 43 communities (1350 100 
km2 service area) of the greater Boston area. Around 93 % of its service area is served by separate sanitary 101 
and stormwater systems, while 7 % is served by combined sewers. However, only about half of the annual 102 
flow treated at the DIWWTP is sanitary flow, with the remaining flow being groundwater infiltration and 103 
stormwater inflow (I/I) entering the separated sewer system, as well as stormwater from combined sewers 104 
(MWRA, 2013). The average daily flow to the plant is 1.36 million m3 and the plant has a peak wet weather 105 
capacity of 4.81 million m3 per day. The plant employs a treatment process that consists of primary and 106 
secondary treatment, followed by disinfection and dechlorination. The detailed treatment process and 107 
chemicals applied are outlined in Figure 1. The types of energy directly used onsite are electricity and 108 
diesel. Electricity is primarily used for wastewater pumping and treatment as well as for administrative and 109 
support activities. Diesel is used as a backup power supply. Additionally, sludge is treated for phosphorous 110 
removal, thickened, and anaerobically digested. The biogas is combusted in a CHP system onsite to offset 111 
the plant’s electricity and heating demand. The digested sludge is pumped to a residual pellet plant, where 112 
it is processed into fertilizer pellets. However, given the residual pellet plant is a separate entity beyond the 113 
DIWWTP, production of the fertilizer pellets in the pellet plant was not included in the system boundary 114 
of the current study.  115 
 116 

 117 
Figure 1 The treatment process and the chemicals used in the Deer Island Wastewater Treatment Plant 118 

 119 
Six electric power sources are currently available for the DIWWTP: grid electricity, the electricity 120 
recovered from the CHP system, diesel electricity generation (as backup), onsite hydropower generation, 121 
onsite wind turbines, and onsite solar photovoltaic arrays. The CHP system consists of two steam turbine 122 
generators (STG) of 18 and 1.2-MW power, respectively. The backup power system consists two 123 
combustion turbine generators (CTGs) with a capacity of 52 MW. However, diesel electricity generation 124 
was not included in the current study due to the intermittent and uncertain nature of its usages. The amount 125 
of energy provided by diesel is also insignificant as compared to the total operational energy consumption 126 
(2.5 %). The hydropower facility generates electricity from the treated wastewater prior to discharge into 127 
effluent outfall tunnel using two 1.1-MW Kaplan hydroelectric turbine generators. The onsite wind and 128 
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solar electricity generations are also not included in this study because they are not directly linked with 129 
wastewater characteristics.  130 
 131 
In this study, historic monthly precipitation, wastewater quantity and quality, treatment chemical use, and 132 
energy use and generation data were directly obtained from the DIWWTP, supplemented by temperature 133 
and snowfall data from the National Climate Data Center for Station USW00014739 in Boston, MA 134 
(NOAA, 2017). Table 1 shows a summary of the data that have been used by this study.  135 
  136 
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Table 1 Annual variations in climate, wastewater characteristics, energy consumption, and energy offset of the Deer 137 
Island Wastewater Treatment Plant 138 

Data item Time period 
Minimum 
monthly 
value 

Average 
monthly 

value 

Maximum 
monthly 
value 

Usage/Application 

C
li

m
a

te
 Temperature (°C) 

Jul 2000-Apr 
2017 

-7.17 11.09 25.17 

N.A. Precipitation (m) 
Jul 2000-Apr 

2017 
0.02 0.09 0.38 

Snowfall (m) 
Jul 2000-Apr 

2017 
0.00 0.12 1.65 

W
a

s
te

w
a

te
r 

c
h

a
ra

c
te

ri
s

ti
c

s
 

Influent flowrate (m3/s) 
Jul 2000-Apr 

2017 
9.40 14.61 31.79 

N.A. 

Water temperature (°C) 
Jan 2007-Oct 

2017 
12.71 17.52 22.97 

pH 
Jan 2007-Oct 

2017 
6.31 6.64 6.85 

TSS (mg/L) 
Jul 2006-Aug 

2018 
89.42 183.72 281.55 

BOD5 (mg/L) 
Jul 2006-Aug 

2018 
83.22 172.89 269.66 

COD (mg/L) 
Jan 2010-Aug 

2018 
173.79 391.97 551.47 

C
h

e
m

ic
a

l 
u

s
e
 

Hydrogen peroxide (mL/m3) 
Jul 2004-Apr 

2017 
0.00 1.70 11.94 Pretreatment & Odor control  

Sodium hypochlorite 
(mL/m3) 

Jul 2004-Apr 
2017 

5.62 12.11 22.00 Disinfection  

Sodium bisulfite (mL/m3) 
Jul 2004-Apr 

2017 
0.00 0.93 1.52 Dechlorination 

Ferrous/Ferric chloride 
(g/m3) 

Jul 2004-Apr 
2017 

0.44 1.48 3.20 
Control the formation of struvite and 
reduce H2S in biogas for emission 
control 

Polymer (g/m3) 
Jul 2004-Apr 

2017 
0.02 0.15 0.35 Used for sludge thickening  

E
n

e
rg

y
 u

s
e
 

Support facilities (MJ/m3) 
Jul 2006-Apr 

2017 
0.03 0.07 0.11 

Office, laboratory, maintenance shops 
and warehouse, including a small-
scale replica of the plant secondary 
treatment to test and compare a 
variety of biological and physical 
treatment processes on a large scale 
before those processes become part 
of the full-scale facility. 

Pumping (MJ/m3) 
Jul 2006-Apr 

2017 
0.31 0.34 0.37 

Used for lifting collected urban 
wastewater to the head of the plant 
(46 m) 

Primary treatment (MJ/m3) 
Jul 2006-Apr 

2017 
0.08 0.16 0.25 

Used for non-suspended solids 
settlement 

Secondary treatment 
(MJ/m3) 

Jul 2006-Apr 
2017 

0.18 0.37 0.61 

Used for onsite oxygen generation for 
pure oxygen-activated sludge system 
and non-settleable solids removal 
through biological and gravity 
treatment 

Residual processing 
(MJ/m3) 

Jul 2006-Apr 
2017 

0.07 0.19 0.31 

Used for sludge thickening of primary 
and secondary sludge, pumping of 
sludge and anaerobic digestion of 
sludge. 

Thermal plant (MJ/m3) 
Jul 2006-Apr 

2017 
0.04 0.10 0.15 

Used for thermal energy production 
for processes and facility heating and 
power generation 

E
n

e
rg

y
 o

ff
s

e
t Steam turbine generation 

(MJ/m3) 
Jul 2006-Apr 

2017 
0.76 2.17 3.15 

Electricity generated from steam 
produced from utilization of methane 
gas generated from sludge digestion 
in boilers  

Methane gas (MJ/m3) 
Jul 2003-Apr 

2015 
0.00 1.89 3.36 

Byproduct of sludge digestion 
Used for heating and power 
generation 

Hydropower (MJ/m3) 
Jul 2006-Apr 

2017 
0.00 0.04 0.06 

Generated from the effluent water of 
the plant 

 139 
2.2. Life cycle energy estimation 140 
Life cycle energy was calculated using Eqs. (1) and (2) in this study. It includes three components: 1) direct 141 
energy, which includes all types of energy that is directly used onsite of the WWTPs; 2) indirect energy, 142 
which includes the energy embodied in the supply chain of the chemicals used during the operation of the 143 
WWTPs; and 3) energy offset, which includes energy that is recovered through the CHP system (through 144 
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steam turbine generation) and the onsite hydropower generation. The present study focuses on the operation 145 
stage of the WWTPs because the construction and end-of-life phases of the WWTPs are less relevant to 146 
climate change (Mo et al., 2016).  147 
𝑉𝐶𝐸𝐷𝑡 = 𝑉𝐶𝐸𝐷𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑉𝐶𝐸𝐷𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 − 𝑉𝐶𝐸𝐷𝑜𝑓𝑓𝑠𝑒𝑡 = ∑ 𝑃𝐸𝑖 𝑖

× 𝐸𝑖 + ∑ 𝑃𝐸𝑗𝑗 × 𝐸𝑗 − ∑ 𝑃𝐸𝑘 × 𝐸𝑘𝑘  148 

            Eq. (1) 149 
𝐶𝐸𝐷𝑡 = 𝑉𝐶𝐸𝐷𝑡 × 𝑄𝑡          Eq. (2) 150 
Where, 151 

VCED = volumetric cumulative energy demand of wastewater services in month t, MJ/m3; 152 
E = volumetric energy use / chemical use / energy offset in wastewater services, (MJ or ml or g) 153 
/m3; 154 
PE= primary energy content, as listed in Table 2, MJ of primary energy;  155 
i = energy use index for items listed under “Energy use” in Table 1; 156 
j = chemical species index for items listed under “Chemical use” in Table 1;  157 
k = energy offset index for items listed under “Energy offset” in Table 1; 158 
CEDt= cumulative energy demand of wastewater services in month t, MJ; and 159 
Qt = total volume of the influent wastewater during month t, m3. 160 

 161 
The Ecoinvent 3 and the USLCI databases embedded in the SimaPro software (version 9.0.033) and the 162 
“Cumulative Energy Demand V1.09” method were utilized to calculate the life cycle energy of the 163 
DIWWTP (Jassal et al., 2013). A list of the data entries used in SimaPro is provided in Table 2. Steam 164 
turbine and hydropower generation was assumed to replace electricity supply from the grid.   165 
 166 

Table 2 Data entries in SimaPro corresponding to each type of energy implication and their unit primary energy 167 
content 168 

 Chemical / 
energy types 

SimaPro entries Unit primary 
energy content 
(MJ) 

Direct 
energy use 

Electricity (MJ) Electricity, at eGrid, NEWE, 2010/kWh/RNA 2.26 

Indirect 
energy use 

Hydrogen 
Peroxide (mL) 

Hydrogen peroxide, without water, in 50 % solution state (GLO)| 
market for | Alloc Def, U 

0.03 

Sodium 
hypochlorite (mL) 

Sodium hypochlorite, without water, in 15 % solution state (GLO)| 
market for | Alloc Def, U 

0.02 

Bisulfite (mL) Sodium hydrogen sulfite (GLO)| market for | Alloc Def, U 0.05 

Polymer (g) Cationic resin (GLO)| market for | Alloc Def, U 0.04 

Ferrous / Ferric 
Chloride (g) 

Iron (III) chloride, without water, in 40 % solution state (GLO)| market 
for | Alloc Def, U 

0.02 

Energy 
offset 

Steam turbine 
generator (MJ) 

Electricity, at eGrid, NEWE, 2010/kWh/RNA 2.26 

Hydropower (MJ) Electricity, at eGrid, NEWE, 2010/kWh/RNA 2.26 

 169 
2.3. Multivariate and multi-linear regression analyses 170 
Multivariate and multi-linear regression analyses were conducted to model the climate’s influence on the 171 
influent wastewater characteristics as well as the required treatment. A multivariate analysis and a Principal 172 
Component Analysis (PCA) was first conducted using the JMP Pro 14.2.0® software to investigate the 173 
correlations among three monthly climate indicators (mean temperature (Tmean), total snowfall amount 174 
(Stotal), and total rainfall amount (Ptotal)) and six wastewater indicators (pH, mean wastewater temperature 175 
(Tw), total suspended solids (TSS), five-day biochemical oxygen demand (BOD5), chemical oxygen demand 176 
(COD), average influent wastewater rate (Qavg)). Strength of the pairwise correlations were evaluated using 177 
the Pearson correlation coefficients (r) which has a value between +1 and -1, where +1 indicates total 178 
positive linear correlation; 0 indicates no linear correlation; and -1 indicates total negative linear correlation 179 
(Stigler, 1989). In this study, r values in ranges of [0.7-1), [0.5-0.7), [0.2-0.5), and (0-0.2) are considered 180 
to indicate strong, moderate, fair, and weak correlations, respectively (Akoglu, 2018). While no two 181 
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variables are entirely “independent” from a statistical perspective, extremely high collinearity (r>0.99) 182 
could mean that the variables essentially represent the same information. Information redundancy can result 183 
in over-inflated variances, making the following regression analysis inaccurate. Data availability, causal 184 
relationships, and prior knowledge of the processes being modeled are used to eliminate redundant variables 185 
and select the most appropriate predictor. It has to be noted that Tmean was selected as the only temperature 186 
indicator in this study because a previous study has found extremely high collinearity among mean, 187 
maximum, and minimum monthly temperatures in Boston (r>0.99) (Mo et al., 2016).   188 
 189 
Comprehensive regression analyses were then performed to predict climate’s influence on the operation of 190 
the DIWWTP. A regression analysis was first conducted to investigate the influence of climate indicators 191 
on influent wastewater quantity. Both climate and wastewater quantity indicators were then used to predict 192 
wastewater quality. Lastly, all climate and wastewater quality indicators were used to predict direct and 193 
indirect energy consumptions as well as the energy offset of wastewater treatment. The regression analyses 194 
were also performed in the JMP Pro 14.2.0® software. The stepwise methods (both backward elimination 195 
and forward selection algorithms) using both minimum AICc (Akaike Information Criterion) and BIC 196 
(Bayesian Information Criterion) stopping rules were adopted and the highest obtained adjusted R squared 197 
(R2

adj) values were reported. The R2
adj value compares the descriptive power of regression models. It is a 198 

modified version of R2 that has been adjusted for the number of predictors in the model (Wherry, 1931). 199 
The R2

adj increases only if the newly added predictive variable improves the model more than would be 200 
expected by chance. The R2

adj value is normally between 0 and 1. A higher R2
adj indicates that the model 201 

has a stronger predictive power. In this study, models with a R2
adj value higher than 0.5 (50 % of variation 202 

of the response is explainable by the independent predictors) were used for future predictions.  203 
 204 
Two approaches were tested for conducting the regression analysis: 1) a lumped approach and 2) a month-205 
based approach. The lumped approach uses all available monthly data for the regression analysis. The 206 
lumped dataset does not differentiate inter- and intra-annual changes. In other words, both the inter- and 207 
the intra-annual changes in the climate are used as a surrogate to predict the influence of future climate 208 
change on the operation of the DIWWTP. The month-based approach performs a regression analysis for 209 
each of the twelve months. Inter-annual changes are hence separated from intra-annual changes and only 210 
intra-annual changes are used to predict future operation of the DIWWTP. This approach, however, 211 
significantly reduces the amount of data that can be used for each regression.  In this study, when sufficient 212 
data are available, a mixed approach was adopted, which determines whether the lumped or the month-213 
based approach would be used to maximize the R2

adj
 values for each month. Overall, the mixed approach 214 

was found to be more suitable for wastewater quantity predictions, while the lumped approach was found 215 
to be more suitable for predicting wastewater quality as well as chemical and energy consumptions due to 216 
lack of data availability.  217 
 218 
The relative importance of each predictor was then calculated using the standardized regression 219 
coefficients, also labeled as Standard Betas (Bring, 1994). Standardized regression coefficients are the 220 
average changes of the dependent variables in response to one-unit change of a predictor, when other 221 
predictors are held constant. The variance inflation factor ( VIF)is used to assess multicollinearity of the 222 
selected regression models, which further indicates the degree to which the precision of the model (R2

adj) is 223 
degraded by multicollinearity (James et al., 2013). VIF values of less than 10 have been previously 224 
considered to show that collinearity problems are negligible or non-existent (Marquaridt, 1970), while VIF 225 
values of greater than 100 have been considered to indicate significant multicollinearity (O’brien, 2007) . 226 
The same criteria are adopted to evaluate the multicollinearity of the regression models reported in this 227 
study.  228 
 229 
2.4. Climate change scenarios 230 
Downscaled climate model outputs including monthly average temperature and precipitation were obtained 231 
from the Bureau of Reclamation for 21 General Circulation Models (GCMs) from the CMIP5 archive. The 232 
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21 models, listed in Table S-1, have been statistically downscaled to 1/8th degree resolution over the 233 
continental United States using the Bias-Correction and Spatial Disaggregation technique (Wood et al., 234 
2002). Two Representative Concentration Pathways were used for future predictions, one representing a 235 
low/medium emission scenario (RCP 4.5) and one representing a high emission scenario (RCP 8.5). These 236 
scenarios are consistent with a wide range of possible changes in future anthropogenic greenhouse gas 237 
emissions and have been widely adopted by previous studies (Daniel et al., 2018). Emissions in the RCP 238 
4.5 scenario peak around 2040, then decline, while in the RCP 8.5 scenario, emissions continue to rise 239 
throughout the 21st century (Collins et al., 2013). Snowfall amount under climate change scenarios is 240 
assumed to be proportional to the amount of precipitation being projected under these scenarios. 241 
 242 
3. Results and discussion 243 
In this section, historic life cycle energy consumption and generation, correlations between water 244 
quality/climate indicators and energy consumption and generation, as well as the future inter- and intra-245 
annual energy use trends of the WWTP are reported.  246 
 247 
3.1. Average monthly life cycle energy of the DIWWTP 248 
Figure 2 shows the average monthly influent wastewater volume, the average monthly volumetric 249 
cumulative energy demand (VCED), and the total monthly cumulative energy demand (CED) of the 250 
DIWWTP for the period of 2007-2017. The average monthly influent wastewater volume peaks in March 251 
and then drops to its lowest value in September (a 63 % reduction compared to March) before rising again 252 
in winter. The high raw wastewater volume in March could be contributed by a combined effect of higher 253 
rainfall volume, melting snowpack, and lower stormwater infiltration and evapotranspiration. On the other 254 
hand, the low raw wastewater volume in September can be contributed by the combined effect of lower 255 
rainfall volume, lower groundwater table, and higher stormwater infiltration and evapotranspiration. It has 256 
to be noted that the rate of drinking water supply in the same region is the highest in July and August and 257 
the lowest in February. This indicates a weak correlation between drinking water supply and wastewater 258 
generation in the region (r=-0.4).   259 

  260 

261 
Figure 2 The embodied energy of DIWWTP in three groups of direct, indirect and energy offset. (a) the monthly 262 

volumetric cumulative energy demand (VCED) to treat 1 m3 of wastewater in stacked bars as well as the average 263 
monthly influent wastewater rate in red dashed line; and (b) the monthly cumulative energy demand (CED) in stacked 264 

bars 265 
 266 
In terms of the VCED, direct energy represents around 86-92 % of the monthly energy consumption, which 267 
is much more significant than the indirect energy. Secondary treatment (30 %) and pumping (27 %) are the 268 
two largest components of the volumetric direct energy use, followed by residual processing (16 %), 269 
primary treatment (13 %), thermal plant (8 %), and support of the system (6 %). Volumetric direct energy 270 
consumption is the highest in August-September and the lowest in March-April, which is mainly resulted 271 
from changes in secondary treatment and residual processing (Figure S-1 in the supporting information). 272 
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The mixed nature of urban runoff and sewage in the DIWWTP can play a significant role in creating this 273 
pattern. During spring, sewage is diluted by snow melt and hence is lower in pollutant concentrations, 274 
resulting in a lower treatment need. Temperature also has a significant impact on the dissolved oxygen 275 
(DO) of wastewater and the need for aeration and mixing (Marx et al., 2010). Temperature has a positive 276 
relationship with biological activity and its associated DO consumption (Dugan et al., 2009). In addition, 277 
warmer water has a lower DO holding capacity (Dugan et al., 2009; Lekov et al., 2009). Collectively, these 278 
effects increase the volumetric direct energy consumption in summer, especially the energy used for 279 
secondary treatment in which cryogenic and aeration facilities are typically the main energy consumers 280 
(McCarty et al., 2011).  This aligns with previously reported findings that the energy intensity of secondary 281 
treatment is relatively higher at higher temperatures (Bowen et al., 2014). The total direct CED presents a 282 
different pattern than the direct VCED. Total direct CED consumption is relatively stable over the year with 283 
the highest direct CED occurring in March and the lowest in February. The relatively small variances over 284 
the year (17 % difference between months with highest and lowest direct CEDs) can be explained by the 285 
opposite seasonal trends in the wastewater flow rate and the direct VCED.  286 
 287 
Indirect VCED represents around 9-14 % of the monthly volumetric energy consumption depending on the 288 
month. It shares a similar seasonal pattern as the direct VCED (Figure S-2 in the supporting information). 289 
This is because more chemicals are needed in summer to treat the same volume of wastewater due to a 290 
lower wastewater quality in summer months. Sodium hypochlorite has the highest contribution to the 291 
volumetric indirect energy use, representing 65 % of the average indirect energy use intensity. Hydrogen 292 
peroxide has an average annual contribution of 14 % in indirect energy intensity. This is closely followed 293 
by sodium bisulfite (13 % of the indirect energy intensity), and the rest of the chemicals together contribute 294 
around 8 % of the indirect energy intensity. Hydrogen peroxide is only applied in summer for odor control. 295 
This is because when increased DO demand is not sufficiently satisfied by increased aeration, dead spots 296 
will be created where concentrations of ammonia, phosphates, or sulfur compounds will increase. When 297 
combined with the monthly wastewater flow rate, indirect CED still peaks in August, although to a lesser 298 
extent. January presents the lowest indirect CED, which is 47 % below the level of consumption in August.  299 
 300 
Volumetric energy offset is around 15-20 % of the volumetric energy consumption in the DIWWTP. Energy 301 
offset is mostly achieved through steam turbine generation. Volumetric generation of the STG is the lowest 302 
in March and April - the snow melting season, which can be explained by the relatively high hydraulic load 303 
and low temperature during these months. One thing needs to be noted is that volumetric energy offset from 304 
biogas recovery is not the highest in months with the highest organic loadings. Optimal efficiency of 305 
anaerobic digestion is achieved under a delicate balance among several groups of microorganisms (Henze 306 
et al., 2008). However, this balance can be interrupted by organic shock during the months with the highest 307 
organic loadings, resulting in reduction of methane productions (Ketheesan and Stuckey, 2015). This aligns 308 
with findings from many previous WWTP behavioral studies that there is an optimal organic loading to 309 
achieve the highest efficiency of methane gas productions (Orhorhoro et al., 2018).   310 
 311 
Hydropower generation from the effluent water, with a much smaller contribution to energy offset, does 312 
not show significant seasonality due to its dependence to both the effluent flow rate and the tidal elevation 313 
variation of the downstream water body. The total CED offset has a slight peak in May and an evident drop 314 
in August and September. This drop is primarily resulted from the lower inflow rates in these months.   315 
 316 
When energy consumption and recovery are combined, net CED consumption is the highest in August and 317 
the lowest in April.  318 
 319 
3.2. Multivariate and multiple linear regression analyses 320 
This sub-section reports outcomes related to the correlations between water quality/climate indicators and 321 
energy consumption and generation, as well as the future trends of the wastewater treatment demand.  322 
 323 
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3.2.1. Multivariate correlation analysis 324 
Multivariate correlation analysis was conducted on a dataset consisting of 83 historic months with available 325 
information about climate, wastewater, and operation of the plant. The obtained Pearson correlation 326 
coefficients (r) for all the existing pairs in this correlation analysis are provided in Figure 3. There is no 327 
extremely high correlation (r>0.99) between climate and wastewater indicator variables. Hence, all 328 
variables were kept for the following regression analysis. This is also supported by results obtained from 329 
the PCA, which are provided in Table S-3 of the supporting information. 330 
 331 
Average influent wastewater flow rate (Qavg) has a moderate positive correlation with total rainfall Ptotal 332 
(r=0.61), a fair negative correlation with mean temperature Tmean (r=-0.40), and a very weak positive 333 
correlation with snowfall Stotal (r=0.09). The positive correlation between Ptotal and Qavg can be explained by 334 
the fact that half of the treated wastewater in this plant is from groundwater infiltration and stormwater 335 
inflow. A similar high correlation between Ptotal and Qavg in WWTPs has been reported in Li et al. (2018). 336 
A higher Tmean reduces soil moisture and hence groundwater infiltration and inflow into the wastewater 337 
collection system. Wastewater temperature (Tw) presents a strong similarity to Tmean in terms of its 338 
correlation with other indicators, except that it has stronger positive correlations with other water quality 339 
indicators than Tmean. pH is the only wastewater quality indicator that has very weak correlations with 340 
climate indicators (|r|<0.2). It has a fair negative correlation with Qavg, which might be explained by the 341 
dilution effect of stormwater on raw sewage, which usually has a higher pH than drinking water due to 342 
detergents and soap. There are strong correlations between wastewater quality indicators of BOD5, COD, 343 
and TSS, which is expected based upon their definition (Abdalla and Hammam, 2014). TSS, BOD, and 344 
COD also present a strong similarity in their correlations with Qavg and climate indicators. They all have a 345 
strong negative correlation with Qavg (r<-0.75), a fair negative correlation with Ptotal (r<-0.39), a fair positive 346 
correlation with Tmean (r>0.24), and a very weak negative correlation with Stotal (r<-0.09). Negative 347 
correlations with Qavg and Ptotal can be explained by the dilution effect of rainfall and increase in I/I which 348 
result in less TSS, BOD, and COD, while the positive correlation with Tmean can be explained by the higher 349 
pollutant loadings found during the summer months.  350 
 351 

 352 

 353 
Figure 3 Pearson correlations coefficient among wastewater and climate indicators 354 

 355 
3.2.2. Regression analysis for wastewater quantity and quality 356 
A multi-linear regression analysis was first performed to examine how climate indicators contribute to the 357 
variations of wastewater quantity and quality indicators. The lumped approach was first used for the 358 
regression analysis. The obtained results show that Qavg obtained from the lumped approach was not able 359 
to replicate the peak flows in March as well as during October and November (Figure S-4 in the SI). The 360 
month-based approach was then investigated, which was found to have higher R2

adj values than the lumped 361 
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approach for seven out of the twelve months (Table 3 and Table S-3 of the SI). Thus, the mixed approach 362 
was adopted for Qavg modeling. Based on the obtained relative importance of the climate variables, Ptotal is 363 
the main variable in explaining the Qavg variation for all months except for October. It is the only selected 364 
predictor of Qavg in March, which is the month with peak flow. In October, snowfall is possible in the study 365 
region and it is the only month that Qavg is positively and significantly affected by Stotal, probably due to 366 
rain-on-snow events. For the remaining months with lower temperature, precipitation mainly happens in 367 
the form of snow and due to decrease in rainfall, a decrease in Qavg in December, January, and February is 368 
expected. Tmean generally has weak and negative influence on Qavg in most months, due to its impact on 369 
evaporation and soil moisture.  370 
  371 
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Table 3 Regression analyses result used for wastewater influent flow rate modeling through Mixed approach 372 
Month / 

Method  

Jan / Lumped approach Feb / Lumped approach Mar / Month-based approach 

Radj
2=0.54 method=AICc, BIC Radj

2=0.54 method=AICc, BIC Radj
2=0.71 method=AICc, BIC 

Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF 

Intercept 13.708 0.508 <.0001     13.197 0.201  <.0001     13.680 1.067 <.0001     

Ptotal (m) 43.873 3.477 <.0001 49 1.012 52.322 2.06  0.002 64 1.190 51.236 8.180 <.0001 100   

Stotal (m) -2.447 0.993 0.015 12 1.637 -3.006 0.324  0.056 36 1.190           

Tmean (°C) -0.208 0.027 <.0001 39 1.623                     

Month / 

Method  

Apr / Lumped approach May / Month-based approach Jun / Month-based approach 

Radj
2=0.54 method=AICc, BIC Radj

2=0.77 method=AICc, BIC Radj
2=0.69 method=AICc, BIC 

Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF 

Intercept 13.708 0.508 <.0001     19.365 4.747 0.001   9.929 1.016 <.0001    

Ptotal (m) 43.873 3.477 <.0001 49 1.012 37.036 6.741 0.000 77 1.138 46.841 7.926 <.0001 100 1.000 

Stotal (m) -2.447 0.993 0.015 12 1.637                     

Tmean (°C) -0.208 0.027 <.0001 39 1.623 -0.495 0.301 0.125 23 1.138           

Month / 

Method  

July / Lumped approach Aug / Month-based approach Sep / Month-based approach 

Radj
2=0.54 method=AICc, BIC Radj

2=0.58 method=AICc, BIC Radj
2=0.56 method=AICc, BIC 

Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF 

Intercept 13.708 0.508 <.0001     21.919 6.189 0.003    9.714 0.607 <.0001     

Ptotal (m) 43.873 3.477 <.0001 49 1.012 28.160 6.239 0.001 70 1.000 31.312 6.808 0.000 100   

Stotal (m) -2.447 0.993 0.015 12 1.637                     

Tmean (°C) -0.208 0.027 <.0001 39 1.623 -0.517 0.269 0.075 30 1.000           

Month / 

Method  

Oct / Month-based approach Nov / Month-based approach Dec / Lumped approach 

Radj
2=0.88 method=AICc, BIC Radj

2=0.59 method=AICc, BIC Radj
2=0.54 method=AICc, BIC 

Co S p RI (%) VIF Co S p RI (%) VIF Co S p RI (%) VIF 

Intercept 22.377 3.150 <.0001    4.686 2.505 0.082     13.708 0.508 <.0001     

Ptotal (m)           56.433 12.301 0.000 69 1.001 43.873 3.477 <.0001 49 1.012 

Stotal (m) 335.300 30.416 <.0001 78 1           -2.447 0.993 0.015 12 1.637 

Tmean (°C) -0.791 0.247 0.007 22 1 0.606 0.295 0.059 31 1.001 -0.208 0.027 <.0001 39 1.623 

“Co”: coefficients in linear regression model, “S”: standard errors of the coefficients, “p”: the observed significance level of each 

predictor variable, “RI”: relative importance of each selected predictor variable in each type of chemical or energy uses calculate 

based on Standard Betas, “VIF”: variance inflation factor. 

  373 
The lumped approach was selected for examining the contributions of climate and wastewater flowrate to 374 
wastewater quality changes, as the data availability (n=7) limited the use of the month-based approach. The 375 
regression analysis yielded acceptable prediction models for all wastewater quality parameters except for 376 
pH. Both Tmean and Qavg were found to be statistically significant contributors to Tw variations (Table 4). 377 
Qavg was found to be a very significant contributor to TSS, BOD, and COD predictions. Other predictor 378 
variables present limited contributions to the wastewater quality indicators.  379 
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 380 
Table 4 Regression analyses results for modeling wastewater quality indicators 381 

Response 
Radj

2 
method 

Par. Int. Ptotal (m) Stotal (m) T mean (°C) Qavg (m
3/s) Modeled (black) vs. observed (red) 

Tw (°C) 
0.74 
AICc 

Co 20.727 14.705 -0.791 0.210 -0.464   
 

        

Sd 0.613 2.606 0.529 0.017 0.040           

p <.0001 <.0001 0.138 <.0001 <.0001           

RI (%)   17 4 41 38            

VIF   1.810 1.825 2.343 2.260           

TSS 
(mg/L) 

0.64 
AICc 

Co 299.068 92.780 -15.255   -8.379 

 

  
 

        

Sd 8.230 49.767 8.092   0.669           

p <.0001 0.059 0.058   <.0001           

RI (%)   12 9   79           

VIF   1.586 1.025   1.604           

BOD 
(mg/L) 

0.70 
AICc, BIC 

Co 309.507     -0.525 -9.037 

 

  
 

        

Sd 9.469     0.210 0.554           

p <.0001     0.014 <.0001           

RI (%)       13 87           

VIF       1.255 1.255           

COD 
(mg/L) 

0.74 
AICc 

Co 684.062     -0.749 -20.051 

 

  
 

        

Sd 22.722     0.496 1.385           

p <.0001     0.135 <.0001           

RI (%)       9 91           

VIF       1.232 1.232           

pH 
0.19 
AICc 

Co 6.869 0.435     -0.019           

Sd 0.045 0.270     0.004           

p <.0001 0.110     <.0001           

RI (%) 0.000 24     76           

VIF   1.585     1.585           

 382 
3.2.3. Future wastewater treatment demand 383 
Regression analysis was then performed to examine the contribution of both climate and wastewater quality 384 
indicators to the volumetric chemical and energy uses of the DIWWTP. The obtained results are provided 385 
in Table 5. Out of the direct energy consumption models, electricity use for pumping is the only response 386 
variable that did not yield an acceptable prediction model (R2

adj<0.50). This is expected as pumping energy 387 
intensity is primarily determined by pumping efficiency, which is not expected to present a significant 388 
seasonal pattern. The remaining direct electricity uses are all well explainable by climate and wastewater 389 
indicators (R2

adj>0.79). COD is the most frequently selected predictor for different types of direct energy 390 
uses, followed by Tw, TSS, Tmean, Ptotal, Stotal, and pH. Out of the chemical response variables, ferrous/ferric 391 
chloride and sodium bisulfite are the two response variables that did not result in satisfactory regression 392 
models. This can be explained by the expected higher uncertainty related to processes where these 393 
chemicals are used: struvite control in anaerobic digestion and dichlorination, respectively. Sodium 394 
hypochlorite, hydrogen peroxide, and polymer resulted in satisfactory predictive models (R2

adj>0.52). 395 
Sodium hypochlorite usage can be predicted by pH, COD, and Tw, as less sodium hypochlorite is needed 396 
with lower pH, higher pollution concentration is and lower water temperature. Hydrogen peroxide usage 397 
increases with higher wastewater temperature, higher pH, and lower Ptotal. It enhances oxidation as due to 398 
temperature rise and decrease in solubility of oxygen, mechanical aeration will not be sufficient to increase 399 
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the DO during hot summer months. Polymer use in secondary treatment can be predicted by BOD, COD, 400 
Tw and Ptotal. In terms of energy offset, the analyses did not result in an acceptable predictive model for 401 
energy offset through the steam turbine generator (STG) (R2

adj=0.44). Methane gas generated from sludge 402 
digestion in this system is the primary fuel for the STG. Further analysis shows that an acceptable model 403 
can be obtained for the volumetric methane gas production (R2

adj=0.77) with TSS, BOD5 and COD selected 404 
as predictors. The difference between the R2

adj values of the STG and the methane gas models can be 405 
explained by the seasonal changes in the turbine generation and waste heat recovery efficiencies, which 406 
cancels out the effect of seasonal water quality changes. No satisfactory model was found for volumetric 407 
hydropower generation.  408 
  409 
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Table 5 Regression analyses coefficients for modeling wastewater indirect/direct energy use and energy offset 410 

Response 
Radj

2 
metho

d 
Par. Int. 

Ptotal 
(m) 

Stotal (m) T mean (°C) Tw (°C) pH 
TSS 

(mg/L) 
BOD5 
(mg/L) 

COD 
(mg/L) 

Electricity use 
for Pumping 

(MJ/m3) 

0.39 
AICc, 
BIC 

Co 0.4465 0.0884     0.0016 -0.0212 -0.0003 0.0003   

Sd 0.0555 0.0257     0.0004 0.0087 0.0001 0.0001   

p <.0001 0.0009     <.0001 0.0169 0.0003 0.0010   

RI (%)   13     17 9 31 29   

VIF   1.2675     1.2922 1.2074 5.7458 6.2367   

Electricity use 
in Primary 
Treatment 

(MJ/m3) 

0.87 
AICc 

Co -0.0275 -0.2056   -0.0015 0.0093   -0.0002   0.0003 

Sd 0.0145 0.0388   0.0004 0.0012   0.0001   0.0001 

p 0.0607 <.0001   0.0002 <.0001   0.0556   0.0002 

RI (%)   11   17 37   10   25 

VIF   1.4927   6.2340 7.6258   9.4987   12.9490 

Electricity use 
in Secondary 

Treatment 
(MJ/m3) 

0.89 
AICc 

Co -0.0307 -0.1684   0.0124     -0.0013   0.0011 

Sd 0.0237 0.0678   0.0012     0.0002   0.0001 

p 0.1984 0.0152   <.0001     <.0001   <.0001 

RI (%)   5   22     26   47 

VIF   1.4092   1.4271     7.5958   9.1851 

Electricity use 
in Residual 
Processing 

(MJ/m3) 

0.84 
AICc, 
BIC 

Co -0.4200 -0.2292 0.0287   0.0075 0.0589 -0.0004   0.0005 

Sd 0.1197 0.0589 0.0103   0.0010 0.0189 0.0002   0.0001 

p 0.0008 0.0002 0.0065   <.0001 0.0026 0.0164   <.0001 

RI (%)   10 8   24 7 15   36 

VIF   1.4591 1.8064   2.2877 1.2443 8.3634   10.3316 

Electricity use 
in Thermal 

Plant (MJ/m3) 

0.79 
AICc, 
BIC 

Co -0.1641 -0.1493 0.0146   0.0031 0.0251     0.0002 

Sd 0.0653 0.0306 0.0053   0.0005 0.0103     0.0000 

p 0.0141 <.0001 0.0072   <.0001 0.0169     <.0001 

RI (%)   19 12   28 9     32 

VIF   1.2837 1.5506   2.1011 1.1980     1.8846 

Electricity use 
for system 

support 
(MJ/m3) 

0.86 
AICc, 
BIC 

Co -0.0099 -0.0586 0.0118 0.0005 0.0025   -0.0002   0.0002 

Sd 0.0077 0.0167 0.0035 0.0002 0.0006   0.0001   0.0000 

p 0.2033 0.0008 0.0013 0.0185 0.0001   0.0009   <.0001 

RI (%)   8 8 11 19   19   35 

VIF   1.5056 1.7501 6.2727 7.1283   9.8226   13.6215 

Sodium 
Hypochlorite 

(mL/m3) 

0.52 
AICc, 
BIC 

Co -71.9216      0.3348 
10.859

4     0.0160 

Sd 16.1945      0.1096 2.5154     0.0048 

p <.0001      0.0031 <.0001     0.0012 

RI (%)        29 38     33 

VIF        1.4034 1.1771     1.5250 

Hydrogen 
Peroxide 
 (mL/m3) 

0.64 
AICc, 
BIC 

Co -33.5213 -11.451     0.5964 3.8567       

Sd 9.5365 4.0725     0.0585 1.4557       

p 0.0007 0.0062     <.0001 0.0098       

RI (%)   18     66 17      

VIF  1.0034     1.0672 1.0644       

Polymer (g/m3) 
0.63 
AICc 

Co -0.0979 -0.1492     0.0046     0.0009 0.0001 

Sd 0.0296 0.0867     0.0014     0.0002 0.0000 

p 0.0013 0.0882     0.0018     <.0001 0.0024 

RI (%)   11     21    48 20 

VIF  1.3592     1.3817     2.3104 1.4220 

Ferrous & 
Ferric chloride 

(g/m3) 

0.28 
AICc, 
BIC 

Co -7.4226 -3.5723 0.6183 0.0292  1.3476    

Sd 2.8997 1.2530 0.2560 0.0078  0.4349    

p 0.0124 0.0056 0.0181 0.0003  0.0027    

RI (%)  22 21 33  24    

VIF  1.0173 1.7329 1.7110  1.0179    

Sodium 
bisulfite 
(mL/m3) 

0.08 
AICc 

Co 1.6814   0.0067 -0.034   -3.5310  

Sd 0.2720   0.0037 0.0115   
0.0000

2  

p <.0001   0.0795 0.0037   0.1119  

RI (%)    65 20   15  

VIF    4.0414 4.5491   1.3203  

Steam turbine 
electricity 
generation 

(MJ/m3) 

0.44 
AICc 

Co 0.0058 -0.2336 0.0723 0.0027         0.0006 

Sd 0.0499 0.1480 0.0328 0.0011         0.0001 

p 0.9082 0.1186 0.0305 0.0112         <.0001 

RI (%)   13 20 25          42 

VIF   1.3360 1.7119 1.8739         1.4810 

Digester Gas 
Production 

(L/m3) 

0.77 
AICc 

Co 17.9468          -0.2975 0.1949 0.2853 

Sd 6.7759          0.0926 0.1294 0.0623 

p 0.0103          0.0021 0.1373 <.0001 

RI (%)            27 17 56 

VIF           6.7183 12.671 14.0483 
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3.3. Future trend of DIWWTP’s embodied energy under climate change 411 
Figure 4 provides the predicted future trend of wastewater generation and life cycle energy of the DIWWTP 412 
under RCP 4.5 and RCP 8.5 climate change scenarios. The response variables that were not found to be 413 
correlated with climate data in the previous step were assumed constant under climate change. Qavg has 414 
shown an overall decreasing trend towards the end of the century under both climate scenarios (Figure 415 
4(a)). Temperature increase plays a dominant role in the decrease of Qavg. Under RCP 4.5, the estimated 416 
Qavg for the late-century period is slightly higher than the mid-century period. This is because under this 417 
scenario, carbon emissions peak in 2040 and as a result, temperature increase slows down toward the late-418 
century.  419 
 420 
Direct and indirect VCEDs are expected to increase by 2.7-3.3 % and 6.4-7.9 % under RCP 4.5 and 8.5 421 
scenarios, respectively. This increasing trend in direct and indirect VCEDs can be linked to the decrease in 422 
Qavg and its influence on wastewater quality. Volumetric energy offset presents a relatively stable or slightly 423 
decreasing trend towards the late century, although temperature and organic concentrations are expected to 424 
be higher. This could again be the result of potential shocks in organic loadings and the limitations in 425 
maximum achievable efficiency in energy recovery. Total monthly CED of the DIWWTP is projected to 426 
increases by 2 and 6 % under the RCP 4.5 and 8.5 scenarios, respectively. Both direct and indirect CEDs 427 
were projected to increase by around 1.7-2.3 % and 3.9-5.3 % towards the end of the century under climate 428 
change, while offset CED was projected to drop by 1-2 %. The DIWWTP has been looking into combining 429 
food waste with sludge digestion to increase biogas recovery.  430 

 431 
Figure 4 The future wastewater volume and embodied energy of DIWWTP under climate change scenarios of RCP 432 

4.5 (black) and RCP 8.5 (red) 433 
 434 
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3.4. Future seasonality of the embodied energy under climate change condition 435 
Figure 5 presents the estimated seasonal variation in Qavg, VCED, and CED at the late-century period under 436 
RCP 4.5 (black) and RCP 8.5 (red) scenarios. Qavg is projected to maintain a seasonal pattern with peaks in 437 
March and drops in late summer and early fall. However, a larger seasonal variation in Qavg is observed 438 
under both scenarios. Differences between the highest and lowest flow rates within a year are going to 439 
increase from 63 % in the baseline period to as much as 121 % in the late-century period. This is also 440 
evidenced in the standard deviation of Qavg, which increases from 2.39 m3/s in the baseline period to 2.75-441 
3.57 m3/s in the late-century period under the two climate scenarios. These changes can potentially result 442 
in more frequent system shocks with extremely high and low flow rates, and hence create operational 443 
difficulties. The VCED of the plant will experience a relatively consistent increasing trend through the year. 444 
October will experience the highest increase in VCED from the baseline for 0.23 and 0.53 MJ/m3 under 445 
RCP 4.5 and 8.5 scenarios, respectively. November will experience decrease in VCED compared to the 446 
baseline due to slight rise in the region’s precipitation in this month and its dilution effect on water quality. 447 
Projections of future intra-annual CED changes show that the plant will experience a significantly larger 448 
seasonal variation of CED between June and November. Differences between the highest and lowest month 449 
CEDs within the timeframe increased from 19 % in the baseline period to as much as 39 % in the late-450 
century period.  451 

 452 

453 
Figure 5 Comparison of the projected seasonal changes in (a) wastewater flowrate, (b) volumetric cumulative energy 454 

demand, and (c) total cumulative energy demand in late-century period under the RCP 4.5 and 8.5 scenarios 455 
 456 
4. Conclusions and Implications 457 
In this study, the future trends of intra- and inter-annual life cycle energy consumption and generation under 458 
climate change is explored, using the Deer Island Wastewater Treatment Plant as a testbed. Currently, direct 459 
energy contributes more than 86 % to the total Cumulative Energy Demand (CED) consumption, while 460 
energy recovery through Combined Heat and Power and hydropower generation allows the treatment plant 461 
to offset more than 15 % of its energy demand. A multivariate analysis based upon historical data show 462 
wastewater quantity and most wastewater quality variables have a strong correlation with climate factors. 463 
Most of the energy and chemical consumption as well as energy offset variables can be predicted by climate 464 
and wastewater characteristic parameters. Two climate scenarios of the RCP 4.5 and RCP 8.5 are 465 
investigated. Annual influent wastewater quantity is predicted to decrease towards the end of the century 466 
under both climate change scenarios, mainly due to the expected increase in temperature. However, a larger 467 
seasonal variation in the flow rate is projected, which might more than double the current seasonal 468 
variations in flow rates. This can potentially result in more frequent system shocks with extremely high and 469 
low flow rates, and hence challenge the operation of the treatment plant. The influent wastewater quality 470 
will also decrease under climate change conditions which implies more direct and indirect energy 471 
consumptions for wastewater treatment. Overall, the plant’s CED consumption is expected to rise. Direct 472 
energy demand will increase more than indirect energy demand. The energy offset potential of the plant is 473 
projected to slightly decrease due to potential disturbances to the delicate microbial balance required for 474 
efficient biogas recovery in the anaerobic digestion. Projections of future intra-annual responses show that 475 
the seasonal variations of wastewater flowrate as well as the monthly cumulative energy demand can 476 
potentially experience a two-fold increase, resulting in more frequent system shocks and create operational 477 
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difficulties. Future study can extend the current work to additional wastewater treatment plants to 478 
investigate the influence of treatment system design and geospatial heterogeneity on the outcome as well 479 
as allow comparison of various data-driven regression and machine learning models.  480 
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